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Abstract

We prove Schauder type estimates for stationary and evolution equations driven by the classical Ornstein-
Uhlenbeck operator in a separable Banach space, endowed with a centered Gaussian measure.
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1. Introduction

Let X be a separable Banach space, endowed with a centered Gaussian measure y, and let
H C X be the corresponding Cameron-Martin space. In this context, an important differential
operator that plays a central role in the Malliavin Calculus is the classical Ornstein-Uhlenbeck
operator,

Lu =div, Vyu,
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where div,, is the Gaussian divergence and Vg is the gradient along H. It plays the role played
by the Laplacian with respect to the Lebesgue measure in R?, being the operator associated to
the quadratic Dirichlet form

(u,v) > /(VHM,VHU)de, u, ve WX, y).
X

The corresponding Markov semigroup is explicitly represented by

T(t)f(X)=/f(€_IX+v1—e_z’y)y(dy), 1>0, feCp(X).
X

Its realization T, in L”(X, y) is a contraction, strongly continuous semigroup for every p €
[1, +00), and it is analytic if p > 1. In the latter case, the well known Meyer estimates imply
that the domain of its infinitesimal generator L, coincides with the Sobolev space W2P(X, y).
In particular, for every A > 0 and f € L?(X, y), the equation

Am—Lu=f (1.1)

has a unique solution u € W2P(X,y), and ||ul| w2rx,y) = CIlfllLrx,y)s with C independent of
f. See e.g. [2, Ch. 5] for a survey on Sobolev spaces with respect to Gaussian measures, and on
the operators L .

Here we consider a realization L of £ in the space Cp(X) of the continuous and bounded
functions from X to R, whose resolvent R(X, L) is given, for A > 0, by

o0

R(A,L)f(x)=/e—“T(t)f(x)dt, f € Cp(X).

0

The realizations of elliptic differential operators in spaces of continuous functions exhibit typical
difficulties. Even in finite dimension, the solution of (1.1) does not belong to C*(R?) for gen-
eral f € Cp (Rd), while Schauder theorems are available both for non-degenerate ([7]) and for
degenerate hypoelliptic ([8]) Ornstein-Uhlenbeck operators.

In our general setting we prove Schauder type regularity results for the solution to (1.1), that
are the Holder counterpart of the above mentioned maximal L? regularity results. The appropri-
ate Holder spaces (as well as the Sobolev spaces W57 (X, y)) have to be chosen according to the
structure of £: indeed, it is well known that 7'(¢) and R(A, L) are smoothing operators along the
directions of the Cameron-Martin space H only. So, we use Holder spaces along H, defined as

+h)—
CHX,Y):= {f €Cp(X,Y): [flee(x,v):=  sup |fx+ ) " f@lly < +oo},
xeX, he H\{0} 1711

I fllce, x,vy :==sup ILf (O lly + [fleg x,v),
xeX

for a € (0, 1) and for any Banach space Y. We prove that for every f € C%(X,R) and for
every A > 0, the unique solution u € D(L) of (1.1) belongs to C12_1+°‘(X, R). This means that u
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is twice continuously differentiable along H, it has bounded and continuous H-gradient Vyu
and H-Hessian operator D%{u, with values respectively in H and in the space of the bilinear
quadratic forms £® (H), and x — D%]u(x) belongs to C% (X, L@ (H)). Consequently, all the
second order directional derivatives 9%u/dhdk with h, k € H exist and belong to CH (X, R).

In the case that f € C(X) only, we prove that u has bounded and continuous H-gradient
Vg u, such that

IVau(x +2h) —2Vyu(x +h) + Vgux)| g
sup < 400,
xeX, heH\{0} 2llg

namely Vyu satisfies a Zygmund condition along H. This is an infinite dimensional counterpart
of the Zygmund regularity of the gradients of solutions to elliptic differential equations in finite
dimension.

Schauder type regularity results are proved also for the mild solution to the Cauchy problem

v(t,x)=Lv(t,x)+g(t,x), te€[0,T], xeX, (1.2)
v(0,) = f. '
namely for the function
'
v, x)=T@) f(x)+ / Tt —s)g(s,)(x)ds, te€l0,T], xelX, (1.3)
0

when f € C?“(X, R) and g € Cp([0, T] x X; R) such that sup, o 71[8(*, ')]C%,(X;]R) < +400.
However, while in finite dimension with non-degenerate y the function v defined by (1.3) is a
classical solution to (1.2), in infinite dimension it is not differentiable with respect to ¢ in general,
evenif g=0.

Our main interest is in the infinite dimensional case. However, if X = R” the operator £ reads
as

Lu(x) = Trace [QD*u(x)] — (x, Vu(x))

where Q > 0 is the covariance matrix of y. If Q > 0, namely if y is non-degenerate, our results
are contained in [7,8]. If Q is not invertible the operator £ is not hypoelliptic, and this paper
provides new Holder and Zygmund regularity results along the directions of the range of Q.

