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We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised

height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated

integrals and give the first explicit nonabelian Chabauty result for a curve X/Q whose Jacobian has Mordell–Weil rank

larger than its genus.

1 Introduction

Given a smooth projective curve X of genus g ≥ 2 over a number field K, it is known by Faltings’ theorem that
the set X(K) of its K-rational points is finite, but in general there is no known method to determine this set
explicitly. When the Mordell–Weil rank of the Jacobian J of X is less than g, the method of Chabauty [15],
made effective by Coleman [17], can determine explicit finite sets of p-adic points containing the set X(K). In
many cases, this can give a computationally feasible approach to determine the set of rational points [42].

In a series of papers [35, 34, 36], Kim proposed a generalisation of the Chabauty–Coleman method, which
gives a nested sequence

X(Kp)1 ⊃ X(Kp)2 ⊃ · · · ⊃ X(K)

of sets X(Kp)n of p-adic points, each containing the set X(K), such that the “depth 1” set X(Kp)1 is exactly
the one arising from the Chabauty–Coleman method. Here p is a prime of K lying above a prime p which
splits completely and for which X has good reduction. When K = Q, Kim [34] showed that the Bloch–Kato
conjectures imply the finiteness of X(Qp)n for n sufficiently large. Coates and Kim [16] proved this eventual
finiteness (again for K = Q) in the case when J has complex multiplication. Recently, Ellenberg and Hast [23]
extended this result to give a new proof of Faltings’ theorem for curves X/Q which are solvable covers of P1.

In this paper, we consider two questions about the depth 2 set X(Kp)2, continuing our previous investigation
[6]:

Question 1. When can X(Kp)2 be proved to be finite?

Question 2. When can X(Kp)2 be computed explicitly?

The key technical construction which we use to study these questions is presented in Section 3. We define
the notion of equivariant generalised p-adic heights, inspired by Nekovář’s construction of p-adic height functions
[43]. We give a brief explanation of Nekovář’s construction for divisors on X. Recall that the local height on X is
usually defined to be a pairing on divisors of degree zero with disjoint support, and the global height is given by
the sum of local heights, which only depends on the class of the divisors in the Picard group of X. In Nekovář’s
construction, local and global heights are constructed as functions on isomorphism classes of mixed extensions.
Recall that the Qp-Kummer map allows us to associate to a divisor D in Div0(X) a Galois cohomology class
κ(D) ∈ H1(GK , V ), where V := H1

ét(XQ,Qp(1)). Equivalently, we may think of κ(D) as an isomorphism class
of Galois representations of the form

ρ =

(
1 0
∗ ρV

)
,

Received 1 Month 20XX; Revised 11 Month 20XX; Accepted 21 Month 20XX

c© The Author 0000. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oxfordjournals.org.



2 J.S. Balakrishnan and N. Dogra

where ρV is the Galois representation associated to V . Nekovář associates to a pair of divisors D1, D2 with
disjoint support a Galois representation of the form

ρ =

 1 0 0
∗ ρV 0
∗ ∗ χ


where χ is the cyclotomic character. A Galois representation of this form is referred to as a mixed extension
with graded pieces Qp, V,Qp(1). Nekovář’s p-adic heights are functions on isomorphism classes of such mixed
extensions (with some conditions at primes above p). For each prime v, Nekovář defines a local height function
hv on mixed extensions of Gv-representations. The global height is then the sum of the local heights, and class
field theory implies this global height is bilinear in the two off-diagonal H1(GK , V )-classes.

From the point of view of the Chabauty–Kim method, the interesting feature of the p-adic height is that
this bilinear structure gives a necessary condition for a collection Mv of mixed extensions of Gv-representations
to come from a global GK-representation. More precisely, in our previous work, we showed that if the Picard
number of the Jacobian is bigger than 1, then the Chabauty–Kim method can be used to associate to each
point x (over any extension L|Q) a GL-representation AZ(x) which is a mixed extension with graded pieces
Qp, V,Qp(1). We then obtain an obstruction to an adelic point (xv) ∈

∏
X(Kv) coming from a global point in

X(K): the associated mixed extensions AZ(xv) must come from a global mixed extension, and hence there must
be a ‘bilinear relation’ between the three ∗ entries (as the contributions from primes away from p are small,
this can essentially be thought of as an obstruction to an element of

∏
v|pX(Kv) coming from X(K)). This

obstruction defines a subset intermediate between X(Kp)1 and X(Kp)2. Furthermore, by relating the mixed
extensions AZ(x) to the ones arising in Nekovář’s theory, we gave a formula for hv(AZ(x)) as a local height
pairing hv(AZ(x− b,DZ(x− b)) between divisors. This was inspired by earlier uses of p-adic heights to obtain
quadratic Chabauty formulae for integral points on elliptic and hyperelliptic curves in papers of Kim [37] and
of the first author with Kedlaya and Kim [8] and Besser and Müller [5].

To recover X(Kp)2, we need to consider more general mixed extensions (with graded pieces Qp, V and W
for W a quotient of ∧2V ). The key technical construction of this paper is the definition of a generalised height
for such mixed extensions. As in the classical case, generalised heights give an obstruction to a collection of
local mixed extensions to come from a global mixed extension (see Lemma 3.12 for a precise formulation). Via
a twisting construction explained in Section 3.3, one may associate to each point z of X(K) a mixed extension
A(b, z). This gives an explicit equation for X(Kp)2 (see Lemma 4.1), and in particular gives a necessary condition
for an adelic point to come from a rational point. The relation between the approach of this paper (which we
refer to below as “QC2”) and previous related papers (“QC0” [5] and “QC1” [6]) may be summarised as follows:

QC0 QC1 QC2
Scope (proof
of finiteness

of a superset)

X(Z) for X/Q
hyperelliptic
with r = g

X(K) for X/K with
r < g + ρ(J)− 1,
K = Q or im. quad.

X(K) for X/K
satisfying hypotheses

of Theorems 1.1 or 1.2

Bilinear
structure

used

Coleman–Gross
p-adic height [18]

Nekovář p-adic
height [43] on

Mf,T0(GK,T ;Qp, V,Qp(1))

Generalised height
functions (§3) on

Mf,T0
(GK,T ;Qp, V,W ),

inspired by Nekovář
Local

computation
hv(z −∞, z −∞) hv(z − b,D(b, z)) hv(A(b, z))

Here Mf,T0(GK,T ;Qp, V,W ) denotes the set of isomorphism classes of mixed extensions of GK,T -
representations with graded pieces Qp, V,W which are crystalline at all primes above p. See Section 3 for a
precise definition.

1.1 Main results

To address Question 1, in Section 2, we begin by recalling when, for K = Q, finiteness of X(Qp)2 is implied by
the Bloch–Kato conjectures. We also note some elementary extensions of our previous results [6] on finiteness
of X(Qp)2 when the Néron–Severi group of its Jacobian is large. We then use generalised heights to prove new
finiteness results when the curve X is hyperelliptic and satisfies “Manin–Demjanenko”-type conditions, i.e., that
there are isogeny factors occurring in the Jacobian with large multiplicity. To state the first main theorem, let
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K = Q or an imaginary quadratic field. We introduce the notational convention that, for an abelian variety A
over K,

ρf (A) :=

{
rk NS(A) + rk(NS(AQ)c=−1) if K = Q,

rk NS(A) else,

and

e(A) :=

{
rk End0(A) + rk(End(AQ)c=−1) if K = Q,

rk End0(A) else.

Here NS(A) denotes the Néron–Severi group of A and NS(AQ)c=−1 the subspace of NS(AQ)⊗Q on which

complex conjugation acts by −1. As usual, End0(A) := Q⊗ End(A), where End(A) denotes endomorphisms of
A defined over K.

Theorem 1.1. Let X/K be a hyperelliptic curve and suppose J is isogenous to Ad ×B, where A is an abelian
variety of rank r. If

ρf (A)d+ d(d− 1)e(A)/2− 1 > min{d(r − dim(A)), r2 − dim(A)2},

then X(Kp)2 is finite.

In Section 5.1, we give an example of a genus 5 curve X/Q(i) which satisfies the hypotheses of the theorem
but does not satisfy the Chabauty–Coleman bound.

Theorem 1.1 is somewhat reminiscent of the following result, due to Demjanenko when A is an elliptic curve
and Manin in general [41], [50, §5.2].

Theorem (Manin–Demjanenko). Let A be a simple abelian variety of rank r, with dim End0(A) = h. If J is
isogenous to Ad ×B, with d > r/h, then X(Q) is finite and may be computed effectively.

To address Question 2, we use generalised heights to obtain equations for Selmer varieties at depth 2, and
hence for the set X(Kp)2. The equations are given in terms of height functions on Selmer varieties in Proposition
4.1. To get from this proposition to an explicit computation, we need a way to compute the local generalised
heights of the mixed extensions A(b, z) arising from the twisting construction of Section 3. In this paper, we
focus on the problem of describing the local heights at primes above p. This is done in Section 6 in three stages.
The definition of the local heights is in terms of certain associated filtered φ-modules Dcr(A(b, z)). First, one uses
a p-adic comparison theorem due to Olsson [46] to relate this to a more tractable filtered φ-module AdR(b, z),
which is the fibre at z of a flat connection AdR. The filtration on AdR(b, z) is then computed in Section 6.5 by
computing a filtration by sub-bundles on AdR. Finally, the φ-action is computed in Section 6.7, when X is a
hyperelliptic curve, in terms of iterated integrals. This is used to give equations for X(Kp)2 in terms of p-adic
heights (see Proposition 6.4 for a more general result). We use this to give the first explicit nonabelian Chabauty
result for a curve X/Q which has Mordell–Weil rank larger than its genus.

As an example, we consider the family of genus 2 curves

X = Xa : y2 = x6 + ax4 + ax2 + 1, (1)

which was previously studied by Kulesz, Matera, and Schost [38]. We prove results controlling the set of K-
rational points of Xa for a ∈ K0, where K0 = Q or a real quadratic field and K is a totally real extension of
K0. We consider the case where the Mordell–Weil rank over K of the associated elliptic curve

E = Ea : y2 = x3 + ax2 + ax+ 1 (2)

is two. Consider the maps X → E given by f1 : (x, y) 7→ (x2, y) and f2 : (x, y) 7→ (x−2, yx−3). As the rank of Et
over the function field Q(t) is 1, generated by the point b = (0, 1) [38, Prop. 1], for all but finitely many values of
a, the specialisation Ea over K0 has the point b of infinite order. By the conjectured equidistribution of parity,
one expects to find many values of a for which Ea(K) has rank 2.

Note that the Jacobian of X is isogenous to E × E, and hence, when the rank of E is 2, the Chabauty–
Coleman method does not apply. When the rank of E is 2, we show that X(Kp)2 is finite and give equations
for a finite set containing it.

To state the theorem, let ωi = xi

2ydx and let w denote the hyperelliptic involution. Following Liu, we say

that a genus 2 curve has potential type V reduction at v if, in an extension Lw|Kv over which the curve acquires
stable reduction, the special fibre of its stable model is isomorphic to two genus 1 curves meeting at a point.
For simplicity, in the introduction we state a special case of the theorem, under a simplifying assumption on the
reduction type of X. The general statement may be found in Section 7.
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Theorem 1.2 (Special case). Let K0 be Q or a real quadratic field. Let K|K0 be a totally real extension. Let
X/K0 be a genus 2 curve in the family y2 = x6 + ax4 + ax2 + 1 whose Jacobian has Mordell–Weil rank 4 over
K. Suppose p is a prime of Q such that

• The prime p splits completely in K|Q.
• The curve X has good reduction at all primes above p, and the action of GK on E[p] is absolutely irreducible.
• If E has complex multiplication by a CM extension L, then L is not contained in K(µp).

Suppose that X has no primes of potential type V reduction. Suppose z0 is a point in X(K) such that
f1(z0) ∧ f2(z0) is of infinite order in ∧2E(K). Then X(K) is contained in the finite set of z in X(Kp) satisfying
G(z) = 0, where

G(z) = F1(z)F2(z0)− F1(z0)F2(z),

with b = (0, 1) and

F1(z) =

∫ z

b

(ω0ω1 − ω1ω0) +
1

2

∫ z

b

ω0

∫ b

w(b)

ω1,

F2(z) = 2

∫ z

b

(−ω0ω3 + aω1ω2 + 2ω1ω4)− 1

2
x(z)−

∫ z

b

ω0

∫ b

w(b)

ω3.

We briefly indicate the techniques used in the proof of the theorem (precise definitions may be found in
subsequent sections). The isogeny gives an isomorphism

V = Tp Jac(X)⊗Qp ' VE ⊕ VE ,

where VE = TpE ⊗Qp. The quotient of the fundamental group of X used is an extension

1→ Sym2 VE → U → V → 1.

The first step of the proof is to prove non-density of the localisation map

locp : Sel(U)→ H1
f (Gp, U)

from the Selmer variety of U to the local cohomology variety H1
f (Gp, U). In the case where K = Q, the elliptic

curve E does not have CM, and p > 3, we know H1
f (GK,T , Sym2 VE) = 0 by Flach [24, Theorem 1] (see the

remarks below Lemma 5.5 for an explanation of how this follows from Flach’s theorem). In general, by Freitas,
Le Hung, and Siksek [27] we know that Ea/K0 is modular. Under our assumptions, the vanishing of the Selmer
group of Sym2 VE follows from modularity lifting results [1, Theorem A]. This implies that the dimension of
the global Selmer variety is 4. By p-adic Hodge theory, the local Selmer variety has the same dimension. Hence
non-density cannot be proved by a dimension argument. Instead, it is deduced using the notion of a generalised
height function which is equivariant with respect to the the action of Mat2(Qp) on V ' VE ⊕ VE .

1.2 Notation

We follow slightly different notational conventions to those used in [6], to make our notation more compatible
with standard references such as [14]. Let X be a smooth projective curve over a number field K, with good
reduction outside a set of primes T0, and let p be a rational prime that splits completely in K and such that X
has good reduction at all primes above p. We fix a prime p above p, and define T := T0 ∪ {v|p}. For v a prime
not above p, define H1

f (Gv,W ) and H1
g (Gv,W ) by

H1
f (Gv,W ) := Ker(H1(Gv,W )→ H1(Iv,W )),

H1
g (Gv,W ) := H1(Gv,W ).

For p a prime above p, define

H1
f (Gp,W ) := Ker(H1(Gp,W )→ H1(Gp,W ⊗Bcr)),

H1
g (Gp,W ) := Ker(H1(Gp,W )→ H1(Gp,W ⊗BdR)).
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We define the global versions

H1
f (GK,T ,W ) := {c ∈ H1(GK,T ,W ) :

∏
v∈T

locv(c) ∈
∏
v∈T

H1
f (Gv,W )},

H1
g (GK,T ,W ) := {c ∈ H1(GK,T ,W ) :

∏
v∈T

locv(c) ∈
∏
v∈T

H1
g (Gv,W )}.

More generally, for S ⊂ T we may define global Galois cohomology groups with conditions intermediate between
H1
f and H1

g :

H1
f,S(GK,T ,W ) := {c ∈ H1(GK,T ,W ) :

∏
v∈T

locv(c) ∈
∏
v∈S

H1
g (Gv,W )×

∏
v∈T−S

H1
f (Gv,W )}.

The reason for introducing these different conditions is that in the theory of Selmer varieties, we use cohomology
classes which may be ramified at primes of bad reduction—and hence may not lie in H1

f—but the dimensions

of the Selmer varieties (which are of central importance in proving finiteness results) will be ‘governed by’ H1
f

(see Lemma 2.1 for a precise statement).
For finite-dimensional continuous Qp-representations W1,W2 of a topological group G, we identify the vector

spaces H1(G,W ∗1 ⊗W2) and Ext1(W1,W2) in the usual way. Via this identification, we define subspaces such
as Ext1

f (W1,W2).
If U is a unipotent group over Qp with a continuous action of GK,T which is crystalline at all primes above

p, we similarly define H1
f (GK,T , U) as the set of isomorphism classes of GK,T -equivariant U -torsors which are

crystalline at all v above p and unramified at all v prime to p (and analogously for H1
g and H1

f,S).
We make repeated use of the twisting construction in nonabelian cohomology, as in [49, I.5.3]. For topological

groups U and W , equipped with a continuous homomorphism U → Aut(W ) and a continuous left U -torsor P ,
we shall denote by W (P ) the group obtained by twisting W by the U -torsor P :

W (P ) := W ×U P. (3)

Similarly if P is a continuous right U -torsor we define (P )W := P ×U W. For U a group with a continuous action
of a topological group Γ, we let H1(Γ, U) denote the set of isomorphism classes of Γ-equivariant left U -torsors.

