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Abstract

We prove Schauder type estimates for stationary and evolution equations driven by the classical Ornstein-
Uhlenbeck operator in a separable Banach space, endowed with a centered Gaussian measure.
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1. Introduction

Let X be a separable Banach space, endowed with a centered Gaussian measure γ , and let 
H ⊂ X be the corresponding Cameron-Martin space. In this context, an important differential 
operator that plays a central role in the Malliavin Calculus is the classical Ornstein-Uhlenbeck 
operator,

Lu = divγ ∇H u,
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where divγ is the Gaussian divergence and ∇H is the gradient along H . It plays the role played 
by the Laplacian with respect to the Lebesgue measure in Rd , being the operator associated to 
the quadratic Dirichlet form

(u, v) �→
∫
X

〈∇H u,∇H v〉H dγ, u, v ∈ W 1,2(X,γ ).

The corresponding Markov semigroup is explicitly represented by

T (t)f (x) =
∫
X

f (e−t x +
√

1 − e−2t y)γ (dy), t > 0, f ∈ Cb(X).

Its realization Tp in Lp(X, γ ) is a contraction, strongly continuous semigroup for every p ∈
[1, +∞), and it is analytic if p > 1. In the latter case, the well known Meyer estimates imply 
that the domain of its infinitesimal generator Lp coincides with the Sobolev space W 2,p(X, γ ). 
In particular, for every λ > 0 and f ∈ Lp(X, γ ), the equation

λu −Lu = f (1.1)

has a unique solution u ∈ W 2,p(X, γ ), and ‖u‖W 2,p(X,γ ) ≤ C‖f ‖Lp(X,γ ), with C independent of 
f . See e.g. [2, Ch. 5] for a survey on Sobolev spaces with respect to Gaussian measures, and on 
the operators Lp .

Here we consider a realization L of L in the space Cb(X) of the continuous and bounded 
functions from X to R, whose resolvent R(λ, L) is given, for λ > 0, by

R(λ,L)f (x) =
∞∫

0

e−λtT (t)f (x) dt, f ∈ Cb(X).

The realizations of elliptic differential operators in spaces of continuous functions exhibit typical 
difficulties. Even in finite dimension, the solution of (1.1) does not belong to C2(Rd) for gen-
eral f ∈ Cb(Rd), while Schauder theorems are available both for non-degenerate ([7]) and for 
degenerate hypoelliptic ([8]) Ornstein-Uhlenbeck operators.

In our general setting we prove Schauder type regularity results for the solution to (1.1), that 
are the Hölder counterpart of the above mentioned maximal Lp regularity results. The appropri-
ate Hölder spaces (as well as the Sobolev spaces Wk,p(X, γ )) have to be chosen according to the 
structure of L: indeed, it is well known that T (t) and R(λ, L) are smoothing operators along the 
directions of the Cameron-Martin space H only. So, we use Hölder spaces along H , defined as

Cα
H (X,Y ) :=

{
f ∈ Cb(X,Y ) : [f ]Cα

H (X,Y ) := sup
x∈X, h∈H\{0}

‖f (x + h) − f (x)‖Y

‖h‖α
H

< +∞
}
,

‖f ‖Cα
H (X,Y ) := sup

x∈X

‖f (x)‖Y + [f ]Cα
H (X,Y ),

for α ∈ (0, 1) and for any Banach space Y . We prove that for every f ∈ Cα
H (X, R) and for 

every λ > 0, the unique solution u ∈ D(L) of (1.1) belongs to C2+α(X, R). This means that u
H



7464 S. Cerrai, A. Lunardi / J. Differential Equations 267 (2019) 7462–7482
is twice continuously differentiable along H , it has bounded and continuous H -gradient ∇Hu

and H -Hessian operator D2
Hu, with values respectively in H and in the space of the bilinear 

quadratic forms L(2)(H), and x �→ D2
H u(x) belongs to Cα

H (X, L(2)(H)). Consequently, all the 
second order directional derivatives ∂2u/∂h∂k with h, k ∈ H exist and belong to Cα

H(X, R).
In the case that f ∈ Cb(X) only, we prove that u has bounded and continuous H -gradient 

∇H u, such that

sup
x∈X, h∈H\{0}

‖∇H u(x + 2h) − 2∇H u(x + h) + ∇H u(x)‖H

‖h‖H

< +∞,

namely ∇H u satisfies a Zygmund condition along H . This is an infinite dimensional counterpart 
of the Zygmund regularity of the gradients of solutions to elliptic differential equations in finite 
dimension.

Schauder type regularity results are proved also for the mild solution to the Cauchy problem

{
vt (t, x) = Lv(t, x) + g(t, x), t ∈ [0, T ], x ∈ X,

v(0, ·) = f,
(1.2)

namely for the function

v(t, x) = T (t)f (x) +
t∫

0

T (t − s)g(s, ·)(x)ds, t ∈ [0, T ], x ∈ X, (1.3)

when f ∈ C2+α
H (X, R) and g ∈ Cb([0, T ] × X; R) such that supt∈[0,T ][g(t, ·)]Cα

H (X;R) < +∞. 
However, while in finite dimension with non-degenerate γ the function v defined by (1.3) is a 
classical solution to (1.2), in infinite dimension it is not differentiable with respect to t in general, 
even if g ≡ 0.

Our main interest is in the infinite dimensional case. However, if X =Rn the operator L reads 
as

Lu(x) = Trace [QD2u(x)] − 〈x,∇u(x)〉

where Q ≥ 0 is the covariance matrix of γ . If Q > 0, namely if γ is non-degenerate, our results 
are contained in [7,8]. If Q is not invertible the operator L is not hypoelliptic, and this paper 
provides new Hölder and Zygmund regularity results along the directions of the range of Q.

In infinite dimension, Schauder regularity results for elliptic equations driven by Ornstein-
Uhlenbeck operators are already available in the case that X is a Hilbert space, γ is non-
degenerate, and the corresponding Ornstein-Uhlenbeck semigroup is smoothing in all directions 
([3,1,5]). Still in the case that X is a Hilbert space and γ is non-degenerate, Schauder regularity 
results for elliptic equations driven by the Gross Laplacian and some of its perturbations are also 
available ([4,1]). See section 4 for details.
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2. Notation and preliminaries

Throughout the paper we use notations, definitions and results of [2] concerning Gaussian 
measures in Banach spaces.