In infinite dimension, Schauder regularity results for elliptic equations driven by Ornstein-
Uhlenbeck operators are already available in the case that X is a Hilbert space, y is non-
degenerate, and the corresponding Ornstein-Uhlenbeck semigroup is smoothing in all directions
([3,1,5]). Still in the case that X is a Hilbert space and y is non-degenerate, Schauder regularity
results for elliptic equations driven by the Gross Laplacian and some of its perturbations are also
available ([4,1]). See section 4 for details.
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2. Notation and preliminaries

Throughout the paper we use notations, definitions and results of [2] concerning Gaussian
measures in Banach spaces.

We consider a separable Banach space X endowed with a centered Gaussian measure y, and
we denote by H the corresponding Cameron-Martin space. It consists of the elements & € X
such that

I7llg == sup{f(h): f€X* [ fllL2x,y) <1} <400

and it is isometric to the closure of X* in L2(X , V), denoted by X ;ﬁ The isometry R, : X J’j — H
is defined as follows: R, f is the unique & € X such that fX f(x)gx)y(dx) = g(h), for every

geX*. Foreveryhe H, R;lh is usually denoted by #.

We recall the Cameron-Martin formula: for every & € H, the translated measure y;(B) :=
y (B — h) is absolutely continuous with respect to y, with density p(x) = expfl(x) — ||h||%{/2.
So, for every continuous and bounded ¢ we have

[ p(x +h)y(dx) = / ()OI 12y, () (2.1)
X X

We also recall that for every & € H, the function h is a Gaussian random variable with law
N(0, ||h||%1) in R. Therefore, for every p € [1, 400) we have

1/p

N 1
Illzrcx.y) = E/ISI”eXp(—€2/2)dé Ihlle == kpllhlla. (2.2)
R

We recall that if X is a Hilbert space and Q is the covariance of y, then H is just the range
of Q'/2, and the norm & — | Q~'/2h|| (were Q~1/? is the pseudo-inverse of Q!/2, defined on
0'/2(X)) coincides with the norm of H. Moreover, the functions h have a simple representation
formula. Denoting by {e; : j € N} any orthonormal basis of X consisting of eigenvectors of Q,
Qej=Ajej, we have h(x) = Zjel(x, ej)h, e]'))\.;], where (-, -) is the scalar product in X and
I={jeN: i;#0}. Afunction f: X — R is called H-differentiable at x € X if there exists a
(unique) linear bounded operator £ : H — R such that

fah) = [ —eh) _

1Al 1 —0 2]l &

0.

We set £ := Dy f(x). Since H is a Hilbert space, there exists a unique y € H such that
Dy f(x)(h) = (h, y)u. Such y is denoted by Vg f(x).

Since H is continuously embedded in X, if f is Frechét differentiable at x it is also
H -differentiable at x, and f’'(x)(h) = (Vg f(x), h)p, for every h € H. In particular, if X is
a Hilbert space, y has covariance Q, and V f(x) is the gradient of f at x, we have Vg f(x) =
QV f(x) if Q is one to one, namely if y is non-degenerate.

More generally, if Y is a Banach space, a function F : X +— Y is called H-differentiable at
x € X if there exists a linear bounded operator L : H — Y such that
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F(x+h)—F(x)—L(h)
Ili—0 721l B

Y - 0.

n times H-differentiable functions are defined by recurrence, in a canonical way. Here we
are interested in n = 2, 3. So, if f: X > R is H-differentiable in X, we say that it is twice
H-differentiable at x if Dy f : X — H’ is differentiable at x, (equivalently, Vi f : X — H is
differentiable at x) and we define the Hessian operator D%i f(x) e LO(H) (the space of the
bounded bilinear forms from HZ to R), by D%, f(x)(k, h) := (Lh)(k), where L is the operator in
the definition, with F(x) = Dy f(x), Y = H’. Similarly, if f is twice H-differentiable in X, we
say that it is thrice H -differentiable at x if D%{ f: X £ (H) is H-differentiable at x; in this
case the third order derivative D?_If(x) € LB (H) is defined as Di,f(x)(h, k,1):=(Lh)k,1D),
where L is the operator in the definition, with now F(x) = D%, fx),Y = £@ (H).

Definition 2.1. For k € N we denote by CZ(X ) the subspace of Cp(X) consisting of functions
k times H -differentiable at any point, with D;, f continuous and bounded in LU )(H ) for j <k.
C’;_I(X ) is endowed with the norm

k
I et o) = SUp 1 () + > sup 1D, £ 26 cary-
X

=1

The Ornstein—Uhlenbeck semigroup is defined by

T(@)f(x) :=/f(e7’x+\/l—e—zfy)y(dy), t>0, feCpX). (2.3)
X

Then T (¢) maps Cp(X) into itself for every ¢ > 0, and

IT@) flloo < flle, >0, feCp(X). 2.4

Nevertheless, 7 (¢) is not strongly continuous in C,(X), and not even in the subspace BUC(X)
of the bounded and uniformly continuous functions. Indeed, for f € BUC(X) it is easy to see
that

B 70 f = flleo=0= lim /™) = lloo =0.

