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We give new instances where Chabauty—Kim sets can be proved to be finite, by developing a notion of “generalised
height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated
integrals and give the first explicit nonabelian Chabauty result for a curve X/Q whose Jacobian has Mordell-Weil rank
larger than its genus.

1 Introduction

Given a smooth projective curve X of genus g > 2 over a number field K, it is known by Faltings’ theorem that
the set X (K) of its K-rational points is finite, but in general there is no known method to determine this set
explicitly. When the Mordell-Weil rank of the Jacobian J of X is less than g, the method of Chabauty [15],

made effective by Coleman [17], can determine explicit finite sets of p-adic points containing the set X (K). In
many cases, this can give a computationally feasible approach to determine the set of rational points [12].
In a series of papers [35, 34, 36], Kim proposed a generalisation of the Chabauty—Coleman method, which

gives a nested sequence
X(Kp)1 D X(Kp)2 DD X(K)

of sets X (K,), of p-adic points, each containing the set X (K'), such that the “depth 17 set X (K,); is exactly
the one arising from the Chabauty—Coleman method. Here p is a prime of K lying above a prime p which
splits completely and for which X has good reduction. When K = @Q, Kim [31] showed that the Bloch-Kato
conjectures imply the finiteness of X (Q,),, for n sufficiently large. Coates and Kim [16] proved this eventual
finiteness (again for K = Q) in the case when J has complex multiplication. Recently, Ellenberg and Hast [23]
extended this result to give a new proof of Faltings’ theorem for curves X/Q which are solvable covers of P*.

In this paper, we consider two questions about the depth 2 set X (K, )2, continuing our previous investigation
[6):

Question 1. When can X (K,)2 be proved to be finite? O
Question 2. When can X (Kp)z be computed explicitly? O

The key technical construction which we use to study these questions is presented in Section 3. We define
the notion of equivariant generalised p-adic heights, inspired by Nekovéi’s construction of p-adic height functions
[13]. We give a brief explanation of Nekovai’s construction for divisors on X . Recall that the local height on X is
usually defined to be a pairing on divisors of degree zero with disjoint support, and the global height is given by
the sum of local heights, which only depends on the class of the divisors in the Picard group of X. In Nekovai’s
construction, local and global heights are constructed as functions on isomorphism classes of mized extensions.
Recall that the Q,-Kummer map allows us to associate to a divisor D in DiVO(X ) a Galois cohomology class
k(D) € H'(Gg,V), where V := H}, (Xg,Qp(1)). Equivalently, we may think of (D) as an isomorphism class
of Galois representations of the form
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where py is the Galois representation associated to V. Nekovai associates to a pair of divisors Dq, Dy with
disjoint support a Galois representation of the form

1 0 0
p= pv O
* kY

where x is the cyclotomic character. A Galois representation of this form is referred to as a mized extension
with graded pieces Q,,V,Q,(1). Nekovai’s p-adic heights are functions on isomorphism classes of such mixed
extensions (with some conditions at primes above p). For each prime v, Nekovai defines a local height function
h, on mixed extensions of G,-representations. The global height is then the sum of the local heights, and class
field theory implies this global height is bilinear in the two off-diagonal H' (G, V)-classes.

From the point of view of the Chabauty—Kim method, the interesting feature of the p-adic height is that
this bilinear structure gives a necessary condition for a collection M, of mixed extensions of G,-representations
to come from a global G g-representation. More precisely, in our previous work, we showed that if the Picard
number of the Jacobian is bigger than 1, then the Chabauty—Kim method can be used to associate to each
point x (over any extension L|Q) a Gp-representation Az(z) which is a mixed extension with graded pieces
Qp,V,Qp(1). We then obtain an obstruction to an adelic point (z,) € [[ X(K,) coming from a global point in
X (K): the associated mixed extensions Az (z,) must come from a global mixed extension, and hence there must
be a ‘bilinear relation’ between the three * entries (as the contributions from primes away from p are small,
this can essentially be thought of as an obstruction to an element of Hvle (K,) coming from X (K)). This
obstruction defines a subset intermediate between X (K,): and X (K;)2. Furthermore, by relating the mixed
extensions Az(x) to the ones arising in Nekovéi's theory, we gave a formula for h,(Az(x)) as a local height
pairing h,(Az(z — b, Dz(x — b)) between divisors. This was inspired by earlier uses of p-adic heights to obtain
quadratic Chabauty formulae for integral points on elliptic and hyperelliptic curves in papers of Kim [37] and
of the first author with Kedlaya and Kim [8] and Besser and Miiller [5].

To recover X (K )2, we need to consider more general mixed extensions (with graded pieces Qp,,V and W
for W a quotient of A2V). The key technical construction of this paper is the definition of a generalised height
for such mixed extensions. As in the classical case, generalised heights give an obstruction to a collection of
local mixed extensions to come from a global mixed extension (see Lemma 3.12 for a precise formulation). Via
a twisting construction explained in Section 3.3, one may associate to each point z of X (K) a mixed extension
A(b, z). This gives an explicit equation for X (K )2 (see Lemma 4.1), and in particular gives a necessary condition
for an adelic point to come from a rational point. The relation between the approach of this paper (which we

refer to below as “QC2”) and previous related papers (“QC0” [5] and “QC1” [6]) may be summarised as follows:
QCO QC1 QC2
Scope (proof  X(Z) for X/Q X(K) for X/K with X(K) for X/K
of finiteness hyperelliptic r<g+p(J)—1, satisfying hypotheses
of a superset) with r =g K =Q or im. quad. of Theorems 1.1 or 1.2

Generalised height
functions (§3) on
My r, (GK,T§ @pa V,W),

Bilinear Nekovar p-adic
structure Coleman-Gross height [43] on
p-adic height [18] &

nsed My (Grers Qp, V. Qp(1) inspired by Nekovar
Local
computation hy (2 — 00,2 — 00) hy(z = b, D(b, 2)) hy(A(b, 2))

Here My 1 (Gr1;Qp, V,W) denotes the set of isomorphism classes of mixed extensions of Gk -
representations with graded pieces Qp,V,W which are crystalline at all primes above p. See Section 3 for a
precise definition.

1.1 Main results

To address Question 1, in Section 2, we begin by recalling when, for K = Q, finiteness of X (Q,)2 is implied by
the Bloch-Kato conjectures. We also note some elementary extensions of our previous results [6] on finiteness
of X(Q,)2 when the Néron—Severi group of its Jacobian is large. We then use generalised heights to prove new
finiteness results when the curve X is hyperelliptic and satisfies “Manin—Demjanenko”-type conditions, i.e., that
there are isogeny factors occurring in the Jacobian with large multiplicity. To state the first main theorem, let
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K = @Q or an imaginary quadratic field. We introduce the notational convention that, for an abelian variety A

over K,
_f tkNS(A) + rk(NS(45)="") i K =Q,
ps(4) = { rk NS(A) else,

and

rk End’(A) else.

Here NS(A) denotes the Néron—Severi group of A and NS(A@)C:_1 the subspace of NS(Ag) ® Q on which

complex conjugation acts by —1. As usual, End’(A) := Q ® End(A), where End(A) denotes endomorphisms of
A defined over K.

0 _Ne=—1 i _
e(4) = { rk End”(A) + rk(End(Ag) ) i K=Q,

Theorem 1.1. Let X/K be a hyperelliptic curve and suppose J is isogenous to A% x B, where A is an abelian
variety of rank r. If

pr(A)d+d(d—1)e(A)/2 — 1 > min{d(r — dim(A)),r* — dim(A4)?},
then X (Ky)s is finite. O

In Section 5.1, we give an example of a genus 5 curve X/Q(4) which satisfies the hypotheses of the theorem
but does not satisfy the Chabauty—Coleman bound.

Theorem 1.1 is somewhat reminiscent of the following result, due to Demjanenko when A is an elliptic curve
and Manin in general [11], [50, §5.2].

Theorem (Manin-Demjanenko). Let A be a simple abelian variety of rank v, with dimEnd®(A) = h. If J is
isogenous to A% x B, with d > r/h, then X (Q) is finite and may be computed effectively. O

To address Question 2, we use generalised heights to obtain equations for Selmer varieties at depth 2, and
hence for the set X (K)2. The equations are given in terms of height functions on Selmer varieties in Proposition
4.1. To get from this proposition to an explicit computation, we need a way to compute the local generalised
heights of the mixed extensions A(b, z) arising from the twisting construction of Section 3. In this paper, we
focus on the problem of describing the local heights at primes above p. This is done in Section 6 in three stages.
The definition of the local heights is in terms of certain associated filtered ¢-modules D, (A(b, z)). First, one uses
a p-adic comparison theorem due to Olsson [16] to relate this to a more tractable filtered ¢-module AR (b, 2),
which is the fibre at z of a flat connection AR, The filtration on A9R(b, 2) is then computed in Section 6.5 by
computing a filtration by sub-bundles on AR, Finally, the ¢-action is computed in Section 6.7, when X is a
hyperelliptic curve, in terms of iterated integrals. This is used to give equations for X (K} )2 in terms of p-adic
heights (see Proposition 6.4 for a more general result). We use this to give the first explicit nonabelian Chabauty
result for a curve X/Q which has Mordell-Weil rank larger than its genus.

As an example, we consider the family of genus 2 curves

X=X,:9y*=2%+az* +az? +1, (1)

which was previously studied by Kulesz, Matera, and Schost [38]. We prove results controlling the set of K-
rational points of X, for a € Ky, where Kqg = Q or a real quadratic field and K is a totally real extension of
K. We consider the case where the Mordell-Weil rank over K of the associated elliptic curve

E=FE,:y*=2*+ax? +ax+1 (2)

is two. Consider the maps X — E given by f1 : (z,y) — (2%,y) and f2 : (z,y) — (72,y23). As the rank of E,
over the function field Q(¢) is 1, generated by the point b = (0, 1) [38, Prop. 1], for all but finitely many values of
a, the specialisation E, over Ky has the point b of infinite order. By the conjectured equidistribution of parity,
one expects to find many values of a for which F,(K) has rank 2.

Note that the Jacobian of X is isogenous to E x E, and hence, when the rank of F is 2, the Chabauty—
Coleman method does not apply. When the rank of E is 2, we show that X (K})s is finite and give equations
for a finite set containing it. ‘

To state the theorem, let w; = %dx and let w denote the hyperelliptic involution. Following Liu, we say
that a genus 2 curve has potential type V reduction at v if, in an extension L,,| K, over which the curve acquires
stable reduction, the special fibre of its stable model is isomorphic to two genus 1 curves meeting at a point.
For simplicity, in the introduction we state a special case of the theorem, under a simplifying assumption on the
reduction type of X. The general statement may be found in Section 7.
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Theorem 1.2 (Special case). Let Ky be Q or a real quadratic field. Let K|Ky be a totally real extension. Let
X/Ky be a genus 2 curve in the family y?* = x5 + ax* + ax?® 4+ 1 whose Jacobian has Mordell-Weil rank 4 over
K. Suppose p is a prime of Q such that

o The prime p splits completely in K|Q.
o The curve X has good reduction at all primes above p, and the action of G on E|p| is absolutely irreducible.
o If E has complex multiplication by a CM extension L, then L is not contained in K(up).

Suppose that X has no primes of potential type V reduction. Suppose zy is a point in X(K) such that
f1(20) A f2(z0) is of infinite order in A*E(K). Then X (K) is contained in the finite set of z in X (K,) satisfying
G(z) = 0, where

G(Z) = F1 (Z)FQ(ZQ) — F](Z())FQ(Z)7

z 1 z b
Fl(Z) = / (wowl — u}le) —|— 5/ QJO/ w1,
b b w(b)

z 1 z b
Fy(z) = 2/ (—wows + awrwy + 2wiwy) — 5:0(2) - / wo/ ws.
b b

w(b)

with b= (0,1) and

O

We briefly indicate the techniques used in the proof of the theorem (precise definitions may be found in
subsequent sections). The isogeny gives an isomorphism

V=T,Jac(X)®Qp, ~ Vg & Vg,
where Vg = T, E ® Q. The quotient of the fundamental group of X used is an extension
1—=Sym?’Vyg U =V — 1.

The first step of the proof is to prove non-density of the localisation map
locy : Sel(U) — Hf(Gy,U)

from the Selmer variety of U to the local cohomology variety H}c (Gp,U). In the case where K = Q, the elliptic
curve E does not have CM, and p > 3, we know H}(GK,T,Sym2 Vi) =0 by Flach [24, Theorem 1] (see the
remarks below Lemma 5.5 for an explanation of how this follows from Flach’s theorem). In general, by Freitas,
Le Hung, and Siksek [27] we know that E,/Kj is modular. Under our assumptions, the vanishing of the Selmer
group of Sym? Vg follows from modularity lifting results [1, Theorem A]. This implies that the dimension of
the global Selmer variety is 4. By p-adic Hodge theory, the local Selmer variety has the same dimension. Hence
non-density cannot be proved by a dimension argument. Instead, it is deduced using the notion of a generalised
height function which is equivariant with respect to the the action of Mat2(Q,) on V ~ Vg @ Vg.

1.2 Notation

We follow slightly different notational conventions to those used in [6], to make our notation more compatible
with standard references such as [14]. Let X be a smooth projective curve over a number field K, with good
reduction outside a set of primes T, and let p be a rational prime that splits completely in K and such that X
has good reduction at all primes above p. We fix a prime p above p, and define T := Ty U {v|p}. For v a prime
not above p, define H(G,, W) and Hy(G,, W) by

Hi(Gy, W) := Ker(H' (G, W) — H'(1,,WV)),
H,(Gy, W) := H' (G, W).

For p a prime above p, define
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We define the global versions
H}(Ggr, W) = {ce€ H (Ggr,W): [[locu(c) € [] H} (G, W)},

veT veT
Hy(Grr, W) :={ce H' (Gxr,W): [[locu(c) € [] Hy(Gv, W)}
veT veT

More generally, for S C T we may define global Galois cohomology groups with conditions intermediate between
H} and H!:
! g

Hig(Grr, W) :={ce H(Ggr,W): [[loco(e) € [ Hy(Go. W) x [] H}(Gw, W)}
veT veES veT-S

The reason for introducing these different conditions is that in the theory of Selmer varieties, we use cohomology
classes which may be ramified at primes of bad reduction—and hence may not lie in H}—but the dimensions

of the Selmer varieties (which are of central importance in proving finiteness results) will be ‘governed by’ H}
(see Lemma 2.1 for a precise statement).

For finite-dimensional continuous Q,-representations Wy, W5 of a topological group G, we identify the vector
spaces HY(G, W @ Wy) and Ext!(W;, W) in the usual way. Via this identification, we define subspaces such
as Ext (W1, Wy).

If U is a unipotent group over Q, with a continuous action of Gk v which is crystalline at all primes above
p, we similarly define H} (G, U) as the set of isomorphism classes of G r-equivariant U-torsors which are
crystalline at all v above p and unramified at all v prime to p (and analogously for H, and H} ).

We make repeated use of the twisting construction in nonabelian cohomology, as in [ , 1.5.3]. For topological
groups U and W, equipped with a continuous homomorphism U — Aut(W) and a contlnuous left U-torsor P,
we shall denote by W () the group obtained by twisting W by the U-torsor P:

WP =W xy P. (3)

Similarly if P is a continuous right U-torsor we define (P)W := P x ¢ W. For U a group with a continuous action
of a topological group T', we let H!(T',U) denote the set of isomorphism classes of I'-equivariant left U-torsors.

2 The Chabauty—Kim method

Let K be a number field, and X, T, Tp as in Section 1.2. Given a rational point b in X (K), let wft’Qp (X, b) denote
the unipotent Q,-étale fundamental group of X := X x g K with basepoint b. Let

(X, 0) D UW = [ (X,0), 7" (X, 0)] 5 U = (U0, 71" (X, )] 5
denote the central series filtration of wft’(@” (X, b). Associated to this filtration we have the groups
Uy = Uy (b) := "% (X,0) /U™, Uln] := Ker(U, — Un_1),

and the U, -torsor o
Py (b, 2) := miH(X; b, 2) X pet (%) Un(b).

Then the assignment z — [P, (b, z)] defines a map
jgn: X(K) = H'(Gg.1,Un(b)).

One of the fundamental insights of the theory of Selmer varieties is that the cohomology spaces H'(G, U, (b))
carry a much richer structure than merely that of a pointed set, and that this extra structure has Diophantine
applications. For the following theorem we take G to be either G, or Gk r:

Theorem 2.1 (Kim [35, Proposition 2]). Let U be a finite-dimensional unipotent group over Q,, admitting a
continuous action of G. Let
U=09>yW

denote the lower central series filtration of U. Suppose H°(G,U® /U+D)(Q,) = 0 for all i. Then the functors
R~ H'(G,U(R)),j = 0,1,
are represented by an affine algebraic variety over Qy, such that, for all i, the exact sequence
HY(G,UD /vty - gY(Gq,u/utt) - HY(G,U/UW) (4)

is a diagram of schemes over Q. O
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In this paper, we will never distinguish between a cohomology variety and its Q,-points. We henceforth let U
denote a Galois stable quotient of Uy (i.e., such that the kernel of Uy — U is Galois stable), whose abelianisation
equals U;. Since the abelianisation of U(Q)) has weight —1, it satisfies the hypotheses of the theorem, and hence
H'(G,U) has the structure of the Q,-points of an algebraic variety over Q.

To go from the cohomology varieties H* (G r,U) to Selmer varieties, one must add local conditions. Let
P(z) denote the pushout of 7§ (X; b, z) along 7¢*(X,b) — U. Then for each v prime to p, there is a local unipotent
Kummer map

Jo: X(K,) — HYG,,U); x~ [P(z)]

which is trivial when v is a prime of good reduction and has finite image in general, by Kim and Tamagawa [36,
Corollary 0.2]. For v above p, and x in X (K,), the torsor P(x) is crystalline by Olsson (see Lemma 6.1), and
we define j, to be the map

Jo X(Ky) — H}(GvaU)§ z = [P(z)].

There is then a commutative diagram

X(K)

HY(Gk,r,U)
[Tloc,
[T

HvET X(KU) - HUET Hl(Gv’ U)

Kim [34, §4] also showed that the localisation morphisms are morphisms of varieties, and the set of crystalline
cohomology classes has the structure of the Q,-points of a variety. Since, at any v prime to p, the image of X (K,)
in H'(G,,U) is finite by the Theorem of Kim and Tamagawa [36, Corollary 0.2], we may define a subvariety
Sel(U) of H'(Gk r,U) to be the set of cohomology classes ¢ satisfying the following conditions:

e loc,(c) comes from an element of X (K, ) for all v prime to p,
e loc,(c) is crystalline for all v above p, and
e the projection of ¢ to H'(Gk r,V) lies in the image of Jac(X)(K) ® Q,.

For a prime p above p, we define X (K,)y = j,,_1 loc, Sel(U). We shall refer to this variety as the Selmer variety
associated to U. We include the last condition, which is somewhat non-standard and perhaps in conflict with
the “Selmer” prefix, so as to be able to make statements about relations between the set of weakly global points
X (Ky)r and the rank of the Jacobian of X which are not conditional on the finiteness of the p-part of the
Shafarevich-Tate group. As explained in [6, Remark 2.3], Sel(U) is the reduced scheme associated to the fibre
of zero under the algebraic map

ével(U) — H}(GK,Ta V)/J(K) @ Qp,

where Sel(U) is the subvariety of H!(G g r,U) obtained from only imposing the first two conditions above. Since
Sel(U//U+Y) is then by definition the pre-image of Sel(U/U®) in Sel(U/U*1)), we obtain an analogous exact
sequence to (4).