2 The Chabauty–Kim method

Let K be a number field, and X,T, T0 as in Section 1.2. Given a rational point b in X(K), let π
ét,Qp
1 (X, b) denote

the unipotent Qp-étale fundamental group of X := X ×K K with basepoint b. Let

π
ét,Qp
1 (X, b) ⊃ U (1) = [π

ét,Qp
1 (X, b), π

ét,Qp
1 (X, b)] ⊃ U (2) = [U (1), π

ét,Qp
1 (X, b)] ⊃ · · ·

denote the central series filtration of π
ét,Qp
1 (X, b). Associated to this filtration we have the groups

Un := Un(b) := π
ét,Qp
1 (X, b)/U (n), U [n] := Ker(Un → Un−1),

and the Un-torsor
Pn(b, z) := πét1 (X; b, z)×πét1 (X,b) Un(b).

Then the assignment z 7→ [Pn(b, z)] defines a map

jn : X(K)→ H1(GK,T , Un(b)).

One of the fundamental insights of the theory of Selmer varieties is that the cohomology spaces H1(G,Un(b))
carry a much richer structure than merely that of a pointed set, and that this extra structure has Diophantine
applications. For the following theorem we take G to be either Gv or GK,T :

Theorem 2.1 (Kim [35, Proposition 2]). Let U be a finite-dimensional unipotent group over Qp, admitting a
continuous action of G. Let

U = U (0) ⊃ U (1) ⊃ · · ·
denote the lower central series filtration of U . Suppose H0(G,U (i)/U (i+1))(Qp) = 0 for all i. Then the functors

R 7→ Hj(G,U(R)), j = 0, 1,

are represented by an affine algebraic variety over Qp, such that, for all i, the exact sequence

H1(G,U (i)/U (i+1))→ H1(G,U/U (i+1))→ H1(G,U/U (i)) (4)

is a diagram of schemes over Qp.
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In this paper, we will never distinguish between a cohomology variety and its Qp-points. We henceforth let U
denote a Galois stable quotient of U2 (i.e., such that the kernel of U2 → U is Galois stable), whose abelianisation
equals U1. Since the abelianisation of U(Qp) has weight −1, it satisfies the hypotheses of the theorem, and hence
H1(G,U) has the structure of the Qp-points of an algebraic variety over Qp.

To go from the cohomology varieties H1(GK,T , U) to Selmer varieties, one must add local conditions. Let
P (z) denote the pushout of πét1 (X; b, z) along πét1 (X, b)→ U . Then for each v prime to p, there is a local unipotent
Kummer map

jv : X(Kv)→ H1(Gv, U); x 7→ [P (x)]

which is trivial when v is a prime of good reduction and has finite image in general, by Kim and Tamagawa [36,
Corollary 0.2]. For v above p, and x in X(Kv), the torsor P (x) is crystalline by Olsson (see Lemma 6.1), and
we define jv to be the map

jv : X(Kv)→ H1
f (Gv, U); x 7→ [P (x)].

There is then a commutative diagram

X(K) H1(GK,T , U)

∏
v∈T X(Kv)

∏
v∈T H

1(Gv, U)

j

∏
jv

∏
locv

Kim [34, §4] also showed that the localisation morphisms are morphisms of varieties, and the set of crystalline
cohomology classes has the structure of the Qp-points of a variety. Since, at any v prime to p, the image of X(Kv)
in H1(Gv, U) is finite by the Theorem of Kim and Tamagawa [36, Corollary 0.2], we may define a subvariety
Sel(U) of H1(GK,T , U) to be the set of cohomology classes c satisfying the following conditions:

• locv(c) comes from an element of X(Kv) for all v prime to p,
• locv(c) is crystalline for all v above p, and
• the projection of c to H1(GK,T , V ) lies in the image of Jac(X)(K)⊗Qp.

For a prime p above p, we define X(Kp)U := j−1
p locp Sel(U). We shall refer to this variety as the Selmer variety

associated to U . We include the last condition, which is somewhat non-standard and perhaps in conflict with
the “Selmer” prefix, so as to be able to make statements about relations between the set of weakly global points
X(Kp)U and the rank of the Jacobian of X which are not conditional on the finiteness of the p-part of the
Shafarevich–Tate group. As explained in [6, Remark 2.3], Sel(U) is the reduced scheme associated to the fibre
of zero under the algebraic map

S̃el(U)→ H1
f (GK,T , V )/J(K)⊗Qp,

where S̃el(U) is the subvariety of H1(GK,T , U) obtained from only imposing the first two conditions above. Since

Sel(U/U (i+1)) is then by definition the pre-image of Sel(U/U (i)) in S̃el(U/U (i+1)), we obtain an analogous exact
sequence to (4).

It is often convenient to break up the Selmer variety by first fixing an element α = (αv) ∈
∏
v∈T0

jv(X(Kv)),
and defining Sel(U)α to be the subvariety of Sel(U) consisting of cohomology classes whose localisation at v ∈ T0

is equal to αv. We similarly write X(Kp)α. We call the tuple α a collection of local conditions.

Lemma 2.1 ([6, Lemma 2.6]). Let β1, . . . , βN ∈ Sel(U) be a set of representatives for the image of Sel(U) in∏
v∈T0

jv(X(Kv)). Let αi = (αv,i) denote the image of βi in
∏
v∈T0

jv(X(Kv)). Then

Sel(U)αi ' H1
f (GK,T , U

(βi))′,

where H1
f (GK,T , U

(βi))′ denotes the subvariety of H1
f (GK,T , U

(βi)) consisting of crystalline torsors whose image

in H1
f (GK,T , V ) lies in the image of J(K)⊗Qp, and U (βi) denotes the twist of U by βi as in (3).

Lemma 2.2. Let U be a Galois stable quotient of U2 which is an extension of V by W . Suppose

dimDdR(W )/F 0 − dimH1
f (GK,T ,W ) > r − g, (5)

then X(Kp)2 is finite.



Quadratic Chabauty and Rational Points II 7

Proof . By [34, Theorem 1], it is enough to prove that equation (5) implies

dimDdR(U)/F 0 > dim Sel(U).

Since

dimDdR(U)/F 0 = dimDdR(V )/F 0 + dimDdR(W )/F 0,

and dim(DdR(V )/F 0) = g, to prove the lemma it will be enough to prove dim Sel(U) ≤ r + dimH1
f (GK,T ,W ).

By Lemma 2.1, it is enough to prove that, for all i,

dimH1
f (GK,T , U

(βi))′ ≤ r + dimH1
f (GK,T ,W ).

We have a Galois equivariant exact sequence

1→W (βi) → U (βi) → V (βi) → 1.

Since the action of U on itself by conjugation is unipotent, U acts trivially on V and W , we have Galois
equivariant isomorphisms V (βi) ' V and W (βi) 'W , inducing an exact sequence of pointed varieties

H1
f (GK,T ,W )→ H1(GK,T , U

(βi))′ → J(K)⊗Qp.

Hence dim Sel(U)αi ≤ dimH1
f (GK,T ,W ) + dim(J(K)⊗Qp), as required.

2.1 The context of the present work

We will always take U to be an intermediate quotient

U2 → U
π−→ V.

The group U2 is an extension of V by

∧2V := Coker(Qp(1)
∪∗

−→ ∧2V ),

hence such quotients are in correspondence with Galois-stable summands of ∧2V/Qp(1). This paper is concerned
with the commutative diagram

X(K) Sel(U)

X(Kp) H1
f (Gp, U) DdR(U)/F 0

j

locp
jp '

and in particular with identifying situations under which locp is not dominant and describing what X(Kp)U
looks like in this case.

2.2 Provable finiteness via the geometric Néron–Severi group

One piece of the weight −2 representation [U2, U2] whose Selmer group we can understand unconditionally is the
Artin–Tate part, equivalently the part coming from the geometric Néron–Severi group of J . In this subsection
we restrict to the case K = Q.

Lemma 2.3. For any representation of GQ,T on a finite-dimensional vector space V over a field F ⊂ Qp, which
factors through a finite quotient Gal(L|Q) of Gal(Q), where L|Q is unramified at p, we have an isomorphism

H1
f (GQ,T , V ⊗F Qp(1)) ' (V ⊗Qp)

c=1/(V ⊗Qp)
Gal(Q),

where c ∈ Gal(Q) denotes complex conjugation.
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Proof . The crucial point is that, since H0(GL,T , V ⊗Qp(1)) = 0, the inflation-restriction exact sequence
induces an isomorphism

H1(GQ,T , V ⊗F Qp(1)) ' H1(GL,T , V ⊗F Qp(1))Gal(L|Q),

and similarly we have isomorphisms

H1(Gp, V ⊗F Qp(1)) ' ⊕v|pH1(Gv, V ⊗F Qp(1))Gal(L|Q),

which induce isomorphisms

H1
f (Gp, V ⊗F Qp(1)) ' ⊕v|pH1

f (Gv, V ⊗F Qp(1))Gal(L|Q).

This induces an isomorphism

H1
f (GQ,T , V ⊗F Qp(1)) ' H1

f (GL,T , V ⊗F Qp(1))Gal(L|Q).

Given this, we observe

H1
f (GL,T , V ⊗F Qp(1))Gal(L|Q) '(H1

f (GL,T ,Qp(1))⊗F V )Gal(L|Q)

'((O×L ⊗Z Qp)⊗F V )Gal(L|Q).

Now we use the description of O×L ⊗Qp as a Galois module [44, §8.7.2]:

O×L ⊗Z Qp ' Ind
Gal(L|Q)
〈c〉 Qp/Qp,

and finally, we have

((O×L ⊗Z Qp)⊗F V )Gal(L|Q) 'HomGal(L|Q)((O×L ⊗Z Qp), V ⊗F Qp)

'Ker(HomGal(L|Q)(Ind
Gal(L|Q)
〈c〉 Qp), V ⊗F Qp)→ HomGal(L|Q)(Qp), V ⊗F Qp))

'Ker(Hom〈c〉(Qp, V ⊗F Qp)→ HomGal(L|Q)(Qp, V ⊗Qp))

'(V ⊗Qp)
c=1/(V ⊗Qp)

Gal(Q).

We deduce the following corollary:

Proposition 2.2. Let K = Q, and define ρf (J) = rk NS(J) + rk(NS(JQ)c=−1) as in the introduction. If

rk J < g − 1 + ρf (J),

then X(Qp)2 is finite.

Proof . Let

W := lim−→
L

[
Qp(1)⊗HomGL(Qp(1),∧2V )

]
⊂ ∧2V

be the Artin–Tate part of [U2, U2]. Then we know that W contains (and is equal to by Faltings) the Artin–Tate
representation (NS(JQ)⊗Qp)/Qp(1). The proof that X(Qp)U is finite is as in [6, Lemma 2.6], with the only
difference being a more general choice of W . To recall, we use the fact that it is enough to prove that

dim Sel(U) < dimH1
f (Gp, U).

It suffices to prove that dim Sel(U)α < dimH1
f (Gp, U) for any collection of local conditions. By Lemma 2.1, we

have
dim Sel(U)α ≤ dimH1

f (GK,T ,W ) + dimH1
f (GK,T (V ).

At p, we claim the sequence

1→ H1
f (Gp,W )→ H1

f (Gp, U)→ H1
f (Gp, V )→ 1,
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is exact. One way to see this is that the non-abelian Dieudonné functor induces an isomorphism of schemes

H1
f (Gp, U) ' DdR(U)/F 0.

In [34, §1], Kim proves that this map is algebraic. The map is given by sending a torsor P to a Dcr(U)-torsor
object Dcr(P ) in the category of filtered φ-modules, and by proving that the set of isomorphism classes of such
torsors is represented by DdR(U)/F 0. Although it is not explicitly stated in loc. cit. that this map is bijective,
one can deduce it from the fact that the map has an inverse given by sending a Dcr(U)-torsor P to the crystalline
U -torsor Spec(F 0(O(P )⊗Bcr)

φ=1). Hence exactness follows from exactness of

1→ DdR(W )/F 0 → DdR(U)/F 0 → DdR(V )/F 0 → 1.

We deduce that X(Qp)2 is finite whenever

dimH1
f (GQ,T ,W ) + rk J < dimH1

f (Gp,W ) + g.

The proposition now follows from Lemma 2.3, since this implies

dimH1
f (Gp,W )− dimH1

f (GQ,T ,W ) = dim NS(J) + dim NS(JQ)c=−1 − 1.

2.3 Finiteness assuming the Bloch–Kato conjectures

Here we describe situations when finiteness of X(Qp)2 is implied by the Bloch–Kato conjectures. The Bloch–
Kato conjectures relate the dimension of H1

f (GK,T ,W ) to the rank of certain graded pieces of K-groups of
algebraic varieties. Let Z be a smooth projective variety over Q. For i ∈ Z, let Ki(Z) denote the ith algebraic
K-group of Z in the sense of Quillen. The only fact we will use about Ki(Z) is that it is zero when i < 0, and

the action of Adams operators enables one to define a grading Ki(Z)⊗Q = ⊕j∈ZK(j)
i (Z) on the group tensored

with Q. The following is a special case of their conjectures.

Conjecture 2.3 (Bloch–Kato [14, Conjecture 5.3 (i)]). Let Z be a smooth projective variety over Q. Then for
any n > 0 and 2r − 1 6= n, the map

chn,r : K
(r)
2r−1−n(Z)⊗Qp → H1

f (GQ, H
n(ZQ,Qp(r))

is an isomorphism.

Kim [34, Observation 1] showed that this conjecture implies that X(Qp)n is finite for all n sufficiently large,
with no hypotheses on the rank of J . As we are interested in X(Qp)2, we now work out the exact conditions on
X for which Kim’s argument can be used to show that Conjecture 2.3 implies finiteness of X(Qp)2.

Lemma 2.4. Conjecture 2.3 implies H1
f (GQ,T ,∧2V

∗
(1)) = 0.

Proof . As ∧2V
∗
(1) is a direct summand of H2

ét(X ×XQ,Qp(1)), it suffices to prove that

H1
f (GQ,T , H

2
ét(X ×XQ,Qp(1))) = 0.

This follows from Conjecture 2.3, since that implies

dimH1
f (GQ,T , H

2
ét(X ×XQ,Qp(1))) ≤ dimH1

g (GQ,T , H
2
ét(X ×XQ,Qp(1))) ≤ dimK−1(X ×X)⊗Q = 0.

Lemma 2.5. Conjecture 2.3 implies

dimH1
f (Gp,∧2V )− dimH1

f (GQ,T ,∧2V ) ≥ g(g − 1).
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Proof . Recall the following corollary of Poitou–Tate duality [26, Remark II.2.2.2]:

dimQp(H0(GQ,T ,W ))− dimQp(H1
f (GQ,T ,W )) + dimQp(H1

f (GQ,T ,W
∗(1)))

− dimQp(H0(GQ,T ,W
∗(1))) = − dimQp(DdR(W )/F 0) + dimQp(H0(GR,W )).

In this case of W = ∧2V , we have

dimQp(H0(GQ,T ,W
∗(1))) = ρ(JX)− 1, DdR(W )/F 0 = H1

f (Gp,W ),

dimQp(H0(GR,W )) = g(g − 1), H0(GQ,T ,W ) = 0,

hence the claim follows from Lemma 2.4.

We thus deduce the following simple criterion for conjectural finiteness of X(Qp)2.

Lemma 2.6. Suppose Conjecture 2.3. Let X/Q be a curve of genus g ≥ 2. If r = rk J(Q) < g2, then X(Qp)2 is
finite.

Proof . By the previous lemma, we have

dimH1
f (Gp, U2)− dim Sel(U2) ≥ dimH1

f (Gp,W )− dimH1
f (GK,T ,W ) + g − rk J(K)

> g(g − 1) + g − g2 = 0.

3 Generalised height functions

We now return to considering a general finite extension K|Q, with p a prime splitting completely in K and p a
prime of K lying above p. In [6], we used Nekovář’s formalism of p-adic height functions on mixed extensions to
describe Chabauty–Kim sets in terms of p-adic height pairings of cycles on X. Given a choice of global character
χ ∈ H1(GK,T ,Qp), Nekovář’s p-adic height functions associate to certain filtered Galois representations with
graded pieces Qp, V , and Qp(1), a collection of local cohomology classes with values in Qp(1). We obtain a
Qp-valued function by summing the cup products of these local classes with χ.