We consider a separable Banach space X endowed with a centered Gaussian measure γ , and 
we denote by H the corresponding Cameron-Martin space. It consists of the elements h ∈ X

such that

‖h‖H := sup{f (h) : f ∈ X∗, ‖f ‖L2(X,γ ) ≤ 1} < +∞

and it is isometric to the closure of X∗ in L2(X, γ ), denoted by X∗
γ . The isometry Rγ : X∗

γ �→ H

is defined as follows: Rγ f is the unique h ∈ X such that 
∫
X

f (x)g(x)γ (dx) = g(h), for every 
g ∈ X∗. For every h ∈ H , R−1

γ h is usually denoted by ĥ.
We recall the Cameron-Martin formula: for every h ∈ H , the translated measure γh(B) :=

γ (B − h) is absolutely continuous with respect to γ , with density ρ(x) = exp ĥ(x) − ‖h‖2
H /2. 

So, for every continuous and bounded ϕ we have∫
X

ϕ(x + h)γ (dx) =
∫
X

ϕ(x)eĥ(x)−‖h‖2
H /2γ (dx). (2.1)

We also recall that for every h ∈ H , the function ĥ is a Gaussian random variable with law 
N (0, ‖h‖2

H ) in R. Therefore, for every p ∈ [1, +∞) we have

‖ĥ‖Lp(X,γ ) =
⎛
⎝ 1√

2π

∫
R

|ξ |p exp(−ξ2/2)dξ

⎞
⎠

1/p

‖h‖H := kp‖h‖H . (2.2)

We recall that if X is a Hilbert space and Q is the covariance of γ , then H is just the range 
of Q1/2, and the norm h �→ ‖Q−1/2h‖ (were Q−1/2 is the pseudo-inverse of Q1/2, defined on 
Q1/2(X)) coincides with the norm of H . Moreover, the functions ĥ have a simple representation 
formula. Denoting by {ej : j ∈ N} any orthonormal basis of X consisting of eigenvectors of Q, 
Qej = λj ej , we have ĥ(x) = ∑

j∈I 〈x, ej 〉〈h, ej 〉λ−1
j , where 〈·, ·〉 is the scalar product in X and 

I = {j ∈N : λj �= 0}. A function f : X �→R is called H -differentiable at x ∈ X if there exists a 
(unique) linear bounded operator 
 : H �→ R such that

lim‖h‖H →0

f (x + h) − f (x) − 
(h)

‖h‖H

= 0.

We set 
 := DH f (x). Since H is a Hilbert space, there exists a unique y ∈ H such that 
DH f (x)(h) = 〈h, y〉H . Such y is denoted by ∇Hf (x).

Since H is continuously embedded in X, if f is Frechét differentiable at x it is also 
H -differentiable at x, and f ′(x)(h) = 〈∇H f (x), h〉H , for every h ∈ H . In particular, if X is 
a Hilbert space, γ has covariance Q, and ∇f (x) is the gradient of f at x, we have ∇Hf (x) =
Q∇f (x) if Q is one to one, namely if γ is non-degenerate.

More generally, if Y is a Banach space, a function F : X �→ Y is called H -differentiable at 
x ∈ X if there exists a linear bounded operator L : H �→ Y such that
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Y − lim‖h‖H →0

F(x + h) − F(x) − L(h)

‖h‖H

= 0.

n times H -differentiable functions are defined by recurrence, in a canonical way. Here we 
are interested in n = 2, 3. So, if f : X �→ R is H -differentiable in X, we say that it is twice 
H -differentiable at x if DH f : X �→ H ′ is differentiable at x, (equivalently, ∇Hf : X �→ H is 
differentiable at x) and we define the Hessian operator D2

Hf (x) ∈ L(2)(H) (the space of the 
bounded bilinear forms from H 2 to R), by D2

Hf (x)(k, h) := (Lh)(k), where L is the operator in 
the definition, with F(x) = DH f (x), Y = H ′. Similarly, if f is twice H -differentiable in X, we 
say that it is thrice H -differentiable at x if D2

H f : X �→ L(2)(H) is H -differentiable at x; in this 
case the third order derivative D3

Hf (x) ∈ L(3)(H) is defined as D3
Hf (x)(h, k, l) := (Lh)(k, l), 

where L is the operator in the definition, with now F(x) = D2
H f (x), Y = L(2)(H).

Definition 2.1. For k ∈ N we denote by Ck
H (X) the subspace of Cb(X) consisting of functions 

k times H -differentiable at any point, with Dj
Hf continuous and bounded in L(j)(H) for j ≤ k. 

Ck
H (X) is endowed with the norm

‖f ‖Ck
H (X) := sup

x∈X

|f (x)| +
k∑

j=1

sup
x∈X

‖Dj
Hf (x)‖L(j)(H).

The Ornstein–Uhlenbeck semigroup is defined by

T (t)f (x) :=
∫
X

f (e−t x +
√

1 − e−2t y)γ (dy), t > 0, f ∈ Cb(X). (2.3)

Then T (t) maps Cb(X) into itself for every t > 0, and

‖T (t)f ‖∞ ≤ ‖f ‖∞, t > 0, f ∈ Cb(X). (2.4)

Nevertheless, T (t) is not strongly continuous in Cb(X), and not even in the subspace BUC(X)

of the bounded and uniformly continuous functions. Indeed, for f ∈ BUC(X) it is easy to see 
that

lim
t→0+ ‖T (t)f − f ‖∞ = 0 ⇐⇒ lim

t→0+ ‖f (e−t ·) − f ‖∞ = 0.