However, for every fixed x € X the function ¢ — T (¢) f (x) is continuous in [0, +00) by the Do-
minated Convergence Theorem. It follows that for every A > 0O the linear operator F'(A) defined
by

+00
FA) f(x):= / e’”T(t)f(x)dt, A>0, feCpX), x X,
0
belongs to L(Cp (X)) and it is one to one. Moreover, since 7 (¢) is a semigroup, the family { F (1) :

A > 0} satisfies the resolvent identity. Therefore there exists a linear operator L : D(L) +— X such
that F (L) = R(A, L) for every A > 0.
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The operator L is called generator of T (¢) in Cp(X), although it is not an infinitesimal gen-
erator in the usual sense. So, as in the case of strongly continuous semigroups, we have

+00
(RA,L)YHx)= / e MT () f(x)dt, A>0, feCpX), x€X, 2.5)
0
and by (2.4) we obtain
IR(A, L) flloo < flloos,  A>0, fe€Cp(X). (2.6)

Let us recall that the realization T, (t) of T'(¢) in L” (X, y) is a strongly continuous, contrac-
tion, analytic semigroup, for every p € (1, +00). The domain of its infinitesimal generator L is
equal to the Sobolev space W2? (X, y), and the graph norm of L p 1s equivalent to the Sobolev
norm. Moreover,

oo

. bl ~\ du
Lpl/t =d1VVVHI/l ZJX_; (% —]’l]> ﬁj’

where div, is the Gaussian divergence, {h; : j € N} is any orthonormal basis of H, and the
series converges in L” (X, y). See e.g. [2, Ch. 5]. If X is a Hilbert space, y is a non-degenerate
Gaussian measure with covariance Q, and {e; : j € N} is any orthonormal basis of X consisting
of eigenvectors of Q, Qej = Aje;, then {,/Aje; : j € N} is an orthonormal basis of H and the
above series reads as

o0

92 9
Lyu(x)= Z <Xj8—Z(X) —xj-%(X))
Ej J

j=1

where x; := (x, ¢;).
Using the characterizations D(L ) = WZP(X, y) for p > 1, we obtain a characterization of
D(L), as follows.

Lemma 2.2.

D(L)y={ue [\ WP (X.y): u, Lue Cp(X)}={ue | JW>P(X,y): u, LueCp(X)}.
p>1 p>1

Moreover, for every u € D(L), Lu is a continuous and bounded version of div, Vyu.

Proof. Foru € D(L) and A > O set f := Au — Lu, so that u is given by (2.5). Since T, (t) agrees
with 7'(¢) on Cp(X) for every p > 1, we have u = f0+°o e M T,()fdt=R(x, Lp)f. Therefore,
ue W2’P(X, y) for every p > 1 and Lu = L,u, y-a.e. So, Lu is a continuous and bounded
version of L u = div, Vgyu.

Conversely, if u € W2P (X, y) for some p > 1 we have u = f0+°° e_)"Tp(t)()Lu — Lyu)dt
for every A > 0. If u, Lu = L,u € Cp(X) we obtain u = R(A, L) f, with f = Au — Lu, and
therefore u € D(L). O



7468 S. Cerrai, A. Lunardi / J. Differential Equations 267 (2019) 7462-7482

The following smoothing properties are easily shown.

Proposition 2.3. For every f € Cp(X) and t > 0, T(¢t) f is infinitely times H -differentiable at
every x € X. Setting

we have

DyT (1) f(x)(h) = (VuT (@) f(x), k)i = c(r) / fle ' x+V1—e2p)h(y)ydy), 2.7)
X
D3 T (0) f(x)(h, k) = c(1)? / fle ' x +V1—e2p)(h(k(y) — (h,k)m)ydy),  (2.8)
X

Dy T@) fx)(h, k,1) = —C(t)3/f(€*lx4rv1—6_2’y)(i(y)(h,k)H
X

R n 2.9
FhO) k. Dy + RO D )y (dy) 29)

+e() [y fle™x+ V1= e Z)h(nk(I(y) y(@y),
for every h, k, l € H._Thefunction (t,x) — T(t) f(x) is continuous in [0, 4+00) x X, and the

functions (t,x) — D;IT(t)f(x) (j =1,2,3) are continuous in (0, +00) x X, with values in
LD (X)), respectively. Moreover, for every x € X and t > 0 we have

@) IVET@Of@)a <O flloo
(i) IDLT®)f @)l <22 f oo (2.10)
(i) IDHT @) f @) oy < G+ fllso-

Proof. Formulae (2.7), (2.8), (2.9) are easily proved using the Cameron-Martin formula. For
instance concerning (2.7), using (2.1) we get

T fx+h)—T@) f(x)= / fle™ x+v1—e2y)[exp(c(t)h(y) —c()?||h]|3/2) — 1y (dy)
X

which yields (2.7). (2.8), (2.9) are proved in the same way. Estimates (2.10) are consequence of
(2.7), (2.8), (2.9) through the Holder inequality and (2.2) (in particular, the constant k% in the right

hand side of (2.10) comes from estimating ||le€lA||L1(X’y) < ||lAz||L3(X’y)||l€||L3(X’V)||lA||L3(X,V)).
Also the continuity of (¢,x) — T'(¢) f(x) in [0, 400) x X and of (¢,x) — D;{T(t)f(x) in
(0, 400) x X for j = 1,2, 3 is a consequence of the respective representation formulae, through
the Dominated Convergence Theorem and the Holder inequality. O