In this section, we describe a natural generalisation of Nekovář’s formulation of the p-adic height pairing,
resulting in a notion of generalised p-adic height functions. To do this, we essentially mimic his construction at
every step, occasionally rephrasing some constructions in terms of nonabelian cohomology.

3.1 Mixed extensions

Following Nekovář, we construct generalised height functions as functions on equivalence classes of mixed Galois
representations with fixed graded pieces. The most important examples will be the mixed extensions A(b, z)
constructed in the next subsection. Let V := H1

ét(X,Qp)
∗, and let W be a direct summand of V ⊗2.

Definition 3.1. Define Mf,T0
(GK,T ;Qp, V,W ) to be the category whose objects are tuples

(M, (Mi)i=0,1,2,3, (ψi)i=0,1,2) where M is a GK,T representation which is crystalline at all primes above
p, (Mi) is a Galois-stable filtration

M = M0 ⊃M1 ⊃M2 ⊃M3 = 0,

and the ψi are isomorphisms

ψ0 : Qp →M0/M1, ψ1 : V →M1/M2, ψ2 : W →M2/M3

and whose morphisms are isomorphisms of Galois representations respecting the filtration and commuting with
the ψi. An object of Mf,T0

(GK,T ;Qp, V,W ) will be referred to as a mixed extension with graded pieces Qp, V
and W . Define Mf,T0

(GK,T ;Qp, V,W ) to be the set π0(Mf,T0
(GK,T ;Qp, V,W )) of isomorphism classes of mixed

extensions. Similarly define M(Gv;Qp, V,W ) (resp. Mf (Gv;Qp, V,W ) for v above p) to be the set of isomorphism
classes of corresponding categories of Gv representations (resp. crystalline representations).
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Given a mixed extension M in Mf,T0
(GK,T ;Qp, V,W ), we obtain extensions M/M2 and M1 of Qp by V

and of V by W respectively. As explained in Lemma 3.8 these extensions are automatically unramified at all
primes of T0, and hence lie in H1

f (GK,T , V ) and Ext1
f (V,W ). We denote by π1∗ and π2∗ the natural maps

π1∗ : Mf,T0
(GK,T ;Qp, V,W )→ H1

f (GK,T , V ), π2∗ : Mf,T0
(GK,T ;Qp, V,W )→ Ext1

f (V,W ).

Following Nekovář, we say that M is a mixed extension of π1∗(M) and π2∗(M). Given K-vector spaces V1, V2, V3,
define U(V1, V2, V3) to be the group of unipotent vector space isomorphisms of V1 ⊕ V2 ⊕ V3, i.e., those which
respect the filtration

V1 ⊕ V2 ⊕ V3 ⊃ V2 ⊕ V3 ⊃ V3,

and are the identity on the associated graded. We will mostly be interested in the case where (V1, V2, V3) =
(Qp, V,W ). Recall from [6, Lemma 4.7] that we have an isomorphism

Mf,T0(GK,T ;Qp, V,W ) ' H1
f,T0

(GK,T , U(Qp, V,W )).

The maps π1∗ and π2∗ are induced from the exact sequence

0→W → U(Qp, V,W )
(π1,π2)−→ V ⊕ V ∗ ⊗W → 0. (6)

In fact, the proof in loc. cit. show more generally that, for any mixed extension M with graded pieces Qp, V,W ,
we have a bijection

H1(GK,T ; Autfil(M)) 'M(GK,T ;Qp, V,W ) (7)

between the set of mixed extensions with graded pieces Qp, V,W and the set of GK,T -equivariant Autfil(M)-
torsors, where Autfil(M) denotes the group of vector space automorphisms of M which are unipotent with
respect to its filtration. The bijection is given by sending a mixed extension M ′ to the Autfil(M)-torsor of vector

space isomorphisms M
'−→M ′ which are unipotent in the sense that they respect the filtrations, and induce

the identity on gr•(M) ' gr•(M
′) ' Qp ⊕ V ⊕W . Another way to say this is that, for any mixed extensions M

and M ′, the cohomology sets H1(GK,T ,Autfil, (M)) and H1(GK,T ,Autfil(M
′)) are canonically isomorphic: this

is a special case of [50, Proposition 35], since the set of unipotent isomorphisms M
'−→M ′ has the structure of

a GK,T -equivariant (Autfil(M),Autfil(M
′))-bitorsor.

We now outline in broad strokes our generalisation of Nekovář’s formulation of the p-adic height pairing.
Although we could work in somewhat greater generality, we restrict attention to our case of interest. We take
as input a tuple (V,W, j, s, χ), where V and W are as before. Let s : DdR(V )→ F 0DdR(V ) be a splitting of the
Hodge filtration. Finally χ is a non-crystalline element of H1(GK,T ,W

∗(1)). Note that the existence of such a
χ is an assumption on W , and is equivalent, by exactness of (a part of) the Poitou–Tate exact sequence

H1(GK,T ,W
∗(1))

⊕ locv−→ ⊕v∈TH1(Gv,W
∗(1))

⊕ loc∗v−→ H1(GK,T ,W )∗,

(see [26, II.1.2.1]) to the assumption that locp : H1
f (GK,T ,W )→ ⊕v|pH1

f (Gv,W ) is not surjective.
Associated to this data, we will define, for each v prime to p, a local pre-height function

h̃v : M(Gv;Qp, V,W )→ H1(Gv,W ),

as well as a local pre-height at primes p

h̃p : Mf (Gp;Qp, V,W )→ H1
f (Gp,W ).

Using χ, we then define a global height

h : Mf,T0(GK,T ;Qp, V,W )→ Qp,

such that h(M) only depends on the image of M under

Mf,T0(GK,T ;Qp, V,W )→ H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗W ).

As in the classical set-up, the global height will be a sum of local heights hv which are compositions of the map
h̃v with the character locv χ, thought of as an element of H1(Gv,W )∗ via Tate duality. For the applications in
this paper, we will only be interested in characters χ for which hq is trivial at all q above p except p.
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3.2 Twisting and mixed extensions

We now relate the construction of generalised heights to the Chabauty–Kim method. We construct compatible
maps

H1(GK,T , U)→M(GK,T ;Qp, V,W ) (8)

H1(GKv , U)→M(GKv ;Qp, V,W )

H1
f (GKv , U)→Mf (GKv ;Qp, V,W ) for v|p,

where U is a suitably chosen 2-unipotent quotient of (the Qp-completion of) the étale fundamental group of X,

and W is a suitably chosen quotient of ∧2V . To motivate the results of this subsection, we briefly recall how it
fits with the goal of finding equations satisfied by X(Kp)U .

The basic idea of generalised p-adic heights is that, given a mixed extension M , they give some kind of
algebraic relation between the projections (π1∗(M), π2∗(M)) and the localisations (Mv)v∈T . To use these to
obtain equations for X(Kp)2, we need to do two things. Firstly, we need an explicit description of each of the
local maps

X(Kv)→M(GKv ;Qp, V,W ).

Second, we need a description of the composite maps

H1
f (GK,T , U)→Mf (GK,T ;Qp, V,W )→ H1

f (GK,T , V )×H1
f (GK,T , V

∗ ⊗W ).

To explain the construction of the map (8), recall from (7) that we have an identification of
M(GK,T ;Qp, V,W ) with H1(GK,T ,Autfil(M)), where M is any mixed extension with graded pieces Qp, V and
W , and Autfil(M) denotes the group of automorphisms of M which are unipotent with respect to its filtration.
Hence, a natural source of morphisms from Selmer varieties to sets of isomorphism classes of mixed extensions
is to find a mixed extension which U acts on in a Galois-equivariant way. We find such a mixed extension as a
quotient (which we denote A(b)) of the universal enveloping algebra of lim←−Lie(Un). In fact, A(b) is a quotient
of the universal enveloping algebra by a two-sided ideal, and hence inherits the structure of an associative Qp-
algebra. Roughly speaking, if P is a path torsor πét1 (X; b, x), we can understand the mixed extension A(b)(P ) if
we can understand the mixed extension A(b), and the action of U on A(b) (which is the same as understanding
the multiplicative structure of A(b)).

Lemma 3.2. Let V be a Qp-local system on Xét, and b, x ∈ X(K). Let ρ denote the homomorphism

πét1 (X, b)→ Aut(b∗V)

coming from viewing b∗V as a right πét1 (X, b)-module. Then there is an isomorphism of Galois representations

x∗V ' (b∗V)(ρ∗[πét1 (X;b,x)]).

Proof . By Lemma A.1, we have a canonical isomorphism of functors

x∗ ' (b∗(.))×
π
ét,Qp
1 (X,b)

π
ét,Qp
1 (X; b, z) (9)

from the category of unipotent Qp-local systems on XK,ét to Qp-vector spaces. By definition, we have

(b∗V)(ρ∗[πét1 (X;b,x)]) ' b∗V ×
π
ét,Qp
1 (X,b)

π
ét,Qp
1 (X; b, z).

Since the identification of Lemma A.1 is functorial, the isomorphism (9) is Galois-equivariant.

We will be particularly interested in the case of Qp-local systems on Xét with unipotent geometric
monodromy, or equivalently representations of πét1 (XK , b) whose restriction to πét1 (X, b) is unipotent. For
example, Lemma 3.2 implies the following.
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Lemma 3.3. Suppose V is a Qp-local system on Xét which is an extension

0→ V2 → V → V1 → 0,

where the action of πét1 (X, b) on b∗V1 and b∗V2 is trivial. Let ρ denote the corresponding homomorphism

πét1 (X, b)→ Hom(b∗V1, b
∗V2).

Then, in H1(GK , b
∗V∗1 ⊗ b∗V2), we have

[x∗V] = [b∗V] + ρ∗[π
ét
1 (X; b, x)],

where

ρ∗ : H1(GK , π
ét
1 (X, b)→ H1(GK ,Hom(b∗V1, b

∗V2)).

is the homomorphism induced by ρ.

Proof . This is a special case of the previous lemma, since the action of π1(X, b) on b∗V factors through the
unipotent subgroup 1 + Hom(b∗V1, b

∗V2).

3.3 The Galois action on the enveloping algebra and related objects

In what follows, X is a smooth projective curve over K, V = H1
ét(X,Qp)

∗, and W is a quotient of ∧2V =

Coker(Qp(1)
∪∗

−→ ∧2V ). Our mixed extensions of interest are constructed as quotients of Galois representations

associated to the path torsors π
ét,Qp
1 (X; b, z). None of the results of this subsection are original, but we include

proofs when unable to find a precise reference.
Let Zp[[πét1 (X, b)]] := lim←−Zp[πét1 (X, b)/N ], where the limit is over normal subgroups N such that πét1 (X, b)/N

is a finite p-group. Let I denote the kernel of the natural map

Qp ⊗ Zp[[πét1 (X, b)]]→ Qp.

Then define An(b) := Qp ⊗ Zp[[πét1 (X, b)]]/In+1.

The completed universal enveloping algebra of Lie(π
ét,Qp
1 (X, b)) is given by lim←−An(b) (see [16, §2]), giving

An(b) the structure of a π
ét,Qp
1 (X, b)-module. The action of π

ét,Qp
1 (X, b) on An(b) factors through Un(b), defining

an injective group homomorphism

Un(b) ↪→ 1 + IAn(b).

Via the logarithm, we similarly obtain an inclusion

Ln(b) ↪→ IAn(b).

Another way to describe An(b) and Ln(b) is in terms of the Malcev completion of πtop
1 (X(C), b). Namely,

let Ltop
n be the Lie algebra of the maximal n-unipotent quotient of the Qp Malcev completion of πtop

1 (X(C), b).
Then by [32, Theorem A.6], Ltop

n is canonically isomorphic to Ln(b) as a Qp-Lie algebra. In particular, this
allows us to calculate the kernels of the surjections

V ⊗n → In/In+1

topologically. As we will only make use of A2(b) when n ≤ 2, the only results we will use are that A1(b) is an
extension

0→ V → A1(b)→ Qp → 0,

and A2(b) is an extension

0→ Ker(V ⊗2 ∪−→ H2
ét(X,Qp))

∗ → A2(b)→ A1(b)→ 0.

This calculation can be reduced to working out a presentation for the graded Lie algebra, i.e., by showing
that the graded Lie algebra lim←− gr• Ltop

n is isomorphic to the free completed Lie algebra on V modulo the ideal

generated by H2(X(C),Qp)
∗ ⊂ ∧2V . The proof of such a presentation is explained in [31, §3.1].
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The Galois representation Qp[π
ét
1 (X; b, z)] has the structure of an equivariant

(Qp[π
ét
1 (X, b)],Qp[π

ét
1 (X, z)])-bimodule, allowing one to define a finite-dimensional (A2(b), A2(z))-bimodule

A2(b, z) := Qp[π
ét
1 (X; b, z)]⊗Qp[πét1 (X,b)] A2(b)

' A2(z)⊗Qp[πét1 (X,z)] Qp[π
ét
1 (X; b, z)].

Equivalently, A2(b, z) is the twist of A2(b) by the path torsor P2(b, z) defined in Section 2.
As in [6], we define A2(b)→ A(b) to be the quotient of A2(b) by the kernel of the composite

I2/I3 ' ∧2V ⊕ Sym2 V → ∧2V →W.

A(b) is then an algebra with a faithful left action of U(b) ⊂ A(b)×. Given a U -torsor P , the induced twist of
A(b) by P , denoted A(b)(P ), is an element ofM(GK,T ;Qp, V,W ). By Lemma 6.1, A2(b) is crystalline, and hence
so is A(b). If P is crystalline above p and unramified outside T , then A(b)(P ) will also have these properties,
inducing a morphism of varieties

H1
f,T0

(GK,T , U)→Mf,T0
(GK,T ;Qp, V,W ),

P 7→ A(b)(P ).

The algebra A(b) has a filtration A(b) ⊃ IA(b) ⊃ I2A(b) ⊃ I3A(b) = 0 by powers of the two-sided ideal I. Hence
we obtain a product map ∧ : IA(b)× IA(b)→ I2A(b), which factors through IA(b)/I2A(b)× IA(b)/I2A(b) '
V × V . Hence the product map on IA(b) may be identified, via the surjection IA(b)→ V , with the following
map.

Definition 3.4. Let τ : V → Hom(V,W ) denote the map v1 7→ (v2 7→ v1 ∧ v2).

The following lemma is a special case of Lemma 3.3.

Lemma 3.5. A(P ) is a mixed extension of π∗P and [IA(b)] + τ∗π∗P , where π∗ is the map H1(G,U)→ H1(G,V )
induced by the projection U → V .

Proof . By Lemma 3.3, we can compute the extension classes [A1(b)(P )] ∈ Ext1(Qp, V ) and [IA(b)(P )] ∈
Ext1(V,W ) by computing the classes [A1(b)] and [IA(b)], and computing the action of πét1 (X, b) on A1(b) and
IA(b). Hence the lemma is implied by the statement that the extension class [A1(b)] ∈ Ext1(Qp, V ) is trivial,
which follows from the fact that the unit element of A1(b) gives a section of

0→ V → A1(b)→ Qp → 0.

In the case when P is the U -torsor of paths from b to z, we shall denote the corresponding element of
Mf,T0(GK,T ;Qp, V,W ) by A(b, z). We obtain a map

H1
f,T0

(GK,T , U)→Mf,T0(GK,T ;Qp, V,W ).

We define A(b, z) := A(b)(P (b,z)); we have an isomorphism of mixed extensions

A(b)(P (b,z)) '(P (z,b)) A(z).

The following lemma says that if we can describe the extension class [IA(x1, x2)] for one specific choice of x1

and x2, then we can understand it for any choice of [IA(x1, x2)] in terms of points on the Jacobian.