However, for every fixed x ∈ X the function t �→ T (t)f (x) is continuous in [0, +∞) by the Do-
minated Convergence Theorem. It follows that for every λ > 0 the linear operator F(λ) defined 
by

F(λ)f (x) :=
+∞∫
0

e−λtT (t)f (x) dt, λ > 0, f ∈ Cb(X), x ∈ X,

belongs to L(Cb(X)) and it is one to one. Moreover, since T (t) is a semigroup, the family {F(λ) :
λ > 0} satisfies the resolvent identity. Therefore there exists a linear operator L : D(L) �→ X such 
that F(λ) = R(λ, L) for every λ > 0.
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The operator L is called generator of T (t) in Cb(X), although it is not an infinitesimal gen-
erator in the usual sense. So, as in the case of strongly continuous semigroups, we have

(R(λ,L)f )(x) =
+∞∫
0

e−λtT (t)f (x) dt, λ > 0, f ∈ Cb(X), x ∈ X, (2.5)

and by (2.4) we obtain

‖R(λ,L)f ‖∞ ≤ ‖f ‖∞, λ > 0, f ∈ Cb(X). (2.6)

Let us recall that the realization Tp(t) of T (t) in Lp(X, γ ) is a strongly continuous, contrac-
tion, analytic semigroup, for every p ∈ (1, +∞). The domain of its infinitesimal generator Lp is 
equal to the Sobolev space W 2,p(X, γ ), and the graph norm of Lp is equivalent to the Sobolev 
norm. Moreover,

Lpu = divγ ∇H u =
∞∑

j=1

(
∂

∂hj

− ĥj

)
∂u

∂hj

,

where divγ is the Gaussian divergence, {hj : j ∈ N} is any orthonormal basis of H , and the 
series converges in Lp(X, γ ). See e.g. [2, Ch. 5]. If X is a Hilbert space, γ is a non-degenerate 
Gaussian measure with covariance Q, and {ej : j ∈N} is any orthonormal basis of X consisting 
of eigenvectors of Q, Qej = λj ej , then {√λjej : j ∈ N} is an orthonormal basis of H and the 
above series reads as

Lpu(x) =
∞∑

j=1

(
λj

∂2u

∂e2
j

(x) − xj

∂u

∂ej

(x)

)
,

where xj := 〈x, ej 〉.
Using the characterizations D(Lp) = W 2,p(X, γ ) for p > 1, we obtain a characterization of 

D(L), as follows.

Lemma 2.2.

D(L) = {u ∈
⋂
p>1

W 2,p(X,γ ) : u, Lu ∈ Cb(X)} = {u ∈
⋃
p>1

W 2,p(X,γ ) : u, Lu ∈ Cb(X)}.

Moreover, for every u ∈ D(L), Lu is a continuous and bounded version of divγ ∇H u.

Proof. For u ∈ D(L) and λ > 0 set f := λu −Lu, so that u is given by (2.5). Since Tp(t) agrees 
with T (t) on Cb(X) for every p > 1, we have u = ∫ +∞

0 e−λtTp(t)f dt = R(λ, Lp)f . Therefore, 
u ∈ W 2,p(X, γ ) for every p > 1 and Lu = Lpu, γ -a.e. So, Lu is a continuous and bounded 
version of Lpu = divγ ∇H u.

Conversely, if u ∈ W 2,p(X, γ ) for some p > 1 we have u = ∫ +∞
0 e−λtTp(t)(λu − Lpu) dt

for every λ > 0. If u, Lu = Lpu ∈ Cb(X) we obtain u = R(λ, L)f , with f = λu − Lu, and 
therefore u ∈ D(L). �
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The following smoothing properties are easily shown.

Proposition 2.3. For every f ∈ Cb(X) and t > 0, T (t)f is infinitely times H -differentiable at 
every x ∈ X. Setting

c(t) := e−t

√
1 − e−2t

, t > 0,

we have

DH T (t)f (x)(h) = 〈∇H T (t)f (x),h〉H = c(t)

∫
X

f (e−t x +
√

1 − e−2t y)ĥ(y)γ (dy), (2.7)

D2
H T (t)f (x)(h, k) = c(t)2

∫
X

f (e−t x +
√

1 − e−2t y)(ĥ(y)k̂(y) − 〈h, k〉H )γ (dy), (2.8)

D3
H T (t)f (x)(h, k, l) = −c(t)3

∫
X

f (e−t x +
√

1 − e−2t y)(l̂(y)〈h, k〉H

+ĥ(y)〈k, l〉H + k̂(y)〈h, l〉H )γ (dy)

+c(t)3
∫
X

f (e−t x + √
1 − e−2t y)ĥ(y)k̂(y)l̂(y) γ (dy),

(2.9)

for every h, k, l ∈ H . The function (t, x) �→ T (t)f (x) is continuous in [0, +∞) × X, and the 
functions (t, x) �→ D

j
H T (t)f (x) (j = 1, 2, 3) are continuous in (0, +∞) × X, with values in 

L(j)(X), respectively. Moreover, for every x ∈ X and t > 0 we have

(i) |∇H T (t)f (x)|H ≤ c(t)‖f ‖∞,

(ii) ‖D2
H T (t)f (x)‖L(2)(H) ≤ 2c(t)2‖f ‖∞,

(iii) ‖D3
H T (t)f (x)‖L(3)(H) ≤ (3 + k3

3)c(t)3‖f ‖∞.

(2.10)

Proof. Formulae (2.7), (2.8), (2.9) are easily proved using the Cameron-Martin formula. For 
instance concerning (2.7), using (2.1) we get

T (t)f (x+h)−T (t)f (x) =
∫
X

f (e−t x+
√

1 − e−2t y)[exp(c(t)ĥ(y)−c(t)2‖h‖2
H /2)−1]γ (dy)

which yields (2.7). (2.8), (2.9) are proved in the same way. Estimates (2.10) are consequence of 
(2.7), (2.8), (2.9) through the Hölder inequality and (2.2) (in particular, the constant k3

3 in the right 
hand side of (2.10) comes from estimating ‖ĥk̂l̂‖L1(X,γ ) ≤ ‖ĥ‖L3(X,γ )‖k̂‖L3(X,γ )‖l̂‖L3(X,γ )). 

Also the continuity of (t, x) �→ T (t)f (x) in [0, +∞) × X and of (t, x) �→ D
j
H T (t)f (x) in 

(0, +∞) × X for j = 1, 2, 3 is a consequence of the respective representation formulae, through 
the Dominated Convergence Theorem and the Hölder inequality. �

For functions in C1
H(X) the estimates in (2.10) may be improved. The proof is similar, and it 

is omitted.
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Proposition 2.4. For every f ∈ C1
H (X), for any t ≥ 0, and for every x ∈ X we have

〈∇H T (t)f (x),h〉H = e−t

∫
X

〈∇H f (e−t x +
√

1 − e−2t y), h〉H γ (dy), (2.11)

〈D2
H T (t)f (x)(h, k) = e−t

∫
X

〈∇H f (e−t x +
√

1 − e−2t y), h〉H k̂(y) γ (dy), (2.12)

〈D3
H T (t)f (x)(h, k, l) = e−t

∫
X

〈∇H f (e−t x +
√

1 − e−2t y), h〉H (k̂(y)l̂(y) − 〈k, l〉H )γ (dy).