For functions in C}i(X ) the estimates in (2.10) may be improved. The proof is similar, and it
is omitted.
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Proposition 2.4. For every f € CIlLI (X), for any t > 0, and for every x € X we have

(VaT () f(x),hyp =e" /(VHf(e_tx +y/ 1 —e2y), hyn y(dy), (2.11)

X

(DHT (1) f (x)(h, k) =eft/(VHf(e*tx +y/ 1 —e2y), By k() y(dy), (2.12)
X

(DT fx)(h k1) =e" f (Vi fe  x+y/1—e2y), By (k(I(y) — (k, 1) i) ¥ (dy).
X
(2.13)

The function (t,x) — VyT(t) f(x) is continuous in [0, 4+00) x X with values in H, and for
every x € X and t > 0 we have

@ NWVET®OfOOlE = IVH oo
(i) IDHET®) @) oy < cOIVa floo (2.14)
@ii) DHRT O f ) 2oy <260V flloo-

3. Holder spaces and Schauder type theorems

We introduce a class of Holder spaces that arise “naturally” in this setting.

Definition 3.1. If Y is any Banach space and « € (0, 1), the space C; (X, Y) is the subspace of
Cp(X,Y) consisting of the functions F such that

F h)—F
Fla=  sup | F(x+h) - (€911 - 4o
he H\{0}, xeX 17211%

C%(X,Y) is normed by
I Fllce x,v) == 1 Flloo + [Fla-

If Y =R the space C%(X,R) is denoted by C%(X). Moreover, we denote by C;IJ“’(X),
C12_1+°‘(X) the subspaces of C}i(X), C12_1(X), consisting of functions f such that Dy f €
CH(X, L(H)), D%if e CH(X, L@ (H)), respectively. They are endowed with the norms

1 flletsecy = 1F ey o0 + [P fla

D +h)—D
W fler o+ sup  A2ASEAD = Du Sl
" heH\(0}, xeX 1%

1l e2re ey = 1 ez, x) + (D7 Sl

=||f|| 2 —+ sup ”D%‘If(x—i_h)_Djz*-lf(x)”L(Z)(H)
H e}, rex 1Al
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Notice that if X is a Hilbert space and y is non-degenerate, the Holder seminorm [ F], of any
F: X +— Y is given by

IF(x+ Q22) — Fx)lly
[Fla=  sup -
2€X\{0}, xeX llzll

where Q is the covariance of y.
The behavior of the semigroup 7 (¢) in the space CII‘;’“(X ), k=0,1,2, is similar to the one
in Cp(X). Below, we just state the properties that will be used in the sequel.

Lemma 3.2. T(t) € L(C?“(X)) foreveryt >0, k=0,1,2, « € (0, 1), and there are Cy > 0
such that

||T(t)||£(cllc_1+a(x)) <1, t>0. 3.1
Moreover, we have
[T fle <€ “[flas >0, feCHX), (3.2)
[DuT @) fleyx.uy < e e fla, >0, feCHX), (3.3)
whereas
[DaT () flee,x, 1) < 267 flloo, >0, feCh(X). 3.4

Proof. Let 7 > 0and f € C} (X). Forevery h € H we have
|T@) f(x+h)—T@)f(x)]
B U[ﬂe"(x +h) +V1—e2y) = feTx + V1 —e 2y)]y(dy)
X
< (MRl )*Lf Las

which yields (3.2). (3.1) follows, for k = 0.
If fe C;;'“ (X), T(t)f € C}q (X) by Proposition 2.4, and estimates (2.4) and (2.14)(i) yield

IT@ fller oo <M llet x)-

By (2.11), for every t > 0, x € X we have

DHT M) f(x) = e~ / D fe " x + 1= e 2y)y(dy),

X

so that for each 4, k € H we have
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(DT (0) f(x+h) —DuT @) f(x) (k)| =
/[DHf(e_’(x +h)+V1—e2y) =Dy fle”'x +V1—-e 2 yIk)ydy)

X
<e el m)*[Du flce, x.un Ikl a,

= e_t

and (3.1) follows, for k = 1. The statement for k = 2 is proved in the same way.
Let us prove (3.3). Let f € C%(X). By (2.7), for every h, k € H we have

(DT () f(x+h) = DuT @) f(x) (k)]

/ LFe 4 h) + V1= e 2y) — fle~x + V1= e 2y)lk(y)y(dy)
X
<@ M1 I L1 ox L

=c(1)

and (3.3) follows, recalling that [|k]l .1 (x .,y < Ikl 2¢x.,) = Ikl &-
Estimate (3.4) follows combining (2.10)(i)-(ii): indeed, forevery t > 0, x € X, h € H we have

IDET (@) f(x+h) —DuT @) f () =2c® flloo
by (2.10)(i), and
IDET @) f(x+h) = DuT @) f)lar <2 hla] flloo
by (2.10)(ii). Therefore,
IDET @) f(x+h) = DuT @) f@) g < Q@) ™ Qe@? Al @)1 flloo
and (3.4) is proved. O

The key estimates in what follows are in the next lemma.