Lemma 3.6. For any x1, x2, z1, z2 in X(K),

[IA(x1, x2)] = [IA(z1, z2)] + τ∗(κ(x1 + x2 − z1 − z2)) ∈ Ext1(V,W ), (10)

where κ is the Kummer map Pic0(X)(K)→ H1(GK,T , V ).
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Proof . First suppose x1 = x2. Then [IA(x1, z1)] = [IA(x1, z2)κ(z1−z2)], i.e., IA(x1, z1) is the twist of I(Ax1,z1)
via the natural action of V coming from the left action of π1(XQ, z1) on IA(x1, z1). Hence, by definition of

the twisting construction, [IA(x1, z2)κ(z1−z2)] = [IA(x1, z2)] + τ∗κ(z1 − z2). Similarly, IA(x1, z1) is the twist
of IA(x2, z1) by κ(x2 − x1) via the natural right action of π1(XQ, x2) on IA(x2, z1). Since we are using the
right action of π1(XQ, x2), the map V → Hom(V,W ) by which κ(x2 − x1) acts on IA(x2, z1) is given by −τ ,

(since v1 ∧ v2 = −v2 ∧ v1), and hence [IA(x1, z1)] = [κ(x2−x1)IA(x2, z1)] = [IA(x2, z1)κ(x1−x2)] = [IA(x2, z1)] +
τ∗κ(x1 − x2).

Note that, in general, the extension class of IA(b) in H1(G,V ∗ ⊗W ) will not lie in the image of τ∗. More
specifically, we know that its class in H1(G,V ∗ ⊗W )/H1(G,V ) is related to the Abel–Jacobi class of the
Gross–Kudla–Schoen cycle in X ×X ×X corresponding to b, (see [19, Theorem 1], or [33]), which is generically
non-trivial. One situation where the class of IA(b) does lie in the image of τ∗, and furthermore can be described
explicitly in terms of b, is when X is hyperelliptic; this is the reason for the restriction to hyperelliptic curves
in Theorem 1.1. The argument, given below, is a straightforward generalisation of Lemma 1.1 of [37], and may
be viewed as a special case of a slightly more general phenomenon where one reduces computations on IA(b, z)
to the case where b = z is a Weierstrass point, at which point the computation becomes trivial. We refer to this
as a hyperelliptic splitting principle.

Lemma 3.7. Let X be a hyperelliptic curve of genus g, with equation y2 = f(x), for f a degree 2g + 2
polynomial. Let α1, . . . , α2g+2 be the roots of f . Let Z denote the Q-divisor 1

g+1

∑
i(αi, 0). Then

[IA(b, z)] = τ∗(κ(b+ z − Z)).

Proof . First note that it will be enough to prove that the two classes are equal in H1(GL,T , V
∗ ⊗W ), for L

some finite extension of K, since the restriction map is injective. Let L be an extension containing all roots of
f . For any i, j, the divisor (αi, 0)− (αj , 0) is torsion, and so in particular

κL((αi, 0)− (αj , 0)) = 0.

Hence it is enough to show that the H1(GL,T , V
∗ ⊗W ) class obtained from A2(b, z) agrees with that of

z + b− 2(αi, 0) for some i. By Lemma 3.6, it is enough to prove this when z = b = (αi, 0). In this case, the
hyperelliptic involution gives an action of Z/2Z on A2(b). This acts on the V -graded piece as −1 and on the
W -graded piece as the identity, inducing a splitting of A2(b).

3.4 Definition of the local pre-height

We first describe the definition of the local pre-height when v 6= p. For this we need to recall some results on Galois
cohomology of local fields. Let v be a prime of K, prime to p. Let Iv ⊂ Gv be the inertia subgroup and Fv ∈ Gv/Iv
a generator. For any finite-dimensional Qp-representation of W , let H1

f (Gv,W ) := W Iv/(Fv − 1)W Iv . Then for
any such W , by Tate duality, there is a short exact sequence

0→ H1
f (Gv,W )→ H1(Gv,W )→ H1

f (Gv,W
∗(1))∗ → 0

(see e.g., [53, Lemma 1 and Theorem 1]).

Lemma 3.8. Let V = H1(X,Qp)
∗, let n ≥ 0, and let N be a direct summand of V ⊗(2n+1)(−n). Then

H1(Gv, N) = 0.

Proof . As N is a direct summand, it is enough to prove this for N = V ⊗(2n+1)(−n). Since this representation is
its own Tate dual, it is enough to prove that H1

f (Gv, N) = 0, or equivalently NGv = 0. This follows directly from
the weight-monodromy conjecture for curves [28, Exposé IX, Theorem 4.3(b) and Corollary 4.4]: let L be a finite
extension of Qv such that IL acts unipotently on V (and hence W ). If V [i] and N [i] denote the graded pieces of
V and N of weight i, resp., then weight-monodromy implies that we have an equality (1 − IL)V [0] = V [−2], (and
we know it is trivial on V [−1]), hence (1− IL)V ⊗(2n+1)[2n] = V ⊗(2n+1)[2n− 2]. Thus the kernel of (1− IL) on
the weight zero part of N is trivial, so H1

f (Gv, N) = H1(Gv, N) = 0.
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We now define the local pre-height. When v is not in T , h̃v is trivial. When v is in T0, via the exact sequence
(6) we get an isomorphism

M(Gv;Qp, V,W )
'−→ H1(Gv,W ).

We defined h̃v to be this isomorphism and define hv as the composite

M(Gv;Qp, V,W )
h̃v∪χ−→ H2(Gv,Qp(1)) ' Qp.

Finally for v|p, h̃v and hv are defined following [43, §§3-4]. As we restrict to global heights for which the only
contribution from primes v|p is at p, we will only describe hp, but the description carries over verbatim to other
primes above p.

The local height above p is described using Fontaine’s functor Dcr, which gives an equivalence of categories
between Mf (Gp;Qp, V,W ) and the category Mfil,φ(Qp, Dcr(V ), Dcr(W )) of mixed extensions of filtered φ-
modules with graded pieces Qp, Dcr(V ), Dcr(W ). Similarly this induces a bijection between sets of isomorphism
classes

Mf (Gp;Qp, V,W ) 'Mfil,φ(Qp, Dcr(V ), Dcr(W )).

To ease notation, we henceforth write DdR(V ) and DdR(W ) as VdR and WdR respectively. As Kp is an unramified
extension of Qp, and V and W are crystalline, we also identify these with Dcr(V ) and Dcr(W ).

We identify Mfil,φ(Qp, VdR,WdR) with F 0\U(Qp, VdR,WdR), where F 0 := F 0U(Qp, VdR,WdR) is defined to
be the subgroup of unipotent automorphisms of Qp ⊕ VdR ⊕WdR which preserve the Hodge filtration; more
generally, F iU(Qp, VdR,WdR) can be defined to be exp(F i logU(Qp, VdR,WdR)), where

F i logU(Qp, VdR,WdR) := logU(Qp, VdR,WdR) ∩ F i End(Qp ⊕ VdR ⊕WdR).

Given a mixed extension M , let sφ, sH : Qp ⊕ VdR ⊕WdR
'−→M be unipotent isomorphisms of filtered vector

spaces which respect the Frobenius structure and Hodge filtration respectively. Then (sH)−1 ◦ sφ defines an
element of U(Qp, VdR,WdR). The element sφ is uniquely determined, and any different choice of the other
isomorphism is of the form sH ◦ uH , for some uH ∈ F 0U(Qp, VdR,WdR). This gives a bijective correspondence

Mfil,φ(Qp, VdR,WdR)→ F 0\U(Qp, VdR,WdR), (11)

which is furthermore an isomorphism of algebraic varieties.
We first define a section t of

Mf (Gp;Qp, V,W )→ H1
f (Gp, V )×H1

f (Gp, V
∗ ⊗W )

as follows: given exact sequences of crystalline Gp-representations

0→ V → E1 → Qp → 0

0→W → E2 → V → 0,

we have a commutative diagram with exact rows

0 H1
f (Gp,W ) H1

f (Gp, E2) H1
f (Gp, V ) 0

0 DdR(W )/F 0 DdR(E2)/F 0 DdR(V )/F 0 0

' ' '

(exactness of the top row follows from the isomorphism with the bottom row). Define τE2
: DdR(V )/F 0 →

DdR(E2)/F 0 as follows. First, note that there is a unique φ-equivariant section of the surjection

r : Dcr(E2)→ Dcr(V ),

since by the Weil conjectures Dcr(V ) and Dcr(W ) do not have a common φ-eigenvalue. The define τE2
to be the

composite
DdR(V )/F 0 s−→ Dcr(V )

r−→ Dcr(E2)→ DdR(E2)/F 0
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where s is the chosen splitting of the Hodge filtration, r is the Frobenius-equivariant section defined above and
the third map is the projection. Then we define

t(E1, E2) := τE2
(E1).

For M inMf (Gp;Qp, V,W ), let E1 and E2 be M/M2 and Ker(M →M0) respectively. Let [M ] denote the
image of M in H1

f (Gp, E2). Then we find that [M ] and t(E1, E2) have the same image in H1
f (Gp, V ), hence by

the diagram above, [M ]− t(E1, E2) defines an element of H1
f (Gp,W ), and we define

h̃p(M) := [M ]− t(E1, E2) ∈ H1
f (Gp,W ).

The pre-height can be described explicitly as an algebraic function

F 0\U(Qp, VdR,WdR)→WdR/F
0.

Lemma 3.9. Let M be a mixed extension in Mfil,φ(Qp, VdR,WdR) given by 1 + α+ β + γ ∈ U(Qp, VdR,WdR),
where α ∈ VdR, β ∈ V ∗dR ⊗WdR, γ ∈WdR. In block matrix notation, M is represented by 1 0 0

α 1 0
γ β 1

 .

Then
h̃p(M) = γ − β(s1(α)),

where
s1 : v 7→ v − ι ◦ s(v)

is the projection onto the VdR/F
0 summand induced by the splitting s.

Proof . The class of the extension M in M1/F
0 is given by tφ − tH , where tφ and tH are isomorphisms of filtered

vector spaces

Qp ⊕M1
'−→M

respecting the Frobenius action and Hodge filtration respectively. Hence, in terms of sφ and sH , this class is
given by sH(α+ γ). Then the extension class t([α]) is given by sH(s1(α) + β(s1(α))). Hence the local height is
given explicitly by

h̃p(M) = γ − β(s1(α)).

Lemma 3.10. For any choice of splitting of the Hodge filtration, the composite map

π∗ × h̃p : H1
f (Gp, U)→ H1

f (Gp, V )×H1
f (Gp,W )

is an isomorphism of algebraic varieties.

Proof . The fact that the pre-height is algebraic follows from the explicit formula in Lemma 3.9. It is enough
to prove that the corresponding map

DdR(U)/F 0 → DdR(V )/F 0 ×DdR(W )/F 0

is an isomorphism. We have a commutative diagram

DdR(U)/F 0 DdR(V )/F 0 ×DdR(W )/F 0

DdR(U(Qp, V,W ))/F 0 DdR(V )/F 0 ×DdR(V ∗ ⊗W )/F 0 ×DdR(W )/F 0

where the righthand map sends (v, w) to (v, [IA] + τ∗v, w), and the lefthand map sends P to A
(P )
dR . Both maps are

closed immersions. We first construct an inverse to the bottom map. Given (v, α, w) in DdR(V )/F 0 ×DdR(V ∗ ⊗
W )/F 0 ×DdR(W )/F 0, the mixed extension t(v, α) defines an element of DdR(U(Qp, V,W ))/F 0, and we define
t(v, α)(w) to be the twist of t(v, α) by w. The map (v, α, w) 7→ t(v, α)(w) gives the desired inverse. When we
restrict this map to DdR(W )/F 0, it induces an inverse to the top map, as required.

One may view the above lemma as saying that the fact that H1
f (Gp, U) is non-canonically isomorphic to

H1
f (Gp, V )×H1

f (Gp,W ) is an analogue of the fact that the p-adic height pairing depends on a choice of splitting
of the Hodge filtration.
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3.5 Global height: definition and basic properties

Define H1
s (GK,T ,W

∗(1)) := H1(GK,T ,W
∗(1))/H1

f (GK,T ,W
∗(1)). Let χ be a nonzero element of

H1
s (GK,T ,W

∗(1)), which is non-crystalline at p. Given χ and a collection of local pre-heights (h̃v) as
above we define the associated local height to be

hv := χv ∪ h̃v : M(Gv;Qp, V,W )→ H2(Gv,Qp(1)) ' Qp

and the global height to be

h =
∑
v

hv : Mf,T0
(GK,T ;Qp, V,W )→ Qp,

where v ∈ T0 ∪ {p}. When we want to indicate the dependence on χ, we write hv,χ and hχ. Since h and hv are
linear in χ, we may define a universal height

h̃ : Mf,T0
(GK,T ;Qp, V,W )→ (H1

s (GK,T ,W
∗(1)))∗

by setting h̃(M) to be the functional χ 7→ hχ(M).

Note that by construction, h̃v is bi-additive in the same way that usual local heights are bi-additive
(see e.g. [6, §4]). Namely, for i = 1 or 2, if M and N satisfy πi∗(M) = πi∗(N), then we can form the sum
M +i,i N in M(Gv;Qp, V,W ) (for example, when i = 1, this is the Baer sum of the extensions [M ], [N ] in
Ext1(M/M2,W )), and its local pre-height will be equal to the sum of the local pre-heights of M and N . If
P = (Pv)v∈T ∈

∏
v|pMf (Gv;Qp, V,W ) ×

∏
v∈T0

M(Gv;Qp, V,W ), then we similarly define h(P ) to be the sum
of the local heights.

Lemma 3.11. The global height h factors as

Mf,T0
(GK,T ;Qp, V,W )→ H1

f (GK,T , V )×H1
f (GK,T , V

∗ ⊗W )→ Qp,

where the first map is the projection and the second is bilinear.

Proof . As remarked above, the global height is additive, so it is enough to show that it is invariant under
the action of H1

f (GK,T ,W ) on Mf,T0
(GK,T ;Qp, V,W ). Invariance follows from Poitou–Tate duality: if a mixed

extension M is twisted by c ∈ H1
f (GK,T ,W ), then this will change hv by χv ∪ locv c, and

∑
χv ∪ locv c = 0.

Remark 1. Note that, unlike classical p-adic heights, it is not clear that this construction defines a pairing
H1
f (GK,T , V )×H1

f (GK,T , V
∗ ⊗W )→ Qp, as we do not know that given [E1] in H1

f (GK,T ,W ) and [E2] in

Ext1
f (V,W ), E2 lifts to an element of H1

f (GK,T , E2). The existence of such a lifting is equivalent to the

vanishing of [E1] ∪ [E2] in H2(GK,T ,W ), and hence would be implied by injectivity of the localisation
map H2(GK,T ,W )→ ⊕v∈TH2(Gv,W ). By Poitou–Tate duality, this would be implied by injectivity of
H1(GK,T ,W

∗(1))→ ⊕v∈TH1(Gv,W
∗(1)), and hence by Conjecture 2.3, as in Lemma 2.6.

Given two different choices of splitting of the Hodge filtration s(1) and s(2), we obtain two different pre-

heights h̃
(1)
p and h̃

(2)
p . Their difference h̃

(1)
p − h̃(2)

p defines a map Mf (Gp,Qp, V,W )→ DdR(W )/F 0, which may
easily be seen to factor as

Mf (Gp,Qp, V,W )→ DdR(V )/F 0 ×DdR(V ∗ ⊗W )/F 0 → DdR(W )/F 0.

The latter map may be defined as follows. The difference s(1) − s(2) gives a homomorphism s : DdR(V )/F 0× →
F 0DdR(V ). Given v ∈ DdR(V )/F 0 and α ∈ DdR(V ∗ ⊗W )/F 0, choose a lift of α to α̃ in DdR(V ∗ ⊗W ). The lift
α̃(s(v)) gives an element of DdR(W ), which is independent of the choice of α̃ modulo F 0DdR(W ).

Lemma 3.12. Suppose [P ] = ([Pv]) ∈
∏
v∈T0∪{p}M(Gv;Qp, V,W ) satisfies

• Pp is crystalline.
• π1∗P ∈ H1

f (Gp, V ) is in the image of H1
f (GK,T , V ),

• π2∗P ∈ H1
f (Gp, V

∗ ⊗W ) is in the image of H1
f (GK,T , V

∗ ⊗W ),
• there exist P1, . . . Pn in Mf,T0

(GK,T ;Qp, V,W ), and λi in Qp such that

π1∗P ⊗ π2∗P =
∑

λiπ1∗Pi ⊗ π2∗Pi

in H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗W ) and for all ϕ in H1

s (GK,T ,∧2V
∗
(1)),

hϕ(P ) =
∑

λihϕ(Pi).
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Then P is in the image of Mf,T0
(GK,T ;Qp, V,W ).

Proof . We have an exact sequence of unipotent groups with GK,T -action

1→W → U(Qp, V,W )
π1⊕π2−→ V ⊕ V ∗ ⊗W → 1.