(2.13)

The function (t, x) �→ ∇H T (t)f (x) is continuous in [0, +∞) × X with values in H , and for 
every x ∈ X and t > 0 we have

(i) ‖∇H T (t)f (x)‖H ≤ ‖∇H f ‖∞,

(ii) ‖D2
HT (t)f (x)‖L(2)(H) ≤ c(t)‖∇H f ‖∞,

(iii) ‖D3
HT (t)f (x)‖L(3)(H) ≤ 2c(t)2‖∇H f ‖∞.

(2.14)

3. Hölder spaces and Schauder type theorems

We introduce a class of Hölder spaces that arise “naturally” in this setting.

Definition 3.1. If Y is any Banach space and α ∈ (0, 1), the space Cα
H (X, Y) is the subspace of 

Cb(X, Y) consisting of the functions F such that

[F ]α := sup
h∈H\{0}, x∈X

‖F(x + h) − F(x)‖Y

‖h‖α
H

< +∞.

Cα
H (X, Y) is normed by

‖F‖Cα
H (X,Y ) := ‖F‖∞ + [F ]α.

If Y = R the space Cα
H (X, R) is denoted by Cα

H (X). Moreover, we denote by C1+α
H (X), 

C2+α
H (X) the subspaces of C1

H (X), C2
H (X), consisting of functions f such that DH f ∈

Cα
H (X, L(H)), D2

H f ∈ Cα
H (X, L(2)(H)), respectively. They are endowed with the norms

‖f ‖
C1+α

H (X)
:= ‖f ‖C1

H (X) + [DH f ]α

= ‖f ‖C1
H (X) + sup

h∈H\{0}, x∈X

‖DH f (x + h) − DH f (x)‖L(H)

‖h‖α
H

‖f ‖
C2+α

H (X)
:= ‖f ‖C2

H (X) + [D2
H f ]α

= ‖f ‖C2
H (X) + sup

h∈H\{0}, x∈X

‖D2
H f (x + h) − D2

H f (x)‖L(2)(H)

‖h‖α
H
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Notice that if X is a Hilbert space and γ is non-degenerate, the Hölder seminorm [F ]α of any 
F : X �→ Y is given by

[F ]α = sup
z∈X\{0}, x∈X

‖F(x + Q1/2z) − F(x)‖Y

‖z‖α

where Q is the covariance of γ .
The behavior of the semigroup T (t) in the space Ck+α

H (X), k = 0, 1, 2, is similar to the one 
in Cb(X). Below, we just state the properties that will be used in the sequel.

Lemma 3.2. T (t) ∈ L(Ck+α
H (X)) for every t > 0, k = 0, 1, 2, α ∈ (0, 1), and there are Ck > 0

such that

‖T (t)‖L(Ck+α
H (X))

≤ 1, t > 0. (3.1)

Moreover, we have

[T (t)f ]α ≤ e−αt [f ]α, t > 0, f ∈ Cα
H (X), (3.2)

[DH T (t)f ]Cα
H (X,H ′) ≤ e−αt c(t)[f ]α, t > 0, f ∈ Cα

H (X), (3.3)

whereas

[DH T (t)f ]Cα
H (X,H ′) ≤ 2e−αt c(t)1+α‖f ‖∞, t > 0, f ∈ Cb(X). (3.4)

Proof. Let t > 0 and f ∈ Cα
H (X). For every h ∈ H we have

|T (t)f (x + h) − T (t)f (x)|
=

∣∣∣∣
∫
X

[f (e−t (x + h) +
√

1 − e−2t y) − f (e−t x +
√

1 − e−2t y)]γ (dy)

∣∣∣∣
≤ (e−t‖h‖H )α[f ]α,

which yields (3.2). (3.1) follows, for k = 0.
If f ∈ C1+α

H (X), T (t)f ∈ C1
H (X) by Proposition 2.4, and estimates (2.4) and (2.14)(i) yield

‖T (t)f ‖C1
H (X) ≤ ‖f ‖C1

H (X).

By (2.11), for every t > 0, x ∈ X we have

DH T (t)f (x) = e−t

∫
X

DH f (e−t x +
√

1 − e−2t y)γ (dy),

so that for each h, k ∈ H we have
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|(DH T (t)f (x + h) − DH T (t)f (x))(k)| =
= e−t

∣∣∣∣
∫
X

[DH f (e−t (x + h) +
√

1 − e−2t y) − DH f (e−t x +
√

1 − e−2t y)](k)γ (dy)

∣∣∣∣
≤ e−t (e−t‖h‖H )α[DH f ]Cα

H (X,H ′)‖k‖H ,

and (3.1) follows, for k = 1. The statement for k = 2 is proved in the same way.
Let us prove (3.3). Let f ∈ Cα

H (X). By (2.7), for every h, k ∈ H we have

|(DH T (t)f (x + h) − DH T (t)f (x))(k)|
= c(t)

∣∣∣∣
∫
X

[f (e−t (x + h) +
√

1 − e−2t y) − f (e−t x +
√

1 − e−2t y)]k̂(y)γ (dy)

∣∣∣∣
≤ c(t)(e−t‖h‖H )α‖k̂‖L1(X,γ )[f ]α

and (3.3) follows, recalling that ‖k̂‖L1(X,γ ) ≤ ‖k̂‖L2(X,γ ) = ‖k‖H .
Estimate (3.4) follows combining (2.10)(i)-(ii): indeed, for every t > 0, x ∈ X, h ∈ H we have

‖DH T (t)f (x + h) − DH T (t)f (x)‖H ′ ≤ 2c(t)‖f ‖∞

by (2.10)(i), and

‖DH T (t)f (x + h) − DH T (t)f (x)‖H ′ ≤ 2c(t)2‖h‖H ‖f ‖∞

by (2.10)(ii). Therefore,

‖DH T (t)f (x + h) − DH T (t)f (x)‖H ′ ≤ (2c(t))1−α(2c(t)2‖h‖H )α‖f ‖∞

and (3.4) is proved. �
The key estimates in what follows are in the next lemma.