It is often convenient to break up the Selmer variety by first fixing an element o = (a,) € [[,cq, Jo(X (o)),
and defining Sel(U),, to be the subvariety of Sel(U) consisting of cohomology classes whose localisation at v € Tj
is equal to . We similarly write X (K}).. We call the tuple a a collection of local conditions.

Lemma 2.1 ([6, Lemma 2.6]). Let f81,...,5n € Sel(U) be a set of representatives for the image of Sel(U) in
[I,eq, Jo(X(Ky)). Let a; = (aw,;) denote the image of 8; in [[,cp, Jo(X(Ky)). Then

Sel(U)a, ~ Hj(Gg.r,UPY,

where H}(GK,T, UB))" denotes the subvariety of H}(GK,T, UB)) consisting of crystalline torsors whose image
in H} (Gg.r,V) lies in the image of J(K) ® Q,, and U%) denotes the twist of U by ; as in (3). O

Lemma 2.2. Let U be a Galois stable quotient of U which is an extension of V' by W. Suppose
dim Dag(W)/F° — dim Hy(Ggr, W) > 1 — g, (5)

then X (K,), is finite. O
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Proof. By [34, Theorem 1], it is enough to prove that equation (5) implies
dim Dgg(U)/F°® > dim Sel(U).

Since

dim Dar (U)/F° = dim Dgr(V)/F° + dim Dag (W) /F°,

and dim(Dgr(V)/F°) = g, to prove the lemma it will be enough to prove dim Sel(U) < r + dim H}(GK,T, W).
By Lemma 2.1, it is enough to prove that, for all 7,

dim H} (Gg,r, UP))Y <r+dim H} (G, W).
We have a Galois equivariant exact sequence

Since the action of U on itself by conjugation is unipotent, U acts trivially on V' and W, we have Galois
equivariant isomorphisms V%) ~ V and W) ~ W inducing an exact sequence of pointed varieties

H}(Ggr, W) = H Gk, UMY = J(K) @ Q,.
Hence dim Sel(U)q, < dim H}(GKT, W) + dim(J(K) ® Qp), as required. u

2.1 The context of the present work

We will always take U to be an intermediate quotient
Uy = U - V.
The group U, is an extension of V' by
A2V := Coker(Q,(1) LN AV,

hence such quotients are in correspondence with Galois-stable summands of A?V/Q,(1). This paper is concerned
with the commutative diagram

X(K) —2 s sel(U)

Xﬂ . |1“\

Ky) ——— H}(Gy,U) —— Dar(U)/F°

and in particular with identifying situations under which loc, is not dominant and describing what X (K,)y
looks like in this case.

2.2 Provable finiteness via the geometric Néron—Severi group

One piece of the weight —2 representation [Us, Us] whose Selmer group we can understand unconditionally is the
Artin—Tate part, equivalently the part coming from the geometric Néron—Severi group of J. In this subsection
we restrict to the case K = Q.

Lemma 2.3. For any representation of Gg 1 on a finite-dimensional vector space V over a field F' C Q,, which
factors through a finite quotient Gal(L|Q) of Gal(Q), where L|Q is unramified at p, we have an isomorphism

H}(GQ,T, VerQ,1)~(VeQ,)=!/(VeQ, @,

where ¢ € Gal(Q) denotes complex conjugation. O
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Proof. The crucial point is that, since H*(Gr 7,V ® Q,(1)) =0, the inflation-restriction exact sequence
induces an isomorphism

H'(Gor,V @r Q1)) = H'(Grr,V @r Q1)) %Y,
and similarly we have isomorphisms

Hl(Gpa VerQyl)) ~ EBvlphﬂ(va Ver Qp(l))Gal(L‘Q)a
which induce isomorphisms

H}(Gpa Var Qp(l)) = 69vl;o-r_—’]l‘(va Ver Qp(l))Gal(L‘Q)'
This induces an isomorphism

Hi(Gor,Ver Q1) ~ HHGLr,V ®F Q1) -,
Given this, we observe

Hi(Grr,Vop Qy1)%HO ~(HH(GLr, Q1)) @p V)Y
2((0; X7z Qp) RF V)Gal(L‘Q).

Now we use the description of OF ® Q,, as a Galois module [11, §8.7.2]:
Oz( &Kz Qp = Ind%‘;l(u@) Qp/@p»
and finally, we have

(0F @2 Qp) @ V)HD ~Homgu g (0F @2 Qp),V @r Qp)
~ Ker(Homgaz/g) (Ind (5% @), V @ Q) = Homea(110)(Qp), V @5 Qp))
~ Ker(Hom ) (Qp, V @ Qp) — Homgai(£j0)(Qp, V @ Qp))
~(V o Q) /(V & Q,)cN®,

|
We deduce the following corollary:
Proposition 2.2. Let K = Q, and define py(J) = rkNS(J) + rk(NS(J@)C=_1) as in the introduction. If
rkJ < g—1+ ps(J),
then X (Qp)2 is finite. O

Proof. Let
W = lim Qp(1) ® Homg, (Qp(1), A2V)| C A2V
L

be the Artin—Tate part of [Us, Us]. Then we know that W contains (and is equal to by Faltings) the Artin—Tate
representation (NS(Jg) ® Q,)/Q,(1). The proof that X(Q,)y is finite is as in [0, Lemma 2.6], with the only
difference being a more general choice of W. To recall, we use the fact that it is enough to prove that

dim Sel(U) < dim H} (G, U).

It suffices to prove that dim Sel(U), < dim H} (Gp,U) for any collection of local conditions. By Lemma 2.1, we
have
dim Sel(U)q < dim H{(Ggr, W) + dim H} (G (V).

At p, we claim the sequence

1= H{(Gp, W) = H{(Gp,U) = H}(G,, V) = 1,



Quadratic Chabauty and Rational Points IT 9

is exact. One way to see this is that the non-abelian Dieudonné functor induces an isomorphism of schemes
H}(Gp,U) ~ Dar(U)/F°.

In [34, §1], Kim proves that this map is algebraic. The map is given by sending a torsor P to a D (U)-torsor
object D¢ (P) in the category of filtered ¢-modules, and by proving that the set of isomorphism classes of such
torsors is represented by Dgr(U)/F°. Although it is not explicitly stated in loc. cit. that this map is bijective,
one can deduce it from the fact that the map has an inverse given by sending a D, (U)-torsor P to the crystalline
U-torsor Spec(F°(O(P) ® B, )?~!). Hence exactness follows from exactness of

1= Dar(W)/F°® = Dar(U)/F® = Dar(V)/F® — 1.
We deduce that X (Q,)2 is finite whenever
dim H}(Go,r, W) + 1k J < dim H{(Gp, W) + g.
The proposition now follows from Lemma 2.3, since this implies

dim H}(Gy, W) — dim H}(Ggr, W) = dim NS(J) + dim NS(Jg)=~' — 1.

2.3 Finiteness assuming the Bloch—Kato conjectures

Here we describe situations when finiteness of X (Q,)2 is implied by the Bloch-Kato conjectures. The Bloch—
Kato conjectures relate the dimension of H}(G Kx,1, W) to the rank of certain graded pieces of K-groups of
algebraic varieties. Let Z be a smooth projective variety over Q. For i € Z, let K;(Z) denote the ith algebraic
K-group of Z in the sense of Quillen. The only fact we will use about K;(Z) is that it is zero when ¢ < 0, and

the action of Adams operators enables one to define a grading K;(Z2) ® Q = @,z K i(j )(Z ) on the group tensored
with Q. The following is a special case of their conjectures.

Conjecture 2.3 (Bloch-Kato [14, Conjecture 5.3 (i)]). Let Z be a smooth projective variety over Q. Then for
any n >0 and 2r — 1 # n, the map

chy: K9y (2) ® Qp — HHGo, H" (Zg, Qy(r))

is an isomorphism. ]

Kim [34, Observation 1] showed that this conjecture implies that X (Q,),, is finite for all n sufficiently large,
with no hypotheses on the rank of J. As we are interested in X (Q,)2, we now work out the exact conditions on
X for which Kim’s argument can be used to show that Conjecture 2.3 implies finiteness of X (Q)).

Lemma 2.4. Conjecture 2.3 implies H}(GQ,T, /\QV*(l)) =0. 0

Proof. As /\QV*(l) is a direct summand of HZ (X x Xg,Qp(1)), it suffices to prove that

Hp(Gor, H (X x Xg, Qp(1))) = 0.
This follows from Conjecture 2.3, since that implies

dim H(Go,r, Hz, (X x Xg,Qy(1))) < dim H, (Go,r, H3,(X x Xg, Qp(1))) < dim K1 (X x X) @ Q =0.

Lemma 2.5. Conjecture 2.3 implies

dim H}(Gp, \2V) — dim H}(Go,r,A\*V) > g(g — 1).
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Proof. Recall the following corollary of Poitou-Tate duality [26, Remark 11.2.2.2]:

dimg, (H*(Go,r, W)) — dimg, (H}(Gg,r, W)) + dimg, (H (Go,r, W*(1)))
— dimg, (H°(Go,r, W*(1))) = — dimg, (Dar (W) /F°) + dimg, (H*(Gg, W)).

In this case of W = A2V, we have

dimg, (H*(Go.r, W*(1))) = p(Jx) - 1, Dar(W)/F® = H{(Gy, W),
dimg, (H° (G, W)) = g(g — 1), H(Gor, W) =0,

hence the claim follows from Lemma 2.4. u
We thus deduce the following simple criterion for conjectural finiteness of X (Q,)a.

Lemma 2.6. Suppose Conjecture 2.3. Let X/Q be a curve of genus g > 2. If r = rk J(Q) < g2, then X(Q,)s is
finite.
O

Proof. By the previous lemma, we have

dim H} (G, Us) — dim Sel(Uz) > dim H (G, W) — dim H} (Gx,7, W) + g — 1k J(K)
>glg-1)+g—g*=0.

3 Generalised height functions

We now return to considering a general finite extension K|Q, with p a prime splitting completely in K and p a
prime of K lying above p. In [6], we used Nekovai’s formalism of p-adic height functions on mixed extensions to
describe Chabauty—Kim sets in terms of p-adic height pairings of cycles on X. Given a choice of global character
x € HY(Gk 1,Q,), Nekovai’s p-adic height functions associate to certain filtered Galois representations with
graded pieces Q,, V, and Q,(1), a collection of local cohomology classes with values in Q,(1). We obtain a
Qp-valued function by summing the cup products of these local classes with x.

In this section, we describe a natural generalisation of Nekovai’s formulation of the p-adic height pairing,
resulting in a notion of generalised p-adic height functions. To do this, we essentially mimic his construction at
every step, occasionally rephrasing some constructions in terms of nonabelian cohomology.

3.1 Mixed extensions

Following Nekovai, we construct generalised height functions as functions on equivalence classes of mixed Galois
representations with fixed graded pieces. The most important examples will be the mixed extensions A(b, 2)
constructed in the next subsection. Let V := H},(X,Q,)*, and let W be a direct summand of V2.

Definition 3.1. Define M1, (Grxr;Qp, V,W) to be the category whose objects are tuples
(M, (M;)i=0,1,2,3, (¥i)i=0,1,2) where M is a Gk, representation which is crystalline at all primes above
p, (M;) is a Galois-stable filtration

M =My D M; D My D M;=0,
and the ); are isomorphisms
Yo 1 Qp — My /M, P1:V — My /Mo, Yo : W — My /Mj

and whose morphisms are isomorphisms of Galois representations respecting the filtration and commuting with
the ;. An object of My 1, (G 1;Qp, V,W) will be referred to as a mixed extension with graded pieces Q,, V'
and W. Define My 1, (G, 7; Qp, V, W) to be the set mo(M ¢ 1, (Gr,1; Qp, V, W)) of isomorphism classes of mixed
extensions. Similarly define M (G,; Qp, V, W) (resp. M;(G,; Qp, V, W) for v above p) to be the set of isomorphism
classes of corresponding categories of G, representations (resp. crystalline representations). O
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Given a mixed extension M in My, (Gg r;Qp, V,W), we obtain extensions M /M, and My of Q, by V
and of V by W respectively. As explained in Lemma 3.8 these extensions are automatically unramified at all
primes of Ty, and hence lie in H}(GKyT, V) and Ext}(V, W). We denote by 7y, and 7o, the natural maps

T1e : Mym, (Grr; Qp, VW) = Hi(Gror, V), Tow t My1, (Gr,r; Qp, V.W) — Extp(V,W).

Following Nekovar, we say that M is a mixed extension of 71, (M) and 7o, (M). Given K-vector spaces V1, Va, Vs,
define U(V7, Vo, V3) to be the group of unipotent vector space isomorphisms of Vi @ V5 @ Vj, i.e., those which
respect the filtration

VieVad Vs D Vo V3 D Vs,

and are the identity on the associated graded. We will mostly be interested in the case where (Vi, Va2, V3) =
(Qp, V,W). Recall from [6, Lemma 4.7] that we have an isomorphism

Mf,TO (GK,T; Qpa ‘/a W) = H}'7TO (GK,T7 U(Qp7 ‘/7 W))

The maps 71, and o, are induced from the exact sequence

0= W = U@, V,W) ™ vavew - o. (6)

In fact, the proof in loc. cit. show more generally that, for any mixed extension M with graded pieces Q,, V, W,
we have a bijection
HY(Gg.7; Auta (M) ~ M(Gg1;Q,, V, W) (7)

between the set of mixed extensions with graded pieces Q,, V,W and the set of Gk r-equivariant Autg (M )-
torsors, where Autg (M) denotes the group of vector space automorphisms of M which are unipotent with
respect to its filtration. The bijection is given by sending a mixed extension M’ to the Autg (M )-torsor of vector

space isomorphisms M =5 M’ which are unipotent in the sense that they respect the filtrations, and induce
the identity on gr, (M) ~ gr,(M') ~ Q, & V & W. Another way to say this is that, for any mixed extensions M
and M’, the cohomology sets H'(Gk 1, Autar, (M)) and H'(Gk 7, Auta (M’)) are canonically isomorphic: this

is a special case of [50, Proposition 35], since the set of unipotent isomorphisms M —5 M’ has the structure of
a G r-equivariant (Autg (M), Autg (M'))-bitorsor.

We now outline in broad strokes our generalisation of Nekovai’s formulation of the p-adic height pairing.
Although we could work in somewhat greater generality, we restrict attention to our case of interest. We take
as input a tuple (V, W, 4, s, x), where V and W are as before. Let s : Dqr(V) — FYDqr(V) be a splitting of the
Hodge filtration. Finally y is a non-crystalline element of H'(G g 7, W*(1)). Note that the existence of such a
X is an assumption on W, and is equivalent, by exactness of (a part of) the Poitou-Tate exact sequence

* loc, % @ loc «
HY (Grr, W (1)) L5 @per HYN Gy, W*(1)) =5 HY (G g, W),

(see [26, T1.1.2.1]) to the assumption that loc, : H} (G, W) = @y H j(Gy, W) is not surjective.
Associated to this data, we will define, for each v prime to p, a local pre-height function

hy : M(Gy; Q,, V, W) — H' (G, W),
as well as a local pre-height at primes p

hy : My(Gy; Qp, V,W) — HHGy, W).
Using x, we then define a global height

h:Mir,(Grr; Qp, V.W) = Qp,
such that h(M) only depends on the image of M under
My1,(Grr; Qp, V,W) = Hi(Gkr, V) @ Hi (G, V@ W).

As in the classical set-up, the global height will be a sum of local heights h, which are compositions of the map

h, with the character loc, x, thought of as an element of H'(G,, W)* via Tate duality. For the applications in
this paper, we will only be interested in characters x for which hy is trivial at all g above p except p.
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3.2 Twisting and mixed extensions

We now relate the construction of generalised heights to the Chabauty—Kim method. We construct compatible
maps

HI(GK,TaU) — M(GK,T;Qpa‘/? W) (8)
H'(Gk,,U) = M(Gk,; Qp, V,W)
H}(GKU7 U) = M¢(Gk,;Qp, V, W) for v|p,

where U is a suitably chosen 2-unipotent quotient of (the Q,-completion of) the étale fundamental group of X,

and W is a suitably chosen quotient of A2V. To motivate the results of this subsection, we briefly recall how it
fits with the goal of finding equations satisfied by X (K, )y .

The basic idea of generalised p-adic heights is that, given a mixed extension M, they give some kind of
algebraic relation between the projections (m1.(M),m2.(M)) and the localisations (M, ),er. To use these to
obtain equations for X (Kj)2, we need to do two things. Firstly, we need an explicit description of each of the
local maps

X(Ky) = M(Gk,;Qp, V. W).

Second, we need a description of the composite maps
H{(Grr,U) = Mp(Ggr;Qp, VW) = Hi(Gxr,V) x H{(Ggr, V@ W).

To explain the construction of the map (8), recall from (7) that we have an identification of
M(Gg1;Qp, V,W) with HY (G r, Autg (M)), where M is any mixed extension with graded pieces Q,,V and
W, and Autg (M) denotes the group of automorphisms of M which are unipotent with respect to its filtration.
Hence, a natural source of morphisms from Selmer varieties to sets of isomorphism classes of mixed extensions
is to find a mixed extension which U acts on in a Galois-equivariant way. We find such a mixed extension as a
quotient (which we denote A(b)) of the universal enveloping algebra of l<iLnLie(Un). In fact, A(b) is a quotient
of the universal enveloping algebra by a two-sided ideal, and hence inherits the structure of an associative Q-
algebra. Roughly speaking, if P is a path torsor w{*(X;b, ), we can understand the mixed extension A(b)(P ) if
we can understand the mixed extension A(b), and the action of U on A(b) (which is the same as understanding
the multiplicative structure of A(b)).

Lemma 3.2. Let V be a Q)-local system on X, and b,z € X(K). Let p denote the homomorphism
(X, b) — Aut(b*V)
coming from viewing b*)V as a right 7$(X, b)-module. Then there is an isomorphism of Galois representations

2*V o~ (b)) e[t (Kbl

O
Proof. By Lemma A.1, we have a canonical isomorphism of functors
o = (b*() X_e 7% (X;b, 2) 9)
~ . ﬂ_ft,@p x5 M 0,
from the category of unipotent Q,-local systems on X?, s to Qp-vector spaces. By definition, we have
* . ét 7;b, ~ % ) 6t,Q .
(oY) e[ (X2 o pry X 20 (5 by 7 (X5, 2).
Since the identification of Lemma A.1 is functorial, the isomorphism (9) is Galois-equivariant. u

We will be particularly interested in the case of Qp-local systems on Xg with wunipotent geometric
monodromy, or equivalently representations of 7¢*(Xx,b) whose restriction to 7¢*(X,b) is unipotent. For
example, Lemma 3.2 implies the following.
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Lemma 3.3. Suppose V is a Qp-local system on X¢ which is an extension
0—=Vo—=V—=V —0,

where the action of 7¢f(X,b) on b*V; and b*V, is trivial. Let p denote the corresponding homomorphism

7¢(X,b) — Hom(b* Vi, b* Vy).
Then, in HY(G,b*V; @ b*Vs), we have

[ V] = [*V] + pu[nf" (X b, 2)],
where

pe s HY (G, (X, 0) — H'(Gx, Hom(b* V1, b*Vy)).

is the homomorphism induced by p. O

Proof. This is a special case of the previous lemma, since the action of m;(X,b) on b*V factors through the
unipotent subgroup 1 + Hom(b*Vy, b* V). ]

3.3 The Galois action on the enveloping algebra and related objects

In what follows, X is a smooth projective curve over K, V = Hét(Y, Qp)*, and W is a quotient of A2V =

Coker(Qp(1) = A%V). Our mixed extensions of interest are constructed as quotients of Galois representations

associated to the path torsors Trft’Q” (X;b,2). None of the results of this subsection are original, but we include
proofs when unable to find a precise reference.