The image of H1(GK,T , U(Qp, V,W )) in H1(GK,T , V ⊕ V ∗ ⊗W ) is precisely equal to the kernel of the cup
product map to H2(GK,T ,W ). Note that

π1∗P ∪ π2∗P =
∑

λiπ1∗Pi ∪ π2∗Pi = 0,

and thus we conclude that there is a mixed extension P ′ whose image in H1
f (Gp, V )⊗H1

f (Gp, V
∗ ⊗W ) is equal

to that of P . Hence P is the twist of locp P
′ by some c in H1(Gp,W ), and the claim of the lemma is exactly

that this c is in the image of H1
f (GK,T ,W ). By Poitou–Tate duality this is true if and only if for all ϕ in

H1(GK,T ,W
∗(1)) which are crystalline at all primes above p other than p, we have

∑
v ϕv locv c = 0. But, as in

the proof of Lemma 3.11,
hv,ϕ(P ) = hv,ϕ(P ′) + ϕv locv(c).

4 Equations for Selmer varieties

In this section, we use the bilinear structure of generalised heights to obtain formulas for X(Qp)U . More precisely,
generalised heights allow us to describe explicit trivialisations

M∗(Gv;Qp, V,W ) ' H1
∗ (Gv, V )×H1

∗ (Gv, V
∗ ⊗W )×H1

∗ (Gv,W )

(where ∗ is f or g depending on whether or not v|p), and to describe the image of Mf,T0
(GK,T ;Qp, V,W ) under

the map

Mf,T0(GK,T ;Qp, V,W )
(π1∗,π2∗,loc)−→

H1
f (GK,T , V )×H1

f (GK,T , V
∗ ⊗W )

×
∏
v|pMf (Gv;Qp, V,W )×

∏
v∈T0

M(Gv;Qp, V,W ).

In Lemma 4.1, this is used to describe X(Kp)α, by giving explicit quadratic relations between h̃p(A(b, z)) and
κ(b− z).

Fix a prime p above p and a set of local conditions

α ∈
∏
v∈T0

jv(X(Qv)) ⊂
∏
v∈T0

H1(Gv, U).

For α = (αv)v∈T0 in
∏
v∈T0

H1(Gv,W ), let Mf (GK,T ;Qp, V,W )α denote the set of isomorphism classes of mixed

extensions which are crystalline at p, and such that the localisation at v ∈ T0 corresponds to αv ∈ H1(Gv,W )
via the isomorphism M(Gv;Qp, V,W ) ' H1(Gv,W ). Then the twisting construction defines a map

Sel(U)α →Mf (GK,T ;Qp, V,W )α.

Let m denote the codimension of H1
f (GK,T ,W ) in H1

f (Gp,W ). Suppose P ∈ H1
f (Gp, U) comes from some

P ′ in Sel(U)α, and let Q denote the image of P ′ in H1
f (GK,T , V ). Knowing π∗P gives g linear conditions on Q,

and knowing h̃p(P ) gives m quadratic conditions on Q. Finding exact formulas for the subspace of H1
f (Gp, U)

where these g +m equations have a solution is then a matter of elimination theory. Concretely, let Hα be the
image of Qp[Sel(U)α] in H1

f (GK,T , V )⊗H1
f (GK,T , V

∗ ⊗W ) under the map P 7→ π1∗(P )⊗ π2∗(P ). Let S be

a section of Qp[Sel(U)α]→ Hα. Let H be the image of Sel(U)α in H1
f (GK,T , V ), and let T denote the map

H → Hα sending P to P ⊗ ([IA(b)] + τ∗(P )). Then by the multilinearity of generalised heights we have

h̃(P ) = h̃(S ◦ T (π∗P )) (12)

for all P ∈ Sel(U)α. To use this to write down equations for locp(Sel(U)α), we introduce some notation for
resultants (see e.g. [39, §IX.3]). Given finite-dimensional vector spaces V1, V2, V3 over a field K and a morphism
of algebraic varieties F : V1 × V2 → V3, we define the resultant RV2

(F ) ⊂ O(V1) to be the ideal defining the
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maximal subvariety of V1 for which F |RV2
(F )×V2

is identically zero. By the fundamental theorem of elimination
theory, this is of finite type over K. If (λ1, . . . λn) is a basis for V2, we may also write this as Rλ1,...,λn(F ), to
indicate that the variables λ1, . . . , λn have been eliminated. In our case of interest,

V1 = H1
f (Gp, V )⊕H1

f (Gp,W ), V2 = H, V3 = H1
f (Gp, V )⊕H1

s (GK,T ,W
∗(1)),

and the map

F : V1 × V2 → V3

sends (v1, v2, v3) in H1
f (Gp, V )×H1

f (Gp,W )×H to

(locp(v3)− v1, h̃p(v2) +
∑
v∈T0

h̃v(αv)− h̃(S ◦ T (v3)) ∈ H1
f (Gp, V )⊕H1

s (GK,T ,W
∗(1)).

Lemma 4.1. The image of Sel(U)α in H1
f (Gp, V )×H1

f (Gp,W ) under the composite map (π∗, h̃p) ◦ locp is equal
to the zero set of RH(F ). In particular

X(Kp)α = {z ∈ X(Kp) : for all G ∈ RH(F ), G(κp(z), h̃p(jp(z))) = 0}.

Proof . Whenever P is in the image of Sel(U2)α, it satisfies the equations above. Conversely, by Lemma 4.2,
there is a global U -torsor in Sel(U2)α whose localisation at p is given by P if and only if there is a mixed
extension in Mf (GK,T ;Qp, V,W )α whose localisation at p is given by A(P ). By Lemma 3.12, this happens if and
only if there is an element Q of H1

f (GK,T , V ) which is a simultaneous solution to{
locp(Q) = π∗P

hϕ,p(P ) +
∑

v∈T0
hϕ,v(αv) = hϕ(S ◦ T (Q)).

Lemma 4.2. The map

H1
f,T0

(GK,T , U)→Mf,T0(GK,T ;Qp, V,W ); P 7→ A(b)(P )

is injective.

Proof . As explained in [6, §5.1], this map may be described as the composite

H1
f,T0

(GK,T , U)→ H1
f,T0

(GK,T ,Aut(A(b)))
'−→Mf,T0

(GK,T ;Qp, V,W ),

where the first map is induced from the group homomorphism U → Aut(A(b)) and the second map is induced
from the isomorphism

Mf,T0(GK,T ;Qp, V,W ) ' H1
f,T0

(GK,T ;U(Qp, V,W ))

together with the structure of A(b) as an (Aut(A(b)), U(Qp, V,W ))-bitorsor. The upshot is that it suffices to
check the first map is injective. By definition of the map, this is implied by injectivity of

H1(GK,T , U)→ H1(GK,T ,Aut(A(b))).

By the exact sequence

H0(GK,T ,Aut(A(b))/U)→ H1(GK,T , U)→ H1(GK,T ,Aut(A(b)))

(see e.g., [49, Proposition 36]), it is enough to show that the pointed GK,T -set Aut(A(b))/U has no fixed
points, which can be seen by noting that it is an extension of a weight −1 GK,T -representation by a weight −2
GK,T -representation.
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Let P1, . . . , Pn be elements of Sel(U)α in H1
f (GK,T , V ) spanning H (recall that this is the image of

Qp[Sel(U)α] in H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗W ) under the map P 7→ π1∗(A(b)(P ))⊗ π2∗(A(b)(P ))), and such

that P1, . . . , Pr span the image of Qp[Sel(U)α] in H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗W ) under P 7→ π∗P ⊗ [IA(b)].

Suppose mijk,mik ∈ Qp satisfy

π∗Pi ⊗ τ∗π∗Pj =

n∑
k=1

mijk(A(b)(Pk))⊗ π2∗(A(b)(Pk)) (13)

π∗Pi ⊗ [IA(b)] =

r∑
k=1

mik(A(b)(Pk))⊗ π2∗(A(b)(Pk))

(14)

Let z ∈ X(Kp). Then if jp(z) is in the image of locp(Sel(U)α), there are λ1, . . . , λr such that

κp(z) =
∑

λi locp π∗Pi

and for all ϕ ∈ H1
s (GK,T ,W

∗(1)),

hp,ϕ(jp(z)) +
∑
v∈T0

hp,ϕ(αv) =
∑

1≤i≤r,1≤k≤r

λimikhϕ(Pk) +
∑

1≤i,j≤r,1≤k≤n

λiλjmijkhϕ(Pk)

since if jp(z) comes from some P ∈ Sel(U)α, then we must have

π1∗(A(b)(P ))⊗ π2∗(A(b)(P )) =
∑

1≤i≤r

λiπ∗(Pi)⊗ ([IA(b)] +
∑

1≤j≤r

λj(Pj)),

in H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗W ), which is equal to the class of∑

1≤i≤r,1≤k≤r

λimikπ1∗(A(b)(Pk))⊗ π2∗(A(b)(Pk)) +
∑

1≤i,j,≤r,1≤k≤n

λiλjmijkπ1∗(A(b)(Pk))⊗ π2∗(A(b)(Pk))

by assumption. This gives the following explicit version of Lemma 4.1.

Proposition 4.1. Suppose the kernel of Div0(X(Q))/P ⊗Qp → J(Kp) has rank k1, and that the codimension
of H1

f (GK,T ,W ) in H1
f (Gp,W ) is k2. Let k = k2 − k1. Then

X(Kp)α = ∩1≤i≤k{Rλ1,...,λk1
(Fz(λ1, . . . , λk1

) = 0},

where

Fz(λ1, . . . , λk1
) = hp,ϕ(jp(z)) +

∑
v∈T0

hp,ϕ(αv)−
∑

λimikhϕ(Pk)−
∑

λiλjmijkhϕ(Pk),

and mijk and mik are as in equation (13).

In particular, if the Mordell–Weil rank of the Jacobian of X is less than or equal to g, and the map
Div0(X(K))/P ⊗Qp → J(K)⊗Qp is injective, then

X(Kp)α = ∩i{hp,ϕi(z) +
∑

hv,ϕi(αv)− hv,ϕi(S ◦ T (jp(z))) = 0},

where ϕ1, . . . , ϕr is a basis for H1
s (GK,T ,∧2V

∗
(1)).

4.1 Equivariant height pairings

For the Manin–Demjanenko type results in the next section, it will be crucial to consider the subset of height
functions which are equivariant with respect to extra endomorphisms of J .

Definition 4.3. Let γ ∈ H0(GK,T , GL(V )). Then γ acts on Mf,T0
(GK,T ;Qp, V,W ) by sending (M, (Mi), (ψ)i)

to (M, (Mi), (ψ
′
i)) where ψ′1 = ψ1 ◦ γ and for i = 0, 2 ψ′i = ψi. We denote this action by γ∗.
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Let redF• denote the quotient map WdR →WdR/F
0. The splitting s induces sections of WdR →WdR/F

0

and V ∗ ⊗W → (V ∗ ⊗W )/F 0 as follows: the isomorphism VdR ' grF VdR induces an isomorphism gr•F (VdR ⊗
VdR) ' VdR ⊗ VdR, and hence together with the surjection VdR ⊗ VdR →WdR, we get an isomorphism WdR '
grF WdR. We denote the induced section of V ∗ ⊗W → (V ∗ ⊗W )/F 0 by s.

Lemma 4.4. We have the following:

1. For v 6= p, and γ in R×, we have hv(M) = hv(γ
∗M).

2. The map M 7→ h̃p(M)− h̃p(γM) factors as

Mf (Gp;Qp, V,W )→ VdR/F
0 × (V ∗dR ⊗WdR)/F 0 hγ−→WdR/F

0

where hγ is the bilinear map

(v, w) 7→ redF•(s(w) ◦ s)(v)− redF•(γ∗s(w)) ◦ s(γ∗v).

3. If γ commutes with the splitting of the Hodge filtration, then hp(M) = hp(γM).

Proof . First note that for v 6= p, we have hv(M) = hv(γM), since the definition of hv does not depend on a

choice of isomorphism M2/W ' V . For the second claim, note that by definition of h̃p we have

hp(M)− hp(γM) = t(M1,M2)− t(γ∗M1, γ∗M2),

as required. For the last part, note that if γ commutes with s we have

redF•(γ∗s(w)) ◦ s ◦ γ∗) = redF•((γ∗s(w)) ◦ γ∗ ◦ s) = redF•(s(w) ◦ s)

which by the above implies hp(M) = hp(γM).

As a result, the height h is R-equivariant if and only if for all γ in R×, s(w) ◦ s = (γ∗s(w)) ◦ s ◦ γ∗ modulo
F 0W .

5 Generalised heights on hyperelliptic curves

In this section we prove Theorem 1.1 and the finiteness part of Theorem 1.2, using equivariant heights. In brief,
the previous section explained how generalised heights provided non-trivial quadratic relations between h̃(A(b, z))
and κ(z − b). To prove finiteness of X(Kp)U , one would like to find non-trivial polynomial relations between

h̃(A(b, z)) and locp(κ(z − b)). In general, the obstruction to doing this lives in H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗

W ), in some sense. The idea of using equivariant heights on hyperelliptic curves is to try and replace this with
a smaller obstruction space.

Definition 5.1. Define the hyperelliptic subspace of H1
f (GK,T , V )⊗H1

f (GK,T , V
∗ ⊗W ) to be the image of

H1
f (GK,T , V )⊗2 under the map 1⊗ τ∗, where τ is as in Definition 3.4. Define the hyperelliptic subspace

of Mf,T0(GK,T ;Qp, V,W ), denoted Mh
f,T0

(GK,T ;Qp, V,W ), to be the subvariety of classes whose associated

H1
f (GK,T , V

∗ ⊗W ) class is in the image of τ∗.

The reason for the name is that, by Lemma 3.7, the image of the Selmer variety of a hyperelliptic curve lies
in the hyperelliptic subspace.

Lemma 5.2. Let X be a hyperelliptic curve, b a rational point and U any quotient of U2(b). Then the natural
map

H1
f,T0

(GK,T , U)→Mf,T0(GK,T ;Qp, V,W );P 7→ A(b)(P )

lands in the hyperelliptic subspace.

One may straightforwardly extend this to equivariant heights.

Lemma 5.3. Suppose s is an R-equivariant splitting. Then



Quadratic Chabauty and Rational Points II 23

1. The generalised height
h : Mf,T0(GK,T ;Qp, V,W )→ Qp

factors through H1(GK,T , V )⊗R H1
f (GK,T , V

∗ ⊗W ).

2. The generalised height function, restricted to the hyperelliptic subspace, factors through H1
f (GK,T , V )⊗R,τ

H1
f (GK,T , V ).

Proof . By Lemma 3.11 and Lemma 5.2, we only need to prove R-equivariance. To prove this, it will be enough
to prove that, for all γ ∈ R×, we have h(γ∗E1, E2) = h(E1, γ

∗E2). It suffices to prove this locally, i.e. to prove
that for all mixed extensions M ,

hv(M) = hv(γ
∗M).

This follows from Lemma 4.4.

We now explain the application to finiteness of Chabauty–Kim sets.

Proposition 5.1. Let X be a hyperelliptic curve. Let R = End0
K(J). Suppose

dim(H1
f (Gp,W )/ locpH

1
f (GK,T ,W ))− dim(H1

f (GK,T , V )⊗R H1
f (GK,T , V )) + dim(H1

f (Gp, V )⊗R H1
f (Gp, V )) > 0.

Then X(Kp)U is finite.

Remark 2. Note that, given [6, Lemma 3.2], this result is only new when

dim(H1
f (GK,T , V )⊗R H1

f (GK,T , V ))− dim(H1
f (Gp, V )⊗R H1

f (Gp, V ))

< dimH1
f (GK,T , V )− dimH1

f (Gp, V ).

This can only happen when there are simple abelian varieties which occur as isogeny factors of J with multiplicity
greater than 1 (see the example below).

Proof . By [34, Theorem 1], it is enough to prove that the localisation map

Sel(U)→ H1
f (Gp, U)

is not dominant. Writing Sel(U) as a disjoint union of Sel(U)α, for α a collection of local conditions, we reduce
to proving that, for all α, the localisation map

Sel(U)α → H1
f (Gp, U)

is not dominant. Let

r = dim(H1
f (Gp,W )/ locpH

1
f (GK,T ,W )) + dim(H1

f (Gp, V )⊗R H1
f (Gp, V )).