Lemma 3.3. For every a € (0, 1) there is Cy o > 0 such that

Cy
IVaT @) f ()l < t(l_ig/zllfllcg(xy t>0, feCh(X), xeX. (3.5)

Consequently, there are Ca o, C3 o > 0 such that

. C,
@) IIDﬁT(t)f(X)IIUz)(H) < tl_—a‘;QIIfllc;g(X), t>0, feCh(X), xeX, 36

. G,
@) IDETOF O o = a1 f ey, >0, fCHO, xeX.
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Proof. Lett >0, f € C%(X), h € H \ {0}. For every s > 0 we have

L T f(x+sh)y—=T)f(x)

N

((VaT () f(x), h)Hl

IA

‘(VHT(t)f(x)’ h)
" T@)f(x+sh)—T@)f(x)

N

=: I1(s) + Ix(s).

Using (3.3) we get

1 s
()] = ';/ <(VHT(t)f(X+6h),h>H—<VHT(t)f(X),h)H>d0
0

IA

1
- / e |4 [ flodo = s 1% [ flas

0

a+1

while using (3.2) we get

L) < s A% [ -

Choosing now s = t/2/||h|| g we obtain

1
{VaT @) f(x),h)u| < (a 1

(e + r<““/2> 1712 f Dees

and this yields (3.5).

To prove (3.6) it is sufficient to split D4 T(t)f = DLT(t/2)T(t/2)f, DLT()f =
D?,T(t/Z)T(t/Z)f, and to use estimates (3.5) and (2.14)(ii) and (iii). O
Theorem 3.4. Let A > 0, f € C}(X) with 0 < o < 1. Then the unique solution to

Au—Lu=f

belongs to C%{J““ (X), and there is C = C(A, o) > 0 such that

||u||C12,_1+a(X) = C“f”CZ(X) (37)

Proof. Recalling that u is given by the representation formula (2.5) it is not difficult to see that
u € C%4(X), and that

+00

Vyu(x) = f e MV T (1) f(x)dt, (3.8)
0
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+00
D% u(x) = f e MDA T (1) f(x)dt. (3.9)
0

Notice that the right-hand sides of (3.8) and (3.9) are meaningful, since ¢ > Vg T (¢) f(x),
t— D%T(r) f(x), are continuous for ¢ > 0 with values in H, LP(H), respectively, by Propo-
sition 2.3, and their norms are bounded by Cl,at_1/2+a/2||f||cg,(X)’ Cz,at_1+a/2||f||cg,(xw
respectively, by Lemma 3.3. Then, (3.8) and (3.9) follow in a standard way. They yield that
Vyu, D%,u are continuous and bounded, with

IVau) | < Crad™ 22T (/2 + /2 f llcs ).

2 —a/2 (3.10)
IDFu() e ay < Co.ar™ " T(@/D fllce (x)»

for every x, where I'(0) = fooo e "t?=1dt is the Euler function, and the constants Ciq, Coq are

given by (3.6).

To prove that D%_IM e Ch(X, L@ (H)) we use an interpolation argument. For every x € X and
h € H we split D3 u(x + h) — D}u(x) as a(x +h) — a(x) + b(x + h) — b(x), where

Then,

12112,
laGx +h) —a@) ceg < / e MIDET (@) f (x +h) — DT () f () coydt
0
12113, 00
a(y) = / eMDETW) f(y)dt, b(y):= / e MDET (1) f(y)dt, (3.11)
0 212,

where, for every ¢t > 0,

IDET (@) f(x +h) — DET @0 f &) po <2 sup IDHT @) f D)l oy

ye

-1 2
<2C2.0t ™ P flics x)s

by (3.6)(i). Therefore,

4C,
lat +h) —a@lzow = —1flcg ool
Moreover,
o0
I6(x + 1) — bl o a1y < / e MIDET @) f(x +h) — DT () f (@) co gyt
1%

where, for every ¢ > 0,
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1
IDET () f (x +h) — DET() f ) gy = I f DT f(x +ah)(h, - Yo |l o)

IA

0
Ca,af_3/2+“/2||f||c‘;,<X)||h||H,

by (3.6)(ii). Therefore,

2C;,
o I g ookl

b + ) — bl o) <
Summing up we obtain that D%{u is H-Holder continuous and

4C o n 2C3,4

)llfllcg,(X)'

P
[Dyulce x.co ) = < | — o

Such estimate and (2.6), (3.10) yield (3.7). O

The procedure of Theorem 3.4 fails for « = 0 from the very beginning, since the (optimal)
estimate || D>T (¢) f || LOH) = ¢t fllso is not enough to guarantee that the right hand side of
(3.9) is meaningful for general f € C,(X). This is not due to our technique, but to the general
lack of maximal regularity results for elliptic differential equations in spaces of continuous func-
tions: even in finite dimension it is known that the domain of Ornstein-Uhlenbeck operators (as
well as the domains of the Laplacian and of other second order elliptic differential operators) in
Cp(R?) is not contained in C2(R?), for d > 2.

