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Abstract. The Coleman integral is a p-adic line integral that plays a key role in computing
several important invariants in arithmetic geometry. We give an algorithm for explicit Coleman

integration on curves, using the algorithms of the second author [Tui16, Tui17] to compute the
action of Frobenius on p-adic cohomology. We present a collection of examples computed with

our implementation. This includes integrals on a genus 55 curve, where other methods do not

currently seem practical.

1. Introduction

In a series of papers in the 1980s, Coleman formulated a p-adic theory of line integration on
curves and higher-dimensional varieties with good reduction at p and gave numerous applications
in arithmetic geometry. This includes the computation of p-adic polylogarithms [Col82], torsion
points on Jacobians of curves [Col85b], rational points on certain curves with small Mordell-Weil
rank [Col85a], p-adic heights on curves (joint with Gross) [CG89], and p-adic regulators in K-theory
(joint with de Shalit) [CdS88]. In [CdS88], Coleman and de Shalit also introduced a theory of
iterated p-adic integration on curves, which plays an important role in Kim’s nonabelian Chabauty
program [Kim09] to compute rational points on curves.

Besser and de Jeu [BdJ08] gave the first algorithm for explicit computation of these integrals—
now known as Coleman integrals—in the case of iterated integrals on P1 \ {0, 1,∞}. These in-
tegrals compute p-adic polylogarithms, which are conjecturally related to special values of p-adic
L-functions. Balakrishnan, Bradshaw and Kedlaya [BBK10] gave an algorithm to compute single
Coleman integrals on odd degree models of hyperelliptic curves, which was further generalized to
iterated Coleman integrals on arbitrary hyperelliptic curves in [Bal13, Bal15]. These algorithms all
rely on an algorithm for computing the action of Frobenius on p-adic cohomology to realize Dwork’s
principle of analytic continuation along Frobenius. In the case of odd degree hyperelliptic curves,
this is achieved by Kedlaya’s algorithm [Ked01].

Because of all of the applications mentioned above, it is of interest to develop practical algorithms
to carry out Coleman integration on any smooth curve. In the present work, we do this by building
on work of Tuitman [Tui16, Tui17], which generalizes Kedlaya’s algorithm to this setting. We give
algorithms to compute single Coleman integrals on curves and develop the precision bounds necessary
to obtain provably correct results. Moreover, we provide a complete implementation [BT] of our
algorithms in the computer algebra system Magma [BCP97] and present a selection of examples,
including the computation of torsion points on Jacobians and carrying out the Chabauty–Coleman
method for finding rational points on curves. We also compare our algorithms to other leading
techniques. We present a selection of examples computed using our algorithm, including integrals
on a genus 55 curve, where other techniques do not currently seem practical. Our computation
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shows that the Jacobian of this curve has positive Mordell–Weil rank. The case of iterated Coleman
integrals will be discussed in a subsequent paper.

The structure of the paper is as follows: First, in Section 2 we recall what we need from the
theory of p-adic cohomology and the algorithms from [Tui16, Tui17]. In Section 3, we present our
algorithms for Coleman integration. Next, in Section 4, we discuss the precision bounds necessary to
obtain provably correct results. In Section 5, we carry out a complexity analysis of our algorithm and
compare it with other approaches. Finally, in Section 6, we conclude with a collection of examples
computed with our implementation [BT].

2. p-adic cohomology

Let X be a nonsingular projective geometrically irreducible curve of genus g over Q given by a
(possibly singular) plane model Q(x, y) = 0 with Q(x, y) ∈ Z[x, y] a polynomial that is irreducible
and monic in y. Recall that such a model can easily be obtained from other representations of X,
e.g. by computing (a defining equation of) its function field.

Let dx and dy denote the degrees of the morphisms x and y, respectively, from X to the projective
line. Note that these correspond to the degrees of Q in the variables y and x, respectively. For the
performance of our algorithms it will be best to first take dx as small as possible (ideally equal to
the gonality of the curve) and then dy as small as possible for this value of dx.

Definition 2.1. Let ∆(x) ∈ Z[x] denote the discriminant of Q with respect to the variable y.
Moreover, define r(x) ∈ Z[x] to be the squarefree polynomial with the same zeros as ∆(x), in other
words, r = ∆/(gcd(∆, d∆

dx )).

Definition 2.2. Let W 0 ∈ GLdx(Q[x, 1/r]) and W∞ ∈ GLdx(Q[x, 1/x, 1/r]) denote matrices such
that, if we denote

b0j =

dx−1∑
i=0

W 0
i+1,j+1y

i and b∞j =

dx−1∑
i=0

W∞i+1,j+1y
i

for all 0 ≤ j ≤ dx − 1, then

(1) [b00 , . . . , b
0
dx−1] is an integral basis for Q(X) over Q[x],

(2) [b∞0 , . . . , b
∞
dx−1] is an integral basis for Q(X) over Q[1/x],

where Q(X) denotes the function field of X. Moreover, let W ∈ GLdx(Q[x, 1/x]) denote the change
of basis matrix W = (W 0)−1W∞.

There are good algorithms available to compute such matrices, e.g. [Hes02, Bau16].

Remark 2.3. We assume that X is a curve over Q since it is more delicate to compute integral bases
in function fields over a p-adic field, both in practice and in theory (to finite precision everything is
smooth).

Example 2.4. Let X/Q be an odd degree monic hyperelliptic curve of genus g given by the plane
model

Q(x, y) = y2 − f(x) = 0.

We have that

r(x) = f(x)
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and

W 0 =

(
1 0
0 1

)
, W∞ =

(
1 0
0 1/xg+1

)
.

This means that b0 = [1, y] and b∞ = [1, y/xg+1] are integral bases for the function field of X over
Q[x] and Q[1/x], respectively.

Definition 2.5. We say that the triple (Q,W 0,W∞) has good reduction at a prime number p if the
conditions below (taken from [Tui17, Assumption 1]) are satisfied.

Assumption 2.6 ([Tui17, Assumption 1]).

(1) The discriminant of r(x) is contained in Z×p .

(2) If we denote b0j =
∑dx−1
i=0 W 0

i+1,j+1y
i and b∞j =

∑dx−1
i=0 W∞i+1,j+1y

i for all 0 ≤ j ≤ dx − 1,
and if we let Fp(x, y) be the field of fractions of Fp[x, y]/(Q), then:
(a) The reduction modulo p of [b00 , . . . , b

0
dx−1] is an integral basis for Fp(x, y) over Fp[x].