Let Z,[7{!(X,b)] := lim Z,[r{*(X, b)/N], where the limit is over normal subgroups N such that 7{*(X,b)/N
is a finite p-group. Let I denote the kernel of the natural map

Qp® Zp[[“ft(yv b)] = Qp.
Then define A, (b) := Q, ® Z,[x{'(X,b)]/I"+!.

The completed universal enveloping algebra of Lie(ﬂ'ft’Qp (X,b)) is given by lim A, (D) (see [16, §2]), giving

A, (b) the structure of a 7°"% (X, b)-module. The action of 7% (X, b) on A, (b) factors through U, (b), defining
an injective group homomorphism

Un(b) < 1+ TA,(b).

Via the logarithm, we similarly obtain an inclusion
L, (b) — ITA,(b).

Another way to describe A,,(b) and L, (b) is in terms of the Malcev completion of ;°?(X (C),b). Namely,
let Lt°P be the Lie algebra of the maximal n-unipotent quotient of the Q, Malcev completion of 7;°? (X (C), b).
Then by [32, Theorem A.6], LI°P is canonically isomorphic to L,(b) as a Q,-Lie algebra. In particular, this
allows us to calculate the kernels of the surjections

ver -/t

topologically. As we will only make use of As(b) when n < 2, the only results we will use are that A;(b) is an
extension

0=V —=A4,0) —-Q, =0,
and As(b) is an extension
0 — Ker(V®? 2 HZ(X,Q,))* — As(b) — Ay (b) — 0.

This calculation can be reduced to working out a presentation for the graded Lie algebra, i.e., by showing
that the graded Lie algebra @1 gr® L'°P is isomorphic to the free completed Lie algebra on V' modulo the ideal
generated by H?(X(C),Q,)* C A?V. The proof of such a presentation is explained in [31, §3.1].
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The Galois representation Q,[7¢4(X; b, )] has the structure of an equivariant
(Qu[m¢(X, b)), Qp[rft (X, 2)])-bimodule, allowing one to define a finite-dimensional (Az(b), A2(z))-bimodule

Aa(b.2) = Qul" (X:b,2)] @ e .1y A2(0)
= A5(2) g, a2y Qln' (Kb, 2)].
p[m1t(X,2)]

Equivalently, As(b, z) is the twist of A3(b) by the path torsor P (b, z) defined in Section 2.
As in [0], we define Ay(b) — A(b) to be the quotient of Ay(b) by the kernel of the composite

I?)I3 ~ A2V @ Sym* V — A2V — W.

A(b) is then an algebra with a faithful left action of U(b) C A(b)*. Given a U-torsor P, the induced twist of
A(b) by P, denoted A(b)("), is an element of M(G g.1;Q,, V, W). By Lemma 6.1, A5(b) is crystalline, and hence
so is A(b). If P is crystalline above p and unramified outside 7', then A(b)(") will also have these properties,
inducing a morphism of varieties

Hj 5 (Grr,U) = Myg,(Grr; Qp, V, W),
P A(b)P),
The algebra A(b) has a filtration A(b) D IA(b) D I?A(b) D I3 A(b) = 0 by powers of the two-sided ideal I. Hence
we obtain a product map A : TA(b) x TA(b) — I2A(b), which factors through IA(b)/I2A(b) x TA(b)/I?>A(b) ~

V x V. Hence the product map on TA(b) may be identified, via the surjection TA(b) — V', with the following
map.

Definition 3.4. Let 7: V — Hom(V, W) denote the map vy — (v — v1 A vg). O
The following lemma is a special case of Lemma 3.3.

Lemma 3.5. A®) is a mixed extension of 7, P and [I A(b)] + 7.7, P, where . is the map H'(G,U) — H (G, V)
induced by the projection U — V. O

Proof. By Lemma 3.3, we can compute the extension classes [A;(b))] € Ext'(Q,,V) and [TA(b)(P)] €
Ext'(V, W) by computing the classes [A;(b)] and [TA(b)], and computing the action of 7{*(X,b) on A;(b) and
TA(D). Hence the lemma is implied by the statement that the extension class [A;(b)] € Ext'(Q,, V) is trivial,
which follows from the fact that the unit element of A;(b) gives a section of

0>V —A4,() —Q,—0.
|

In the case when P is the U-torsor of paths from b to z, we shall denote the corresponding element of
M1 (Grr; Qp, V,W) by A(b, z). We obtain a map

Hj 1, (G, U) = My, (Grr; Qp, VW),
We define A(b, z) := A(b)(F(®2); we have an isomorphism of mixed extensions
A(b)(P(bJ)) ~(P (b)) A(z).

The following lemma says that if we can describe the extension class [T A(x1,z2)] for one specific choice of
and xs, then we can understand it for any choice of [TA(z1,x2)] in terms of points on the Jacobian.

Lemma 3.6. For any z1, 23, 21, 22 in X(K),
[TA(z1,22)] = [TA(21, 22)] + o (K(21 + 22 — 21 — 20)) € Ext' (V, W), (10)

where « is the Kummer map Pic’(X)(K) — H (Gk.r,V). O
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Proof. First suppose x1 = 29. Then [[A(x1, 21)] = [[A(21, 22)"*17%2)] i.e., TA(w1, 21) is the twist of I(A, .,)
via the natural action of V' coming from the left action of m1(Xg, 21) on IA(x1,21). Hence, by definition of
the twisting construction, [TA(zy,2p)**1=%2)] = [TA(21, 29)] + Tuki(21 — 22). Similarly, TA(z,21) is the twist
of TA(xg,7) by k(w2 —x1) via the natural right action of m (Xg,x2) on [A(xg, z1). Since we are using the
right action of Wl(X@, x2), the map V — Hom(V, W) by which I{%L'Q —x1) acts on TA(xy,2) is given by —7,
(since vy A vy = —vg A1), and hence [TA(x1, 21)] = @22V A(29, 21)] = [[A(22, 21) @1 72)] = [[A(x2, 21)] +
Tek(T1 — T2). u

Note that, in general, the extension class of TA(b) in H'(G,V* ® W) will not lie in the image of 7,. More
specifically, we know that its class in H*(G,V* @ W)/H(G,V) is related to the Abel-Jacobi class of the
Gross—Kudla—Schoen cycle in X x X x X corresponding to b, (see [19, Theorem 1], or [33]), which is generically
non-trivial. One situation where the class of TA(b) does lie in the image of 7., and furthermore can be described
explicitly in terms of b, is when X is hyperelliptic; this is the reason for the restriction to hyperelliptic curves
in Theorem 1.1. The argument, given below, is a straightforward generalisation of Lemma 1.1 of [37], and may
be viewed as a special case of a slightly more general phenomenon where one reduces computations on I A(b, z)
to the case where b = z is a Weierstrass point, at which point the computation becomes trivial. We refer to this
as a hyperelliptic splitting principle.

Lemma 3.7. Let X be a hyperelliptic curve of genus g, with equation y? = f(z), for f a degree 2g + 2
polynomial. Let a1, ..., azq+2 be the roots of f. Let Z denote the Q-divisor ﬁ > (@;,0). Then

[TA(b, 2)] = e (k(b+ 2 — 2)).

O

Proof. First note that it will be enough to prove that the two classes are equal in Hl(GLT, V*@ W), for L
some finite extension of K, since the restriction map is injective. Let L be an extension containing all roots of
f. For any 1, j, the divisor (a;,0) — (c;,0) is torsion, and so in particular

kr((ai,0) = (a;,0)) = 0.

Hence it is enough to show that the H'(Gp r,V* @ W) class obtained from As(b,z) agrees with that of
z+b—2(w;,0) for some i. By Lemma 3.6, it is enough to prove this when z = b = («a;,0). In this case, the
hyperelliptic involution gives an action of Z/2Z on A,(b). This acts on the V-graded piece as —1 and on the
W-graded piece as the identity, inducing a splitting of Ao (b). ]

3.4 Definition of the local pre-height

We first describe the definition of the local pre-height when v # p. For this we need to recall some results on Galois
cohomology of local fields. Let v be a prime of K, prime to p. Let I, C G, be the inertia subgroup and F, € G, /I,
a generator. For any finite-dimensional Q,-representation of W, let H}(Gv, W) =Wl /(F, — 1)W!. Then for
any such W, by Tate duality, there is a short exact sequence

0= Hj(Gy,W) = H' (G, W) = Hi(Gy,, W*(1))* = 0
(see e.g., [53, Lemma 1 and Theorem 1]).

Lemma 3.8. Let V = H'(X,Q,)*, let n >0, and let N be a direct summand of V®(2"+1)(—n). Then
HY(G,, N) = 0. 0

Proof. As N is a direct summand, it is enough to prove this for N = V®27+1)(_n). Since this representation is
its own Tate dual, it is enough to prove that H }(GU7 N) =0, or equivalently N Gv = (. This follows directly from
the weight-monodromy conjecture for curves [28, Exposé IX, Theorem 4.3(b) and Corollary 4.4]: let L be a finite
extension of Q, such that I, acts unipotently on V' (and hence W). If V'[i] and N[i] denote the graded pieces of
V and N of weight i, resp., then weight-monodromy implies that we have an equality (1 — I,)V[0] = V[-2], (and
we know it is trivial on V[—1]), hence (1 — I)V®Cn+1[2n] = V41 (2 — 2]. Thus the kernel of (1 — I1) on
the weight zero part of N is trivial, so H}(GU,N) = HY(G,,N) =0. u
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We now define the local pre-height. When v is not in T, %v is trivial. When v is in T}, via the exact sequence
(6) we get an isomorphism
M(Gy; Qp, VW) = HY (G, W).

We defined EU to be this isomorphism and define h, as the composite

M(Gy: @y, VW) % H2(G,,, Q,(1)) ~ Q.

Finally for v|p, EU and h, are defined following [43, §§3-4]. As we restrict to global heights for which the only
contribution from primes v|p is at p, we will only describe hy, but the description carries over verbatim to other
primes above p.

The local height above p is described using Fontaine’s functor D.,, which gives an equivalence of categories
between M ;(Gp;Q,p, V, W) and the category M1 4(Qp, Der(V), Dex(W)) of mixed extensions of filtered ¢-
modules with graded pieces Qp, Der(V'), Der(W). Similarly this induces a bijection between sets of isomorphism

classes
My (Gp; Qp, VW) = Miit,6(Qp, Dex(V), Dex(W)).

To ease notation, we henceforth write Dar (V') and Dar (W) as Var and War respectively. As K, is an unramified
extension of Q,, and V and W are crystalline, we also identify these with D¢, (V) and D¢, (W).

We identify Mg 4(Qp, Var, War) with FO\U(Q,, Var, War), where F© := FOU(Q,, Var, War) is defined to
be the subgroup of unipotent automorphisms of Q, @ Vyr ® War which preserve the Hodge filtration; more
generally, F'U(Q,, Var, War) can be defined to be exp(F"log U(Q,, Var, War)), where

FilogU(Qp, Var, War) := log U(Qp, Var, War) N F*End(Q, ® Var @ War).

Given a mixed extension M, let s, s : Qp ® Var ® War —5 M be unipotent isomorphisms of filtered vector
spaces which respect the Frobenius structure and Hodge filtration respectively. Then (s)~! o s® defines an
element of U(Qp, Var, War). The element s? is uniquely determined, and any different choice of the other
isomorphism is of the form s o u, for some v € FOU (Qp, Var, War). This gives a bijective correspondence

Me1,6(Qp, Var, War) — FO\U(Qp, Var, War), (11)

which is furthermore an isomorphism of algebraic varieties.
We first define a section ¢ of

M¢(Gp;Qp, VW) = Hi (G, V) x Hi(Gp, V@ W)
as follows: given exact sequences of crystalline G'p-representations

0=V —->E—-0Q,—0
0—->W —FEy, -V =0,
we have a commutative diagram with exact rows

0 0

H}(Gp, W) H}Gyp, B») HHGp,V)

0——— DdR(W)/FO — DdR(EQ)/FO — DdR(V)/FO —0
(exactness of the top row follows from the isomorphism with the bottom row). Define 7p, : Dar(V)/F° —
Dgr(E2)/F° as follows. First, note that there is a unique ¢-equivariant section of the surjection

7 Dep(E2) = Dep(V),

since by the Weil conjectures D¢, (V') and D¢, (W) do not have a common ¢-eigenvalue. The define 7z, to be the

composite
Dar(V)/F° -5 D (V) - Der(E3) — Dar(E2)/F°
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where s is the chosen splitting of the Hodge filtration, r is the Frobenius-equivariant section defined above and
the third map is the projection. Then we define

t(El, Eg) = TE2 (El)

For M in M;(Gp;Qp, V, W), let Ey and Ey be M /M, and Ker(M — M) respectively. Let [M] denote the
image of M in H}(Gy, Es). Then we find that [M] and ¢(E1, E2) have the same image in H}(Gy, V), hence by
the diagram above, [M] — t(E, Eo) defines an element of H}(Gp7 W), and we define

hy(M) := [M] — t(Ey, Ey) € H}Gp, W).
The pre-height can be described explicitly as an algebraic function
FO\U(Qp, Var, War) = War/F°.

Lemma 3.9. Let M be a mixed extension in Mg 4(Qp, Var, War) given by 1+ a+ 8+ v € U(Qp, Var, War),
where o € Vgr, 8 € Vig ® War, 7 € War. In block matrix notation, M is represented by

1 00

a 1 0

v B 1
Then _

hy(M) = v — B(s1()),
where
s1:vv—1058(v)

is the projection onto the Vyr/F° summand induced by the splitting s. O

Proof. The class of the extension M in M;/F? is given by t¢ — ¢! where t¢ and ¥ are isomorphisms of filtered
vector spaces
QoM — M

respecting the Frobenius action and Hodge filtration respectively. Hence, in terms of s? and s, this class is
given by s (a + 7). Then the extension class t([a]) is given by s (s;(a) + B(s1())). Hence the local height is
given explicitly by

hp(M) =~ = B(s1(a)).

|
Lemma 3.10. For any choice of splitting of the Hodge filtration, the composite map
Mo X by : HH (G, U) = H}Gy, V) x H}(Gy, W)
is an isomorphism of algebraic varieties. O

Proof. The fact that the pre-height is algebraic follows from the explicit formula in Lemma 3.9. It is enough
to prove that the corresponding map

Dar(U)/F® — Dar(V)/F° x Dar(W)/F°

is an isomorphism. We have a commutative diagram

Dar(U)/F° Dyr(V)/F° x Dag(W)/F°

DdR(U(Qp, Vv, W))/FO DdR(V)/FO X DdR(V* & W)/FO X DdR(W)/FO

where the righthand map sends (v, w) to (v, [[A] + T.v, w), and the lefthand map sends P to A((ii). Both maps are
closed immersions. We first construct an inverse to the bottom map. Given (v, o, w) in Dar(V)/F° x Dar(V* ®
W)/F° x Daqr(W)/F", the mixed extension ¢(v, a) defines an element of Dar(U(Q,, V,W))/F°, and we define
t(v,a)®) to be the twist of t(v,a) by w. The map (v, a,w) s t(v,a)®™) gives the desired inverse. When we
restrict this map to Dgr(W)/F°, it induces an inverse to the top map, as required. u

One may view the above lemma as saying that the fact that H}c (Gp,U) is non-canonically isomorphic to
H}(Gp, V) x H}(Gp, W) is an analogue of the fact that the p-adic height pairing depends on a choice of splitting
of the Hodge filtration.
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3.5 Global height: definition and basic properties
Define  H}(Grr,W*(1)) := H'(Ggr, W*(1))/H;(Grr,W*(1)). Let x be a mnonzero element of

HY(Ggr,W*(1)), which is non-crystalline at p. Given x and a collection of local pre-heights (EU) as
above we define the associated local height to be

hy, == Xv UE'U : M(G'U;Q,MMW) - Hz(G"”Qp(l)> = Qp

and the global height to be
h=> hy: Myz,(Grr; Qp, VW) = @,

where v € Ty U {p}. When we want to indicate the dependence on x, we write h, , and h,. Since h and h, are
linear in x, we may define a universal height

B My (G Qp, Vi W) — (HYGrer, W*(1)))*

by setting h(M) to be the functional x — hy (M).

Note that by construction, EU is bi-additive in the same way that usual local heights are bi-additive
(see e.g. [6, §4]). Namely, for i =1 or 2, if M and N satisfy m. (M) = m;(N), then we can form the sum
M+;; N in M(G,;Q,,V,W) (for example, when ¢ = 1, this is the Baer sum of the extensions [M],[N] in
Ext!(M/M,,W)), and its local pre-height will be equal to the sum of the local pre-heights of M and N. If
P = (Py)yer € Hv|p M¢(Gy; Qp, V, W) x HUeTO M(Gy;Q,, V,W), then we similarly define h(P) to be the sum
of the local heights.

Lemma 3.11. The global height h factors as
M1, (Grr; Qp, V,W) — H}(GK,T7 V) x H}(GK,Ta Ve W) —Q,,

where the first map is the projection and the second is bilinear. O

Proof. As remarked above, the global height is additive, so it is enough to show that it is invariant under
the action of H}c (Grr, W) on My, (Gr1;Qp, V,W). Invariance follows from Poitou-Tate duality: if a mixed

extension M is twisted by ¢ € H}(GKyT, W), then this will change h,, by x, Uloc, ¢, and > x, Uloc,c=0. M
Remark 1. Note that, unlike classical p-adic heights, it is not clear that this construction defines a pairing
H}(GK,T,V) X H}(GK,T,V* W) — Q,, as we do not know that given [Ej] in H}(GKT,W) and [Fs] in
Ext}(V, W), Es lifts to an element of H}(GK,T7E2). The existence of such a lifting is equivalent to the
vanishing of [F1]U[E2] in H*(Ggr,W), and hence would be implied by injectivity of the localisation
map H*(Ggr,W) — ®perH?(G,,W). By Poitou-Tate duality, this would be implied by injectivity of
HYGgr,W*(1)) = @per HY(Gy, W*(1)), and hence by Conjecture 2.3, as in Lemma 2.6. O

Given two different choices of splitting of the Hodge filtration s(!) and s(®), we obtain two different pre-
heights E,(;l) and E(,z). Their difference E»S,l) - Eéz) defines a map M¢(Gy, Qp, V,W) = Dgr(W)/FY, which may
easily be seen to factor as

My (Gp,Qp, V,W) = Dar(V)/F° x Dar(V* @ W)/F° — Dar(W)/F°.