Lemma 3.3. For every α ∈ (0, 1) there is C1,α > 0 such that

‖∇H T (t)f (x)‖H ≤ C1,α

t (1−α)/2
‖f ‖Cα

H (X), t > 0, f ∈ Cα
H (X), x ∈ X. (3.5)

Consequently, there are C2,α , C3,α > 0 such that

(i) ‖D2
H T (t)f (x)‖L(2)(H) ≤ C2,α

t1−α/2 ‖f ‖Cα
H (X), t > 0, f ∈ Cα

H (X), x ∈ X,

(ii) ‖D3
H T (t)f (x)‖L(3)(H) ≤ C3,α

t3/2−α/2 ‖f ‖Cα
H (X), t > 0, f ∈ Cα

H (X), x ∈ X.

(3.6)
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Proof. Let t > 0, f ∈ Cα
H (X), h ∈ H \ {0}. For every s > 0 we have

|〈∇H T (t)f (x),h〉H | ≤
∣∣∣∣〈∇H T (t)f (x),h〉H − T (t)f (x + sh) − T (t)f (x)

s

∣∣∣∣
+

∣∣∣∣T (t)f (x + sh) − T (t)f (x)

s

∣∣∣∣
=: I1(s) + I2(s).

Using (3.3) we get

|I1(s)| =
∣∣∣∣1

s

s∫
0

(
〈∇H T (t)f (x + σh),h〉H − 〈∇H T (t)f (x),h〉H

)
dσ

∣∣∣∣
≤ 1

s

s∫
0

c(t)σα‖h‖α+1
H [f ]αdσ = 1

α + 1
c(t)sα‖h‖α+1

H [f ]α,

while using (3.2) we get

|I2(s)| ≤ sα−1‖h‖α
H [f ]α.

Choosing now s = t1/2/‖h‖H we obtain

|〈∇H T (t)f (x),h〉H | ≤
(

1

α + 1
c(t)tα/2 + t (α−1)/2

)
‖h‖H [f ]α,

and this yields (3.5).
To prove (3.6) it is sufficient to split D2

H T (t)f = D2
H T (t/2)T (t/2)f , D3

H T (t)f =
D3

H T (t/2)T (t/2)f , and to use estimates (3.5) and (2.14)(ii) and (iii). �
Theorem 3.4. Let λ > 0, f ∈ Cα

H (X) with 0 < α < 1. Then the unique solution to

λu − Lu = f

belongs to C2+α
H (X), and there is C = C(λ, α) > 0 such that

‖u‖
C2+α

H (X)
≤ C‖f ‖Cα

H (X). (3.7)

Proof. Recalling that u is given by the representation formula (2.5) it is not difficult to see that 
u ∈ C2

H (X), and that

∇H u(x) =
+∞∫

e−λt∇H T (t)f (x) dt, (3.8)
0
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D2
H u(x) =

+∞∫
0

e−λtD2
H T (t)f (x) dt. (3.9)

Notice that the right-hand sides of (3.8) and (3.9) are meaningful, since t �→ ∇H T (t)f (x), 
t �→ D2

H T (t)f (x), are continuous for t > 0 with values in H , L(2)(H), respectively, by Propo-
sition 2.3, and their norms are bounded by C1,αt−1/2+α/2‖f ‖Cα

H (X), C2,αt−1+α/2‖f ‖Cα
H (X), 

respectively, by Lemma 3.3. Then, (3.8) and (3.9) follow in a standard way. They yield that 
∇H u, D2

H u are continuous and bounded, with

‖∇H u(x)‖H ≤ C1,αλ−1/2−α/2�(1/2 + α/2)‖f ‖Cα
H (X),

‖D2
H u(x)‖L(2)(H) ≤ C2,αλ−α/2�(α/2)‖f ‖Cα

H (X),
(3.10)

for every x, where �(θ) = ∫ ∞
0 e−t t θ−1dt is the Euler function, and the constants C1,α , C2,α are 

given by (3.6).
To prove that D2

Hu ∈ Cα
H (X, L(2)(H)) we use an interpolation argument. For every x ∈ X and 

h ∈ H we split D2
Hu(x + h) − D2

H u(x) as a(x + h) − a(x) + b(x + h) − b(x), where
Then,

‖a(x + h) − a(x)‖L(2)(H) ≤
‖h‖2

H∫
0

e−λt‖D2
HT (t)f (x + h) − D2

H T (t)f (x)‖L(2)(H)dt,

a(y) :=
‖h‖2

H∫
0

e−λtD2
H T (t)f (y) dt, b(y) :=

∞∫
‖h‖2

H

e−λtD2
H T (t)f (y) dt, (3.11)

where, for every t > 0,

‖D2
HT (t)f (x + h) − D2

H T (t)f (x)‖L(2)(H) ≤ 2 sup
y∈X

‖D2
HT (t)f (y)‖L(2)(H)

≤ 2C2,αt−1+α/2‖f ‖Cα
H (X),

by (3.6)(i). Therefore,

‖a(x + h) − a(x)‖L(2)(H) ≤ 4C2,α

α
‖f ‖Cα

H (X)‖h‖α
H .

Moreover,

‖b(x + h) − b(x)‖L(2)(H) ≤
∞∫

‖h‖2
H

e−λt‖D2
HT (t)f (x + h) − D2

H T (t)f (x)‖L(2)(H)dt,

where, for every t > 0,
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‖D2
HT (t)f (x + h) − D2

H T (t)f (x)‖L(2)(H) = ‖
1∫

0

D3
H T (t)f (x + σh)(h, ·, ·)dσ‖L(2)(H)

≤ C3,αt−3/2+α/2‖f ‖Cα
H (X)‖h‖H ,

by (3.6)(ii). Therefore,

‖b(x + h) − b(x)‖L(2)(H) ≤ 2C3,α

1 − α
‖f ‖Cα

H (X)‖h‖α
H .

Summing up we obtain that D2
Hu is H -Hölder continuous and

[D2
H u]Cα

H (X,L(2)(H)) ≤
(

4C2,α

α
+ 2C3,α

1 − α

)
‖f ‖Cα

H (X).