(b) The reduction modulo p of [b∞0 , . . . , b
∞
dx−1] is an integral basis for Fp(x, y) over Fp[1/x].

(3) W 0 ∈ GLdx(Zp[x, 1/r]) and W∞ ∈ GLdx(Zp[x, 1/x, 1/r]).
(4) Denote:

R0 = Zp[x]b00 + . . .+ Zp[x]b0dx−1,

R∞ = Zp[1/x]b∞0 + . . .+ Zp[1/x]b∞dx−1.

For a ring R, let Rred denote the reduced ring obtained by quotienting out by the nilradi-
cal. Then the discriminants of the finite Zp-algebras (R0/(r(x)))red and (R∞/(1/x))red are
contained in Z×p .

Remark 2.7. These conditions imply that the curve X has good reduction at p but are stronger.
Note that any triple (Q,W 0,W∞) has good reduction at all but finitely many prime numbers p.

From now on, we fix a prime p and a triple (Q,W 0,W∞) which has good reduction at p. In
[Tui17, Proposition 2.3]) it is explained how one can associate to this data a smooth curve X over
Zp such that X ⊗ Qp

∼= X ⊗ Qp. Let Xan denote the rigid analytic space over Qp which is the
generic fibre of X . There is a specialization map from Xan to the reduction of X modulo p. The
fibres of this map are called residue disks. (For further background on rigid analytic geometry, see
[FvdP04].)

Definition 2.8. We say that a point of Xan is very infinite if its x-coordinate is ∞ and very bad
if it is either very infinite or its x-coordinate is a zero of r(x).

Remark 2.9. From the fact that (Q,W 0,W∞) has good reduction at p, it follows that a residue
disk contains at most one very bad point and that this point is defined over an unramified extension
of Qp.

For a very bad point P , we will denote the ramification index of the map x by eP . We let U
denote the complement of the very bad points in Xan.

Definition 2.10. We say that a residue disk (as well as any point inside it) is infinite or bad if it
contains a very infinite or a very bad point, respectively. A point or residue disk is called finite if it
is not infinite and good if it is not bad.

Remark 2.11. Note that all infinite points and infinite residue disks are bad.

Remark 2.12. If a point is very bad, this can mean one of three things:

(1) x(P ) =∞,
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(2) the fiber of X above x(P ) contains a ramification point,
(3) the fiber of X above x(P ) contains a point mapping to a singularity of the plane model

Q(x, y) = 0.

We now introduce the main rings over which we work. Let 〈〉† denote the ring of overconvergent
functions obtained by weak completion of the corresponding polynomial ring.

Definition 2.13. We denote

S = Zp〈x, 1/r〉, S† = Zp〈x, 1/r〉†,

R = Zp〈x, 1/r, y〉/(Q), R† = Zp〈x, 1/r, y〉†/(Q).

A Frobenius lift Fp : R† → R† is defined as a continuous ring homomorphism that reduces to the
p-th power Frobenius map modulo p.

Theorem 2.14. There exists a Frobenius lift Fp : R† → R† for which Fp(x) = xp.

Proof. See [Tui17, Thm. 2.6]. �

Definition 2.15. For a point P on a smooth curve, we let ordP denote the corresponding discrete
valuation on the function field of the curve. In particular, ord0 and ord∞ are the discrete valuations
on the rational function field Q(x) corresponding to the points 0 and ∞ on P1

Q. We extend these
definitions to matrices by taking the minimum over their entries.

From the assumption that (Q,W 0,W∞) has good reduction at p, it follows that the rigid coho-
mology spaces H1

rig(U ⊗Qp) and H1
rig(X ⊗Qp) are isomorphic to their algebraic de Rham counter-

parts [BC94].

Definition 2.16. Let [ω1, . . . , ω2g] be p-adically integral 1-forms on U such that

(1) ω1, . . . , ωg form a basis for H0(X,Ω1
X),

(2) ω1, . . . , ω2g form a basis for H1
rig(X ⊗Qp),

(3) ordP (ωi) ≥ −1 for all i at all finite very bad points P ,
(4) ordP (ωi) ≥ −1 + (ord0(W ) + 1)eP for all i at all very infinite points P .

In [Tui16, Tui17], it is explained how 1-forms satisfying properties (2)-(4) can be computed. The
algorithm can be easily adapted so that (1) is satisfied as well, which is the convention we take.

Definition 2.17. The p-th power Frobenius Fp acts on H1
rig(X ⊗ Qp), so there exist a matrix

Φ ∈M2g×2g(Qp) and functions f1, . . . , f2g ∈ R† ⊗Qp such that

F∗p(ωi) = dfi +

2g∑
j=1

Φijωj

for i = 1, . . . , 2g.

Let us briefly recall from [Tui16, Tui17] how the matrix Φ and the functions f1, . . . , f2g are
computed.

Algorithm 2.18.

(1) Compute the Frobenius lift. Determine Fp as in Theorem 2.14, i.e. set Fp(x) = xp and
determine the elements Fp(1/r) ∈ S† and Fp(y) ∈ R† by Hensel lifting.



EXPLICIT COLEMAN INTEGRATION FOR CURVES 5

(2) Finite pole order reduction. For i = 1, . . . , 2g, find fi,0 ∈ R† ⊗Qp such that

F∗p(ωi) = dfi,0 +Gi

(
dx

r(x)

)
,

where Gi ∈ R⊗Qp only has poles at very infinite points.
(3) Infinite pole order reduction. For i = 1, . . . , 2g, find fi,∞ ∈ R⊗Qp such that

F∗p(ωi) = dfi,0 + dfi,∞ +Hi

(
dx

r(x)

)
,

where Hi ∈ R⊗Qp still only has poles at very infinite points P and satisfies

ordP (Hi) ≥ (ord0(W )− deg(r) + 2)eP

at all these points.
(4) Final reduction. For i = 1, . . . , 2g, find fi,end ∈ R⊗Qp such that

F∗p(ωi) = dfi,0 + dfi,∞ + dfi,end +

2g∑
j=1

Φijωj ,

where Φ ∈ M2g×2g(Qp) is the matrix of F∗p on H1
rig(U ⊗ Qp) with respect to the basis

[ω1, . . . , ω2g].

The matrix Φ and the functions fi = fi,0 + fi,∞ + fi,end are exactly what we need from [Tui16,
Tui17] to compute Coleman integrals.