Of course, estimate (3.4) and the procedure of Theorem 3.4 give, for u = R(A, L) f,

Viu e Cy(X. H),  Vaulles x my < KIIf oo

for every 0 € (0, 1), with K = K (A, 0) independent of f. However, K (X, 8) blows up as 6 goes
to 1.

Still, a modification of Theorem 3.4 gives an embedding of the domain of L that is similar
to known embeddings in the finite dimensional case. To this aim we have to introduce Zygmund
spaces along H, as follows.

Definition 3.5. If Y is any Banach space, we denote by Zy(X,Y) the set of continuous and
bounded functions F : X — Y such that

|F(x+2h) —2F(x+h)+ F(x)]
[Flz,x,y) = sup ¥ « 1. (3.12)
xeX, he H\(0) 1]l &

Zpy(X,Y) is normed by

lFllzyx,v) :=sup |[F)lly + [Flzyx,y)-
xeX

It is easy to see that continuous and bounded H -Lipschitz functions from X to Y belong to
Zp(X,Y). Even in the one dimensional case (with X =Y = H = R), there are continuous and
bounded functions satisfying condition (3.12) that are not locally Lipschitz continuous.
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Theorem 3.6. Let . > 0, f € Cp(X). Then the unique solution to
AM—Lu=f
satisfies Vyu € Zy (X, H). Moreover there is C > 0 such that
IVaullzyx. 1y < Cll f lloo- (3.13)
Proof. We already know that u € C 111+9 (X) for every 6 € (0, 1) by the above considerations; in
particular Vg u is continuous and bounded.
To prove that Vyu € Zy (X, H), for every h € H we consider the functions a and b defined

in (3.11). Using (2.10)(i) we get, for every x € X,

la(x +2h) —2a(x + h) +a(x)||g

213,
< / e M VHT(0) f(x +2h) =2V T @) f(x +h) + VT () f (x)| ndt
0
12113,
<4 / )1 llodt,
0

172

and setting co := sup;. ot /“c(t) we obtain

lla(x +2h) —2a(x +h) + a(x)|m < 2coll fllcllhllz,  x € X.

From the obvious equalities

1
(VaT@)f(x+2h) = VuTO)f(x+h), kg = / D%,T(t)f(x + (1 +o)h)(h,k)do,
0

1
(VHT(t)f(x+h)—VHT(t)f(x),k>H:/D%,T(t)f(x—}—oh)(h,k)da, keH, xeX,
0

we obtain, using (2.10)(iii)

KVaT @) f(x+2h) =2VyT @) f(x +h) + VT (@) f(x), k) n]

1
= f(Di,T(r)f(x + (1 4+0)h) — DLT (1) f(x 4+ oh))(h, k)do
0

< sup ID3T @) FOD) o IAIF Ikl < B+ kD@ [ flloo IR 17 1K .
ye

so that, for every x € X,
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INHT () f(x 4+ 2h) = 2VuT () f(x +h) + VaT@) fF) g <t floolbly, >0,

withci =GB + kg)cg, and therefore

1b(x +2h) —2b(x + h) + b(x) ||
= / e MIVET (0) f (x +2h) =2V T (1) f(x + 1) + VuT (@) f (X) | ndt

1212
oo

< f 241 | flloollhly

2
=2cill fllcclellfr-

Summing up, we obtain

Vau(x +2h) —2Vgu(x +h) + Vgux)|lg < 2co +2c) | fllollbll &,
and the statement follows. O

A similar procedure yields maximal Holder regularity results for the mild solutions to evo-
lution problems such as (1.2), namely for the functions given by (1.3), for suitable f and g.
Precisely, we consider the function spaces defined as follows.

Definition 3.7. Let Y be any Banach space. For « € (0, 1) we denote by C%a([O, T]x X;7Y) the
space of the functions g € Cp([0, T] x X; Y) such that g(z,-) € C%(X;Y) forevery t € [0, T],
and

llgll -0 o= sup [Ig(t, llce x.y) < +0o0.
chrao.rixxy) = SR %

If Y =R we set C%’a([O, T] x X;R) = C%“([O, T1 x X). Moreover, we denote by
CQI’HO‘([O, T] x X) the subspace of Cp([0, T] x X) consisting of the functions g such that
gt e C%;’“(X) for every t € [0, T], and

gl 02+ = sup [lg(t, )l 2y, < +00.
Ci Q0.T1xX) " Zoh Cy ™ (X)

]
Theorem 3.8. Let f € C%;r“ (X), g€ C%a([O, T] x X) with « € (0, 1), and let v be defined by

(1.3). Then v € C%2+a([0, T] x X), and there is C = C(T) > 0, independent of f and g, such
that