We show that the codimension of

(locp, π1∗ ⊗ π2∗) : Sel(U)α → H1
f (Gp, U)×H1

f (GK,T , V )⊗R H1
f (GK,T , V )

is greater than r, which proves the non-dominance of the localisation map by projecting. We first choose a
(vector space) section t of the map

Qp[Mf,T0
(GK,T ;Qp, V,W )h]→ H1

f (GK,T , V )⊗R H1
f (GK,T , V ).

Define a map
H1
f (Gp, U)×H1

f (GK,T , V )⊗R H1
f (GK,T , V )→ H1

s (GK,T ,W
∗(1))

by sending (c, d) to h̃p(c) +
∑

v∈T0
h̃v(αv)− h̃(t(d)). Then by equation (12), the composite map

Sel(U)α → H1
f (Gp, U)×H1

f (GK,T , V )⊗R H1
f (GK,T , V )→ H1

s (GK,T ,W
∗(1))

is identically zero. Similarly the composite map

Sel(U)α → H1
f (Gp, U)×H1

f (GK,T , V )⊗R H1
f (GK,T , V )

π∗⊗π∗−locp⊗ locp−→ H1
f (Gp, V )⊗R H1

f (Gp, V )

is identically zero.
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Lemma 5.4. We have the following:

1. There is an R-equivariant pre-height.
2. The set of R-equivariant pre-heights is a HomR⊗Qp(V/F 0, F 0V )-torsor.

Proof . By Lemma 4.4, R-equivariant pre-heights correspond to R-equivariant splittings of the Hodge filtration.
By functoriality, F 0V is an R⊗Qp-submodule of V . Since R is semisimple, we deduce the existence of an
R-equivariant splitting.

We now consider the setup of Theorem 1.1: K = Q or an imaginary quadratic field, the curve X/K is
hyperelliptic, with Jacobian J isogenous to Ad ×B. Hence R = Matd(Q) is naturally a (non-unital) subalgebra
of End0(J). Let VA = Tp(A)⊗Qp and VB = Tp(B)⊗Qp. Then V ' V ⊕dA ⊕ VB . To apply Proposition 5.1, note
that

H1
f (GK,T , VA)⊕d ⊗R H1

f (GK,T , VA)⊕d ' H1
f (GK,T , VA)⊗Qp H

1
f (GK,T , VA).

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ∧2(V ⊕dA ) be the quotient of ∧2(V dA) by the image of

Ker(∧2V → ∧2V )

under the projection from ∧2V to ∧2(V dA). First we prove that there is a quotient W of ∧2V such that the

quotient map factors through ∧2(V ⊕dA ) and such that

codim(locp : H1
f (GK,T ,W )→ H1

f (Gp,W )) = ρf (A)d+ d(d− 1)e(A)/2− 1.

We have ∧2(V dA) ' (∧2VA)d ⊕ (V ⊗2
A )d(d−1)/2. Since NS(AK)⊗Qp(1) is a direct summand of ∧2VA and

End0(AK)⊗Qp(1) is a direct summand of V ⊗2
A , we have a Galois-equivariant surjection

∧2V → (NS(AK)⊗Qp(1)))d ⊕ (End0(AK ⊗Qp(1)))d(d−1)/2.

First suppose K = Q. We take W to be the quotient of ∧2V corresponding to (NS(AQ)⊗Qp(1)))d ⊕(End0(AQ ⊗
Qp(1)))d(d−1)/2. Then it is enough to prove

dimH1
f (Gp,NS(AQ)⊗Qp(1))− dimH1

f (GQ,T ,NS(AQ)⊗Qp(1)) ≥ ρf (A)

and
dimH1

f (Gp,End0(AQ)⊗Qp(1))− dimH1
f (GQ,T ,End0(AQ)⊗Qp(1)) ≥ e(A),

which follows from Lemma 2.3. If K is imaginary quadratic, we have a surjection

∧2V → (NS(AK)⊗Qp(1)))d ⊕ (End0(AK ⊗Qp(1)))d(d−1)/2,

and we take W to be the corresponding quotient of ∧2V . The result now follows from the fact that
H1(GK,T ,Qp(1)) = 0.

We are now ready to complete the proof of Theorem 1.1. First suppose ρf (A)d+ d(d− 1)e(A)/2− 1 >
d(r − dim(A)). By Lemma 3.7, we have a Galois-stable quotient of U2 (i.e. the kernel is Galois stable) which is
an extension

1→W → U → V dA → 1

and we have

dimH1
f (Gp, U)− dimH1

f (GK,T , U) ≥ ρf (A)d+ d(d− 1)e(A)/2− 1− d(r − dim(A)).

Finally, if ρf (A)d+ d(d− 1)e(A)/2− 1 > r2 − dim(A)2, then we use Proposition 5.1. We take R, as above, to
be Matd(Q), acting trivially on B and in the obvious way on Ad. Then

rk(J(K)⊗Q)⊗R (J(K)⊗Q) = r2 and

dimH1
f (Gp, V )⊗R⊗Qp dimH1

f (Gp, V ) = (dimA)2.
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5.1 An example

Given the restrictive hypotheses of Theorem 1.1, it is perhaps worth demonstrating the existence of a hyperelliptic
curve satisfying them which does not satisfy the Chabauty–Coleman bound. We use work of Paulhus [47, Table
2] and Shaska [51, §4] on a family of hyperelliptic curves Xt defined over K = Q(i) with Jacobian isogenous to
E3
t ×At. Let Xt denote the genus 5 curve

y2 = x12 − tx10 − 33x8 + 2tx6 − 33x4 − tx2 + 1.

For all but a finite number of t, we have a subgroup of AutXt isomorphic to A4, generated by the automorphisms
of order 2 and 3, respectively:

τ : (x, y) 7→ (−x, y), σ : (x, y) 7→
(
x− i
x+ i

,
y

(x+ i)6

)
.

Together with the hyperelliptic automorphism, this means that all but a finite number of curves in the family
has Z/2Z×A4 as a subgroup of its automorphism group. The normalisation of the quotient of X by σ is the
genus 1 curve

C : y2 = x4 + (−t+ 12i)x2 + ((2i− 2)t+ 20i+ 20)x+ 2it+ 21,

which has Jacobian

Et : y2 = x3 − 1

4
(3t2 − 70it− 411)x− 1

4
(t3 − 30it2 − 317t+ 1180i).

Fix a prime p with (p) = pp in K and such that Xt has good reduction at p and p.

Corollary 5.2. For all t such that rkK Et ≤ 2, and p as above, X(Kp)2 is finite.

Proof . Let VE := Tp(Et)⊗Qp, VA := Tp(A)⊗Qp. We have an isomorphism

∧2V ' ∧2(V ⊕3
E )⊕ VE ⊗ VA ⊕ ∧2VA.

Let ∧2V → Qp(1)⊕4 be the composite ∧2V → (∧2(V ⊕3
E ))/Qp(1)→ Qp(1)⊕4. Let U be the corresponding

quotient of U2. The result follows from Proposition 5.1.

Remark 3. Note that the dimension of the Selmer variety equals that of H1
f (Gp, U), so the multiplicities of

isogeny factors are really used in an essential way.

An explicit example of a value of t for which Et has rank 2 is t = 1: the elliptic curve y2 = x3 +
(35/2i+ 102)x+ (−575/2i+ 79) has two independent points P1 = (4i− 3, 14i+ 4), P2 = (−12i+ 1, 11i+ 9).
Using SageMath [52], we verified linear independence (and a lower bound of 2 for the rank) by computing
that the associated regulator of height pairings is approximately 6.501, and in particular, is nonzero. An upper
bound of 2 on the rank was found by using Magma [13] to compute the rank of the 2-Selmer group to be 2.

5.2 The Kulesz–Matera–Schost family

Here we return to the family of genus 2 curves mentioned in the introduction. We show that for this family,
one can use equivariant heights to prove stronger finiteness results than the ones above. Recall that X is a
hyperelliptic curve of the form y2 = x6 + ax4 + ax2 + 1, and let E be the elliptic curve y2 = x3 + ax2 + ax+ 1.
We assume E has rank 2. Define VE to be H1(EK ,Qp)

∗. The morphisms f1, f2 from X to E induce an
isomorphism V ' VE ⊕ VE , which induces a Galois-stable quotient U of U2 with W taken to be Sym2 VE ,
via the map

∧2 V → Sym2 VE ; (v1, v2) ∧ (v3, v4) 7→ v1v4 − v2v3. (15)

The aim of this subsection is to prove the following lemma:

Lemma 5.5. The localisation map locp : Sel(U)→ H1
f (Gp, U) is not dense.

In fact we will prove an explicit form of this. The deep result underlying this non-density is the fact that
H1
f (GK,T , Sym2 VE) = 0. In the case when K = Q, p ≥ 5, and the map

ρE[p] : Gal(Q|Q)→ Aut(E[p])
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is surjective, this is due to Flach [24, Theorem 1, and remarks below], who shows that H1
f (GK,T , Sym2 TpE ⊗

Qp/Zp) is finite, which implies triviality of H1
f (GK,T , Sym2 VE) = 0. In general, the only known proof is via a

Galois deformation argument, following Taylor–Wiles and Kisin. Namely, using Fontaine–Perrin-Riou’s Euler
characteristic formula [26, Remark II.2.2.2], we know that

dimH1
f (GK,T , Sym2 VE) = dimH1

f (GK,T , ad0 VE).

Under the assumptions above, it is known that H1
g (GK,T , ad0 VE) = 0 (see Allen [1, Theorem A] for a more

general result).
Let R := Mat2(Qp). Then V has the structure of an R-module via the isomorphism V ' VE ⊕ VE . Let

Γ : Qp[H
1
f,T0

(GK,T , U)]→ ∧2H1
f (GK,T , VE) be the composite map

Qp[H
1
f,T0

(GK,T , U)]→ H1
f (GK,T , V )⊗R H1

f (GK,T , V )
'−→H1

f (GK,T , VE)⊗Qp H
1
f (GK,T , VE)→ ∧2H1

f (GK,T , VE),

where the first map sends P to the H1
f (GK,T , V )⊗R H1

f (GK,T , V )-class of A(b)(P ), the second is the isomorphism

H1
f (GK,T , V

⊕2
E )⊗Mat2(Qp) H

1
f (GK,T , V

⊕2
E )

'−→ H1
f (GK,T , VE)⊗Qp H

1
f (GK,T , VE), (16)

and the third is the usual projection of the tensor square onto the alternating product. By Lemma 3.7, and (15)
when P = P (b, z), we have that Γ(P ) is given by

f1∗κ(z − b) ∧ f2∗κ(z + b−D)− f2∗κ(z − b)f1∗(z + b−D),

which is equal to 2κE(f1(z)−O) ∧ κE(f2(z)).

Definition 5.6. Given [E1], [E2] in H1
f (GK,T , V ), define [E1, E2] ∈Mf,T0(GK,T ;Qp, V,W ) to be the quotient

of E1 ⊗ E2 by ∧2V ⊂ V ⊗ V ⊂ E1 ⊗ E2, viewed as a mixed extension with graded pieces Qp, V and W via the
isomorphism V ' V ⊕2

E .

Lemma 5.7. Let p be a prime above p.

1. The mixed extension [E1, E2] lies in the hyperelliptic subspace, and its image in H1
f (GK,T , VE)⊗2 is given

by [E1]⊗ [E2] + [E2]⊗ [E1].
2. Let [E1] = f2∗π∗P and [E2] = −f1∗κ(2b−D). Let h be an R-equivariant height. Let α ∈

∏
v∈T0

H1(Gv, U)
be a collection of local conditions. Then the map

h̃′ : H1
f (GK,T , U)→ H1

s (GK,T , Sym2(V )(1))

P 7→ h̃p(A(b)(P )) +
∑
v∈T0

h̃v(αv)−
1

2
h̃([E1, E2])

factors through ∧2H1
f (GK,T , VE).

Proof . For the first part, the image of [E1, E2] in H1(GK,T , V )⊗H1(GK,T , V
∗ ⊗W ) is equal to ([E1], [E2])⊗

([E2], [E1]), hence the claim follows from the explicit description of the isomorphism (16). For the second part,
note by Lemma 3.7, A(b)(P ) is a mixed extension of π∗P and τ∗(κ(b−D) + π∗P ). So under the decomposition

H1
f (GK,T , VE)⊗H1

f (GK,T , VE) = ∧2H1
f (GK,T , VE)⊕ Sym2H1

f (GK,T , VE),

the image of A(b)(P ) in Sym2H1
f (GK,T , VE) is given by

(f1∗π∗P )(f2∗(κ(2b−D) + π∗P )− (f2∗π∗P )(f1∗(κ(2b−D) + π∗P )

=(f1∗π∗P )f2∗κ(2b−D)− (f2∗π∗P )f1∗(κ(2b−D)

=− (f2∗π∗P )(f1∗κ(2b−D)),

since f2∗κ(2b−D) is zero. The image of [E1, E2] in Sym2H1
f (GK,T , VE) is given by

−(f2∗π∗P )(f1∗κ(2b−D))− (f1∗κ(b−D))(2f2∗π∗P ).

Hence the class of A(b)(P ) − 1
2 [E1, E2] in H1

f (GK,T , VE)⊗2 lies in ∧2H1
f (GK,T , VE).
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We are now ready to prove an explicit form of the non-dominance result for the localisation map.

Lemma 5.8. Let α ∈
∏
v∈T0

H1(Gv, Sym2
E) be a collection of local conditions.

1. Let
t : ∧2H1

f (GK,T , VE)→ Qp[H
1
f (GK,T , U)]

be a section of Γ. Let w be a generator of ∧2H1
f (GK,T , VE). Let P0 be any element of Sel(U)α. Then

locp Sel(U)α is contained within the kernel of

H1
f (Gp, U)→ ∧2H1

f (Gp, Sym2 VE)

P 7→ (h̃′p(P )− h̃′p(P0)) ∧ h̃′p(t(w)).

2. Let b and z0 be points of X(K) satisfying Γ(A(b, z0)) 6= 0. Then X(Kp)U is in the kernel of

X(Kp)→ ∧2(WdR/F
0)

z 7→ h̃′p(A(b, z)) ∧ h̃′p(A(b, z0)).

Note that part (1) of Lemma 5.8 implies Lemma 5.5, since by Lemma 3.10, the map h̃p : H1
f (Gp, U)→

H1
f (Gp,W ) is onto and hence the map in part (1) of the lemma is surjective.

Proof of Lemma 5.8. Choose a basis e1, e2 of H1
f (Gp, Sym2 VE). Since we have H1

f (GK,T , Sym2 VE) = 0, we can

define cohomology classes χ1, χ2 in H1(GK,T , ad0 VE) which are crystalline at all primes above p other than p,
and such that the image of locp(χi) in H1(Gp, ad0 VE)/H1

f (Gp, ad0 VE) is isomorphic to e∗i via Tate duality. Let

h = (hχ1
, hχ2

) : Mf,T0
(GK,T ;Qp, V, Sym2 VE)→ Sym2 VdR/F

0

be the corresponding sum of heights. Let h′ denote the map

P 7→ h(P )− 1

2
h([E1, E2])

as before. Part (1) follows from Lemma 5.7, since that implies that the image of Sel(U) in H1
f (Gp, Sym2 VE)

under h′ has dimension at most 1. For part (2), by assumption, Γ(A(b, z0)) is a generator of ∧2H1
f (GK,T , VE),

hence the result follows from part (1).

6 Explicit local methods

The goal of this section is to provide an explicit, algorithmic description of the composite map

X(Kp)
jp−→ H1

f (Gp, U)
'−→ UdR/F 0 h̃p−→WdR/F

0

which sends a Kp-point to the generalised pre-height of A(b, z). As p splits completely in K|Q, via a choice
of embedding K ↪→ Qp, we have that Kp is isomorphic to Qp, and we henceforth write Qp instead of Kp.
Describing this map explicitly amounts to giving an explicit description of the structure of Dcr(A(b, z)) as a
filtered φ-module. As is explained below, by Olsson’s comparison theorem [46, Theorem 1.4], this may be reduced
to computing the Hodge filtration and Frobenius action on a de Rham path space AdR(b, z) (see [35, §3]). The
specific relation is stated in Section 6.2.