3. Coleman integrals

Let K/Qp be a totally ramified extension. Our goal is to compute the Coleman integral
∫ Q
P
ω of

a 1-form ω ∈ Ω1(U ⊗Qp) of the second kind between points P,Q ∈ X(K).

The Coleman integral satisfies several key properties, which we will use throughout our integration
algorithms:

Theorem 3.1 (Coleman, Coleman–de Shalit). Let η, ξ be 1-forms on a wide open V of Xan and
P,Q,R ∈ V (K). Let a, b ∈ K. The definite Coleman integral has the following properties:

(1) Linearity:
∫ Q
P

(aη + bξ) = a
∫ Q
P
η + b

∫ Q
P
ξ.

(2) Additivity in endpoints:
∫ Q
P
ξ =

∫ R
P
ξ +

∫ Q
R
ξ.

(3) Change of variables: If V ′ ⊂ X ′ is a wide open subspace of a rigid analytic space X ′ and

φ : V → V ′ a rigid analytic map then
∫ Q
P
φ∗ξ =

∫ φ(Q)

φ(P )
ξ.

(4) Fundamental theorem of calculus:
∫ Q
P
df = f(Q) − f(P ) for f a rigid analytic function on

V .
(5) Galois equivariance: the integral is compatible with the action of Gal(K/Qp).

Proof. [Col85b] for 1-forms of the second kind and [CdS88] for general 1-forms. �

Let us first explain how we specify a point P . Note that giving (x, y)-coordinates might not be
sufficient even for a finite very bad point, since there may be multiple points on X lying above a
singular point (x, y) of the plane model defined by Q. However, a point P is determined uniquely by
the value of x (1/x if P is infinite) together with the values of the functions b0 (b∞ if P is infinite).
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Note that all of these values are p-adically integral. In our implementation, we therefore specify a
point P by storing three values (P‘x,P‘b,P‘inf):

(1) P‘x: the x-coordinate of P (1/x if x is infinite),
(2) P‘b: the values of the functions b0 (b∞ if P is infinite),
(3) P‘inf: true or false, depending on whether the point P is infinite or not.

We will often need power series expansions of functions in terms of a local coordinate (i.e., a
uniformizing parameter) t at P . This local coordinate should not just be a local coordinate at P on
X⊗Qp, but on the model X over Zp obtained from the triple (Q,W 0,W∞) as in [Tui17, Prop. 2.3].
Then it follows that the reduction modulo p of t is a local coordinate at the reduction modulo p of
P and that the residue disk at P is given by |t| < 1. In a bad residue disk, we will always expand
functions at the very bad point. Therefore, in the following proposition, we only consider points
that are either good or very bad.

Proposition 3.2. Let P ∈ X(Qp) be a point. Assume that P is either good or very bad. As a local
coordinate at P , we can take

t =

{
x− x(P ) if eP = 1 (or t = 1/x if P is infinite),

b0i − b0i (P ) for some i otherwise (with b0 replaced by b∞ if P is infinite).

Proof. By definition eP = ordP (x − x(P )) (or ep = ordP (1/x) if P is infinite). So if eP = 1 then
t = (x − x(P )) (or t = 1/x if P is infinite) is a local coordinate at P on X ⊗Qp. If eP ≥ 2, then
at least one of the b0i − b0i (P ) (with b0 replaced by b∞ if P is infinite) has to be a local coordinate
at P on X ⊗Qp, since otherwise there would be no functions on X ⊗Qp of order 1 at P . In both
cases, since (Q,W 0,W∞) has good reduction at p, the divisor defined by t on X is smooth over Zp,
so that t is also a local coordinate at P in the stronger sense explained above. �

After choosing a local coordinate t at P , in our implementation we compute xt,bt where

(1) xt is the power series expansion in t of the function x (1/x if P is infinite),
(2) bt is the tuple of power series expansions in t of the functions b0 (b∞ if P is infinite).

Note that all of these power series have p-adically integral coefficients. From xt,bt we will be able
to determine the power series expansion in t of any function which is regular at P .

A 1-form ω ∈ Ω1(U ⊗Qp) is of the form fdx with f ∈ R ⊗Qp. We will usually represent it as
follows:

ω =

dx−1∑
i=0

∑
j∈J

fij(x)

r(x)j
b0i
dx

r

with fij ∈ Qp[x] such that deg(fij) < deg(r(x)) for all i, j, since ω needs to be in this form to start
the cohomological reduction procedures outlined in Section 2.

We begin by describing the computation of tiny integrals.

Definition 3.3. A tiny integral
∫ Q
P
ω is a Coleman integral with endpoints P,Q ∈ X(Qp) that lie

in the same residue disk.

Algorithm 3.4 (Computing the tiny integral
∫ Q
P
ω).



EXPLICIT COLEMAN INTEGRATION FOR CURVES 7

(1) If the residue disk of P,Q is bad, then find the very bad point P ′ ∈ X(Qp), otherwise set
P ′ = P .

(2) Compute a local coordinate t and the power series expansions xt,bt at P ′.
(3) Integrate using t as coordinate: ∫ Q

P

ω =

∫ t(Q)

t(P )

ω(t).

The Laurent series expansion ω(t) can be determined from xt,bt. Note that ω is of the
second kind, so the coefficient of t−1dt is zero.

Remark 3.5. The calculation of tiny integrals does not require computing the action of Frobenius
on the cohomology space H1

rig(X ⊗Qp). This can be a useful consistency check for the integration
algorithms that follow, which do use the computation of the action of Frobenius.

Remark 3.6. Note that Algorithm 3.4 can also be applied for points defined over Qp(p
1/e) for some

positive integer e (as long as they are within the same residue disk). This is useful for applications
in bad residue disks, as we will see later (Algorithm 3.12).

When P,Q ∈ X(Qp) do not lie in the same residue disk, this approach breaks down since the
Laurent series expansions do not converge anymore. In this case we will compute the Coleman

integrals
∫ Q
P
ωi for i = 1, . . . , 2g by solving a linear system imposed by the p-th power Frobenius

map Fp. We first assume that the functions f1, . . . , f2g from Section 2 converge at P,Q. Note
that f1, . . . , f2g converge at all good points, but only at bad points that are not too close to the
corresponding very bad point. This will be made more precise in the next section.

Algorithm 3.7 (Compute the
∫ Q
P
ωi assuming f1, . . . , f2g converge at P,Q).