The latter map may be defined as follows. The difference s(!) — s(2) gives a homomorphism 5 : Dar(V)/F°x —
FODyr(V). Given v € Dgr(V)/F° and o € Dgr(V* ® W)/F?, choose a lift of a to & in Dgr(V* @ W). The lift
a(3(v)) gives an element of Dggr (W), which is independent of the choice of & modulo F®Dgg (W).

Lemma 3.12. Suppose [P] = ([%]) € [[,cr,uqp) M(Go; Qp, V. W) satisfies
e P, is crystalline.
o m,Pe H}(GP,V) is in the image of H}(GK,T, V),
o Ty, Pc H}(GP,V* ® W) is in the image of H}(GK)T,V* Q@ W),
o there exist Pi,... P, in M1, (Gr,1;Qp, V,W), and \; in Q, such that
TP @ mo P = z A1 Py @ o P;
in Hy(Gg.r,V)® Hj(Grr,V* @ W) and for all ¢ in H;(GK,T,/\2V*(1)),

ho(P) = 3 Nihy(P).
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Then P is in the image of My 1, (Gk1;Qp, V,W). O
Proof. We have an exact sequence of unipotent groups with G'x r-action

15 W S UQ, VW) "R VeV oW — 1.

The image of HY(Gg.1,U(Qp, V,W)) in H (Gk 1,V & V*®@ W) is precisely equal to the kernel of the cup
product map to H(G g r,W). Note that

T P Umo, P = Z/\iﬂ'l*Pi U el =0,

and thus we conclude that there is a mixed extension P’ whose image in H}(Gy, V) ® H (G, V* @ W) is equal
to that of P. Hence P is the twist of locy, P’ by some ¢ in H'(Gy, W), and the claim of the lemma is exactly
that this ¢ is in the image of H}(GKT, W). By Poitou—Tate duality this is true if and only if for all ¢ in
H*(Gg,r,W*(1)) which are crystalline at all primes above p other than p, we have > ¢, loc, ¢ = 0. But, as in
the proof of Lemma 3.11,

hy,o(P) = hyo(P') + ¢y loc, ().

4 Equations for Selmer varieties

In this section, we use the bilinear structure of generalised heights to obtain formulas for X (Q,)y. More precisely,
generalised heights allow us to describe explicit trivialisations

M.(Gy; Qp, V,W) ~ HN G, V) x HHG,,V* @ W) x HL (G, W)

(where * is f or g depending on whether or not v|p), and to describe the image of My 1, (Gk r; Qp, V, W) under
the map

(714,724 ,10C) H}(GK,T, V) X H}(GK T, V*® W)
M Ggr;Q,, VW — ’
720 (Cre2s Qp, V. W) % T,y My (Goi Qp VaW) % T, M(Gi Qo V, W),

In Lemma 4.1, this is used to describe X (K )a, by giving explicit quadratic relations between EP(A(b, z)) and
k(b — 2).
Fix a prime p above p and a set of local conditions

ae [[ix@) c [] #@..0).

veTy v€TH

For o = (aw)per, in HveTo HY (G, W), let M¢(Gr.1;Qp, V, W), denote the set of isomorphism classes of mixed
extensions which are crystalline at p, and such that the localisation at v € Ty corresponds to o, € H(G,, W)
via the isomorphism M (G,;Q,,V,W) ~ H'(G,, W). Then the twisting construction defines a map

Sel(U)a — My (Gr.r;Qp, V., W)a.

Let m denote the codimension of H}(GK,T7 W) in H}c(Gp7 W). Suppose P € H}(Gp, U) comes from some
P’ in Sel(U),, and let @ denote the image of P’ in H} (Gg.1,V). Knowing 7, P gives g linear conditions on @,
and knowing EP(P) gives m quadratic conditions on Q. Finding exact formulas for the subspace of H} (Gy,U)
where these g + m equations have a solution is then a matter of elimination theory. Concretely, let H, be the
image of Q,[Sel(U)a] in Hi(Gxr,V)® Hi(Gxr,V*® W) under the map P+ m1.(P) ® ma.(P). Let S be
a section of Q,[Sel(U)s] — Hy. Let H be the image of Sel(U), in H}(GKyT, V), and let T' denote the map
H — H, sending P to P ® ([TA(D)] + 7(P)). Then by the multilinearity of generalised heights we have

h(P) = h(S o T(r,P)) (12)

for all P € Sel(U)q. To use this to write down equations for loc,(Sel(U),), we introduce some notation for
resultants (see e.g. [39, §IX.3]). Given finite-dimensional vector spaces Vi, Vs, V3 over a field K and a morphism
of algebraic varieties F': Vi x Vo — Vi, we define the resultant Ry, (F)) C O(V1) to be the ideal defining the
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maximal subvariety of V; for which F| Ry, (F)xV, 1s identically zero. By the fundamental theorem of elimination
theory, this is of finite type over K. If (A1,...\,) is a basis for V5, we may also write this as Ry, ., (F), to
indicate that the variables Aq,..., A, have been eliminated. In our case of interest,

Vi = H{(Gp, V) ® Hf (G, W), Vo = H, Vs = H{(Gp,V)® HY (Gg,r, W*(1)),
and the map
F:VixVy— V3
sends (v1,v2,v3) in Hp(Gp, V) x Hi(Gyp, W) x H to
(locp(vs) — v1, hp(v2) + D hu(w) = h(S 0 T(vs)) € Hf(Gy, V) & HY (Gre.r, W*(1)).
veTy

Lemma 4.1. The image of Sel(U),, in H}(Gy, V) x H(Gy, W) under the composite map (W*,ﬁp) olocy, is equal
to the zero set of Ry (F). In particular

X(Kyp)a ={z€ X(K;): for all G € Ru(F), G(kp(2), hp(jp(2))) = 0}.

O

Proof. Whenever P is in the image of Sel(Us),, it satisfies the equations above. Conversely, by Lemma 4.2,
there is a global U-torsor in Sel(Us), whose localisation at p is given by P if and only if there is a mixed
extension in M (G 1;Qp, V, W), whose localisation at p is given by A). By Lemma 3.12, this happens if and
only if there is an element @ of H}(G k,7, V) which is a simultaneous solution to

{ loc, (Q) =mP
hop(P) + X pem, how(aw) = heo(S o T(Q)).
|
Lemma 4.2. The map
H} 5 (G, U) = My, (Grer; Qp, V,W); P A(b)P)
is injective. O

Proof. As explained in [0, §5.1], this map may be described as the composite
Hj 7 (Grr,U) = Hp 1 (Grr, Aut(A(b))) — My r (G 3 Q. V, W),

where the first map is induced from the group homomorphism U — Aut(A(b)) and the second map is induced
from the isomorphism

My 1, (Grr;Qp, V,W) ~ H},TO (Gr,r;UQp, V,W))

together with the structure of A(b) as an (Aut(A(b)),U(Qp, V, W))-bitorsor. The upshot is that it suffices to
check the first map is injective. By definition of the map, this is implied by injectivity of

HY(Gkr,U) = H (Gg.r, Aut(A(D))).
By the exact sequence
H(G 1, Aut(A(D)/U) = H (Ggr,U) — H (G 1, Aut(A(D)))
(see e.g., [19, Proposition 36]), it is enough to show that the pointed Gk r-set Aut(A(b))/U has no fixed

points, which can be seen by noting that it is an extension of a weight —1 Gk p-representation by a weight —2
G g r-representation. |
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Let Py,...,P, be elements of Sel(U), in H} (Gk,r,V) spanning H (recall that this is the image of
QplSel(U)o] in Hi(Grr, V) ® H} (Grr, V* @ W) under the map P+ 71, (A(b)F)) @ 10, (A(b)(F))), and such
that Py, ..., P, span the image of Q,[Sel(U)a] in Hi(Grr,V) ® Hi(Ggr, V* @ W) under P m.P @ [[A(D)].
Suppose m;jk, mix € Q) satisfy

k=1
P @ [TA(b Zmlk ®7T2*(A(b)(Pk))
(14)

Let z € X(K,). Then if j,(2) is in the image of loc, (Sel(U)y ), there are Ay, ..., A, such that

z) = Z Ailoc, T P;

and for all p € HY(Gg 1, W*(1)),

hpolip() + > hpplow) = Y Amachg(Py) + > AiXjmijehe (Pr)

veTo 1<i<r,1<k<r 1<i,5<r,1<k<n

SURT, ISR )T, ISR

since if j,(z) comes from some P € Sel(U)q, then we must have

11 (AB)P) @ mau (ABD)P) = 3 A (P @ (TAB)] + 3 M(P)

1<i<r 1<<r

in H}(GK,T, V)® H}(GK,T, V* @ W), which is equal to the class of

> A (AB) ) @ m (AR P - YT Admigem (AR) ) @ ma. (AB) )

1<i<r,1<k<r 1<4,5,<r,1<k<n

> SR> 1,0, 3T 13RS

by assumption. This gives the following explicit version of Lemma 4.1.

Proposition 4.1. Suppose the kernel of Div?(X(Q))/P ® Q, — J(K,) has rank ki, and that the codimension
ofH}(GKyT, W) in H}(G,,,W) 18 ko. Let k = ko — k1. Then

X(Kp)a = M<i<e{ R (Fe(A1, oo Ak, ) = 0},

where

Fos e M) = o (p(2) + D hpolaw) = > Ximirhy (Pe) = > Xidjmijehe(Pr),

veTy

and m;j, and m, are as in equation (13). O
In particular, if the Mordell-Weil rank of the Jacobian of X is less than or equal to g, and the map
Div?(X (K))/P ® Q, — J(K) ® Q, is injective, then
X(Kp)a = Nifpps (2) + Y T (@0) = B, (S 0 T(jp(2))) = 0},

where @1, ..., ¢, is a basis for H} (G r, /\QV*(l)).

4.1 Equivariant height pairings

For the Manin—Demjanenko type results in the next section, it will be crucial to consider the subset of height
functions which are equivariant with respect to extra endomorphisms of J.

Definition 4.3. Let v € H*(Gk 7, GL(V)). Then « acts on My 1, (Gk 1;Qp, V,W) by sending (M, (M;), (¥);)
to (M, (M), (¥})) where ¢} = 11 o~y and for i = 0,2 v} = ;. We denote this action by ~*. O
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Let redpe denote the quotient map War — War/F°. The splitting s induces sections of Wyr — Wagr /F°
and V*@W — (V* @ W)/F° as follows: the isomorphism Var ~ gry Var induces an isomorphism gré.(Var ®
Var) == Var ® Vgr, and hence together with the surjection Vgr ® Vgr — Wyr, we get an isomorphism Wyg ~
grr War. We denote the induced section of V* @ W — (V* @ W)/F° by s.

Lemma 4.4. We have the following:
1. For v # p, and 7 in R*, we have h, (M) = hy(y*M).
2. The map M +— hy(M) — hy(yM) factors as

M¢(Gp; Qp, V,W) = Var/F° x (Vir @ War)/F° B Wog /FO
where Ey is the bilinear map
(v,w) = redps (s(w) 0 8)(v) — redpe (Y*s(w)) o $(V4v).
3. If v commutes with the splitting of the Hodge filtration, then hy(M) = hy(yM).
O

Proof. First note that for v # p, we have h,(M) = h,(yM), since the definition of h, does not depend on a
choice of isomorphism My/W =~ V. For the second claim, note that by definition of h, we have

hp (M) — hy(YM) = t(My, Mz) — t(y" My, 7. Ms),
as required. For the last part, note that if v commutes with s we have
redpe (Y"s(w)) 0 50 7:) = redpe ((v7s(w)) © 74 © 5) = redpe (s(w) o s)

which by the above implies h, (M) = hy (v M). |

As a result, the height h is R-equivariant if and only if for all v in R*, s(w) o s = (y*s(w)) o s 0 vy, modulo
FOW.

5 Generalised heights on hyperelliptic curves

In this section we prove Theorem 1.1 and the finiteness part of Theorem 1.2, using equivariant heights. In brief,
the previous section explained how generalised heights provided non-trivial quadratic relations between h(A(b, z))
and k(z — b). To prove finiteness of X (K,)y, one would like to find non-trivial polynomial relations between
h(A(b, z)) and locy (k(z = b)). In general, the obstruction to doing this lives in Hj(Gx,r, V) ® Hj(Grr,V* ®
W), in some sense. The idea of using equivariant heights on hyperelliptic curves is to try and replace this with
a smaller obstruction space.

Definition 5.1. Define the hyperelliptic subspace of H}(GK,T,V) ®H}(GK,T,V* ® W) to be the image of
H}(GK,TJ/)@2 under the map 1® 7., where 7 is as in Definition 3.4. Define the hyperelliptic subspace
of My, (Grr;Qp, V,W), denoted MﬁTO(GK,T;Qp,MW), to be the subvariety of classes whose associated
H}(GK,T, V* @ W) class is in the image of 7,. O

The reason for the name is that, by Lemma 3.7, the image of the Selmer variety of a hyperelliptic curve lies
in the hyperelliptic subspace.

Lemma 5.2. Let X be a hyperelliptic curve, b a rational point and U any quotient of Us(b). Then the natural
map

Hi 1, (Grer,U) = My, (Grers Qp, V. W) P A(B)T)
lands in the hyperelliptic subspace. O
One may straightforwardly extend this to equivariant heights.

Lemma 5.3. Suppose s is an R-equivariant splitting. Then
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1. The generalised height
h: Mg, (Grr;Qp, VW) — Q,
factors through H' (G 7,V) ®g H}(GK,T, V¥ W).
2. The generalised height function, restricted to the hyperelliptic subspace, factors through H} (Gk1,V) QR+
H } (G, V).

O

Proof. By Lemma 3.11 and Lemma 5.2, we only need to prove R-equivariance. To prove this, it will be enough
to prove that, for all ¥ € R*, we have h(y*E1, E2) = h(E1,v*E>). It suffices to prove this locally, i.e. to prove
that for all mixed extensions M,

hv(M) = hv(’y*M)

This follows from Lemma 4.4.

We now explain the application to finiteness of Chabauty—Kim sets.

Proposition 5.1. Let X be a hyperelliptic curve. Let R = End(}((J). Suppose
dim(H}(Gy, W)/ locy Hi (Gr,r, W)) = dim(H}(Gr,r, V) ©r Hp (G, V) + dim(H Gy, V) @ Hf(Gp, V) > 0.
Then X (K,)u is finite. O
Remark 2. Note that, given [6, Lemma 3.2], this result is only new when
dim(H}(GK,T, V)®r H}(GK,T, V) — dim(H}(Gp, V)®r H}(G,J7 V)
<dim Hj(Gg,r,V) — dim H;(Gy, V).

This can only happen when there are simple abelian varieties which occur as isogeny factors of J with multiplicity
greater than 1 (see the example below). O

Proof. By [34, Theorem 1], it is enough to prove that the localisation map
Sel(U) — H(Gy,U)

is not dominant. Writing Sel(U) as a disjoint union of Sel(U)q, for o a collection of local conditions, we reduce
to proving that, for all a, the localisation map

Sel(U)o — H}(Gy,U)
is not dominant. Let
r=dim(H}(Gy, W)/locy Hi (Gx,r,W)) + dim(H (G, V) @ Hf (Gp, V).
We show that the codimension of
(locp, T14 ® T24) : Sel(U) o — H}(Gp,U) x Hi(G.1,V) ®r Hf (Gi.1, V)

is greater than r, which proves the non-dominance of the localisation map by projecting. We first choose a
(vector space) section ¢ of the map

Qu[Mt 1, (Grr; Qp, V, W) — H}(GK,Ta V) ®r H}(GK,Ty V).

Define a map
H}(Gy,U) x Hi(Gx1,V) ®r Hf (Gr,1,V) = H Gk r, W*(1))

by sending (¢, d) to Ep (€) + X ven, ho(cw) — h(t(d)). Then by equation (12), the composite map
Sel(U)o — Hp(Gp,U) x Hi(Gg,r, V) ®r H (Ggr, V) = HY (Gr.r, W (1))
is identically zero. Similarly the composite map
Sel(U)a — Hi(Gp,U) x HH (G, V) ®@r HH (G, V)
TG O LGy, V) @p HY Gy, V)

is identically zero. n
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Lemma 5.4. We have the following:

1. There is an R-equivariant pre-height.
2. The set of R-equivariant pre-heights is a Hom ggg, (V/F, FOV)-torsor.

O

Proof. By Lemma 4.4, R-equivariant pre-heights correspond to R-equivariant splittings of the Hodge filtration.
By functoriality, F°V is an R ® Q,-submodule of V. Since R is semisimple, we deduce the existence of an
R-equivariant splitting. [ ]

We now consider the setup of Theorem 1.1: K = Q or an imaginary quadratic field, the curve X/K is
hyperelliptic, with Jacobian .J isogenous to A? x B. Hence R = Mat4(Q) is naturally a (non-unital) subalgebra
of End’(J). Let Vi = T),(4) ® Q, and Vg = T,,(B) ® Q. Then V ~ V{? @ Vp. To apply Proposition 5.1, note
that

H}(GKJ“, VA)®d KRR H}(GK,T, VA)EBd ~ H}(GK,T, VA) ®Qp H}(GK,T, VA).

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let A2(V %) be the quotient of A2(V{) by the image of
Ker(A2V — A2V)

under the projection from A2V to A2(V{). First we prove that there is a quotient W of A2V such that the
quotient map factors through A2(V{%) and such that

codim(locy, : H}(GK’T, W) — H}(Gp, W) =ps(A)d+d(d—1)e(A)/2 —1.

We have A2(V§) ~ (A2Va)d @ (V?)Ud=1/2] Since NS(Ax) ® Q,(1) is a direct summand of A2V, and
End’(A%) ® Q,(1) is a direct summand of V{?, we have a Galois-equivariant surjection

NPV = (NS(Ag) © Qp(1))* & (End” (A @ Q1)) D72,

First suppose K = Q. We take I to be the quotient of A2V corresponding to (NS(Ag) ® Q,(1)))4 @(EndO(A@ ®
Q,(1)))*@=1/2_ Then it is enough to prove

dim H} (G, NS(Ag) @ Q,(1)) — dim H}(Gg,r, NS(Ag) @ Qy(1)) > ps(A)

and
dim H(Gy, End’(Ag) ® Q,(1)) — dim H} (G, End’(Ag) @ Q,(1)) > e(A),

which follows from Lemma 2.3. If K is imaginary quadratic, we have a surjection
A2V = (NS(Ag) ® Q,(1))? @ (End®(Ax ® Q,(1)))4d-1/2)

and we take W to be the corresponding quotient of A2V. The result now follows from the fact that
HY (Gk7r,Q,(1)) =0.
We are now ready to complete the proof of Theorem 1.1. First suppose ps(A)d +d(d—1)e(A)/2—1>
d(r — dim(A)). By Lemma 3.7, we have a Galois-stable quotient of Us (i.e. the kernel is Galois stable) which is
an extension
1=W=U—=V{—1

and we have
dim H}(Gy,U) — dim H{(Gg1,U) > pp(A)d + d(d — 1)e(A)/2 — 1 — d(r — dim(A)).

Finally, if ps(A)d +d(d — 1)e(A)/2 — 1 > r? — dim(A)?, then we use Proposition 5.1. We take R, as above, to
be Maty(Q), acting trivially on B and in the obvious way on A?. Then

rk(J(K) ® Q) ®g (J(K) ©Q) =7* and

dim H}(Gy, V) ®peq, dim Hf (G, V) = (dim A)*.
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5.1 An example

Given the restrictive hypotheses of Theorem 1.1, it is perhaps worth demonstrating the existence of a hyperelliptic
curve satisfying them which does not satisfy the Chabauty—Coleman bound. We use work of Paulhus [17, Table
2] and Shaska [51, §4] on a family of hyperelliptic curves X; defined over K = Q(¢) with Jacobian isogenous to
E} x A;. Let X; denote the genus 5 curve

y? = 2'? — tal% — 3328 + 262’ — 332% — t2® 4 1.