”v||C(;l'2+a([0,TJXX) = C(”f”C?j—a(X) + ”g”C%’a([O,T]XX))' (314)
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Proof. We already know that (¢, x) — T (¢) f(x) is in C%H“([O, T] x X), by Lemma 3.2. So,
we consider the function

t

vo(t, x) := / T(s)g(t —s,)(x)ds, te€l0,T], xeX.
0

The same arguments used in the proof of Theorem 3.4 show that v(¢,-) € C%I (X) for every
t € [0, T], that

t
D,%,vo(t,x):/D,%,T(s)g(t—s,-)(x)ds, t€[0,T], x € X,
0

and that there is C = C(T') > 0, independent of g, such that
lvo(z, )”C;-I(X) = C”g”C%a([O,T]XX)'
Let us prove that D%Ivo is continuous at any (#g, xp). If # > 19, x € X, we split
D% vo(t, x) — D3 vo(to, X0) | c gy <
0]
< / IDHT(s)g(t — 5, )(x) — Dy T()g(to — 5. ) o) || c gy s
0 . (3.15)
+ / ID3 T ($)g(t — s, ) oy ds
fo
=:11(t,x) + Ix(t, x).
Estimate (3.6)(i) yields

t
C2a
L(t,x)< | ——=ds su 7, ) e (xy,
A )_/S,,a/z 150l

]

so that limt_)tgfyx_)xO I>(t, x) = 0. Concerning I (¢, x), for every s € [0, fy] and &, k € H, formu-
lae (2.8) and (2.2) yield

(D% T (s)g(t —s,)(x) — DT (s)g(to — s, -)(x0)) (h, k)| <

1,2
< c(s)z(/ lgt —s, e *x+v1—e2y)—g(tg—s,e “xo++v1— e‘zsy)|2y(dy)> .
X

Nhk — (h, k) e 2 (x,)
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1/2
SC(S)2</ gt —s,e*x+V1—e2y)—g(to—s,e *xo+ V1 —ezsy)lzy(dy)> .
X

2+ DRIk

and since g is continuous and bounded, by the Dominated Convergence Theorem we get

lim 1D} T(5)g(t = s.)(x) = DT (5)glt0 = 5. ) o)l ceoery = 0.

t—10,X—>X

Moreover, estimate (3.6)(i) yields

2C,,
ID%T(s)g(t —s,)(x) — DT (s)g(to — s, VN zo ) < Sl_—a/“z OEI:ET g (r, )lleg x),

O<s<t.

Therefore, still by the Dominated Convergence Theorem, lim 11 (¢, x) = 0. Summing

t%t(;r,xaxo

up, we get lim D%y (t, x) = D2vy(ty, x0). If t < 10, changing the roles of ¢ and 7y in

t—tg x—x0
the splitting (3.15), we obtain lim
is proved.

To prove that D2vo(t, ) e CY (X, £(2)(H)) for every t € [0, T'] we argue as in Theorem 3.4,
namely we split D?vo(t, -)(x +h) — D?vo(t, -) = a(x +h) —a(x) + b(x + h) — b(x), where now

Dzvo(t, x) = Dzvo(to, X0), and continuity of D%y,

t%t&,xaxo

min{z,||7|%}

a(y)= / D3 T(s)g(t —s,-)(y)ds,
0
t

b(y) = / DAT(5)g(t —s5, ) () ds, yeX,

min{z,[|22}

and we proceed as in the proof of Theorem 3.4, to get

4Cy o + 2C3 4 )

D2U f,- o <
[ o( )]CH(X,E(Z)(H)) = < o l—a

sup [lg(r. )l ). O
rel0,T]

4. Open problems and bibliographical remarks

Although many of our proofs rely on typical arguments from interpolation theory, interpo-
lation spaces are not explicitly mentioned. If X = R?, Schauder theorems for non-degenerate
Ornstein-Uhlenbeck operators were first proved in [7], relying on other interpolation techniques.
It was shown that for every f € C} (R?) the function R(x, L) f defined in (2.5) is the unique
bounded classical solution to (1.1), that its second order derivatives belong to the interpolation
space

(Ch(RY), D(L))aj2.00 = {f € Ch(RY): sugf“/znT(r)f — flloo < 400},
>
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where 7 (t) is the corresponding Ornstein-Uhlenbeck semigroup, and the latter space was char-
acterized as

{(f € CL®RY): sup,_ot 21 fe™) = flioo < +00).

A similar characterization is open in infinite dimension. Even the simpler characterization
(Co(X), CH(X)aco =CH(X), O<a<l, (4.1)

is not clear in general Banach spaces. In the next lemma we only prove embeddings, through (by
now) standard methods.

Lemma 4.1. For every o € (0, 1) we have

() (Cp(X), C(X))g,00 C CHX),

(ii)  (Cp(X), D(L))aj2,00 C C(X).
Proof. We recall that, given two Banach spaces ) C X with continuous embedding and
a € (0, 1), the interpolation space (X, ))q,00 consists of all u € X such that ”””(X,y)a,oo =
supl>0t_9K(t, u) < +oo, where K (t,u) :=inf{|lallx +t|blly: u=a+b, aec X, beYV}. We
also recall that (X, V)4.00 C &, with continuous embedding.