(1) Compute the action of Frobenius on H1
rig(X ⊗ Qp) using Algorithm 2.18 and store Φ and

f1, . . . , f2g.

(2) Determine the tiny integrals
∫ Fp(P )

P
ωi and

∫ Q
Fp(Q)

ωi for i = 1, . . . , 2g using Algorithm 3.4.

(3) Compute fi(P )− fi(Q) for i = 1, . . . , 2g and use the system of equations

2g∑
j=1

(Φ− I)ij

(∫ Q

P

ωj

)
= fi(P )− fi(Q)−

∫ Fp(P )

P

ωi −
∫ Q

Fp(Q)

ωi

to solve for all
∫ Q
P
ωi, as in [BBK10, Algorithm 11].

Remark 3.8. Note that the matrix Φ − I is invertible, since the eigenvalues of Φ are algebraic
numbers of complex absolute value p1/2.

Remark 3.9. The algorithm above follows from the first four properties of the Coleman integral in
Theorem 3.1, and in particular, change of variables is carried out via Frobenius, which is a rigid
analytic map.

Remark 3.10. An alternate approach to Algorithm 3.7 that applies outside of the bad residue disks
is to compute Teichmüller points (fixed points of the Frobenius map) within the residue disks, solve
the resulting linear system between Teichmüller points, then correct endpoints via tiny integrals.

Remark 3.11. Note that Algorithm 3.7 can also be applied for points defined over Qp(p
1/e) for

some positive integer e. This is useful for applications in bad residue disks, as we will see below in
Algorithm 3.12.
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When P or Q are bad points and f1, . . . , f2g do not converge there, the idea is simply to find
points P ′, Q′ in the residue disks of P and Q where these functions do converge, compute the integrals
between the new points, and correct for the difference with tiny integrals.

Algorithm 3.12 (Computing the
∫ Q
P
ωi in general).

(1) Determine P ′, Q′ in the residue disks of P,Q at which all functions f1, . . . , f2g converge.
(See Remark 4.4.)

(2) Compute the tiny integrals
∫ P ′

P
ωi and

∫ Q
Q′ ωi for i = 1, . . . , 2g using Algorithm 3.4.

(3) Determine
∫ Q′

P ′ ωi for i = 1, . . . , 2g using Algorithm 3.7.
(4) Compute ∫ Q

P

ωi =

∫ P ′

P

ωi +

∫ Q′

P ′
ωi +

∫ Q

Q′
ωi.

In general, we have to take the points P ′, Q′ to be defined over some (totally ramified) extension
K of Qp to get far enough away from the very bad point in the bad residue disk; see Remark 4.4.

We will always take this extension to be of the form Qp(p
1/e) for some positive integer e. Recall

that Algorithms 3.4 and 3.7 can still be applied in this case and that we may take P ′ ∈ X(Qp) in
Algorithm 3.4. Since computing in extensions is more expensive, integrals involving bad points are
usually the hardest to compute.

For more general 1-forms of the second kind ω ∈ Ω1(U ⊗Qp), we can now compute the Coleman

integrals
∫ Q
P
ω as follows from the output of Algorithms 3.7 and 3.12.

Algorithm 3.13 (Computing
∫ Q
P
ω).

(1) Use Steps (2),(3) and (4) of Algorithm 2.18 to find f ∈ R and ci ∈ Qp for i = 1, . . . , 2g
such that

ω = df +

2g∑
i=1

ciωi.

(2) Compute f(Q)− f(P ) and determine∫ Q

P

ω = f(Q)− f(P ) +

2g∑
i=1

ci

∫ Q

P

ωi.

Remark 3.14. Note that we are only considering points P,Q defined over a totally ramified ex-
tension K of Qp because we want the residue field to be Fp so that we work with a lift of p-power
Frobenius. It would be of interest to extend our work to points defined over arbitrary finite extensions
of Qp as discussed in [BBK10, Remark 12] and more generally work with a lift of q-power Frobenius.

4. Precision bounds

So far we have not paid any attention to the fact that we can only compute to finite p-adic and
t-adic precision in our algorithms. By precision we will always mean absolute p-adic precision, i.e.,
the valuation of the error term. We extend the p-adic valuation and the notion of precision to all
finite extensions of Qp, where they will take non-integer values in general.

Let us start with tiny integrals.
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Proposition 4.1. Let e be a positive integer and P,Q ∈ X(Qp(p
1/e)) two points in the same residue

disk accurate to precision N . Let t be a local coordinate (in the sense of Proposition 3.2) at the point
P ′ from Algorithm 3.4. Suppose that ω = g(t)dt is a differential of the second kind with

g(t) = a−kt
−k + a−k+1t

−k+1 + . . . ∈ Zp[[t]][t
−1]

for some positive integer k. If g is accurate to p-adic precision N and truncated modulo tl, then the

tiny integral
∫ Q
P
ω computed as in Algorithm 3.4 is correct to precision min{ν1, ν2, ν3} where:

ν1 = 1/e+ min
i≥l
{i/e− blogp(i+ 1)c},

ν2 = N + min
0≤i≤l−1

{i/e− blogp(i+ 1)c},

ν3 = N − kmax{ordp(t(P )), ordp(t(Q))} − blogp(k − 1)c.

Proof. Recall from Algorithm 3.4 that∫ Q

P

ω =

∫ t(Q)

t(P )

ω(t) =
∞∑

i=−k

ai
i+ 1

(
t(Q)i+1 − t(P )i+1

)
.

where a−1 = 0 since ω is of the second kind. Since P,Q both lie in the residue disk given by |t| < 1,
we have that ordp(t(P )), ordp(t(Q)) ≥ 1/e.

First, we bound the error introduced by omitting the terms with i ≥ l. Note that

ordp(t(P )i+1), ordp(t(Q)i+1) ≥ (i+ 1)/e

and
ordp(i+ 1) ≤ blogp(i+ 1)c.

Therefore, the valuation of this error is at least ν1.

Next, we consider the error coming from terms with 0 ≤ i ≤ l − 1. Since t(P ), t(Q) are accurate
to precision N and have valuation at least 1/e, we have that t(P )i+1, t(Q)i+1 are correct to precision
N + i/e. Therefore, the valuation of this error is at least ν2.