For all but a finite number of ¢, we have a subgroup of Aut X; isomorphic to A4, generated by the automorphisms
of order 2 and 3, respectively:

riea) o (o) oo (S ).

x+i (v +1i)8

Together with the hyperelliptic automorphism, this means that all but a finite number of curves in the family
has 7, /27 x A4 as a subgroup of its automorphism group. The normalisation of the quotient of X by o is the
genus 1 curve

C:y? =a* + (=t +12i)2* 4 ((2i — 2)t + 20i + 20)x + 2it + 21,

which has Jacobian
1 1,.
Ey:y? =2 - Z(3t2 — 70it — 411)x — Z(t‘f — 30it? — 317t + 1180i).

Fix a prime p with (p) = pp in K and such that X; has good reduction at p and p.

Corollary 5.2. For allt such that tkx By <2, and p as above, X (K, )2 is finite. O

Proof. Let Vg :=T,(E;) @ Qp, V4 :=T,(A) ® Qp. We have an isomorphism
NV = N (VEP) @ VE ® Va ® A*Va.

Let A2V — Q,(1)®* be the composite A2V — (A2(VE?))/Q,(1) — Q,(1)®4. Let U be the corresponding
quotient of Us. The result follows from Proposition 5.1. u

Remark 3. Note that the dimension of the Selmer variety equals that of H}(Gp, U), so the multiplicities of
isogeny factors are really used in an essential way. O

An explicit example of a value of ¢ for which E; has rank 2 is t = 1: the elliptic curve y? = z3 +
(35/2i +102)z + (—575/2i + 79) has two independent points Py = (4i — 3,149+ 4), P, = (—12i +1,11i + 9).
Using SageMath [52], we verified linear independence (and a lower bound of 2 for the rank) by computing
that the associated regulator of height pairings is approximately 6.501, and in particular, is nonzero. An upper
bound of 2 on the rank was found by using Magma [13] to compute the rank of the 2-Selmer group to be 2.

5.2 The Kulesz—Matera—Schost family

Here we return to the family of genus 2 curves mentioned in the introduction. We show that for this family,
one can use equivariant heights to prove stronger finiteness results than the ones above. Recall that X is a
hyperelliptic curve of the form y? = 2% + az* + az? + 1, and let E be the elliptic curve y? = 23 + az? + az + 1.
We assume E has rank 2. Define Vg to be H'(E%,Q,)*. The morphisms fi, f» from X to E induce an
isomorphism V ~ Vg @ Vg, which induces a Galois-stable quotient U of Uy with W taken to be Sym2 Ve,
via the map

A2V — Sym?® Vg; (v1,v2) A (v3,04) — V1V4 — VaV3. (15)

The aim of this subsection is to prove the following lemma:
Lemma 5.5. The localisation map locy : Sel(U) — H}(Gy,U) is not dense. O

In fact we will prove an explicit form of this. The deep result underlying this non-density is the fact that
H}(GK,T, Sym? Vi) = 0. In the case when K = Q, p > 5, and the map

el : Gal(QQ) — Aut(E[p])
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is surjective, this is due to Flach [24, Theorem 1, and remarks below|, who shows that H} (Gk.,r, Sym? T,E®
Qp/Z,) is finite, which implies triviality of H} (Gk,T, Sym? Vi) = 0. In general, the only known proof is via a
Galois deformation argument, following Taylor—Wiles and Kisin. Namely, using Fontaine—Perrin-Riou’s Euler
characteristic formula [26, Remark II.2.2.2], we know that

dim H}(Gk,r,Sym* Vg) = dim H}(Gx 1, ad’ V).

Under the assumptions above, it is known that H gl(G K7T,ad0 Vi) =0 (see Allen [I, Theorem A] for a more
general result).
Let R := Mat2(Q,). Then V has the structure of an R-module via the isomorphism V ~ Vg @ Vg. Let
U:QpH} 1 (Grr,U)] = N H(Gk 1, Vi) be the composite map
QP[H},TO (GK,T, )] — H}(GK,T, V)®r H}(GK’T, V)
S H(Gk,r,Ve) ®q, H} (Gr1,Ve) = N’ H}(GK1, Vi),

where the first map sends P to the H} (Gxr,V)®r H} (G, V)-class of A(b)("), the second is the isomorphism

Hi(Grr, VE?) Omata(@,) Hf (Grr, VE?) — H}(Gk1, Vi) ®q, H} (Gk.1, VE), (16)

and the third is the usual projection of the tensor square onto the alternating product. By Lemma 3.7, and (15)
when P = P(b, z), we have that T'(P) is given by

f1xk(z = b) A fosxr(z+b— D) — four(z —b) f1.(2 + b — D),
which is equal to 2k (f1(2) — O) A kg(f2(2)).

Definition 5.6. Given [E4], [E2] in H} (Gr,r,V), define [Ey, Es| € My 1,(Gr,1;Qp, V,W) to be the quotient
of By @ By by A2V C V®V C E; ® Ey, viewed as a mixed extension with graded pieces Qp,V and W via the
isomorphism V ~ Vb@z. O

Lemma 5.7. Let p be a prime above p.

1. The mixed extension [E, E»] lies in the hyperelliptic subspace, and its image in H} (G 7, Vi)®? is given
by [Er] ® [Ea] + [E2] ® [EA].

2. Let [E1] = foum. P and [Eo] = — f1.5(2b — D). Let h be an R-equivariant height. Let € [],eq, H'(Go, U)
be a collection of local conditions. Then the map
B HY G, U) — HY (G, Sym*(V)(1))
- ~ 1~
P (A0 )+ Y Fulow) — ([, Bo)
veTy
factors through /\QH}(GK,T, V).
O

Proof. For the first part, the image of [E1, Es] in HY (Gkr,V)® H (Gk 1, V* @ W) is equal to ([E1], [E2]) ®
([E2], [E1]), hence the claim follows from the explicit description of the isomorphism (16). For the second part,
note by Lemma 3.7, A(b)(") is a mixed extension of 7, P and 7.(x(b — D) + 7. P). So under the decomposition

Hi(Gg.r,Ve) ® H{(Gkr,Ve) = NH}(Grr, VE) © Sym® H{(Gk 1, Vi),
the image of A(b)*) in Sym? H}(GK,T7 VEg) is given by

(F1emeP)(fa2 (5(2b = D) + 7.P) = (fo27 P) (12 (k(2b = D) + 7. P)
—(f1274 P) f2u(2b — D) — ( fours P) f1.(5(2b — D)
= - (fQ*W*P)(fl*H(Qb - D))’

since fo.r(2b — D) is zero. The image of [Ey, Fo] in Sym? H} (Gk,r,VE) is given by
—(f2xme P)(f125(2b — D)) = (frer(b — D)) (2f2.7.P).
Hence the class of A(b)(") — L[E}, Ey] in H{(Gk.r,Ve)®? lies in /\2H}(GK,T7 VE). [ |
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We are now ready to prove an explicit form of the non-dominance result for the localisation map.

Lemma 5.8. Let a € [[,op H' (G, Sym%) be a collection of local conditions.

1. Let
t: /\2H}(GK’T, Vi) — @p[H}(GK,Ta U)l
be a section of I'. Let w be a generator of /\QH}(GKT,VE). Let Py be any element of Sel(U),. Then
locy Sel(U)q is contained within the kernel of

H{(Gy,U) = N*H (G, Sym® Vi)
P (hy(P) = hy(Po)) A hy (t(w)).
2. Let b and zy be points of X (K) satisfying I'(A(b, z9)) # 0. Then X (K,)y is in the kernel of
X(Kp) = N (War/F°)
2 T (A(b, 2)) A Ry (A(b, 20)).
O

Note that part (1) of Lemma 5.8 implies Lemma 5.5, since by Lemma 3.10, the map 7Lp : H}(GP, U) —
H;(Gy, W) is onto and hence the map in part (1) of the lemma is surjective.

Proof of Lemma 5.8. Choose a basis e1, eg of H} (Gyp, Sym? V). Since we have H}(GKyT, Sym? Vi) = 0, we can

define cohomology classes x1,x2 in H (G g, r, ad’ Vi) which are crystalline at all primes above p other than p,
and such that the image of loc, (x;) in H'(Gy,ad’ Vi)/H(Gy, ad” Vi) is isomorphic to e} via Tate duality. Let

h=(hy,,hy,) : My 1, (Grr; Qp, V, Sym? Vi) — Sym? Var/F°

be the corresponding sum of heights. Let A’ denote the map
1
P = h(P) = 5h(|B), B

as before. Part (1) follows from Lemma 5.7, since that implies that the image of Sel(U) in H}(Gp7 Sym? Vi)
under h’ has dimension at most 1. For part (2), by assumption, I'(A(b, z9)) is a generator of /\QH} (Gr,1,VE),
hence the result follows from part (1). [ |

6 Explicit local methods

The goal of this section is to provide an explicit, algorithmic description of the composite map

X(Kp) 25 HY (G, U) 5 USR/FO 22 Wog /PO

which sends a Kp-point to the generalised pre-height of A(b, z). As p splits completely in K|Q, via a choice
of embedding K — Q,, we have that K, is isomorphic to Q,, and we henceforth write Q, instead of K.
Describing this map explicitly amounts to giving an explicit description of the structure of D..(A(b,z)) as a
filtered ¢-module. As is explained below, by Olsson’s comparison theorem [16, Theorem 1.4], this may be reduced
to computing the Hodge filtration and Frobenius action on a de Rham path space AR (b, 2) (see [35, §3]). The
specific relation is stated in Section 6.2.

It turns out to be simplest to describe the Hodge filtration and Frobenius structure on AR (b,z) by
understanding how it varies with z. More precisely, the vector space A4 (b, 2) is the fibre at z of a unipotent vector
bundle with connection A%, which is a quotient of a universal bundle with connection AR, The filtration on
A9R(b, 2) comes from a filtration by sub-bundles F* A% C AR and these sub-bundles are uniquely determined
by certain universal properties. This rigidifying property means that, to compute F? AR (b, z) it is enough to
find any filtration on AR satisfying certain properties (see Lemma 6.4 and Corollary 6.2), giving an algorithm
for computing F? AR (b, 2) (see Section 6.5).

To calculate Frobenius, one could employ a similar approach, by describing the Frobenius action on A4 (b, 2)
as the pull-back along z of the Frobenius structure on A%, In Section 6.7 we take a slightly different approach,
using the ‘hyperelliptic splitting principle’ in a similar manner to Lemma 3.7 to calculate the ¢-action on
AR (b, 2) when b and z are Weierstrass points. Using Besser’s Tannakian interpretation of Coleman integration,
we can describe how the ¢-action varies when we vary b and z in terms of iterated Coleman integrals.
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6.1 The universal connection

First we recall some properties of the de Rham fundamental group and associated objects, as developed by
Chen, Deligne, Hain and Wojtkowiak (see [20, 54, 30]). When describing AR, it is computationally convenient
to restrict to a Zariski open Y C X, as on Y, unipotent vector bundles are trivial, making connections and
morphisms between them easier to calculate. Another reason that the affine case is simpler is that the de Rham
fundamental group of Y is a free pro-unipotent group, which makes it easier to write down elements of the
fundamental group, or its enveloping algebra.

Let Y C X be a non-empty Zariski open subset of X, with X —Y of order r. Define Var(Y) = Hlz (Y)*.
Recall from Section 3 that Vigr := De(V) ~ Hig(X)*. Denote by CI®(Y) the category of unipotent flat
connections on Y, and CI®(X) the category of unipotent flat connections on X. Since X and Y are curves,
all connections on them are flat, and hence this condition will henceforth not be mentioned. Given a connection
V and a K-vector space W, we shall often refer to W ® V as a connection, in the natural way: the U-sections of
the vector bundle are just W @ V(U), and the connection morphism is 1y ® V. Alternatively, if 7 : Y — Spec(K)
denotes the structure morphism, we can think of W ® V' as being a tensor product of connections:

WeV:=('W,del,V).

Let b be a K-point of Y. Then taking the fibre of the underlying bundle at b defines a fibre functor b* from
CIR(X) to K-vector spaces, giving (C®(X),b*) the structure of a neutral Tannakian category. Define 7{® (X b)
to be the corresponding K-group scheme. This group is pro-unipotent and is the inverse limit of the n-step
unipotent quotients UIR(b) = UIR(X)(b). Moreover,

PR(X)(b,2) = Py (b, 2) = 7™ (X5, 2) X panx p) U™ (D).

Similarly define 7{®(Y,b), UIR(Y)(b), PIR(Y)(b, 2). Finally, in the notation of the appendix, define

ASR(X)(b) := An(CIR(X), %), ASR(Y)(b) == An (CR(Y), b¥),
AIR(X)(b, 2) := A, (CIR(X); 0%, 2%),  AIR(Y)(b, 2) := A, (CR(Y); b%, 2%),
ATH(X) 1= ASR(CIr (X) 1), ASR(Y) = AR(CIR(Y) 1),

When there is no risk of confusion, we shall sometimes abbreviate AIR(X)(b,z2), AR(X)(b), AR(X) to
AdR(b, 2), AdR(b), AR As explained in the appendix, A% (X)(b) may equivalently be defined to be the quotient
of the universal enveloping algebra of Lie(7{%(X,b)) by the (n 4+ 1)th power of the kernel of the co-unit map.
In particular, the vector spaces AR (X)(b) ~ b* AR (X) and AIR(Y)(b) ~ b* AIR(Y) each have the structure
of associative algebras with unit elements that we will denote by e,. As explained in the appendix, AR (X)
is a universal n-unipotent pointed object in CI®(X )b*; i.e., for any m-unipotent connection V on X, and any
v € b*V), there exists a unique morphism of connections f: AR (X) — V such that b*(f)(e,) = v. We shall
refer to AIR(X) and AIR(Y) as universal connections. By Lemma A.1 and Lemma A.7, AYR(X)(b, z) may
equivalently be defined to be

AR (X) (D) X par () TH(X5b, 2) = AGR(X) (D) X0, ) (b, 2),

or to be 2* AR (X), and similarly for ASR(Y), AIR(Y)(b, z). We denote by I* AIR(X)(b, 2) the I-adic filtration
on AR(X)(b,2), and similarly for AYR(Y)(b, 2).

In this paper we will only be interested in USR(b), PAR(b, 2) and A4R (b, 2) in the cases n = 1 and 2. When
n =1 we have U;(b) ~ Vg and an exact sequence

0— Var — ASR(b,2) = K — 0,
by Lemma A.8. When n = 2 we have exact sequences
1= A2Vgr — USR = Vag — 1,
1= A2Var(Y) = USR(Y) = Var(Y) — 1,
0 — V&24p — AR(X)(b,2) = ASR(X) (b, 2) — 0,
0 — Var(Y)®? — ASR(Y) (b, 2) — ATR(Y)(b, 2) — 0,

where A2V gr := Coker(H2z (X)* N A?Vggr) and V®24g := Coker(H3g (X)* I V2%). These exact sequences
can be seen in various ways. They are a consequence of Lemma A.8 and Lemma A.10, since

Ker(H g (X) ® Hig(X) = Extdar x)(1,1))
=~ Ker(Hip(X) © Hyg (X) = Hip(X)).
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and similarly for Y. In words, the cup product of two classes in HJg (X) is zero if and only if the Yoneda cup
product of their corresponding extension classes in C4®(X); this can be checked at the level of cocycles, or by
comparison with the corresponding statement for Betti cohomology or fundamental groups. The statements for
U, can also be deduced from the Betti case, or from the result from A,, using the fact that, for any 2-nilpotent
Lie algebra L with enveloping algebra F, the inclusion L — F induces an isomorphism

L~ E/(I® + Sym? L®").

6.2 A9R(b, 2) and its relation to A(b, z)

Recall that the main goal of this section is to compute the generalised pre-height Ep (A(b, z)), which amounts to
describing the Frobenius action and Hodge filtration on D.,(A(b, z)). The vector spaces ASR (b, z) have canonical
Frobenius actions and Hodge filtration (described below), which are related to A% (b, 2) by the following lemma
(which is a special case of Olsson’s theorem [16, Theorem 1.4]).

Lemma 6.1. For all primes v|p, the following hold.

1. The G, -representation A, (b, z) is crystalline for all n and b,z € X (K, ), and
Der(Ay (b, 2)) = AIR(D, 2). (17)

U,) of crystalline torsors.

v

2. The image of j, ,(X(K,)) in H (Gg,,U,) lies in the subvariety H}(GK
3. The extension [ A(b)] in ExtéKU (V,W) is crystalline.

O

Proof. As the statement of the lemma is slightly different from Olsson’s theorem as stated in [40], we explain
how to get from one to ther other. Let O(Wft’Q” (X;b,2)) denote the coordinate ring of the Q,-unipotent étale
torsor of paths from b to z. By [16, Theorem 1.11], this is an ind-crystalline representation (i.e. a direct limit
of crystalline representations), and moreover there is an isomorphism of commutative algebras of ind-filtered
¢-modules

Dar(O(x"% (X5, 2)) = O(x{™(X; b, 2)). (18)

To prove that A, (b, z) is crystalline, it is enough to prove that h_n>1 A, (b, 2)* is ind-crystalline. This follows from
Olsson’s theorem via the Galois-equivariant isomorphism

lim A, (b, 2)" =~ O(xy" % (X;b, 2)),
(see for example Hadian [29, 2.12] or Kim [34, §2]). This implies (1) and (3), since subquotients of crystalline
representations are crystalline. The deduction of (2) from Olsson’s work is explained in [34, §2]. u

When b = z, the isomorphism (17) is an isomorphism of algebras (this follows from the statement that the
isomorphism (18) is an isomorphism of Hopf algebras when b = z [46, Theorem 1.8]), and hence on graded pieces
is uniquely determined by the isomorphism

Hgg(Xq,) = Der(Hg (X, Q).

Since the associated gradeds of AR(b, 2) are independent of z (i.e. are canonically isomorphic as z varies), and
similarly for A, (b, z), from (17) we obtain a commutative diagram with exact rows whose vertical maps are
isomorphisms

_ U*
0—— Dcr(He?t(X7Qp)*) Dcr(V®2) Der(Az(b, 2)) —— Der(A1(b, 2)) —— 0
00— H3(Xi,)" ———— Vii? AR (D, 2) AR(b,2) ——— 0

Hence if we define Wyg := Dgr(W), and

AR (b, 2) == AR (b, 2) / Ker(VO245 — Wyr),
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then we obtain an isomorphism of filtered ¢-modules D, (A(b, z)) ~ AR (b,2) . When b= z, we have that
A4R(b, 2) inherits the structure of an associative unital Q,-algebra from AJR(b). Since the action of w{®(X,b)
on I? A9R(p) is trivial, the kernel of

A3 (b) — AT (D)

is TR (X, b)-stable, and hence there is a quotient
AR = AR/ Ker(VE245 — War) @ Ox
in CIR(X), and a commutative diagram

~

2 AR ——— AdR(b, 2)

T

S AR = AR(p, )

for all z € X(K). We similarly define

AT(Y)(b, 2) := AFH(Y)(b, z) / Ker(Var(Y)®* — War)
ARV (b, 2) := ASR(Y)/ Ker(Var (Y)®% — War) @ Oy

6.3 The Hodge filtration

In this section we recall Hadian’s description of the Hodge filtration on AYR(Y)(b, 2) as the fibre at z of the
Hodge filtration on the canonical extension of AIR(Y) to X.