Let u € (Cp(X), C}i(X))a,oo. For every decomposition u = a + b, with a € Cp(X), b €
C}_I(X), we have

lu(x +h) —u(x)| <la(x +h) —ax)|+ |[b(x + h) —b(x)| <2|lalloc + IVEDlco il &,
xeX, heH,

so that, taking the infimum over all such decompositions,
jux + 1) = ()| < 2K (Whll, w) < 20005 14l ¢y ). ¢4 00y ¥ € Xo hEH,

and (i) follows.
To prove statement (ii) we use (2.10)(i), that yields, for every u € D(L) and A > 0, x € X,

o0

IVEu(x)|lg < /e_MIIVHT(t)(Mt—Lu)(x)IIHdt

0
0

/ e M et Oullulloo + Il Lutlloo)

0
col' (1/2) (A2 |ull oo + 17 V2 || Lull o),

IA

IA

1/2

where co = sup;. ot /“c(t). Taking the minimum over A we get

1/2 1/2
sup [|Vgu()lg < Clull 7| Lull 3,

xeX
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for some C > 0, independent of u. This implies that the space C }{ (X) belongs to the class Jy,2
between Cp(X) and D(L) (e.g., [9, Sect. 1.10.1]). The Reiteration Theorem ([9, Sect. 1.10.2])
yields

(Cp(X), D(L))a/2,00 C (Cp(X): Ch(X))a,00:
and (ii) follows from (i). O

Going back to (4.1), in the case where X is a Hilbert space and y is non-degenerate, the
similar equality

(BUC(X), BUC;I(X))a,OO =C%(X)NBUC(X)

was stated in [4].
Concerning Schauder estimates in infinite dimension, if X is an infinite dimensional Hilbert
space, smoothing Ornstein-Uhlenbeck semigroups such as

T@)f(x)= / Fe x + )Ny, o, (dy)
X

were considered in [5,3], under the assumptions that A is the infinitesimal generator of a strongly
continuous semigroup ¢4 in X, Q € L(X) is a self-adjoint positive operator, the operators Q; :=

fé eSAQeSA*ds have finite trace for every ¢ > 0, ¢'4(X) C Q,I/Z(X) for every ¢, and moreover

Sup,~g 172 Qt_l/ze’A l £(x) < +oo. The generator of T'(¢) is a realization of the operator

Lu(x) = %Tr(QDzu(x)) + (x, A*Vu(x))

and T () is a smoothing operator in all directions, not only along a subspace. In this case, a
Schauder theorem in the usual Holder spaces holds: namely, if f is any bounded function be-
longing to C%(X) for some « € (0, 1), then the function

oo

u(x) = / e MT (1) f (x)dt 4.2)

0

belongs to C2(X), it has bounded first and second order derivatives, D%u € C*(X, L? (X)).
This was proved in [3] in the case Q = I and in [5, Ch. 5] in the case that 7 (¢) is the transition
semigroup of a suitable linear stochastic PDE with X = L?(£2), Q being an open bounded subset
of R4 with smooth boundary.

We would like to remind that there are relevant situations in which Schauder estimates cannot
be proved for Hilbert spaces, but only for Banach spaces. This is the case considered in [6], where
the transition semigroup 7 (¢) associated with a class of stochastic reaction-diffusion equations
defined on a bounded interval [0, 1], with polynomially growing coefficients, is studied in the
space X = C([0, 1]). Actually, for that class of equations the analysis of 7'(¢) in X = L2(0, 1)
is considerably more delicate than in X = C([0, 1]) and it is not possible to prove that when
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f e C¥(L?(0, 1)), for some « € (0, 1), the function u defined in (4.2) belongs to CZ(L>(0, 1)).
Notice, in particular, that working in C ([0, 1]) prevents from using the interpolatory identity
4.1).

Under assumptions similar to [3] a related result is in [1], where the space L°°(X, y) is con-
sidered instead of C,(X). Regularity results were stated in terms of the spaces { f € L*(X, y) :
Sup,~g e/ 2||T(z‘) f — flloo < 400}, called S* and endowed with their natural norm

T = flloo
I fllo +sup 1L 2 T ee

t>0

However, since T'(¢) is strong Feller, we have S = (Cp(X), D(L))a/2,00, With equivalence of
the respective norms. In [1] it is proved that if f € S, then u and its first and second order
derivatives along any direction belong to S¢.

Schauder type theorems for the Gross Laplacian and of some of its perturbations were estab-
lished in [4]. Here, the semigroup is given by

S(t) f(x) = / P(x + V1Y) dy),

X

where y is again a centered non-degenerate Gaussian measure in a separable Hilbert space X. In
contrast with Ornstein-Uhlenbeck semigroups, S(¢) is strongly continuous in BU C (X); similarly
to our Ornstein-Uhlenbeck semigroup S(¢) is not strong Feller, and it is smoothing only along
the directions of the Cameron-Martin space. The infinitesimal generator of S(¢) in BUC(X) is a
realization A of the operator

Au(x) = %Trace (0 D?u(x)),

in the space BUC(X). A result similar to Theorem 1 was stated, when f € C%(X) N BUC(X)
(the latter space is called C Dé (X) in [4], Q being the covariance of y). Moreover, in [1] it was
proved that if f € §*, where now

S*:={g € L(X) : supt~“/?||S(t)g — glloo < +00},

t>0

then for every A > O the function u(x) = f x e ™ S(t) f(x)ds possesses first and second order
derivatives along the elements of any orthonormal basis of X consisting of eigenvalues of Q, and
they belong to S*.
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