Finally, we bound the error coming from terms with −k ≤ i ≤ −2. This time t(P )i+1, t(Q)i+1

are correct to precision at least N + i ordp(t(P )), N + i ordp(t(Q)), respectively (since the loss of
precision of an inversion is 2 times the valuation). Therefore, the valuation of the error is at least
ν3 this time. �

Remark 4.2. Since we always have that ν2 ≤ N , there is no point in increasing the t-adic precision
l further if ν1 ≥ N already. Therefore, in our implementation we take l to be minimal such that
ν1 ≥ N .

To compute integrals that are not tiny, in Algorithm 3.7 we have to evaluate the functions

fi = fi,0 + fi,∞ + fi,end

from Section 2 at the endpoints for i = 1, . . . , 2g. Evaluating an element of R† ⊗ Qp at a bad point
leads to problems with convergence and loss of precision. We first recall from [Tui16, Tui17] what
we know about the poles of the functions fi,0, fi,∞, fi,end ∈ R† ⊗Qp.

The only poles of infinite order are those of the fi,0 at the finite very bad points. It follows
from [Tui17, Prop. 2.12, Prop. 3.3, Prop. 3.7] that

fi,0 =

dx−1∑
j=0

∞∑
k=1

cijk(x)

r(x)k
b0j , (1)
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for all i, where the cijk are elements of Qp[x] of degree smaller than deg(r) that satisfy

ordp(cijk) ≥ bk/pc+ 1− blogp(ke0)c (2)

with e0 = max{eP : P finite very bad point}.

Similarly, it follows from [Tui17, Prop. 2.12, Prop. 3.4, Thm. 3.6] that

fi,∞ =

dx−1∑
j=0

κ1∑
k=0

cijkx
kb0j =

dx−1∑
j=0

κ3∑
k=κ2

dijkx
kb∞j (3)

for all i, where the cijk, dijk are elements of Qp and

κ3 ≤ −min{p(ord0(W ) + 1), (ord∞(W−1) + 1)},
where W = (W 0)−1W∞. This determines bounds on κ1, κ2 as well.

Finally, it follows from [Tui17, Thm. 3.6] that

fi,end =

dx−1∑
j=0

λ1∑
k=0

cijkx
kb0j =

dx−1∑
j=0

λ3∑
k=λ2

dijkx
kb∞j (4)

for all i, where the cijk, dijk are elements of Qp and

λ3 ≤ −(ord0(W ) + 1).

Note that this determines bounds on λ1, λ2 as well.

Proposition 4.3. On a finite bad residue disk, the functions fi,0 converge outside of the closed disk
defined by ordp(r(x)) ≥ 1/p.

Proof. This is clear from (1) and (2). �

Remark 4.4. Let t denote a local coordinate at the very bad point of a finite bad residue disk. Then
we have that ordp(r(x)) < 1/p is equivalent to the condition ordp(t) <

1
peP

. Consequently, for the

functions fi,0 to converge at a point P ′ ∈ X(Qp(p
1/e)) in the residue disk of P , we need to take

e > peP .

When f1, . . . , f2g do converge at a point P , their computed values at this point will suffer some
loss of p-adic precision in general. In the next three propositions we quantify this precision loss for
good, finite bad, and infinite points, respectively.

Proposition 4.5. Suppose that the functions fi,0, fi,∞, fi,end are accurate to precision N . Moreover,

let e be a positive integer and let P ∈ X(Qp(p
1/e)) be a good point that is accurate to precision N .

Then the computed values fi(P ) are correct to precision N as well.

Proof. Note that a good point is always finite. Since we have that ordp(x(P )) ≥ 0 and ordp(r(x(P ))) =
0, there is no loss of precision in evaluating (1) and the expressions in the middle of (3) and (4). �

Proposition 4.6. Suppose that the functions fi,0, fi,∞, fi,end are accurate to precision N . Moreover,

let e be a positive integer and let P ∈ X(Qp(p
1/e)) be a finite bad point that is accurate to precision

N . Let ε = ordp(r(P )) and suppose that ε < 1/p. Define a function π on positive integers by

π(k) = max{N, bk/pc+ 1− blogp(ke0)c},
where e0 = max{eP : P finite bad point }. Then the computed values fi(P ) are correct to precision

min
k∈N
{π(k)− kε}.
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Proof. In this case ordp(x(P )) ≥ 0, but ordp(r(x(P ))) = ε with 0 < ε < 1/p. Clearly there is still
no loss of precision in evaluating the expressions in the middle of (3) and (4). However for the fi,0
there will be loss of precision. After dropping the terms with valuation greater than or equal to N
in (1), the coefficient cijk will be correct to precision π(k) for all k. Dividing by r(x(P ))k leads to the
loss of kε digits of precision, so the terms corresponding to k will be correct to precision π(k)− kε.
Taking the minimum over k, we obtain the result. �

Proposition 4.7. Suppose that the functions fi,0, fi,∞, fi,end are accurate to precision N . Moreover,

let e be a positive integer and let P ∈ X(Qp(p
1/e)) be an infinite point that is accurate to precision

N . Let ε = ordp(1/x(P )). Then the computed values fi(P ) are correct to precision

N + εmin{ord∞(W−1) + 1, p(ord0(W ) + 1)}.

Proof. In this case ordp(x(P )) = −ε < 0 and ordp(r(x(P ))) = − deg(r)ε. Let us first consider
the fi,0. Determining the b0j (P ) from the b∞j (P ) in (1) leads to a precision loss of − ord∞(W−1)ε.
However, since deg(cijk) < deg(r), we have that

ordp

(
cijk(x(P ))

r(x(P ))k

)
≥ ε

for all k ≥ 1. Therefore, we recover precision ε and the loss of precision will be at most −(ord∞(W−1)+
1)ε. Evaluating the expressions on the right of (3) and (4) leads to precision loss at most

−min{p(ord0(W ) + 1), (ord∞(W−1) + 1)}ε
and

−(ord0(W ) + 1)ε,

respectively. The result follows easily from this. �

Now all that is left to analyze in Algorithm 3.7 is the precision loss from solving the linear system,
i.e. computing the matrix (Φ − I)−1 and multiplying by it.

Proposition 4.8. Suppose that the matrix Φ is p-adically integral and accurate to precision N .
Moreover, let e be a positive integer and let P,Q ∈ X(Qp(p

1/e)) be points accurate to precision N .
Suppose that the right hand side of (3) in Algorithm 3.7 is accurate to precision N ′ ≤ N according

to Propositions 4.1, 4.5, 4.6, and 4.7. Then the integrals
∫ Q
P
ωi as computed in Algorithm 3.7 are

correct to precision

N ′ − ordp(det(Φ− I)).