Definition 6.2. By a filtered connection V = (V,V, F*) we shall mean a vector bundle V together with a
connection V and a decreasing, exhaustive, separated filtration (F°V) by sub-bundles, satisfying the Griffiths
transversality condition

V(F'V)c Q'@ F=ly

for all 7. We similarly define a filtered connection with log singularities. We sometimes write a filtered connection
as (V, F'*) and sometimes simply as V. O

Definition 6.3. Given a unipotent connection ¥V on Y, we shall denote by V" the canonical extension of V

to a connection on X with log singularities along D, which exists and is functorial in V by Deligne [21, §I1.5,
Proposition 5.2] (although this construction is analytic, by GAGA it implies the corresponding algebraic result
- alternatively see [2, I1.4] for a purely algebraic proof). O

Proposition 6.1 (Hadian [29, Proposition 3.3]). Let £ and F be filtered connections on X with logarithmic
singularities along D. Then the group of isomorphism classes of extensions of € by F (in the category of filtered
connections on X with logarithmic singularities along D) is isomorphic to the first hypercohomology group of
the complex

FOE*@F) 5 Qe F Y& @ F)
where V denotes the associated connection on the internal Hom bundle £* & F. O

By computing these hypercohomology groups in the case & = AR, (V) and F = Vygr(Y)®" ® Ox,
Hadian proves the following lemma (note that in [29], (X, Y, ASR(Y)a Vig(Y)) is written as (C, X, PSR, Tyr)).

Lemma 6.4 (Hadian [29, Lemma 3.6]). There exists a filtration of AR (Y)" by vector bundles (F? AIR(Y)can)
such that

1. For all n, the sequence of connections
0 — Ox @ Var(Y)®" — AdR(y)ean _ gdR (yyean (19)

respects the filtrations, where Ox ® Var(Y)®" is given the filtration induced by the Hodge filtration on
Var(Y)®™,
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2. For all n, the filtration F? satisfies Griffiths transversality, and hence gives AR (Y)" the structure of a
filtered connection for all n.
3. In the fibre at b, the unit element e,, € b* AR (Y) ~ AIR(Y)(b) lies in b* FOAIR(Y).

Moreover, a filtration F* satisfying these properties is unique up to isomorphism of filtered connections. O

Remark 4. Tt is easy to see that the analogous theorem for the bundle A% (Y) on Y is false: since every extension
of vector bundles on Y admits a splitting, every unipotent vector bundle on Y is trivial. Hence there will be
many ways to lift the Hodge filtration on the graded pieces and satisfy Griffiths transversality. Hence the content
of computing the Hodge filtration on the AR (Y) is contained in computing its canonical extension to X. [

Remark 5. There is a possible point of ambiguity in the statement of [29, Lemma 3.6]. It is not the case that
there is a unique Hodge filtration on AR (YY) guch that (19) is exact and Griffiths transversality (even for
ASR(Y)ean) In loc. cit. the author proves uniqueness of the extension class of AIR(Y)" in the category of
filtered connections, using injectivity of the map

EXtcliR,ﬁl(Aiffl(Y)Cana Var(Y)®" ® Ox)
= Bxtip (AR (V)" FP AR (Y)*"), (Var(Y)®" ® Ox, F*Var(Y)®" ® Ox))

To obtain uniqueness of the filtration itself, one must rigidify by imposing conditions on the filtration at the
basepoint (this is already true when n = 1). Needless to say this distinction is not important in the context of
Hadian’s paper and does not affect the main results. O

The Hodge filtration on AR (Y)(b, 2) is
FIASR(Y)(b,2) = 2" FLASR(Y).

The Hodge filtration on AR (X)(b, 2) is the filtration induced by the surjection AR (Y)(b, 2) — AIR(X) (b, 2).
For our purposes, we will be interested in a mild generalisation of Lemma 6.4, where instead of considering
AIR(Y) we consider sheaves coming from other quotients of the universal enveloping algebra. In the following
corollary, we let W be any filtered quotient of Var(Y)®", and let B be the corresponding quotient of the
connection AR (Y'). Hence the map AR (Y) — AIR, (V) factors through AR(Y) — B, and B is an extension

0= W®0y = B— AR (Y)=o0.

Corollary 6.2. There is a unique lift of the filtrations on A (V)" and W ® Ox to a filtered connection
structure on B such that in the fibre at b, 1 lies in b* F°B3. O

Proof. The category of filtered K-vector spaces is semi-simple, so the quotient map Vd%" — W admits a filtered
section, inducing an isomorphism Vggr (Y)®" ~ W & W'. Hence

Extg a1 (Ap 1 (V)™ Var (Y)®" @ Ox) =~ Extg 51 (Ag2 1 (V)™ W @ Ox) @ Extgg g (AsS, (V)" W' © Ox)
and
Exctgr (AR (V) Var (Y)®" © Ox) = Extgr (AR (V)™ W @ Ox) @ Extgr (Al (V)™ W' @ Ox).

Therefore uniqueness of the lift of the filtration on AR, (V) to AIR(Y)ean given conditions on b* ASR(Y)
implies uniqueness of the lift of the filtration on AR, (Y to B given conditions on b*B. u

To compute the Hodge filtration on AIR(X) (i.e., to carry out the above for a projective curve), we may
compute the Hodge filtration on the universal connection of an open affine Y, and then take the quotient to
get the Hodge filtration on the universal connection on the projective curve X. This will be explained in more
detail in the next section.

6.4 Universal pointed objects

Definition 6.5. For simplicity we assume that all the points of X —Y are defined over K. Choose
N0s -« M2g+r—2 € HO(Y, Q') a set of differentials whose image in Hjy (Y) forms a basis. We will henceforth
assume that this basis is chosen such that no,...,n,-1 is a basis of H%(X,Q'), and 1, ...,n2y—1 form a basis
of Hiz(X). Let R = @®;>0Var(Y)®" be the tensor algebra of Var(Y). Hence R may also be thought of as the
free associative K algebra on 2g +r — 1 generators Ty, ..., To44r—2, where the T; are the dual basis to the n;.
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Define R,, to be the quotient of R by the 2-sided ideal generated by Vyr (V)2 Let A,(Y) := R, ® Oy be
the corresponding trivial vector bundle, and define a connection V,, on A, (Y):

2g+r—2
V:Rn®0y%Rn®Q%/;w®1»—>f Z Tiw @ ;.
i=0

O

The following theorem of Kim says that (A, (Y),1), is a universal pointed pro-object in (C4®(Y),1), and
hence (A, (Y),1) ~ (A4R(Y), 1).

Theorem 6.3 (Kim [34, Lemma 3]). For every n-unipotent pointed connection (V,v) there is a unique map

(An(Y), 1) = (V,0). O
The isomorphism AR (Y) ~ A, (Y) gives a trivialisation
AR(Y) >~ @ Var(YV)®' ® Oy
We shall refer to the bundle isomorphism AIR(Y) ~ @™ Vyr(Y)®* ® Oy, and the induced vector space

isomorphism AR(Y) (b, 2) ~ &P (Var(Y)®* as the affine trivialisation of A,, (relative to the basis (1;)).

6.5 Computation of the Hodge filtration

We now explain how to use this to algorithmically determine the Hodge filtration on the Qp-vector spaces
AR (b, 2). Unlike the computation of the Frobenius structure, this requires no particular ingenuity, as results of
Kim and Hadian reduce the problem to elementary calculations in computational algebraic geometry.

Definition 6.6. Since Wyr is a quotient of A2V g, we have a surjection
T VdR(Y) ® VdR(Y) — WaR.

Let S1,...,Sq be a basis of Wygr, and define 7;;;,,0 <¢,5 <29 +r—2,1 <k <d, by

d
T(Tz X Tj) = ZTiijk.
k=1

By definition this map factors through Vir ® Var, and hence by our choice of basis differentials, 7;; is zero
whenever i or j are greater than 2g — 1. Note that the condition that the map factors through A2V gg is equivalent
to the equations

Tijk + Tjik = 0, 0<4,j<29—-1,1<k<d.

Z [m:] U [n5]7ij6 = 0, 1<k<d. (20)
0<i<j<2g—1

By Theorem 6.3, the connection on AR (Y) is given as follows:

2g+r—2 29+r—2 d
I Z 1n; @ T}, T — + Z ZTijknj®Skv Sk — 0.
i=0 =0 k=1

The Hodge filtration on A(X) is computed in two stages:

1. Compute the maximal quotient A (X)|y of AYR(Y') whose canonical extension to X defines a connection
without singularities.
2. Compute the Hodge filtration on AR (X).
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6.5.1 Computing A(X)

Lemma 6.7. The connection AR (X)|y is the maximal quotient of A (Y") which extends to a connection on
X without log singularities. O

Proof. By definition A% (X)|y extends to X. By Tannaka duality, the claim is equivalent to the saying that
A4R(b) is the maximal quotient of AR (Y")(b) for which the action of 7{% (Y, b) factors through 7R (X b). Passing
to enveloping algebras, this is equivalent to the action of AR (Y)(b) factoring through ASR(X)(b), which implies
the lemma. |

We deduce that AR (X)|y is the unique quotient of A9R(Y) which extends to a connection on the whole
of X without log singularities and fits in a commutative diagram with exact rows

0 ——— War ® Oy AdR(Y) A?R(Y) ——0

R

0 —— War ® Oy —— AR (X)]y —— AF(X)|ly —— 0.

Let C(Y/X) C (0o, -.,n2g+r—1) be the subspace of H°(Y,) spanned by the differentials 1o, ..., m2g4+r—2. We
will show that there are unique &;,...,&; in C(Y/X) such that

2g—1 d
11— — Z n: L5 — kaSk, T — + Z TijkNj @ Sk, S; — 0 (21)
1=0 k=1

0<j<2g—1,1<k<d

defines a connection on X, and give an algorithm for finding them. We solve for the £, by computing the
canonical extension for a general choice of &, and working out the condition for this extension to have no
singularities.

For each x € D(K), let t; € K(X) be a parameter at x. Let U, be a Zariski neighbourhood of = such that
t, has no poles on U, and U, N D = z. To compute the canonical extension of A% (Y’), one has to find, for each
x € (X —Y)(K), connections (A;,V,) on U,, with log singularities along z, and charts (i.2. isomorphisms of
connections)

Yo+ Alv,ny — AR |u,ny-
Let S be the section of
K(1) » K(0)/t K[

defined by sending the equivalence class of >, a;t’ to Yoic o a;tt. Let I be the formal integration function
I: @Z‘<_1K.ti — EBZ'<0K.ti; Zaiti — Z %ti+1.
For a global function f € K(X) or differential w € Q}((X)‘K, let loc,(f) or loc,(w) denote its image in K ((t,))
or K((t;))dt, respectively.
Lemma 6.8. Let f 5, gk and h;y , be elements of K((¢,)) satisfying

fiw =1 0S8(ocy(ni)), hika = Z TijkJja-

0<j<2g-1

Gho=—108 (Z(dfi,w —locy (1)) hik,e — Z Tijk fi,zlocg(n;) — 100z(§k)> .

i 0<j<2g—1

Let A, be a trivial bundle on K[t,] with sections 15,7} (0 <3 <2g+17—2),S5,,.(1 <k <d), and let ¢, be
the isomorphism
Vot Aglvany — AR |u,ny-

given by
2g+r—2 d d
13: =1+ Z fi,wﬂ + ng,w‘s’ky E,w = E + Zhik,mska Sk,z = Sk; (22)
=0 k=1 k=1

Then there are unique connections V, with log singularities on (A,), such that (¢,), form charts extending
AR(Y) to a connection with logarithmic singularities on X — Y. O
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Proof. The connection V, is unique if it is exists. Since v, is an isomorphism of connections we deduce that
the connection V, must be given by

2g+r—2 d 29+r—2 2g+r—2
1z = — Z (mi —dfiz)Ti 0 + Z (dgk,x - Z (dfie —ni)Pik,e — Z Tijkfi,xﬁj) ® Sk.z
i=0 k=1 i=0 Jj=0
d 2g+r—2
Tiar Y (dhm + > mw) Skas Sk 0.
k=1 §=0

It follows from the formulas for f; ., gk » and hg , that this connection on K((¢;)) has poles of order at most
one. n

In particular, this lemma implies that to compute f; ;, gk, and hix 4, it is enough to compute the t,-adic
expansion of the w; to sufficient accuracy.

Having determined the connection (AR(Y)" V), we now determine the quotient connection without log
singularities (A (X),d 4+ A). Since we are looking for a quotient of A(Y)" of the form (21), the condition
that d + A extends to a connection without log singularities is exactly the condition that one can choose & such
that, for all x,

2g—1 2g—1
Res (Z (dfiz — locy (i) ik o Z Tijk fizlocg(n;) — locm(fk)> =0.
=0 7=0

By the exact sequence

Res,

0 C(V/X) ®55 6y K =2 K =0

such & exist if and only if
2g—1 2g—1
> R%<§:dhx—b%mz Rik,e + }:nmﬁzb%Wﬂ>=0
z€D(K) =0 7=0

Since ZmeD(K) Resy(fizlocy(n;)) = [m:] U [n;] by Serre’s cup product formula, we can solve for & by (20).
Explicitly, the residue of & is equal to the residue of

2g—1 2g—1
dgk,x - Z (dfz,m - z zk x Z Tz]kf],mnk (23)
=0

By inspection, in order to compute these functions in practice, one simply needs to determine constants
B(i,j,x) € K (0<i<2g+r—1,—m < m) having the property that

m—1

loca(n:) — Y B, j,x)thdt, € t7 K [t,]dt,

j=-m

where m is the maximum over all ¢ and = of the order of the pole of n; at x.

6.5.2 Computing the Hodge filtration

To explain how to compute the Hodge filtration, we recall some elementary properties of differentials on curves.

Lemma 6.9. Suppose there is a function g € H°(Y,Oy) and constants ju;, g <i < 2g, such that for all
x € D(K), the function g — > ; fi » has no pole at . Then g is constant and all the y; are zero. O

Proof. For g and p; as in the lemma, we have that dg — ZZ g uml has no poles (recall df; ; = ;). Hence
dg — ZZ o 1im; defines an element of HY(X,Q'). Since [no],...,[n2g—1] is a basis of Hlz(X), the lemma
follows. u

It follows that given any tuple (w;)zep(x) € HIGD(K) K ((t,)), there is a unique choice of g € H°(Y, O) and

i € K (g <1< 2g) such that g(b) = 0 and for all z in D(K), w, — loc,(g) — ngg ! i fi.z does not have a pole
at x.
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Definition 6.10. As above, let r denote the degree of D over K, and let m denote the maximum over all
x € D(K) and 0 < i < 2¢ of the order of the pole of 7; at x. Denote by II the rm-dimensional K-vector space

Ht—mK ldt, /K[t,]dt

Define functions r : I — H°(Y, O) and ¢ = (co, . . - Cogtr—1) : I — K®Q®9+7) by the property that for all 7 in II,
m = loc,(r(m)) + Z ci(m)locg (w;) mod H t Kt (24)

and r(m)(b) = 0. O
By Lemma 6.4, FO AR is uniquely determined by the following properties:

e There is a commutative diagram of bundles

FOT? AR (X) ——— FZAR(X) —— FOAR(X)

| | |

War ® Ox ———— TAM(X) s AR(X)

where ZAR(X) is the kernel of the surjective map of connections
AR (X) = (Ox,d).
Passing to the associated map of gradeds defines an isomorphism
gr FPAM ~ Ox & F'Var © Ox & FOWar © Ox.
e In the fibre at b, 1 € Agr(b) is in the image of b* F AR,

An elementary calculation shows us that H°(Y, FCA{R(X)) has basis of sections 1,7}, ...,To,—1. To compute
FO AR we need to lift these to determine the bundle FO AR, Suppose they lift to sections 1 + Zzzl il @ Sy
and T; + 22:1 cﬁC ® Si. Then by the above computation of the charts defining the bundle AR, we find

Lemma 6.11. The functions 7 are given by 7f = 7((gx.»).). The functions ¢ are constant and are given by

Cill{c = ¢i((gr,z)x)- O

Proof. We need to check that the sub-bundle of A9F|y spanned by 1+ ZZ=1 Sy, T; + Zgzl cHSy (g <
i < 2g), and Sy (do < k < d) extends to a sub-bundle of AR, Via the charts 1), the corresponding sections of
AdR|; _, are given by

d 2g—1
_1(1+Zr1€{sk):1 Zfzw zx+z — Gk,x Skwa
k=1

2g—1

d
(T + Zcﬁsk) =Xz + z:(cﬁ€ - Z Tijk f5,0) k.o
k=1 k=1 =0

U3 (Sk) = Sz

For this O(U, — z)-module to be the localisation of an O(U,)-module, it is sufficient that there are functions
Ois(g<i< 2g) and xx. (1 <k <d)in H(U, — z,O) such that

d 2g—1 d d
Y S+ Y 0T+ S+ xkady 'Sk € HO (U, ATR(X)).
k=1 1=0 k=1 k=1

By examining T;-coordinates, we find that 6; , = f; , mod H°(U,,0). For k > dy we take 0 = gk,«- Hence the
only non-trivial condition on the rf and ¢ is that for d — do < k < do,

2g—1

gk,x - Z Cflgfi,a: - 71]1;1 € HO(vao)v

1=0

for all , which hold by definition of the functions r and c. u
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6.6 The universal connection of a hyperelliptic curve

In this subsection we use the hyperelliptic splitting to provide a simple description of the Hodge filtration on
AR (b, 2) when X is hyperelliptic. In general, given an automorphism o of X, fixing the point b, by the universal
property of AR, we obtain a unique morphism AR — o* AR sending 1 to o*1. The connection o* A%R is in
a natural way isomorphic to AIR. If o(Y) = Y, then it will also be the case that o*AR(Y) is isomorphic to
AdR(Y). In this case the connection structure on o* AR is given by

2g+r—2
11— — E Tiv ® o*w;.
i=0

Restricting to the fibre at b, we obtain an automorphism of the algebra AYR(Y)(b). For example, suppose X/Q
is hyperelliptic, given by

y? = f(z) = 2*%% + agy 12?4+,
Y = X — {oo*}, and w; = 2'dz/2y. Then pulling back by the hyperelliptic involution w sends AR (Y) to the
connection v ® 1 +— Z?i§r_2 T;v ® w;. Hence we deduce that with respect to this affine trivialisation, at any
Weierstrass point b, the automorphism on the algebra AR(Y")(b) induced by w is simply given by T; — —T;.

Definition 6.12. For an effective divisor D on X whose support has points z1,..., 2, in an algebraic closure,
we let D[1] denote the divisor D + Y"1 | z;. O

Lemma 6.13. We have the following:

1. The constants cin are independent of basepoint.

2. Suppose X is hyperelliptic, with defining equation as above, and the 7; are taken to be a K-linear
combination of the basis differentials w; = 2'dz/2y. Then cfl(z) is zero for all i and k, and & =0 for
all 1 < k <d.