Such estimate and (2.6), (3.10) yield (3.7). �
The procedure of Theorem 3.4 fails for α = 0 from the very beginning, since the (optimal) 

estimate ‖D2T (t)f ‖L(2)(H) ≤ ct−1‖f ‖∞ is not enough to guarantee that the right hand side of 
(3.9) is meaningful for general f ∈ Cb(X). This is not due to our technique, but to the general 
lack of maximal regularity results for elliptic differential equations in spaces of continuous func-
tions: even in finite dimension it is known that the domain of Ornstein-Uhlenbeck operators (as 
well as the domains of the Laplacian and of other second order elliptic differential operators) in 
Cb(Rd) is not contained in C2(Rd), for d ≥ 2.

Of course, estimate (3.4) and the procedure of Theorem 3.4 give, for u = R(λ, L)f ,

∇H u ∈ Cθ
H (X,H), ‖∇H u‖Cθ

H (X,H) ≤ K‖f ‖∞,

for every θ ∈ (0, 1), with K = K(λ, θ) independent of f . However, K(λ, θ) blows up as θ goes 
to 1.

Still, a modification of Theorem 3.4 gives an embedding of the domain of L that is similar 
to known embeddings in the finite dimensional case. To this aim we have to introduce Zygmund 
spaces along H , as follows.

Definition 3.5. If Y is any Banach space, we denote by ZH(X, Y) the set of continuous and 
bounded functions F : X �→ Y such that

[F ]ZH (X,Y ) := sup
x∈X, h∈H\{0}

‖F(x + 2h) − 2F(x + h) + F(x)‖Y

‖h‖H

< +∞. (3.12)

ZH (X, Y) is normed by

‖F‖ZH (X,Y ) := sup
x∈X

‖F(x)‖Y + [F ]ZH (X,Y ).

It is easy to see that continuous and bounded H -Lipschitz functions from X to Y belong to 
ZH (X, Y). Even in the one dimensional case (with X = Y = H = R), there are continuous and 
bounded functions satisfying condition (3.12) that are not locally Lipschitz continuous.
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Theorem 3.6. Let λ > 0, f ∈ Cb(X). Then the unique solution to

λu − Lu = f

satisfies ∇H u ∈ ZH (X, H). Moreover there is C > 0 such that

‖∇H u‖ZH (X,H) ≤ C‖f ‖∞. (3.13)

Proof. We already know that u ∈ C1+θ
H (X) for every θ ∈ (0, 1) by the above considerations; in 

particular ∇H u is continuous and bounded.
To prove that ∇Hu ∈ ZH (X, H), for every h ∈ H we consider the functions a and b defined 

in (3.11). Using (2.10)(i) we get, for every x ∈ X,

‖a(x + 2h) − 2a(x + h) + a(x)‖H

≤
‖h‖2

H∫
0

e−λt‖∇H T (t)f (x + 2h) − 2∇H T (t)f (x + h) + ∇H T (t)f (x)‖H dt

≤ 4

‖h‖2
H∫

0

e−λt c(t)‖f ‖∞dt,

and setting c0 := supt>0 t1/2c(t) we obtain

‖a(x + 2h) − 2a(x + h) + a(x)‖H ≤ 2c0‖f ‖∞‖h‖H , x ∈ X.

From the obvious equalities

〈∇H T (t)f (x + 2h) − ∇H T (t)f (x + h), k〉H =
1∫

0

D2
H T (t)f (x + (1 + σ)h)(h, k) dσ,

〈∇H T (t)f (x + h) − ∇H T (t)f (x), k〉H =
1∫

0

D2
H T (t)f (x + σh)(h, k) dσ, k ∈ H, x ∈ X,

we obtain, using (2.10)(iii)

|〈∇H T (t)f (x + 2h) − 2∇H T (t)f (x + h) + ∇H T (t)f (x), k〉H |

=
∣∣∣∣∣∣

1∫
0

(D2
H T (t)f (x + (1 + σ)h) − D2

H T (t)f (x + σh))(h, k)dσ

∣∣∣∣∣∣
≤ sup

y∈X

‖D3
H T (t)f (y)‖L(3)(H)‖h‖2

H ‖k‖H ≤ (3 + k3
3)c(t)3‖f ‖∞‖h‖2

H ‖k‖H ,

so that, for every x ∈ X,
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‖∇H T (t)f (x + 2h) − 2∇H T (t)f (x + h) + ∇H T (t)f (x)‖H ≤ c3
1t

−3/2‖f ‖∞‖h‖2
H , t > 0,

with c1 = (3 + k3
3)c3

0, and therefore

‖b(x + 2h) − 2b(x + h) + b(x)‖H

≤
∞∫

‖h‖2

e−λt‖∇H T (t)f (x + 2h) − 2∇H T (t)f (x + h) + ∇H T (t)f (x)‖H dt

≤ c1

∞∫
‖h‖2

e−λt t−3/2dt ‖f ‖∞‖h‖2
H

≤ 2c1‖f ‖∞‖h‖H .

Summing up, we obtain

‖∇H u(x + 2h) − 2∇H u(x + h) + ∇H u(x)‖H ≤ (2c0 + 2c1)‖f ‖∞‖h‖H ,

and the statement follows. �
A similar procedure yields maximal Hölder regularity results for the mild solutions to evo-

lution problems such as (1.2), namely for the functions given by (1.3), for suitable f and g. 
Precisely, we consider the function spaces defined as follows.

Definition 3.7. Let Y be any Banach space. For α ∈ (0, 1) we denote by C0,α
H ([0, T ] × X; Y) the 

space of the functions g ∈ Cb([0, T ] × X; Y) such that g(t, ·) ∈ Cα
H (X; Y) for every t ∈ [0, T ], 

and

‖g‖
C

0,α
H ([0,T ]×X;Y)

:= sup
t∈[0,T ]

‖g(t, ·)‖Cα
H (X;Y) < +∞.

If Y = R we set C
0,α
H ([0, T ] × X; R) = C

0,α
H ([0, T ] × X). Moreover, we denote by

C
0,2+α
H ([0, T ] × X) the subspace of Cb([0, T ] × X) consisting of the functions g such that 

g(t, ·) ∈ C2+α
H (X) for every t ∈ [0, T ], and

‖g‖
C

0,2+α
H ([0,T ]×X)

:= sup
t∈[0,T ]

‖g(t, ·)‖
C2+α

H (X)
< +∞.