Proof. This follows since (Φ − I)−1 has valuation at least − ordp(det(Φ − I)) and is correct to
precision N − ordp(det(Φ− I)). �

Remark 4.9. If we do not assume that Φ is p-adically integral, then we can show that the integrals∫ Q
P
ωi as computed in Algorithm 3.7 are correct to precision

N ′ − ordp(det(Φ− I))− δ
with δ defined as in [Tui17, Definition 4.4].

Remark 4.10. To analyze the loss of precision in Algorithm 3.13, we proceed as follows. First, we
use [Tui17, Prop. 3.7, Prop. 3.8] to determine the precision to which f and the ci are correct. Then
we proceed as in Propositions 4.5, 4.6, and 4.7 to determine the precision of the computed values

of f(P ), f(Q) and
∫ Q
P
ωi for i = 1, . . . , 2g. Finally, we determine the precision to which

∫ Q
P
ω is

correct, taking into account the valuations of the ci as well.
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5. Complexity analysis and comparison with other algorithms

In this section, we discuss the complexity of our algorithm and compare it to other approaches.

We use the Õ(−) notation that ignores logarithmic factors, i.e. Õ(f) denotes the class of functions

that lie in O(f logk(f)) for some k ∈ N. To be able to apply the complexity analysis from [Tui17]
we will need one more assumption from that paper:

Assumption 5.1 ([Tui17, Assumption 2]). Both − ordP (W 0) and − ordP (W∞) are contained in
O(dxdy) for all P ∈ P1(Q).

In [Tui17], it is explained why this is a reasonable assumption: for instance, standard algorithms
for computing integrals bases of function fields will yield matrices W 0,W∞ satisfying this condition.

5.1. Complexity analysis.

Proposition 5.2. Let notation and assumptions be as introduced in Section 2. The matrix Φ
and the functions f1, . . . , f2g from Definition 2.17 can be computed to p-adic precision N using

Algorithm 2.18 in time Õ(pd4
xd

2
y(N2 + dxdyN)).

Proof. Take the maximum over the four steps in [Tui17, Section 4], leaving N instead of replacing
it with O(dxdy). Note that technically, here we have to replace N by the working precision of the
algorithm from [Tui17], necessary to obtain the matrix Φ to precision N . However, by the argument
from [Tui17, Proposition 4.9], this working precision can be chosen to be N +O(log (dxdy)), yielding

the same expression for the complexity since log(dx) and log(dy) are absorbed by the Õ symbol. �

In what follows, we will restrict to the (generic) case of integrals between good points, only making
a few remarks about integrals between bad points. First, we consider tiny integrals between good
points.

Proposition 5.3. Let P,Q ∈ X(Qp) be good points that lie in the same residue disk and ω an

element of our basis [ω1, . . . , ω2g]. Then Algorithm 3.4 will compute
∫ Q
P
ω to p-adic precision N in

time Õ(log(p)d2
xdyN

2).

Proof. Since P is a good point, it can be written as P = (x0, y0) with x0, y0 ∈ Zp, and we can
take the local coordinate at P to be t = x − x0. Suppose that we use t-adic precision l in our
computations, where l will be determined later. We need to expand ω as a power series in t using
t-adic Hensel lifting in the ring A = (Z/pNZ)[t]/(tl). Note that a single operation in A takes time

Õ(log(p)Nl).

From the equation Q(t + x0, y(t)) = 0, which can be computed in O(dxdy) operations in A and
has degree dx in y, we can compute y(t) by Hensel lifting the solution y0 modulo t in O(dx log(l))
operations in A. Computing the power series expansion of 1/r(x) in t is similar but easier. By [Tui17,
Section 4.1], we have that

ω = g(x, y)
dx

r(x)

where g(x, y) ∈ Zp[x, y] is of degree at most dx − 1 in y and degree O(dxdy) in x. Therefore, ω(t)

can be computed in O(d2
xdy log(l)) operations in A, i.e. in time Õ(d2

xdyNl).

The actual integration and evaluation at the endpoints can be done naively in time Õ(log(p)Nl).
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Finally, by Remark 4.2, we should take l minimal such that

l + 1− blogp(l + 1)c ≥ N.

Therefore l is O(N) and the proposition follows. �

Now we consider general integrals between good points.

Proposition 5.4. Let P,Q ∈ X(Qp) be good points and ω an element of our basis [ω1, . . . , ω2g].
Suppose that Φ is p-adically integral and ordp(det(Φ − I)) = m. Then Algorithm 3.7 will compute∫ Q
P
ω to p-adic precision N −m in time Õ(pd4

xd
2
y(N2 + dxdyN)).

Proof. By Proposition 5.2, the matrix Φ and the functions f1, . . . , f2g can be computed to p-adic

precision N in time Õ(pd4
xd

2
y(N2 + dxdyN)).

Since P is a good point, it can be written as P = (x0, y0) with x0, y0 ∈ Zp. Note that
Fp(P ) = (xp0, yp), where yp ∈ Zp can be obtained by Hensel lifting the solution yp0 modulo p to
the equation Q(xp0, y) = 0. This can be done in O(dxdy log(N)) operations in Zp, i.e. in time

Õ(log(p)dxdy log2(N)). The complexity of computing Fp(Q) is the same.

The tiny integrals
∫ Fp(P )

P
ωi and

∫ Q
Fp(Q)

ωi can be computed in time Õ(log(p)d2
xdyN

2) for a single

value of i by Proposition 5.3. Since g is O(dxdy) by [Tui17, Proposition 4.1], we can do this for all

1 ≤ i ≤ 2g in time Õ(log(p)d3
xd

2
yN

2).

The functions fi have Õ(pdxdyN) terms, so can be evaluated at the points P and Q for all

1 ≤ i ≤ 2g in time Õ(pd2
xd

2
yN

2).

Finally, the 2g× 2g linear system can be solved (naively) in time Õ(log(p)d3
xd

3
yN) and the propo-

sition follows. �

The input size of our algorithm is naturally determined by dx, dy, N and log(p). Note that the
complexity bounds above are polynomial in dx, dy and N , but exponential in log(p). This is a
typical feature of algorithms using p-adic cohomology, so should not come as a surprise. Actually,
for integrals involving a finite bad point, the dependence of the complexity on p will even get a bit
worse. By Remark 4.4, we will have to compute in an extension of Qp of degree at least p, which
will worsen the dependence of the complexity on p from (quasi)linear to (quasi)quadratic. (Note
that this does not happen at infinite points, so it might be useful to transform the curve so that a
bad point of interest is moved to infinity, but we have not yet tried this.)