3. Suppose 1o, . . .,n2g—1 are differentials in H°(X, (D)), for some effective divisor D, and n,...,n,—1 are
a basis of H°(X, Q). Then we have that for all k < 29 — 1, r}f € H°(X, D[1]).

O

Proof. For part (1), we use the characterisation of ¢;; from Lemma 6.11. By (24), changing the basepoint b
changes r by a constant, but does not alter the r;(m).

For part (2), it suffices to prove this after a finite extension of the base field, and by part (1) we may assume that
b is taken to be Weierstrass. As we did in the étale setting, we observe that w then induces an automorphism
of the bundle Aly. With respect to the affine trivialisation of A at b, w acts as -1 on the Vgg component, and
acts as 1 on the Wyr component. By functoriality, the involution must respect w, and hence we conclude all
the rin must be zero. Similarly, by the explicit description of & given in equation (23), we see that the residue
of & is equal to the residue of a sum of differentials which are even with respect to the hyperelliptic involution,
and hence zero. For part (3), this follows from the defining property (see (24)) of the function ¢ used to define
the ¢/ |

We now explain how to carry out some of these calculations for a hyperelliptic curve. We consider X/K given
by y2 = f(x) = 229%2 + agg 12?9 + -+ 4+ ag, and let Y = X — {oo®} and w; = x'dz/2y. The set {wo, . .., w2y}
forms a basis of Hl(Y), and the set {wy,...,w,—1} forms a basis of H°(X, Q). In general wy,...,ws,—1 will
not form a basis of H} (X), so we take 1, ..., 724 in the K-span of wy, ..., wsy forming a basis of HJg (Y') such
that 7o, ..., 7g—1 form a basis of H(X, Q') and 79, ..., 7241 form a basis of Hjp(X). Let Wyr be any filtered
quotient of A2V 4r. By truncating the power series expansion of z29%2,/f(z~1), we find polynomials ficot In
uK[u] such that

wi — df; € v K[u]du.

Similarly we find the functions g; .o+ and h; oo+.
In the notation of the previous section, r = 2, m = g, and for x = c©
be u := x~!. The function

+ we may take the uniformiser t, to

(e,r) + (u™K[ul/K[u]) x (v Klu]/K[u]) - H*(X,0(go0)) x K*

is given as follows: let s(z) = Y_7_, s;u™" be a representative of an element of u™9 K [u]/ K [u]. For any polynomial
s(z), we have c(s(z), s(x)) = s(x) and r(s(z)) = 0. Define B = (B;;) by loce+ (witg) — Y Bijuldu € K[u]du.
Then (c(s(z), —s(z)) = 0 and r(s(x), —s(z)) = B~!(s), where s := (s1,...,54).
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6.7 Frobenius structure on the universal connection of a hyperelliptic curve

In order to complete the description of the filtered ¢-module structure, we need to describe the Frobenius action
on the fibres AR (b, 2) of the connection AR, Although it will not be needed in this paper, for completeness we
briefly outline how this computation might be carried out for a general curve.

Let Xp, be the special fibre of a smooth model of X over Z,, and let ¢ be an overconvergent lift of the
absolute Frobenius morphism to some wide open subspace in the rigid analytification of Xq, . The analytifications
of the pointed connections (\A,,, 1) may be viewed as universal pointed objects (Al , 1) in the category of unipotent
1socrybtalb on Xp,. The action of Frobenius on the category of unipotent isocrystals induces a Frobenius structure
on Al , and one may reduce the problem of computing the action of Frobenius on A% (b, 2) to that of computing
this Frobenius structure.

For a hyperelliptic curve, we use the hyperelliptic splitting principle to determine the filtered ¢-module
AR (b, ) when b = z is a Weierstrass point. This gives a characterisation of the ¢-module structure of AR(b, 2)
for general b and z in terms of Coleman integrals.

Lemma 6.14. 1. Let X be a hyperelliptic curve, and 7; as in Section 6.6. With respect to the affine
trivialisation, the unipotent ¢-equivariant isomorphism

Qp D Var & War = AdR(b, Z)
is given by

1 0 0
ST [ 1 0
Zlgkgd (ZOSi,ngg—l Tijk sz 77i77j) Sk ZO<7, j<2g—11<k<d ~TijkL; ® Sk f i 1

modulo F° Hom(Vgr, Wqr).
2. For general smooth projective X, there are constants cfk, independent of z, such that the ¢-equivariant
isomorphism is given by

1 0 0

229 ! T; fb i 1 0

Zlgkgd (sz €k + Zogi,jgzg—l Tijk sz 77i77j) Sk ZO<z<2q,l<k<d Zo<]<2q Tijk fb ni) 17 @Sk 1
O

Proof. We compute the isomorphism as the composite of ¢-equivariant isomorphisms
Qp ® Var @ War — AR(b) = AR(D, 2).

We compute the latter isomorphism first. By definition, such an isomorphism is given by iterated Coleman
integrals, as in [10, Corollary 3.3]. More precisely, for all z1,29,23 in Y(Q,), the unipotent ¢-equivariant
isomorphism

AR (21, 2) = AM(21, 23)
is given by

2g—1

O<’L<]<2g 1 22

Ti = E - Z Tz]k/ U & Ska
z2

0<j<2g+r—2,1<k<d
Sk — Sk.

This proves part (2). For part (1), we compute the other isomorphism. By Lemmas 3.6 and 3.7, we know that,
modulo F°Hom(Vgr, Wgr), the ¢-equivariant splitting is given by T;— Zj,k Tijk fzbe 7; @ S. Again, by
the definition of Coleman integration we have

AR (D, 2), AT (b, 2) = > / 0T = > Tijk (/ m) </Z+b_Dnj>®Sk

0<i<yg

and for ¢ < g, we have fj(b) = sz ni+ Lo p M- u
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Lemma 6.15. 1. Let X be a hyperelliptic curve, and 7; a basis of Hjz(Y) as in Section 6.6. Then the
generalised pre-height of A(b, z) is given by

hp(A(b,2) = (‘Tf(z) > T /bz(mﬂj —1j"i) — /bz i /wb(b) nj — /bz n; /wb(b) m)) Sk

k 0<i<j<2g

2. Let X be a general smooth projective curve, Y C X and (7;) be as in Section 6.5 and £ as in Section 6.5.
Then

ﬁpm(b,z)):Z(—r,?(zw/bzek— >y cz;/:m 3 /bz(nmj—njm)— 3 ’z/bn> 5.

k 0<i<g 0<i<j<2g g<i<2g

O

Proof. Recall that Lemma 3.9 gives an explicit formula for the p-adic height of a mixed extension given a
representative for its class in FO\U(Q,, Var, War). Recall from (11) that such a representative is given by
(sf)~1 o s?, where s? and s are isomorphisms Qp @ Var ® War which commute with the Hodge filtration and
Frobenius action respectively. Hence the result follows from Lemma 6.14 and from the definition of r,f and cg.

|

A corollary of Lemmas 6.13 and 6.15 is the following explicit general formula. Let ng,...,n24—1 be
differentials of the second kind in H°(X,Q(D)) for some effective divisor D. Let |D|g, denote the reduction
mod p of the support of D, and let W C Xg, denote the tube of p-adic points which are not congruent to |D|
mod p.

Proposition 6.4. Suppose m := p;(J) —1>r —g. Then there exist constants a;jk, bijk, Cijk, Dik, Cik, Tational
functions s € H°(X,O(DI[1])), and differentials of the third kind &, such that

X(Qp)U nW C {Z eW: RTl,...,T,.,g(Fly .. .,Fm) = 0}7

Fo(Th,...,Tn,2) = Z aijn Ty + Z bijkTi/Z77k+ Z bir T

1<ij<r—g 1<i<r—g,0<5<g b 1<i<r—g
z z z

+ E Cz’jk/ 1M + E Cik/ i +/ &k + Sk
0<i,j<2g b 0<i<2g b b

O

Proof. By Proposition 4.1, the set X(Q,)2 is contained in the intersection of the zeroes of Fj. Using the
identity [(wiw; +wjw;) = [w; [ w;, we can write the formula for the generalised pre-height as > ¢;; sz wiwj +

Zciszwl-qtsznJrs. ]

7 Computing X (K,)u
7.1 Theorem 1.2, general case

We now return to the setting of Section 5.2. Let X be a curve of the form
P =a2% +azt +aax? +1

with a € Ky, where Kg is Q or a real quadratic field, and the base field K is a totally real extension of Kj.

Let Ty, denote the set of primes of potential type V reduction. Let L,,| K, be a finite extension over which
X acquires stable reduction. At each v in V) we choose an ordering of the two components of the special fibre of
the stable model of X over Op, . Over such an extension, the dual graph of a minimal regular model is then a
“line”, i.e., a graph with vertex set {vg,...,v,} and edge set {eg,...,e,—1} where e; is an edge from v; to v;y1.
Define 7, : X(K,) — Q to be the map sending a point z to i/n, where v; is the unique vertex containing the
reduction of x (note that the ratio i/n is independent of the choice of extension L,,). Finally, if « is a function
from Ty v to Q, we let X (K), denote the set of rational points for which m,(z) = a(v) for all v € Ty v
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Theorem 1.2. Let Ky be Q or a real quadratic field. Let K|Kq be a totally real extension. Let X/ Ky be a genus
2 curve in the family y* = 25 + az* + ax?® + 1 whose Jacobian has Mordell-Weil rank 4 over K. Let b € X (K)
denote the point (0,1). Assume that there is a prime p of Q such that

e The prime p splits completely in K|Q.
e The curve X has good reduction at all primes above p, and the action of Gx on E[p| is absolutely irreducible.
o If E has complex multiplication by a CM extension L, then L is not contained in K ().

Then there exist constants Ay, py € Qp for all v € Ty v with the following property: Suppose zy is a point in
X(K) such that fi(20) A f2(z0) is of infinite order in N*E(K). Then for all a: Ty — Q, X(K), is contained
in the finite set of z in X (K,) satisfying G(z) = 0, where

_ Fi(2) + Lo,y Mo(@@) = 1) Fa(2) + X e, tol@(v) = 7 (b))
Gle) = det < Fuleo) + ey s Mlma(0) = m(0) Fa(z0) +Spery v ulmal0) = . (5) > |

z 1 z b
F1(2> = / (U.}le — wle) + 2/ WQ/ w1,
b b w(b)

z 1 z b
Fy(z) = 2/ (—wows + awwa + 2wiwy) — ix(z) — / wo/ w3.
b b

7.2 Computing (cf,rf) for the Kulesz—Matera—Schost family

To complete the proof of Theorem 1.2, by Lemma 5.8, it will be enough to show that, with respect to a suitable
basis of Wyr /F°, we have

hy(A(b, 2)) = Shy([E1, E2]) = (Fi(2), —F2(2)).

We shall prove this by explicitly determining the functions f; ., gi », hi z, c¢H and constants ¥ from Section 6.

Let X be a hyperelliptic curve of the form y? = 2% + az? + a2? + 1. Denote by {oo*, 00~} the points at
infinity with respect to this model. Suppose b is a rational point of X and U (b) is the quotient of the fundamental
group defined in Section 1. Recall the maps f; and f; from the introduction. The set {wy,...ws} forms a basis
of Hip(Y) and a basis of Hj (X) is given by {no = wo, 1 = w1,m2 = aws + 2ws,n3 = w3 }. Let T, T1, T, T3 be
the corresponding dual basis. For the quotient AR (X), we find that all the & are zero, so that

3
1'—>*Z7M®Ti, le—>f Z ’r]i®(Tiijk), S — 0
i=0 0<j<3,1<k<3
extends to a connection on X.
Let wg = dz/2y denote the canonical Weierstrass differential on E. Let Tg 1 and Tg 2 denote the basis of
Hle(E — O) dual to [wE], [{E(UE] The set {SO = TE,OTE‘,O> Sl = TE’()TEJ7 SQ = TE,lTE,l} forms a basis of WdR;

and the set {Sp, S1} forms a basis of Wyr/F. Since the map 7 factors through A?Vgg, it is enough to specify
its values on the elements T; A T;. These may be calculated by observing that

filwel=[ml,  falwel =[],  filawsl =[m],  filawe] = nl.
Hence we deduce by equation (15) that
7(To NT1) = —So, T(Ty NT3) = —7(T1y N T) = =5y, 7(Ty ANT3) = —Ss.

With respect to these bases, we find that ¢/ =0 and r/ = (0, 1z(2) — 1x(b)).
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7.3 Local constants at primes of bad reduction

We now explain how to compute local pre-heights at primes away from p, under the assumption of Hypothesis
(H). First we explain why a non-trivial contribution at v € Ty can only arise when v is a prime of potential type
V reduction.

Lemma 7.1. Suppose X has potential good reduction at v. Then j, is trivial. O

Proof. Recall from [19, 1.5.8] that, given a profinite group G, closed normal subgroup H, and G-group A, we
get an exact sequence of pointed sets

HY(G/H,A") = HY(G, A) 23 H'(H, A).

Applying this when G = G,,, H = G, is the Galois group of a finite extension L,, of K, over which X acquires
good reduction. The commutative diagram

X(K,) Jo HY(G,,U)

e

w) - Hl(Gwa U)

X(
implies that the composite Res o7, is trivial. Hence to prove the lemma it is enough to show that U is trivial,
which may be seen from the fact that V and Sym? Vi are pure of weight —1 and —2 respectively over L. u

Lemma 7.2. Suppose E does not have potential good reduction at v. Then H'(G,,U) is trivial. O

Proof. We have an exact sequence of pointed sets
HY(G,,Sym? V) - HY(G,,U) — HY(G,,V).

Applying Lemma 3.8 with n = 0, we see that H'(G,,, V') = 0. Hence it is enough to show that H'(G,,, Sym? Vg) =
0. This is well-known (see e.g. [24, Lemma 2.10]), but we recall the proof for the sake of completeness. Let L,, be
a finite extension of K, over which E acquires semi-stable reduction. Then Resg,, VE is a non-trivial extension
of @, by Q,(1). Hence Sym? Vg is an extension

0—Qp(2) — Sym? Vi — (Syrn2 VE)/Qp(2) — 0,

and (Sym? V) /Qp(2) is a non-trivial extension of Q, by Q,(1). Then, arguing as in the proof of Lemma
3.8, we have H} (G, Sym? Vi /Q,(2)) = Hi (G, (Sym? Vg /Q,(2))*(1)) = 0, hence H(G,,, Sym? Vi /Q,(2)) = 0.
Similarly H'(G,,Q,(2)) = 0 for weight reasons. [ |

The only remaining case is where E has potential good reduction but X does not, which implies that X
has potential type V reduction. Again using injectivity of the restriction map we can recover js , from its image
in H'(Gr,Sym? Vi) which is determined (up to a scalar) by the following Lemma, whose proof will appear in

[12].

Lemma 7.3. For all v € T of potential type V reduction, the map
Jv : X(K,) = HY(G,,U)

factors as X (K,) — Q, = H'(G,,U), where the first map sends z to m,(z) — m,(b) and the second map is a
vector space homomorphism. O
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7.4 Completion of proof

We now explain how to use this explicit description of generalised heights on X to prove Theorem 1.2. This
gives the following proposition.

Proposition 7.1. With respect to the basis Sy, S1 of (Sym? VAR)/FC, the local heights EP(A(b, z)) and
hyp([E1, E2]) are given by

(Ab2) = (G +3 [ o0 [ wsi-R@s. BB ED =g [w [ ws

w(b) w(d)

Proof. We have an isomorphism H}(GP7 Vi) ~ Q,.TE,o using the basis of HJy (E) above, and given extensions
[F1] = M. TE o and [Es] = A\2.Tg 0. Then the class of [Ey, Es] in FO\U(Q,, Var, War) is given by

1 0 0
MTEo0+ ATEq 1 0
A1 280 AT o® S0+ MTEo®S0 1
Hence the pre-height of [Ey, Fs] is given by —A1 )y, and the result follows from Lemma 5.7. u

Hence we find
i (A(b, 2)) — hyp([Er, Ba]) = (F1(2), Fa(2)).

7.5 Examples

In this section, we give three examples of our Theorem 1.2 applied to specific curves X. In the first two examples,
we obtain a finite set of p-adic points containing X (K). In general, if the codimension of Sel(U) in H}(Gp, U)is
one, then X (K,)y will contain extra p-adic points that do not come from X (K). In practice, one can often use
the Mordell-Weil sieve in combination with the Chabauty-Kim method to determine X (K') exactly ([18], [25],
or [6] for an example in the context of the Chabauty—Kim method). Our SageMath code is available on Github

[7]-

751 FEzample 1: K=Q,a=31,p=3

The curve E3; has rank 2 over Q. To determine the local constants, we first need to find the primes of potential
type V reduction. X has potential good reduction at all primes away from 2 and 7, which are both of potential
type V reduction.

1. v =T7: modulo 7, the model y? = 2%+ 312* + 3122 + 1 reduces to y*> = (2% + 1)2. In particular, with
respect to this model, all Q7-points reduce to a smooth point of the special fibre, and lie on a common
component. Hence all Q7-points reduce to a common component of the minimal regular model over Z-.
Hence they reduce to a common component of the stable model of X over a finite extension of Q7, and so
by (H) the contribution at 7 is zero.

2. v = 2: we observe H'(Gq,,Sym? Vi) = 0, which implies that H'(Gg,,U) = 0. One way to see this is to
note that for H'(Qo, Sym? Vi) to be nonzero, it is necessarily the case that Homgg, (T5E, T3 F) has rank
bigger than 1, which means that the action of inertia at 2 must factor through an abelian subgroup of
GLy(IF3). This does not happen at a = 31, because E does not acquire good reduction over any (Z/2)? or
degree 3 extension of Q.

Hence our equation for rational points simplifies to F(2)Fx(20) = F1(20)F2(2). The set of solutions is tabulated
below. We find X (Qs)y appears to contain 8 non-rational points.
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z € X(IF3) x(z) €Z, | z€ X(Q)
0(37) (0,%1)
(0,£1) 2-34+2-3°4+2-3°+0(3)
34+42-32+2-31+2-3540(37)
1+0(@37) (1,£8)
(1,£2) 1+2-3+0(@37) | (7,4440)
1+4342-334+3'+2-33+037) | (3,39

(2,+2) 243+2-32+342.30 £ O(37) | (1, +240)
2+4+2:3+2-3242-3%34+2-31+2.35+2.354+0

2-37T+1+2:3+2-324+2-33+2-3'+0(37)
co® 371 4+1+42-35+2-3040(37

(3
(3
(
E
2+2-3242-3342-314+2.3°4+2-35+0(3") (—7’,1440)
(
(
(
(

7.5.2 Ezample 2: K = Q(v3), a =19, p=11, p = (2V/3 + 1)

It follows from the functional equations satisfied by F} and F5 that, for any zg, the zero set of
Fy(2)F1(20) — Fi(2)F2(20)

is stable under Aut(X), and F;((£1,£1)) =0. Hence the fact that each of the known rational points z
from Example 7.5.1 satisfied the identity Fy(2)Fi(z0) = F1(2)Fa(20) is a trivial consequence of the above
functional equations. It is natural to ask if one can find an example where Theorem 1.2 produces a non-
trivial identity between the F; evaluated on different rational points (analogous to ‘motivic’ identities between
p-adic polylogarithms evaluated at S-units, or p-adic heights of integral points on elliptic curves). Numerical
experiments suggest that it is rare for the formula in Theorem 1.2 to produce non-trivial identities (i.e. identities
that cannot be explained by the functional equations) that the F; satisfies on rational points, as when a curve
has many rational points relative to its Mordell-Weil rank, it typically has many potential type V primes.