Theorem 3.8. Let f ∈ C2+α
H (X), g ∈ C

0,α
H ([0, T ] × X) with α ∈ (0, 1), and let v be defined by 

(1.3). Then v ∈ C
0,2+α
H ([0, T ] × X), and there is C = C(T ) > 0, independent of f and g, such 

that

‖v‖
C

0,2+α
H ([0,T ]×X)

≤ C(‖f ‖
C2+α

H (X)
+ ‖g‖

C
0,α
H ([0,T ]×X)

). (3.14)
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Proof. We already know that (t, x) �→ T (t)f (x) is in C0,2+α
H ([0, T ] × X), by Lemma 3.2. So, 

we consider the function

v0(t, x) :=
t∫

0

T (s)g(t − s, ·)(x)ds, t ∈ [0, T ], x ∈ X.

The same arguments used in the proof of Theorem 3.4 show that v(t, ·) ∈ C2
H (X) for every 

t ∈ [0, T ], that

D2
H v0(t, x) =

t∫
0

D2
H T (s)g(t − s, ·)(x)ds, t ∈ [0, T ], x ∈ X,

and that there is C = C(T ) > 0, independent of g, such that

‖v0(t, ·)‖C2
H (X) ≤ C‖g‖

C
0,α
H ([0,T ]×X)

.

Let us prove that D2
Hv0 is continuous at any (t0, x0). If t > t0, x ∈ X, we split

‖D2
H v0(t, x) − D2

H v0(t0, x0)‖L(2)(H) ≤

≤
t0∫

0

‖D2
H T (s)g(t − s, ·)(x) − D2

H T (s)g(t0 − s, ·)(x0))‖L(2)(H)ds

+
t∫

t0

‖D2
H T (s)g(t − s, ·)(x)‖L(2)(H)ds

=: I1(t, x) + I2(t, x).

(3.15)

Estimate (3.6)(i) yields

I2(t, x) ≤
t∫

t0

C2,α

s1−α/2 ds sup
0≤r≤T

‖g(r, ·)‖Cα
H (X),

so that limt→t+0 ,x→x0
I2(t, x) = 0. Concerning I1(t, x), for every s ∈ [0, t0] and h, k ∈ H , formu-

lae (2.8) and (2.2) yield

|(D2
H T (s)g(t − s, ·)(x) − D2

H T (s)g(t0 − s, ·)(x0))(h, k)| ≤

≤ c(s)2
(∫

X

|g(t − s, e−sx +
√

1 − e−2sy) − g(t0 − s, e−sx0 +
√

1 − e−2sy)|2γ (dy)

)1/2

·

· ‖ĥk̂ − 〈h, k〉H ‖L2(X,γ )
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≤ c(s)2
(∫

X

|g(t − s, e−sx +
√

1 − e−2sy) − g(t0 − s, e−sx0 +
√

1 − e−2sy)|2γ (dy)

)1/2

·

· (k2
4 + 1)‖h‖H ‖k‖H

and since g is continuous and bounded, by the Dominated Convergence Theorem we get

lim
t→t0,x→x0

‖D2
HT (s)g(t − s, ·)(x) − D2

H T (s)g(t0 − s, ·)(x0)‖L(2)(H) = 0.

Moreover, estimate (3.6)(i) yields

‖D2
H T (s)g(t − s, ·)(x) − D2

H T (s)g(t0 − s, ·)(x0))‖L(2)(H) ≤ 2C2,α

s1−α/2 sup
0≤r≤T

‖g(r, ·)‖Cα
H (X),

0 < s < t.

Therefore, still by the Dominated Convergence Theorem, limt→t+0 ,x→x0
I1(t, x) = 0. Summing 

up, we get limt→t+0 ,x→x0
D2v0(t, x) = D2v0(t0, x0). If t < t0, changing the roles of t and t0 in 

the splitting (3.15), we obtain limt→t−0 ,x→x0
D2v0(t, x) = D2v0(t0, x0), and continuity of D2v0

is proved.
To prove that D2v0(t, ·) ∈ Cα

H (X, L(2)(H)) for every t ∈ [0, T ] we argue as in Theorem 3.4, 
namely we split D2v0(t, ·)(x +h) −D2v0(t, ·) = a(x +h) −a(x) +b(x +h) −b(x), where now

a(y) =
min{t,‖h‖2}∫

0

D2
H T (s)g(t − s, ·)(y) ds,

b(y) =
t∫

min{t,‖h‖2}
D2

H T (s)g(t − s, ·)(y) ds, y ∈ X,

and we proceed as in the proof of Theorem 3.4, to get

[D2v0(t, ·)]Cα
H (X,L(2)(H)) ≤

(
4C2,α

α
+ 2C3,α

1 − α

)
sup

r∈[0,T ]
‖g(r, ·)‖Cα

H (X). �
4. Open problems and bibliographical remarks

Although many of our proofs rely on typical arguments from interpolation theory, interpo-
lation spaces are not explicitly mentioned. If X = Rd , Schauder theorems for non-degenerate 
Ornstein-Uhlenbeck operators were first proved in [7], relying on other interpolation techniques. 
It was shown that for every f ∈ Cα

b (Rd) the function R(λ, L)f defined in (2.5) is the unique 
bounded classical solution to (1.1), that its second order derivatives belong to the interpolation 
space

(Cb(R
d),D(L))α/2,∞ = {f ∈ Cb(R

d) : sup t−α/2‖T (t)f − f ‖∞ < +∞},

t>0
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where T (t) is the corresponding Ornstein-Uhlenbeck semigroup, and the latter space was char-
acterized as

{f ∈ Cα
b (Rd) : supt>0t

−α/2‖f (e−t ·) − f ‖∞ < +∞}.
A similar characterization is open in infinite dimension. Even the simpler characterization

(Cb(X),C1
H (X))α,∞ = Cα

H (X), 0 < α < 1, (4.1)

is not clear in general Banach spaces. In the next lemma we only prove embeddings, through (by 
now) standard methods.

Lemma 4.1. For every α ∈ (0, 1) we have

(i) (Cb(X),C1
H (X))α,∞ ⊂ Cα

H (X),

(ii) (Cb(X),D(L))α/2,∞ ⊂ Cα
H (X).

Proof. We recall that, given two Banach spaces Y ⊂ X with continuous embedding and 
α ∈ (0, 1), the interpolation space (X , Y)α,∞ consists of all u ∈ X such that ‖u‖(X ,Y)α,∞ :=
supt>0 t−θK(t, u) < +∞, where K(t, u) := inf{‖a‖X + t‖b‖Y : u = a + b, a ∈X , b ∈ Y}. We 
also recall that (X , Y)α,∞ ⊂X , with continuous embedding.