5.2. Comparison with other algorithms.

Another approach that has often been used to compute
∫ Q
P
ω is as follows. Let J denote the

Jacobian of X. First find some integer k such that (the reduction mod p of) the point k(P −Q) is
trivial in J(Fp). Note that for this k, one would usually take the order of J(Fp). After computing
k(P − Q) as an element (in the residue disk at 0) of J(Qp), one is reduced to computing a tiny
integral over a divisor representing this point and dividing by k. Here we discuss how this approach
compares to ours.

Currently, implementations of algorithms to compute in J(Qp) are restricted to very special
curves, e.g. hyperelliptic ones. Indeed, for non-hyperelliptic curves of genus 4 or larger, there does
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not seem to be a readily available implementation of divisor arithmetic over Qp. In some cases,
this can be circumvented by computing in J(Q) instead, which then suffers from coefficient swell.
However, even if the Jacobian arithmetic over Qp is not a problem, in general one has to compute
the order of J(Fp) first. Suppose that p,N are small but dx or dy are large. The fastest known way
to compute the order of J(Fp) is then to compute the zeta function of X ⊗ Fp using the algorithm
from [Tui17] and evaluate its numerator at 1. However, the complexity of that algorithm is that of

our current algorithm with N of the order Õ(dxdy). In other words, for p,N fixed our algorithm

computes Coleman integrals in time Õ(d5
xd

3
y), while the best known algorithm for computing the

order of J(Fp) already takes time Õ(d6
xd

4
y). In Section 6.4, we consider an example with large dx

and dy and present some timings.

As we will illustrate in the next section, the main strength of our algorithm is the range of
examples it can routinely handle.

6. Examples

6.1. An example from the work of Bruin–Poonen–Stoll.

Let X/Q be the genus 3 curve given by the following plane model:

Q(x, y) = y3 + (−x2 − 1)y2 − x3y + x3 + 2x2 + x = 0.

Bruin, Poonen, and Stoll [BPS16, Prop. 12.17] show that, under the assumption of the Generalized
Riemann Hypothesis, the Jacobian of X has Mordell-Weil rank 1 over Q. (Note that our working
plane model is given by taking the equation in [BPS16, §12.9.2], provided by D. Simon, and setting
x := 1, z := x.)

We have W 0 = I, which means that b0 = [1, y, y2] is an integral basis for the function field of X
over Q[x]. Moreover, we have

W∞ =

1 0 0
0 1/x2 0
0 −1/x, 1/x3

 ,

so that b∞ = [1, y/x2,−y/x+ y2/x3] is an integral basis for the function field of X over Q[1/x].

We consider the following points on X : P1 = (0, 0), P2 = (0, 1), P3 = (−3, 4), P4 = (−1, 0), P5 =
(−1, 1), as well as three very infinite points: P6 with b∞-values [1, 0, 1], P7 with b∞-values [1, 1, 1],
and P8 with b∞-values [1, 0, 0].

In [BPS16, Prop. 12.17], the authors compute X(Q) by using the fact that [(P3) − (P2)] is
of infinite order in J(Q) and running a 3-adic Chabauty–Coleman argument. In particular, by
computing 3-adic tiny integrals between P2 and P3, they produce a two-dimensional subspace of
regular 1-forms annihilating rational points on X and use the Coleman integrals of these differentials
to show that these eight points are all of the rational points on X.

Here we show how to produce a basis for the two-dimensional space of annihilating 1-forms without
immediately appealing to tiny integrals. While it is desirable to use tiny integrals whenever possible,
some curves do not readily admit points of infinite order in J(Q) that are given as small integral
combinations of known rational points that allow a tiny integral computation. Consequently, in
such a scenario, some arithmetic in the Jacobian would be needed to reduce the necessary Coleman
integral computation to a tiny integral computation, as discussed in Section 5.2. The computation
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below shows how one might bypass the Jacobian arithmetic by using Coleman integrals that are not
necessarily tiny integrals.

We have r = x(x+ 1)(x8 + 7x7 + 21x6 + 31x5 + 3x4−51x3−69x2−23x+ 4). Taking p = 3 makes
all eight points various types of bad:

Point P r(x(P )) Type of point
P1 = (0, 0) 0 finite very bad
P2 = (0, 1) 0 finite very bad
P3 = (−3, 4) −600 finite bad
P4 = (−1, 0) 0 finite very bad
P5 = (−1, 1) 0 finite very bad
1/x(P6) = 0, b∞ = [1, 0, 1] ∞ very infinite
1/x(P7) = 0, b∞ = [1, 1, 1] ∞ very infinite
1/x(P8) = 0, b∞ = [1, 0, 0] ∞ very infinite

We compute the 3-adic Coleman integrals on a basis of H1
rig(X ⊗Qp), in particular, the regular

1-forms are given by

ω1 = (b0 · (−8x8 − 8x7 + 86x6 + 192x5 + 118x4 + 12x,

− 31x7 − 98x6 − 75x5 + 70x4 + 183x3 + 234x2 + 83x− 12,

31x5 + 60x4 − 52x3 − 246x2 − 119x+ 12))
dx

r
,

ω2 = (b0 · (2x8 − 4x7 − 56x6 − 120x5 − 76x4 + 6x2,

13x7 + 44x6 + 45x5 − 22x4 − 81x3 − 144x2 − 77x+ 12,

− 13x5 − 24x4 + 28x3 + 138x2 + 77x− 12))
dx

r
,

ω3 = (b0 · (4x7 + 22x6 + 44x5 + 30x4 + 4x3,

− 3x7 − 10x6 − 11x5 + 6x4 + 19x3 + 42x2 + 27x− 4,

3x5 + 4x4 − 12x3 − 46x2 − 27x+ 4))
dx

r
,

producing the following values:∫ P2

P1

ω1 = 2 · 32 + 33 + 2 · 35 + 36 + 2 · 37 + 38 +O(39),∫ P2

P1

ω2 = 33 + 34 + 2 · 35 + 2 · 36 + 37 +O(39),∫ P2

P1

ω3 = 3 + 2 · 32 + 33 + 34 + 35 +O(39).