It turns out to be simplest to describe the Hodge filtration and Frobenius structure on AdR(b, z) by
understanding how it varies with z. More precisely, the vector space AdR(b, z) is the fibre at z of a unipotent vector
bundle with connection AdR, which is a quotient of a universal bundle with connection AdR

n . The filtration on
AdR(b, z) comes from a filtration by sub-bundles F iAdR ⊂ AdR, and these sub-bundles are uniquely determined
by certain universal properties. This rigidifying property means that, to compute F iAdR(b, z) it is enough to
find any filtration on AdR satisfying certain properties (see Lemma 6.4 and Corollary 6.2), giving an algorithm
for computing F iAdR(b, z) (see Section 6.5).

To calculate Frobenius, one could employ a similar approach, by describing the Frobenius action on AdR(b, z)
as the pull-back along z of the Frobenius structure on AdR. In Section 6.7 we take a slightly different approach,
using the ‘hyperelliptic splitting principle’ in a similar manner to Lemma 3.7 to calculate the φ-action on
AdR(b, z) when b and z are Weierstrass points. Using Besser’s Tannakian interpretation of Coleman integration,
we can describe how the φ-action varies when we vary b and z in terms of iterated Coleman integrals.
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6.1 The universal connection

First we recall some properties of the de Rham fundamental group and associated objects, as developed by
Chen, Deligne, Hain and Wojtkowiak (see [20, 54, 30]). When describing AdR, it is computationally convenient
to restrict to a Zariski open Y ⊂ X, as on Y , unipotent vector bundles are trivial, making connections and
morphisms between them easier to calculate. Another reason that the affine case is simpler is that the de Rham
fundamental group of Y is a free pro-unipotent group, which makes it easier to write down elements of the
fundamental group, or its enveloping algebra.

Let Y ⊂ X be a non-empty Zariski open subset of X, with X − Y of order r. Define VdR(Y ) = H1
dR(Y )∗.

Recall from Section 3 that VdR := Dcr(V ) ' H1
dR(X)∗. Denote by CdR(Y ) the category of unipotent flat

connections on Y , and CdR(X) the category of unipotent flat connections on X. Since X and Y are curves,
all connections on them are flat, and hence this condition will henceforth not be mentioned. Given a connection
V and a K-vector space W , we shall often refer to W ⊗ V as a connection, in the natural way: the U -sections of
the vector bundle are just W ⊗ V(U), and the connection morphism is 1W ⊗∇. Alternatively, if π : Y → Spec(K)
denotes the structure morphism, we can think of W ⊗ V as being a tensor product of connections:

W ⊗ V := (π∗W,d)⊗ (V,∇).

Let b be a K-point of Y . Then taking the fibre of the underlying bundle at b defines a fibre functor b∗ from
CdR(X) to K-vector spaces, giving (CdR(X), b∗) the structure of a neutral Tannakian category. Define πdR

1 (X, b)
to be the corresponding K-group scheme. This group is pro-unipotent and is the inverse limit of the n-step
unipotent quotients UdR

n (b) = UdR
n (X)(b). Moreover,

P dR
n (X)(b, z) = P dR

n (b, z) = πdR
1 (X; b, z)×πdR

1 (X,b) U
dR
n (b).

Similarly define πdR
1 (Y, b), UdR

n (Y )(b), P dR
n (Y )(b, z). Finally, in the notation of the appendix, define

AdR
n (X)(b) := An(CdR(X), b∗), AdR

n (Y )(b) := An(CdR(Y ), b∗),
AdR
n (X)(b, z) := An(CdR(X); b∗, z∗), AdR

n (Y )(b, z) := An(CdR(Y ); b∗, z∗),
AdR
n (X) := AdR

n (CdR(X), b∗), AdR
n (Y ) := AdR

n (CdR(Y ), b∗).

When there is no risk of confusion, we shall sometimes abbreviate AdR
n (X)(b, z), AdR

n (X)(b),AdR
n (X) to

AdR
n (b, z), AdR

n (b),AdR
n . As explained in the appendix, AdR

n (X)(b) may equivalently be defined to be the quotient
of the universal enveloping algebra of Lie(πdR

1 (X, b)) by the (n+ 1)th power of the kernel of the co-unit map.
In particular, the vector spaces AdR

n (X)(b) ' b∗AdR
n (X) and AdR

n (Y )(b) ' b∗AdR
n (Y ) each have the structure

of associative algebras with unit elements that we will denote by en. As explained in the appendix, AdR
n (X)

is a universal n-unipotent pointed object in CdR(X)b
∗
; i.e., for any n-unipotent connection V on X, and any

v ∈ b∗V, there exists a unique morphism of connections f : AdR
n (X)→ V such that b∗(f)(en) = v. We shall

refer to AdR
n (X) and AdR

n (Y ) as universal connections. By Lemma A.1 and Lemma A.7, AdR
n (X)(b, z) may

equivalently be defined to be

AdR
n (X)(b)×πdR

1 (X,b) π
dR
1 (X; b, z) ' AdR

n (X)(b)×Un(b) Pn(b, z),

or to be z∗AdR
n (X), and similarly for AdR

n (Y ), AdR
n (Y )(b, z). We denote by IkAdR

n (X)(b, z) the I-adic filtration
on AdR

n (X)(b, z), and similarly for AdR
n (Y )(b, z).

In this paper we will only be interested in UdR
n (b), P dR

n (b, z) and AdR
n (b, z) in the cases n = 1 and 2. When

n = 1 we have U1(b) ' VdR and an exact sequence

0→ VdR → AdR
1 (b, z)→ K → 0,

by Lemma A.8. When n = 2 we have exact sequences

1→ ∧2V dR → UdR
2 → VdR → 1,

1→ ∧2VdR(Y )→ UdR
2 (Y )→ VdR(Y )→ 1,

0→ V ⊗2
dR → AdR

2 (X)(b, z)→ AdR
1 (X)(b, z)→ 0,

0→ VdR(Y )⊗2 → AdR
2 (Y )(b, z)→ AdR

1 (Y )(b, z)→ 0,

where ∧2V dR := Coker(H2
dR(X)∗

∪∗

−→ ∧2VdR) and V ⊗2
dR := Coker(H2

dR(X)∗
∪∗

−→ V ⊗2
dR ). These exact sequences

can be seen in various ways. They are a consequence of Lemma A.8 and Lemma A.10, since

Ker(H1
dR(X)⊗H1

dR(X)→ Ext2
CdR(X)(1,1))

'Ker(H1
dR(X)⊗H1

dR(X)→ H2
dR(X)).
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and similarly for Y . In words, the cup product of two classes in H1
dR(X) is zero if and only if the Yoneda cup

product of their corresponding extension classes in CdR(X); this can be checked at the level of cocycles, or by
comparison with the corresponding statement for Betti cohomology or fundamental groups. The statements for
U2 can also be deduced from the Betti case, or from the result from A2, using the fact that, for any 2-nilpotent
Lie algebra L with enveloping algebra E, the inclusion L ↪→ E induces an isomorphism

L ' E/(I3 + Sym2 Lab).

6.2 AdR(b, z) and its relation to A(b, z)

Recall that the main goal of this section is to compute the generalised pre-height h̃p(A(b, z)), which amounts to
describing the Frobenius action and Hodge filtration on Dcr(A(b, z)). The vector spaces AdR

n (b, z) have canonical
Frobenius actions and Hodge filtration (described below), which are related to AdR(b, z) by the following lemma
(which is a special case of Olsson’s theorem [46, Theorem 1.4]).

Lemma 6.1. For all primes v|p, the following hold.

1. The GKv -representation An(b, z) is crystalline for all n and b, z ∈ X(Kv), and

Dcr(An(b, z)) = AdR
n (b, z). (17)

2. The image of jn,v(X(Kv)) in H1(GKv , Un) lies in the subvariety H1
f (GKv , Un) of crystalline torsors.

3. The extension [IA2(b)] in Ext1
GKv

(V,W ) is crystalline.

Proof . As the statement of the lemma is slightly different from Olsson’s theorem as stated in [46], we explain

how to get from one to ther other. Let O(π
ét,Qp
1 (X; b, z)) denote the coordinate ring of the Qp-unipotent étale

torsor of paths from b to z. By [46, Theorem 1.11], this is an ind-crystalline representation (i.e. a direct limit
of crystalline representations), and moreover there is an isomorphism of commutative algebras of ind-filtered
φ-modules

Dcr(O(π
ét,Qp
1 (X; b, z))) ' O(πdR

1 (X; b, z)). (18)

To prove that An(b, z) is crystalline, it is enough to prove that lim−→An(b, z)∗ is ind-crystalline. This follows from
Olsson’s theorem via the Galois-equivariant isomorphism

lim−→An(b, z)∗ ' O(π
ét,Qp
1 (X; b, z)),

(see for example Hadian [29, 2.12] or Kim [34, §2]). This implies (1) and (3), since subquotients of crystalline
representations are crystalline. The deduction of (2) from Olsson’s work is explained in [34, §2].

When b = z, the isomorphism (17) is an isomorphism of algebras (this follows from the statement that the
isomorphism (18) is an isomorphism of Hopf algebras when b = z [46, Theorem 1.8]), and hence on graded pieces
is uniquely determined by the isomorphism

H1
dR(XQp) ' Dcr(H

1
ét(X,Qp)).

Since the associated gradeds of AdR
n (b, z) are independent of z (i.e. are canonically isomorphic as z varies), and

similarly for An(b, z), from (17) we obtain a commutative diagram with exact rows whose vertical maps are
isomorphisms

0 Dcr(H
2
ét(X,Qp)

∗) Dcr(V
⊗2) Dcr(A2(b, z)) Dcr(A1(b, z)) 0

0 H2
dR(XKp)∗ V ⊗2

dR AdR
2 (b, z) AdR

1 (b, z) 0

∪∗

∪∗

Hence if we define WdR := DdR(W ), and

AdR(b, z) := AdR
2 (b, z)/Ker(V ⊗2

dR →WdR),
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then we obtain an isomorphism of filtered φ-modules Dcr(A(b, z)) ' AdR(b, z) . When b = z, we have that
AdR(b, z) inherits the structure of an associative unital Qp-algebra from AdR

2 (b). Since the action of πdR
1 (X, b)

on I2AdR
n (b) is trivial, the kernel of

AdR
2 (b)→ AdR(b)

is πdR
1 (X, b)-stable, and hence there is a quotient

AdR := AdR
2 /Ker(V ⊗2

dR →WdR)⊗OX

in CdR(X), and a commutative diagram

z∗AdR
2 AdR

2 (b, z)

z∗AdR AdR(b, z)

'

'

for all z ∈ X(K). We similarly define

AdR(Y )(b, z) := AdR
2 (Y )(b, z)/Ker(VdR(Y )⊗2 →WdR)

AdR(Y )(b, z) := AdR
2 (Y )/Ker(VdR(Y )⊗2 →WdR)⊗OY .

6.3 The Hodge filtration

In this section we recall Hadian’s description of the Hodge filtration on AdR
n (Y )(b, z) as the fibre at z of the

Hodge filtration on the canonical extension of AdR
n (Y ) to X.

Definition 6.2. By a filtered connection V = (V,∇, F •) we shall mean a vector bundle V together with a
connection ∇ and a decreasing, exhaustive, separated filtration (F iV) by sub-bundles, satisfying the Griffiths
transversality condition

∇(F iV) ⊂ Ω1 ⊗ F i−1V

for all i. We similarly define a filtered connection with log singularities. We sometimes write a filtered connection
as (V, F •) and sometimes simply as V.

.

Definition 6.3. Given a unipotent connection V on Y , we shall denote by Vcan the canonical extension of V
to a connection on X with log singularities along D, which exists and is functorial in V by Deligne [21, §II.5,
Proposition 5.2] (although this construction is analytic, by GAGA it implies the corresponding algebraic result
- alternatively see [2, I.4] for a purely algebraic proof).

Proposition 6.1 (Hadian [29, Proposition 3.3]). Let E and F be filtered connections on X with logarithmic
singularities along D. Then the group of isomorphism classes of extensions of E by F (in the category of filtered
connections on X with logarithmic singularities along D) is isomorphic to the first hypercohomology group of
the complex

F 0(E∗ ⊗F)
∇−→ Ω1 ⊗ F−1(E∗ ⊗F)

where ∇ denotes the associated connection on the internal Hom bundle E∗ ⊗F .

By computing these hypercohomology groups in the case E = AdR
n−1(Y )can and F = VdR(Y )⊗n ⊗OX ,

Hadian proves the following lemma (note that in [29], (X,Y,AdR
n (Y )can, VdR(Y )) is written as (C,X,PdR

n , TdR)).

Lemma 6.4 (Hadian [29, Lemma 3.6]). There exists a filtration of AdR
n (Y )can by vector bundles (F iAdR

n (Y )can)
such that

1. For all n, the sequence of connections

0→ OX ⊗ VdR(Y )⊗n → AdR
n (Y )can → AdR

n−1(Y )can → 0 (19)

respects the filtrations, where OX ⊗ VdR(Y )⊗n is given the filtration induced by the Hodge filtration on
VdR(Y )⊗n.
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2. For all n, the filtration F i satisfies Griffiths transversality, and hence gives AdR
n (Y )can the structure of a

filtered connection for all n.
3. In the fibre at b, the unit element en ∈ b∗AdR

n (Y ) ' AdR
n (Y )(b) lies in b∗F 0AdR

n (Y ).

Moreover, a filtration F i satisfying these properties is unique up to isomorphism of filtered connections.

Remark 4. It is easy to see that the analogous theorem for the bundle AdR
n (Y ) on Y is false: since every extension

of vector bundles on Y admits a splitting, every unipotent vector bundle on Y is trivial. Hence there will be
many ways to lift the Hodge filtration on the graded pieces and satisfy Griffiths transversality. Hence the content
of computing the Hodge filtration on the AdR

n (Y ) is contained in computing its canonical extension to X.

Remark 5. There is a possible point of ambiguity in the statement of [29, Lemma 3.6]. It is not the case that
there is a unique Hodge filtration on AdR

n (Y )can such that (19) is exact and Griffiths transversality (even for
AdR

1 (Y )can). In loc. cit. the author proves uniqueness of the extension class of AdR
n (Y )can in the category of

filtered connections, using injectivity of the map

Ext1
dR,fil(AdR

n−1(Y )can, VdR(Y )⊗n ⊗OX)

↪→Ext1
dR((AdR

n−1(Y )can, F •AdR
n−1(Y )can), (VdR(Y )⊗n ⊗OX , F •VdR(Y )⊗n ⊗OX))

To obtain uniqueness of the filtration itself, one must rigidify by imposing conditions on the filtration at the
basepoint (this is already true when n = 1). Needless to say this distinction is not important in the context of
Hadian’s paper and does not affect the main results.

The Hodge filtration on AdR
n (Y )(b, z) is

F iAdR
n (Y )(b, z) = z∗F iAdR

n (Y ).

The Hodge filtration on AdR
n (X)(b, z) is the filtration induced by the surjection AdR

n (Y )(b, z)→ AdR
n (X)(b, z).

For our purposes, we will be interested in a mild generalisation of Lemma 6.4, where instead of considering
AdR
n (Y ), we consider sheaves coming from other quotients of the universal enveloping algebra. In the following

corollary, we let W be any filtered quotient of VdR(Y )⊗n, and let B be the corresponding quotient of the
connection AdR

n (Y ). Hence the map AdR
n (Y )→ AdR

n−1(Y ) factors through AdR
n (Y )→ B, and B is an extension

0→W ⊗OY → B → AdR
n−1(Y )→ 0.

Corollary 6.2. There is a unique lift of the filtrations on AdR
n−1(Y )can and W ⊗OX to a filtered connection

structure on Bcan such that in the fibre at b, 1 lies in b∗F 0B.

Proof . The category of filtered K-vector spaces is semi-simple, so the quotient map V ⊗ndR →W admits a filtered
section, inducing an isomorphism VdR(Y )⊗n 'W ⊕W ′. Hence

Ext1
dR,fil(AdR

n−1(Y )can, VdR(Y )⊗n ⊗OX) ' Ext1
dR,fil(AdR

n−1(Y )can,W ⊗OX)⊕ Ext1
dR,fil(AdR

n−1(Y )can,W ′ ⊗OX)

and

Ext1
dR(AdR

n−1(Y )can, VdR(Y )⊗n ⊗OX) ' Ext1
dR(AdR

n−1(Y )can,W ⊗OX)⊕ Ext1
dR(AdR

n−1(Y )can,W ′ ⊗OX).

Therefore uniqueness of the lift of the filtration on AdR
n−1(Y )can to AdR

n (Y )can given conditions on b∗AdR
n (Y )

implies uniqueness of the lift of the filtration on AdR
n−1(Y )can to Bcan given conditions on b∗B.