Let u ∈ (Cb(X), C1
H (X))α,∞. For every decomposition u = a + b, with a ∈ Cb(X), b ∈

C1
H (X), we have

|u(x + h) − u(x)| ≤ |a(x + h) − a(x)| + |b(x + h) − b(x)| ≤ 2‖a‖∞ + ‖∇H b‖∞‖h‖H ,

x ∈ X, h ∈ H,

so that, taking the infimum over all such decompositions,

|u(x + h) − u(x)| ≤ 2K(‖h‖H ,u) ≤ 2‖h‖α
H ‖u‖(Cb(X),C1

H (X))α,∞, x ∈ X, h ∈ H,

and (i) follows.
To prove statement (ii) we use (2.10)(i), that yields, for every u ∈ D(L) and λ > 0, x ∈ X,

‖∇H u(x)‖H ≤
∞∫

0

e−λt‖∇H T (t)(λu − Lu)(x)‖H dt

≤
∞∫

0

e−λt c(t)dt (λ‖u‖∞ + ‖Lu‖∞)

≤ c0�(1/2)(λ1/2‖u‖∞ + λ−1/2‖Lu‖∞),

where c0 = supt>0 t1/2c(t). Taking the minimum over λ we get

sup ‖∇H u(x)‖H ≤ C‖u‖1/2∞ ‖Lu‖1/2∞ ,

x∈X
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for some C > 0, independent of u. This implies that the space C1
H(X) belongs to the class J1/2

between Cb(X) and D(L) (e.g., [9, Sect. 1.10.1]). The Reiteration Theorem ([9, Sect. 1.10.2]) 
yields

(Cb(X),D(L))α/2,∞ ⊂ (Cb(X);C1
H (X))α,∞,

and (ii) follows from (i). �
Going back to (4.1), in the case where X is a Hilbert space and γ is non-degenerate, the 

similar equality

(BUC(X),BUC1
H (X))α,∞ = Cα

H (X) ∩ BUC(X)

was stated in [4].
Concerning Schauder estimates in infinite dimension, if X is an infinite dimensional Hilbert 

space, smoothing Ornstein-Uhlenbeck semigroups such as

T (t)f (x) =
∫
X

f (etAx + y)N0,Qt (dy)

were considered in [5,3], under the assumptions that A is the infinitesimal generator of a strongly 
continuous semigroup etA in X, Q ∈ L(X) is a self-adjoint positive operator, the operators Qt :=∫ t

0 esAQesA∗
ds have finite trace for every t > 0, etA(X) ⊂ Q

1/2
t (X) for every t , and moreover 

supt>0 t1/2‖Q−1/2
t etA‖L(X) < +∞. The generator of T (t) is a realization of the operator

Lu(x) = 1

2
Tr(QD2u(x)) + 〈x,A∗∇u(x)〉

and T (t) is a smoothing operator in all directions, not only along a subspace. In this case, a 
Schauder theorem in the usual Hölder spaces holds: namely, if f is any bounded function be-
longing to Cα(X) for some α ∈ (0, 1), then the function

u(x) =
∞∫

0

e−λtT (t)f (x)dt (4.2)

belongs to C2(X), it has bounded first and second order derivatives, D2u ∈ Cα(X, L(2)(X)). 
This was proved in [3] in the case Q = I and in [5, Ch. 5] in the case that T (t) is the transition 
semigroup of a suitable linear stochastic PDE with X = L2(�), � being an open bounded subset 
of Rd with smooth boundary.

We would like to remind that there are relevant situations in which Schauder estimates cannot 
be proved for Hilbert spaces, but only for Banach spaces. This is the case considered in [6], where 
the transition semigroup T (t) associated with a class of stochastic reaction-diffusion equations 
defined on a bounded interval [0, 1], with polynomially growing coefficients, is studied in the 
space X = C([0, 1]). Actually, for that class of equations the analysis of T (t) in X = L2(0, 1)

is considerably more delicate than in X = C([0, 1]) and it is not possible to prove that when 
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f ∈ Cα(L2(0, 1)), for some α ∈ (0, 1), the function u defined in (4.2) belongs to C2(L2(0, 1)). 
Notice, in particular, that working in C([0, 1]) prevents from using the interpolatory identity 
(4.1).

Under assumptions similar to [3] a related result is in [1], where the space L∞(X, γ ) is con-
sidered instead of Cb(X). Regularity results were stated in terms of the spaces {f ∈ L∞(X, γ ) :
supt>0 t−α/2‖T (t)f − f ‖∞ < +∞}, called Sα and endowed with their natural norm

‖f ‖∞ + sup
t>0

‖T (t)f − f ‖∞
tα/2 .

However, since T (t) is strong Feller, we have Sα = (Cb(X), D(L))α/2,∞, with equivalence of 
the respective norms. In [1] it is proved that if f ∈ Sα , then u and its first and second order 
derivatives along any direction belong to Sα.

Schauder type theorems for the Gross Laplacian and of some of its perturbations were estab-
lished in [4]. Here, the semigroup is given by

S(t)f (x) =
∫
X

ϕ(x + √
ty)γ (dy),

where γ is again a centered non-degenerate Gaussian measure in a separable Hilbert space X. In 
contrast with Ornstein-Uhlenbeck semigroups, S(t) is strongly continuous in BUC(X); similarly 
to our Ornstein-Uhlenbeck semigroup S(t) is not strong Feller, and it is smoothing only along 
the directions of the Cameron-Martin space. The infinitesimal generator of S(t) in BUC(X) is a 
realization A of the operator

Au(x) = 1

2
Trace (QD2u(x)),

in the space BUC(X). A result similar to Theorem 1 was stated, when f ∈ Cα
H (X) ∩ BUC(X)

(the latter space is called Cα
Q(X) in [4], Q being the covariance of γ ). Moreover, in [1] it was 

proved that if f ∈ Sα , where now

Sα := {g ∈ L∞(X) : sup
t>0

t−α/2‖S(t)g − g‖∞ < +∞},

then for every λ > 0 the function u(x) = ∫
X

e−λtS(t)f (x)ds possesses first and second order 
derivatives along the elements of any orthonormal basis of X consisting of eigenvalues of Q, and 
they belong to Sα .
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