We use the values of these three integrals (i.e., by computing the kernel of the associated 3 × 1
matrix) to compute that the two differentials

ξ1 = (1 +O(39))ω1 +O(39)ω2 + (430 · 3 +O(39))ω3

ξ2 = O(39)ω1 + (1 +O(39))ω2 + (569 · 32 +O(39))ω3
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give a basis for the regular 1-forms annihilating rational points. Indeed, we can numerically see

that the values of the two integrals
∫ P
P1
ξ1,
∫ P
P1
ξ2 vanish for all P = P3, P4, . . . , P8. The code for this

example can be found in the file ./examples/bps.m in [BT].

6.2. The modular curve X0(44).

We consider the genus 4 curve X = X0(44). We work with the plane model found by Yang
[Yan06]:

Q(x, y) = y5 + 12x2y3 − 14x2y2 + (13x4 + 6x2)y − (11x6 + 6x4 + x2) = 0.

We have

W 0 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

x 0
−10x3

x4+6x2+1
−6x3−13x
x4+6x2+1

x3+12x
x4+6x2+1

−x
x4+6x2+1

1
x5+6x3+x

 .

Indeed, this plane model is singular, as we see W 0 6= I. We have

r = x(x4 + 6x2 + 1)(45753125x8 + 8440476x6 + 1340814x4 + 69756x2 + 3125)

and

b0 =

[
1, y, y2,

y3

x
,
−10x4 − (6x4 − 13x2)y + (x4 + 12x2)y2 − x2y3 + 1

x5 + 6x3 + x

]
.

We have that (Q,W 0,W∞) has good reduction at p = 7. Let P1 be the (good) point (1, 1) and
consider the unique point P2 on the smooth model which lies over the singularity x = 0, y = 0 of
the plane model. At it turns out, at P2 we have that y3/x is a local coordinate and the values of
the b0 are [1, 0, 0, 0, 0]. Computing 7-adic integrals gives(∫ P2

P1

ω1,

∫ P2

P1

ω2,

∫ P2

P1

ω3,

∫ P2

P1

ω4

)
= (O(79), O(79), O(79), O(79)),

which seems to suggest that [(P2) − (P1)] is a torsion point in the Jacobian of X. A computation
in Magma verifies that 15[(P2) − (P1)] = 0. The code for this example can be found in the file
./examples/X0 44.m in [BT].

6.3. A superelliptic genus 4 curve.

We consider the superelliptic genus 4 curve X/Q given by the plane model

Q(x, y) = y3 − (x5 − 2x4 − 2x3 − 2x2 − 3x) = 0.

Using the Magma intrinsic RankBounds, which is based on [PS97] and implemented by Creutz, we
find that the Mordell-Weil rank of its Jacobian is 1. A search yields the rational points

P1 = (1,−2), P2 = (0, 0), P3 = (−1, 0), P4 = (3, 0), P5 =∞.

We have b0 = [1, y, y2] and r = x5 − 2x4 − 2x3 − 2x2 − 3x. A basis for the regular 1-forms on X is
given by

ω1 =
ydx

r
, ω2 =

xydx

r
, ω3 =

x2ydx

r
, ω4 =

y2dx

r
.



EXPLICIT COLEMAN INTEGRATION FOR CURVES 17

Now we take p = 7 and compute ∫ P2

P1

ω1 = 12586493 · 7 +O(710).

Since this integral does not vanish, [(P2)− (P1)] is non-torsion in the Jacobian.

The space of annihilating regular 1-forms is 3-dimensional, and a basis is given by

ξ1 = (1 +O(710))ω1 +O(710)ω2 +O(710)ω3 − (139167240 +O(710))ω4

ξ2 = O(710)ω1 + (1 +O(710))ω2 +O(710)ω3 + (93159229 +O(710))ω4

ξ3 = O(710)ω1 +O(710)ω2 + (1 +O(710))ω3 + (8834289 +O(710))ω4.

Indeed, we can numerically see that the values of the 3 integrals
∫ P
P1
ξ1,
∫ P
P1
ξ2,
∫ P
P1
ξ3 vanish for

P = P3, P4, P5. The code for this example can be found in the file ./examples/C35.m in [BT].

6.4. A curve of genus 55. As discussed in Section 5.2, to compute Coleman integrals using the
other leading approach, there are challenges to working in the Jacobian of the curve in the case
of large genus. Here we present some timings indicating the feasibility of our algorithm. The
computations in this subsection were carried out on a single core of a 28-core 2.2 GHz Intel Xeon
server with 256GB RAM.

Here we consider the genus 55 curve X with plane model given by Q(x, y) = 0 below:

Q(x, y) = x11y − x7y5 − x6y6 − x4y8 + xy11 + y12 + x11 − x10y + x8y3 − x6y5 + x5y6 + x3y8 − x2y9 − xy10+

y11 + x10 + x9y − x8y2 + x7y3 + x6y4 + x5y5 − x4y6 + xy9 + y10 − x9 + x8y + x7y2 + x6y3 + x5y4+

x4y5 + x3y6 − x2y7 + y9 + x8 − x7y + x6y2 − x5y3 + xy7 + y8 + x7 + x6y + x5y2 − x2y5 − xy6+

y7 − x6 − x4y2 − x2y4 + xy5 − x5 + x3y2 − x2y3 + y5 − x4 + x3y + x2y2 + xy3 + y4 − x2y − xy2+

y3 − x2 − xy + x+ y.

This example was constructed using the Magma intrinsic RandomPlaneCurve, with the call

> P<x,y,z>:=ProjectiveSpace(Rationals(),2);

> RandomPlaneCurve(12,[0],P:RandomBound:=1);

producing a smooth plane curve of degree 12 and coefficients randomly selected from {−1, 0, 1}. We
generated a number of such curves and considered a selection that had at least 3 rational points.
We present one illustrative example here.

Let p = 7 and consider P1 = (0, 0) and P2 = (1, 0), which are each good points on X. We compute

the Coleman integrals
{∫ P2

P1
ωi

}110

i=1
for the basis {ωi} of H1

rig(X ⊗Qp) constructed as in Definition

2.16 with N = 5 as our precision. We find that∫ P2

P1

ω1 = 5 · 7 +O(72),

and we deduce that the Jacobian of X has positive rank.

The computation of coleman data took 79685 s, after which the call to coleman integrals on basis

took 39 s.

The code for this example can be found in the file ./examples/g55.m in [BT].
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Further examples illustrating how to call and use the code are available in the file examples.pdf

in [BT].
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