However, there are instances where the theorem produces non-trivial identities between the values of F;(z)
on rational points. When a = 19 and K = Q(v/3), we find that E(K) has rank 2, the prime above 2 is the only
potential type V prime and the set X (Q(v/3)) has at least 28 points, coming from the Aut(X)-orbits of (0, 1)
together with the points

21 = (V/3,16), 20 = (—V3 + 2, —24V/3 + 40), z3 = (—=39V/3/71 + 98/71, —2736216+/3/357911 + 5551000/357911).

Local constants at v above 2: one can compute a semistable model of X over the totally ramified extension
L of Q3 cut out by the polynomial

F(t) =5 + 32t + 448t° + 358415 + 16096t* 4 28160t — 18432t% — 6912

by first computing a smooth model of E over L, for example as described in [10, §10.2.3]. Let 8 be a root of F
in L, and define v := £(8? + 86). Using this model, we can show that the regular semistable model of X over

L(+/3) has 9 irreducible components, and that the map 7, : X (K,) — {a/8:0 < a < 8} is given by

0 v(z(2) —1) > Lv(z(2)? +1—7v) >3
B—v(x(2)2+1-79)/2 v(x(z)—1)>1,2<v(z(2)?+1-7)<3
Z 1/2 v(z(z)2+1—7)<2
(v(a(2)? +1—=7) = 1)/2 v(x(z) - 1)

1,2 <wv(z(z)?+1-

7) <3
Lv(@(z)2+1—-7)>3

1 v(z(z) — 1;

where the valuation v is normalised so that v(2) = 1. For example, this tells us that 7,(z9) = 1/2. For 21, 29 and
z3, we are in case 4, since

v(x(21)? —14+7) =5/2,0(x(22)* —1+7) = 11/4,v(2(23)* = 1 4+~) = 11/4.
Hence m,(z1) = 3/4 and m,(22) = m,(23) = 7/8. We find that the divisor
3[z2] + [z3] — 6[21]
maps to zero in A2E(K) ® Q and in H*(G,, Sym? V). Working at a prime above 11, we compute that

3F)(29) + Fi(23) — 6F1(21) = 3Fa(22) + Fa(z3) — 6F,(21) = O(11'8).
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The vector space F(K) ® Q is generated by Py = (4v/3 + 7,24v/3 + 40) and P, = (1/3,16v/3/9). With respect to
these generators, we have f1(z1) = (=1, —1), fa(z1) = (1,0), fi(z2) = (0,1), fa(z2) = (=2, —1). Hence the images
of z; and 23 in A2E(K) ® Q are P A P, and 2P; A P respectively. Thus we have

/\'u = 8(F1(22) — 2F1(Zl)),

My = 8(F2(22> — 2F2(21>).

We deduce that X (Qq1)2 is contained in the zeroes of

(Fl(z) Y <c - ;)) (Palz) + MZ) - (FQ(Z) + (c - ;)) <F1(21) + ZJ> ,

ce€{0,1/8,...,7/8,1}. The Fy;-points of X are 4oo, (0,+1), (£2,44), (£3,£3), (£4, £5), (£5, £5). Because
X (Q11)p is stable under the automorphism group of X, we need only consider the residue disks corresponding
to the Fq1-points (0,1),(2,4),(3,3). We find the following points:

z € X(F11) x(z) € Zp z € X(Q)
6-11+6-112+6-113+7-117+10- 115+ 0117
(0,1) 10-11+3-112 +8-11* +5-11° +4-11° + 0117

3-114+5-112+5-113+9-11* +2-11°+3-1154+ 0
7-1145-112410-113+3-11* +5-11°+ 115+ 0

(
(
(
(
4-1145-11247-11* +5-11° + 9115 + O(
8-11+5-1124+5-113 +11* +8-11° + 7- 115 + O(
147112 410-11342-11* +5-11° 46 - 11° + O(
5-114+4-112+4-11° +3-11% +10- 11° + O(
34+43-11+5-1124+3- 113 +2- 111 +6-11° +2-11° + O(
(3,3) 346-114+7-11247-113+7-11* +6-11° + 0117
349-114+5-1124+5-11% +2-11% + 115 + 11° + O(
34+114+7-1124+4-113+7-11* +4-115+3.11° + O(
34+44-11+47-11247-11% +5-11° +2- 115+ O(
(

(

(

(

(

(

(

(

(

(

(

(

(

—394/3-98 —27362161/3—5551000
71 ) 357911

34+7-114+2-1124+1134+10-11*+8-11°+9-11°+ 0O
34+10-11+10-112+5-113+11*+8-11°+5-1154+ 0
34+2-1146-112+8-113+11*+9-11°49.115+ 0
34+5-1146-112+4+9-1134+7-11*+4-11546-115+ 0
24+7-11410-11°4+5-11+5-11* +8-11°+4-11°4+ 0
(2,4) 243-114+6-112+4-113+3- 114 +11°+7- 1154+ 0
24+10-11+8-112+3-11* +4-11°+ 011"
246-1146-1124+2-113+5-115+ 0
242-1149-112+1134+10-11* +4-1154+ 0
24+49-11+4-112+10-113+11* +6-11°+0O
245-1143-1124+8-1134+3-11* +4-11°42.115+ 0
2+114+4-112+113+4-11*+10-11°+8-1154+ 0
248 11+5-1124+2-113+9-11°+3.115+ 0

(V3 — 2,24+/3 — 40)

()

7.5.3  Ezample 3: Ko = Q(v/11), K = Ko(1/2883589 + 3072v/11),a = —1 — 512y/11

In general, a major drawback to applying Theorem 1.2 is the need to have enough rational points to solve for the
undetermined constants fi,, Ay, F;(20). For example, this is illustrated by the case K = Q(\/ 2883589 + 3072/11),
a = —1—512y/11. The curve X has potential good reduction away from primes above 2, 11,229 and 787. Under
GRH, the elliptic curve E has rank 1 over Ky and rank 2 over K. The j-invariant of E is not integral at the
prime above 2 (this is the reason for the choice of a) and the prime above 11, hence by Lemma 7.2 there are no
local contributions at these primes. The reason for the obscure choice of K is that it is quite rare to find a totally
real K for which F has rank two and X has non-trivial rational points. This particular K was constructed by
computing the Mumford representation of the divisor 2(0,1) — 2(0, —1).

The prime 787 splits in Ko. In the embedding v, : Ko — Qrs7 sending v/11 to 621 modulo 787, the curve
XQys7,0 has good reduction. In the embedding vs : Ko — Qrg7 sending V11 to 166 modulo 787, the factorization
of f modulo 727 is (2% + 1)3, hence the singular points of the original model are not Frgr-rational. The prime
vg splits completely in K, hence we obtain two primes w; and wsy of type V reduction, but in both cases the
function m,, is constant on X (K,).
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The prime 229 splits in Ky. In the embedding vs : Ky — Qg29 sending /11 to 34 modulo 229, XQu1,v
has good reduction. In the embedding v4 : Ko — Qa29 sending v/11 to 195 modulo 229, XqQ,,,5 has type V
reduction. U splits in K|Kj, hence there are two primes ws and wy for which the function 7, is non-constant.
Over K,,(229'/%), X acquires semistable reduction, and one can show that the target of the maps 7, is
{0,1/2,1}, with
ol ({0,1}) = {2 € X(Ku,) : valy, ((2)* +1) > 0}.

where val,,, is the valuation on K,,. The non-trivial rational points of X of small height X are given by

: V/ : .
the Aut(X)-orbit of 28835892+3072\/ﬁ, 1476400640@4'20185085 , and hence all of the (known) rational points

z satisty my,(2) = 1/2. To determine (a finite superset of) X (K,)s in this case, one would presumably have
to find some other way of constructing (and computing localisations of) non-trivial cohomology classes in
HY Gk, Sym? Vi), or dually of HY(Gk r, ad’ VE).

A Appendix: Universal enveloping algebras in unipotent Tannakian categories

In this appendix we recall certain notions regarding universal pointed objects in unipotent Tannakian categories.
None of the material is original. These objects are studied in [29, §2], [3, §3] and [11, §6.2] in the context of
specific unipotent Tannakian categories, but as we explain below, the constructions can be made in much greater
generality. A lot of the results are also implicit in [22], but formulated slightly differently.

A.1 Universal pointed objects in neutral Tannakian categories

Before we proceed to the properties of unipotent Tannakian categories, we record a tautological relationship
between changing fibre functors and twisting by path torsors. Let C be a neutral Tannakian category over a
field K, with fibre functors wy,ws. Via Tannaka duality, we view w; as an equivalence of strict tensor categories
from C to the category of representations of m1(C, w;). The torsor of isomorphisms of functors 71 (C; w1, w2) is a
(m1(C,w1), 1 (C,we))-bitorsor, giving an equivalence of categories

Wy ws & (M1(C,w1) —rep) — (7m1(C,wa) — rep)
Vi 7T1(C;W17LU2) Xr1(Cowr) V.

We deduce the following result.

Lemma A.1. We have an isomorphism of functors
tWeo we OW1 — Wa,

given by m1(C;w1,wa) X, (Cun) w1(V) = w2(V) being the map sending (o,v) to o(v), (for V in V, o€
71 (C1,w2)(K), v € wi(V)). -

When U = T&nUn is a pro-unipotent group over a field K, a representation of U will always mean a
continuous representation, i.e. one which factors through U,, for some n. The completed universal enveloping
algebra R of U is the completion of the universal enveloping algebra of Lie(U) with respect to its augmentation
ideal. An R module will always mean a continuous R-module.

Definition A.2. Let (C,w) be a neutral Tannakian category over a field K. We say that (C,w) is unipotent if
7m1(C,w) is pro-unipotent and for all V,W in C, the K-dimension of Exté(V, W) is finite. O

By Tannaka duality, the statement that 71(C,w) is pro-unipotent is equivalent to the condition that every
non-zero object W of C admits a non-trivial morphism 1 — W.

Definition A.3. Let C be a unipotent Tannakian category with fibre functor w. We say X € C is n-unipotent if
it admits a filtration X = Xy D X3 D ... D X,,+1 = 0 such that, for all ¢, X;/ X1 is isomorphic to a direct sum
of copies of the unit object 1 (this includes the possibility that X;/X;; = 0). Let C,, denote the full sub-category
of C consisting of n-unipotent objects (note that this is not a tensor sub-category in general). We denote by w;,
the restriction of w to C,. O

Lemma A.4. Let U be a pro-unipotent group over a field K. Let R be its completed universal enveloping
algebra. Let I be the augmentation ideal of R. Under the equivalence between representations of U and R-
modules, n-unipotent representations of U correspond to R-modules for which the action of R factors through
R/I"L. O
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Proof. Let X be a representation of U for which the action of R factors through R/I™*!. Then X is n-unipotent,
with filtration X; := I'X. Conversely, if X is n-unipotent with filtration (X;), then I annihilates X;/X; 1, hence
I™*! annihilates X. n

Define A,,(C,w) to be the K-vector space
Ay (C,w) := Hom(wy, wy).
More generally, for fibre functors w,v on C, we define
A (C;w,v) := Hom(wp, vy).

We also have an interpretation of A4, (C;w,r)* in terms of O(m1(C;w,v)). The pro-finite dimensional vector
space Hom(w*, v*) has a co-commutative co-product structure given by

H . ; . ®2
lim A, (C;w,v) — @An(c,w, v)

<—
[ (owe fvew))

where VW € C, v € w(V),w € w(W), and we identify f(v® w) € v(V ® W) with an element of v(V) @ v(W)
by tensor compatibility of v.

Lemma A.5. We have functorial isomorphisms of K-algebras

O(m(Cw,v))* ~ liqun(C;w, v)*.

Proof. Surjective homomorphisms
lim A (C; w, V) = K

which are compatible with the algebra structure correspond to non-zero tensor compatible morphisms of functors
from w to v, which are necessarily isomorphisms by [22, Proposition 1.13]. Applying a similar argument over a
general K-algebra S, we deduce that Spec(lig A, (C;w, v)*) satisfies the defining property of 71 (C;w, v). u

In the case when w = v, we obtain a Hopf algebra structure on lim 4,,(C,w) from this isomorphism. The
product structure obtained is exactly the product structure on End(w%

Definition A.6. We define the category C* of pointed objects as follows. An object of C¥ is a pair (V,v),
with v € w(V). A morphism of pointed objects f : (V1,v1) = (Va,v2) is a morphism f : V; — Vs in C such that
w(f)(v1) = vo. We say that (V,,,v,,) is a universal n-unipotent pointed object if V,, is n-unipotent, and for every
n-unipotent pointed object (W, w), there exists a unique morphism (V,,,v,) — (W, w) in C¥. We say a pro-object
((Viy0n))n>0) in C¥ is a universal pointed pro-object if for all (W,w) in C¥, there exists a unique morphism
(Vo,vn) — (W, w) for all n > 0. O

If, for all n, (V,,v,) is a universal n-unipotent pointed object, then (by definition) there is a unique way
to give ((Vi,vn))n>0 the structure of a pro-object in C*, and this pro-object is a universal pointed pro-object,
since every W in C is n-unipotent for n > 0.

Lemma A.4 implies that universal pointed pro-objects in unipotent Tannakian categories exist, and are
isomorphic to the completed universal enveloping algebra of U. An equivalent form of this Lemma can be found
in [11, Proposition 6.2.1 and Proposition 6.2.2].

Lemma A.7. Let (C,w) be a unipotent Tannakian category.

1. For all n, a universal n-unipotent pointed object (A, (C,w),e,) exists (and hence is unique up to unique
isomorphism). The pro-object ((A(C,w))n, (én)n) is & universal pointed pro-object in (C,w). Furthermore,
under Tannaka equivalence the universal pointed pro-object in C is canonically isomorphic, as a pointed
pro-m1 (C, w)-representation, to the completed universal enveloping algebra of Lie(m (C,w)).

2. Let (V,,, e,) be a universal n-pointed object in C*. Then, for any fibre functor v, we have an isomorphism

v(A,(C,w)) =~ A, (C;w,v).
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Proof. 1. This theorem is proved in [29, Theorem 2.1] in the case that Ext?(1,1) = 0. The general case
is proved in [3, Proposition 3.4]. In both cases, the proof is given in the context of specific unipotent
Tannakian categories of interest (e.g. unipotent Qp-local systems on XR > unipotent flat connections on
X/K, etc.) but the proofs work in a more general context. An alternative proof of these results is to use
Tannaka duality to reduce to the case where C is the category of representations of a pro-unipotent group
with finite-dimensional abelianisation, and w is the forgetful functor.

Take R to be the completed universal enveloping algebra of its Lie algebra. The Hopf algebra R has an
augmentation ideal I, and we define R,, := R/I"*!. By Lemma A.4, an object is n-unipotent if and only
if it is annihilated by I"T!. It follows that (R,,w(1)) is the universal pointed n-unipotent object: for a
pointed n-unipotent object (V,w(v)), the unique morphism R,, — V is just given by r — 7 - v.
2. If (A,(C,w), ey) is a universal pointed object, then by definition A, (C,w) represents the functor w,, with
isomorphism
Hom(A,(C,w),.) ~w

given by
(An(Cyw) L5 V) = w(f)(en).
||

We denote the universal n-unipotent pointed object of C* by A, (C,w), as in the lemma. By the universal
property, for all n > 1 we have unique morphisms of pointed objects

(An(C,w), en) = (An—l(caw)a 6n—l)

and as explained above, the inverse limit is the Tannaka dual of the completed universal enveloping algebra of
Lie(m1(C,w)), with (e,) corresponding to the unit element 1. We denote by I the kernel of the morphism

lim A, (C,w) = K
associated to the unique (pro-)morphism
lim A, (C,w)—1
defined by sending e,, to 1. Then under the identification of lim A,,(C,w) with the completed universal enveloping
algebra of Lie(m (C,w)), I¢ corresponds to the augmentation ideal.
A.2 Computing the graded pieces of A4, (C,w)

The vector space A, (C,w) has a filtration with graded pieces 1, Ker(Ax(C,w) — A;—1(C,w)), (1 < k < n). Under
the identification of A,,(C,w) with a quotient R,, of the universal enveloping algebra of Lie(m(C,w)) given by
Lemma A.7, this filtration is the [-adic filtration, where I C R is the image of augmentation ideal in R,,.

In [3], a cohomological construction of A, (C,w) is given, which gives an inductive description of the graded
pieces I, /IéJr1 of A,,(C,w) in terms of ext groups in C. As we will only need this when n = 2, we only state this
case (the general case is somewhat more elaborate, and can be found in [3, §3.6]).

Lemma A.8. 1. We have a functorial isomorphism
Extg(1,1) ~ (Ie/13)*.
2. We have a functorial isomorphism
(I12/12) ~ Ker(Ext}(1,1)®? - Ext2(1,1))*

where the cup product is the Yoneda cup product. Moreover the diagram

(Ie/Ic)®* = (Ext!(1,1)7)®?

12/13) — = Ker(Ext:(1,1)%2 -2 Ext3(1,1))*
cl+C C C

comimutes.



Quadratic Chabauty and Rational Points II 47

Proof. This is a special case of [3, Proposition 3.4]. n

This gives a cohomological description of the graded pieces of the central series filtration on 71 (C,w).
To explain this, we first explain how A, (C,w), which by the above is a quotient of the universal enveloping
algebra of 71 (C,w), can also be thought of as a quotient of the universal enveloping algebra of the maximal
n-unipotent quotient of 1 (C,w). Recall that the universal enveloping algebra of a Lie algebra L is isomorphic
to the tensor algebra of L modulo the two sided ideal generated by z ® y —y ® © — [z,y] for z,y € L. A more
general statement which implies the lemma below can be found in [11, Proposition 1.0.9].

Lemma A.9. Let L be a nilpotent Lie algebra, and let R be its completed universal enveloping algebra. Let

R be the universal enveloping algebra of L, and R, ::E/Tnﬂ, where I C R is the augmentation ideal. Then
the natural map R — R induces an isomorphism R,, ~ R,,. O]

Proof. This can be seen from the characterisation of R,, and R,, in terms of universal properties. Alternatively,
it can be computed directly: the map R — R,, is surjective and factors through R,,, hence it is enough to
show that this map is injective. By the description of R given above, we see that the ith term of the central
series filtration of L is contained I R. Hence the induced map L — R, factors through L — L,,, and hence the
surjection R — R,, factors uniquely through R — R by the universal property of R, and hence through R,,. W

Let Uy denote the maximal 2-unipotent quotient of 71(C,w), and let Lo denote its Lie algebra. Let Ro
denote the quotient of the universal enveloping algebra of Lie(m1(C,w)) by the third power of its augmentation
ideal. From Lemma A.9 we obtain an isomorphism Ig /13 ~ [Lay, Ly] © Sym? L&P. Taking exponentials yields a
short exact sequence

1= [Uy, Us] — I23/13 — Sym? U — 1.

Hence we obtain the following corollary of Lemma A.8.

Lemma A.10. We have a functorial exact sequence

1 — Ker(A? Extg(1,1) — Ext2(1,1))* — Uy — Extj(1,1)* — 1.
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