To compute the Hodge filtration on AdR
n (X) (i.e., to carry out the above for a projective curve), we may

compute the Hodge filtration on the universal connection of an open affine Y , and then take the quotient to
get the Hodge filtration on the universal connection on the projective curve X. This will be explained in more
detail in the next section.

6.4 Universal pointed objects

Definition 6.5. For simplicity we assume that all the points of X − Y are defined over K. Choose
η0, . . . , η2g+r−2 ∈ H0(Y,Ω1) a set of differentials whose image in H1

dR(Y ) forms a basis. We will henceforth
assume that this basis is chosen such that η0, . . . , ηg−1 is a basis of H0(X,Ω1), and η0, . . . , η2g−1 form a basis
of H1

dR(X). Let R = ⊕i≥0VdR(Y )⊗i be the tensor algebra of VdR(Y ). Hence R may also be thought of as the
free associative K algebra on 2g + r − 1 generators T0, . . . , T2g+r−2, where the Ti are the dual basis to the ηi.
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Define Rn to be the quotient of R by the 2-sided ideal generated by VdR(Y )⊗(n+1). Let An(Y ) := Rn ⊗OY be
the corresponding trivial vector bundle, and define a connection ∇n on An(Y ):

∇ : Rn ⊗OY → Rn ⊗ Ω1
Y ;w ⊗ 1 7→ −

2g+r−2∑
i=0

Tiw ⊗ ηi.

The following theorem of Kim says that (An(Y ), 1)n is a universal pointed pro-object in (CdR(Y ), 1), and
hence (An(Y ), 1) ' (AdR

n (Y ), 1).

Theorem 6.3 (Kim [34, Lemma 3]). For every n-unipotent pointed connection (V, v) there is a unique map
(An(Y ), 1) 7→ (V, v).

The isomorphism AdR
n (Y ) ' An(Y ) gives a trivialisation

AdR
n (Y ) ' ⊕ni=0VdR(Y )⊗i ⊗OY .

We shall refer to the bundle isomorphism AdR
n (Y ) ' ⊕ni=0VdR(Y )⊗i ⊗OY , and the induced vector space

isomorphism AdR
n (Y )(b, z) ' ⊕ni=0VdR(Y )⊗i as the affine trivialisation of An (relative to the basis (ηi)).

6.5 Computation of the Hodge filtration

We now explain how to use this to algorithmically determine the Hodge filtration on the Qp-vector spaces
AdR(b, z). Unlike the computation of the Frobenius structure, this requires no particular ingenuity, as results of
Kim and Hadian reduce the problem to elementary calculations in computational algebraic geometry.

Definition 6.6. Since WdR is a quotient of ∧2VdR, we have a surjection

τ : VdR(Y )⊗ VdR(Y )→WdR.

Let S1, . . . , Sd be a basis of WdR, and define τijk, 0 ≤ i, j ≤ 2g + r − 2, 1 ≤ k ≤ d, by

τ(Ti ⊗ Tj) =

d∑
k=1

τijkSk.

By definition this map factors through VdR ⊗ VdR, and hence by our choice of basis differentials, τijk is zero

whenever i or j are greater than 2g − 1. Note that the condition that the map factors through ∧2V dR is equivalent
to the equations

τijk + τjik = 0, 0 ≤ i, j ≤ 2g − 1, 1 ≤ k ≤ d.∑
0≤i<j≤2g−1

[ηi] ∪ [ηj ]τijk = 0, 1 ≤ k ≤ d. (20)

By Theorem 6.3, the connection on AdR(Y ) is given as follows:

1 7→ −
2g+r−2∑
i=0

ηi ⊗ Ti, Ti 7→ +

2g+r−2∑
j=0

d∑
k=1

τijkηj ⊗ Sk, Sk 7→ 0.

The Hodge filtration on AdR(X) is computed in two stages:

1. Compute the maximal quotient AdR(X)|Y of AdR(Y ) whose canonical extension to X defines a connection
without singularities.

2. Compute the Hodge filtration on AdR(X).
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6.5.1 Computing AdR(X)

Lemma 6.7. The connection AdR(X)|Y is the maximal quotient of AdR(Y ) which extends to a connection on
X without log singularities.

Proof . By definition AdR(X)|Y extends to X. By Tannaka duality, the claim is equivalent to the saying that
AdR(b) is the maximal quotient of AdR(Y )(b) for which the action of πdR

1 (Y, b) factors through πdR
1 (X, b). Passing

to enveloping algebras, this is equivalent to the action of AdR
2 (Y )(b) factoring through AdR

2 (X)(b), which implies
the lemma.

We deduce that AdR(X)|Y is the unique quotient of AdR(Y ) which extends to a connection on the whole
of X without log singularities and fits in a commutative diagram with exact rows

0 WdR ⊗OY AdR(Y ) AdR
1 (Y ) 0

0 WdR ⊗OY AdR(X)|Y AdR
1 (X)|Y 0.

=

Let C(Y/X) ⊂ 〈η0, . . . , η2g+r−1〉 be the subspace of H0(Y,Ω) spanned by the differentials η2g, . . . , η2g+r−2. We
will show that there are unique ξ1, . . . , ξd in C(Y/X) such that

1 7→ −
2g−1∑
i=0

ηiTi −
d∑
k=1

ξkSk, Ti 7→ +
∑

0≤j≤2g−1,1≤k≤d

τijkηj ⊗ Sk, Si 7→ 0 (21)

defines a connection on X, and give an algorithm for finding them. We solve for the ξk by computing the
canonical extension for a general choice of ξk, and working out the condition for this extension to have no
singularities.

For each x ∈ D(K), let tx ∈ K(X) be a parameter at x. Let Ux be a Zariski neighbourhood of x such that
tx has no poles on Ux and Ux ∩D = x. To compute the canonical extension of AdR(Y ), one has to find, for each
x ∈ (X − Y )(K), connections (Ax,∇x) on Ux, with log singularities along x, and charts (i.2. isomorphisms of
connections)

ψx : Ax|Ux∩Y
'−→ AdR(Y )|Ux∩Y .

Let S be the section of
K((t))→ K((t))/t−1K[[t]]

defined by sending the equivalence class of
∑

i ait
i to

∑
i≤−2 ait

i. Let I be the formal integration function

I : ⊕i<−1K.t
i → ⊕i<0K.t

i;
∑
ait

i 7→
∑

ai
i+1 t

i+1.

For a global function f ∈ K(X) or differential ω ∈ Ω1
K(X)|K , let locx(f) or locx(ω) denote its image in K((tx))

or K((tx))dtx respectively.

Lemma 6.8. Let fi,x, gk,x and hik,x be elements of K((tx)) satisfying

fi,x = I ◦ S(locx(ηi)), hik,x =
∑

0≤j≤2g−1

τijkfj,x.

gk,x = −I ◦ S

(∑
i

(dfi,x − locx(ηi))hik,x −
∑

0≤j≤2g−1

τijkfi,x locx(ηj)− locx(ξk)

)
.

Let Ax be a trivial bundle on K[[tx]] with sections 1x, Ti,x(0 ≤ i ≤ 2g + r − 2), Sk,x(1 ≤ k ≤ d), and let ψx be
the isomorphism

ψx : Ax|Ux∩Y
'−→ AdR(Y )|Ux∩Y .

given by

1x 7→ 1 +

2g+r−2∑
i=0

fi,xTi +

d∑
k=1

gk,xSk, Ti,x 7→ Ti +

d∑
k=1

hik,xSk, Sk,x 7→ Sk; (22)

Then there are unique connections ∇x with log singularities on (Ax)x such that (ψx)x form charts extending
AdR(Y ) to a connection with logarithmic singularities on X − Y .
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Proof . The connection ∇x is unique if it is exists. Since ψx is an isomorphism of connections we deduce that
the connection ∇x must be given by

1x 7→ −
2g+r−2∑
i=0

(ηi − dfi,x)Ti,x +

d∑
k=1

(
dgk,x −

2g+r−2∑
i=0

(dfi,x − ηi)hik,x −
2g+r−2∑
j=0

τijkfi,xηj

)
⊗ Sk,x

Ti,x 7→
d∑
k=1

(
dhik,x +

2g+r−2∑
j=0

τijkωj

)
Sk,x, Sk,x 7→ 0.

It follows from the formulas for fi,x, gk,x and hik,x that this connection on K((tx)) has poles of order at most
one.

In particular, this lemma implies that to compute fi,x, gk,x and hik,x, it is enough to compute the tx-adic
expansion of the ωi to sufficient accuracy.

Having determined the connection (AdR(Y )can,∇), we now determine the quotient connection without log
singularities (AdR(X), d+ Λ). Since we are looking for a quotient of AdR(Y )can of the form (21), the condition
that d+ Λ extends to a connection without log singularities is exactly the condition that one can choose ξk such
that, for all x,

Res

(
2g−1∑
i=0

(dfi,x − locx(ηi)hik,x −
2g−1∑
j=0

τijkfi,x locx(ηj)− locx(ξk)

)
= 0.

By the exact sequence

0→ C(Y/X)
⊕x Resx−→ ⊕x∈(X−Y )(K)K

∑
−→ K → 0,

such ξk exist if and only if

∑
x∈D(K)

Res

(
2g−1∑
i=0

(dfi,x − locx(ηi))hik,x +

2g−1∑
j=0

τijkfi,x locx(ηj)

)
= 0.

Since
∑

x∈D(K) Resx(fi,x locx(ηj)) = [ηi] ∪ [ηj ] by Serre’s cup product formula, we can solve for ξk by (20).
Explicitly, the residue of ξk is equal to the residue of

dgk,x −
2g−1∑
i=0

(dfi,x − ηi)hik,x −
2g−1∑
j=0

τijkfj,xηk. (23)

By inspection, in order to compute these functions in practice, one simply needs to determine constants
β(i, j, x) ∈ K (0 ≤ i ≤ 2g + r − 1,−m ≤ m) having the property that

locx(ηi)−
m−1∑
j=−m

β(i, j, x)tixdtx ∈ tmx K[tx]dtx,

where m is the maximum over all i and x of the order of the pole of ηi at x.

6.5.2 Computing the Hodge filtration

To explain how to compute the Hodge filtration, we recall some elementary properties of differentials on curves.

Lemma 6.9. Suppose there is a function g ∈ H0(Y,OY ) and constants µi, g ≤ i < 2g, such that for all
x ∈ D(K), the function g −

∑
µifi,x has no pole at x. Then g is constant and all the µi are zero.

Proof . For g and µi as in the lemma, we have that dg −
∑2g−1

i=g µiηi has no poles (recall dfi,x = ηi). Hence

dg −
∑g−1

i=0 µiηi defines an element of H0(X,Ω1). Since [η0], . . . , [η2g−1] is a basis of H1
dR(X), the lemma

follows.

It follows that given any tuple (wx)x∈D(K) ∈
∏
x∈D(K)K((tx)), there is a unique choice of g ∈ H0(Y,O) and

µi ∈ K (g ≤ i < 2g) such that g(b) = 0 and for all x in D(K), wx − locx(g)−
∑2g−1

i=g µifi,x does not have a pole
at x.
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Definition 6.10. As above, let r denote the degree of D over K, and let m denote the maximum over all
x ∈ D(K) and 0 ≤ i < 2g of the order of the pole of ηi at x. Denote by Π the rm-dimensional K-vector space∏

x

t−mx K[tx]dtx/K[tx]dtx.

Define functions r : Π→ H0(Y,O) and c = (c0, . . . c2g+r−1) : Π→ K⊕(2g+r) by the property that for all π in Π,

π ≡ locx(r(π)) +
∑

ci(π) locx(ωi) mod
∏

t−1
x K[t−1

x ] (24)

and r(π)(b) = 0.

By Lemma 6.4, F 0AdR is uniquely determined by the following properties:

• There is a commutative diagram of bundles

F 0I2AdR(X) F 0IAdR(X) F 0AdR(X)

WdR ⊗OX IAdR(X) AdR(X)

where IAdR(X) is the kernel of the surjective map of connections

AdR(X)→ (OX , d).

Passing to the associated map of gradeds defines an isomorphism

grF 0AdR ' OX ⊕ F 0VdR ⊗OX ⊕ F 0WdR ⊗OX .

• In the fibre at b, 1 ∈ AdR(b) is in the image of b∗F 0AdR.

An elementary calculation shows us that H0(Y, F 0AdR
1 (X)) has basis of sections 1, Tg, . . . , T2g−1. To compute

F 0AdR, we need to lift these to determine the bundle F 0AdR. Suppose they lift to sections 1 +
∑d

k=1 r
H
k ⊗ Sk

and Ti +
∑d

k=1 c
H
ik ⊗ Sk. Then by the above computation of the charts defining the bundle AdR, we find

Lemma 6.11. The functions rHk are given by rHk = r((gk,x)x). The functions cHik are constant and are given by
cHik = ci((gk,x)x).

Proof . We need to check that the sub-bundle of AdR|Y spanned by 1 +
∑d

k=1 r
H
k Sk, Ti +

∑d
k=1 c

H
ikSk (g ≤

i < 2g), and Sk (d0 ≤ k ≤ d) extends to a sub-bundle of AdR. Via the charts ψx, the corresponding sections of
AdR
x |Ux−x are given by

ψ−1
x (1 +

d∑
k=1

rHk Sk) = 1x −
2g−1∑
i=g

fi,xTi,x +

d∑
k=1

(rHk − gk,x)Sk,x,

ψ−1
x (Ti +

d∑
k=1

cHikSk) = Xi,x +

d∑
k=1

(cHik −
2g−1∑
j=0

τijkfj,x)Sk,x,

ψ−1
x (Sk) = Sk,x.

For this O(Ux − x)-module to be the localisation of an O(Ux)-module, it is sufficient that there are functions
θi,x(g ≤ i < 2g) and χk,x (1 ≤ k ≤ d) in H0(Ux − x,O) such that

ψ−1
x (1 +

d∑
k=1

rHk Sk) +

2g−1∑
i=0

θi,x(Ti +

d∑
k=1

cHikSk) +

d∑
k=1

χk,xφ
−1
x Sk ∈ H0(Ux,AdR(X)).

By examining Ti-coordinates, we find that θi,x ≡ fi,x mod H0(Ux,O). For k > d0 we take θk = gk,x. Hence the
only non-trivial condition on the rHk and cHik is that for d− d0 ≤ k ≤ d0,

gk,x −
2g−1∑
i=0

cHikfi,x − rHk ∈ H0(Ux,O),

for all x, which hold by definition of the functions r and c.
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6.6 The universal connection of a hyperelliptic curve

In this subsection we use the hyperelliptic splitting to provide a simple description of the Hodge filtration on
AdR(b, z) when X is hyperelliptic. In general, given an automorphism σ of X, fixing the point b, by the universal
property of AdR

n , we obtain a unique morphism AdR
n → σ∗AdR

n sending 1 to σ∗1. The connection σ∗AdR
n is in

a natural way isomorphic to AdR
n . If σ(Y ) = Y , then it will also be the case that σ∗AdR

n (Y ) is isomorphic to
AdR
n (Y ). In this case the connection structure on σ∗AdR

n is given by

v ⊗ 1 7→ −
2g+r−2∑
i=0

Tiv ⊗ σ∗ωi.

Restricting to the fibre at b, we obtain an automorphism of the algebra AdR
n (Y )(b). For example, suppose X/Q

is hyperelliptic, given by
y2 = f(x) = x2g+2 + a2g+1x

2g+1 + · · ·+ a0,

Y = X − {∞±}, and ωi = xidx/2y. Then pulling back by the hyperelliptic involution w sends AdR
n (Y ) to the

connection v ⊗ 1 7→
∑2g+r−2

i=0 Tiv ⊗ ωi. Hence we deduce that with respect to this affine trivialisation, at any
Weierstrass point b, the automorphism on the algebra AdR

n (Y )(b) induced by w is simply given by Ti 7→ −Ti.

Definition 6.12. For an effective divisor D on X whose support has points z1, . . . , zn in an algebraic closure,
we let D[1] denote the divisor D +

∑n
i=1 zi.

Lemma 6.13. We have the following:

1. The constants cHik are independent of basepoint.
2. Suppose X is hyperelliptic, with defining equation as above, and the ηi are taken to be a K-linear

combination of the basis differentials ωi = xidx/2y. Then cHik(x) is zero for all i and k, and ξk = 0 for
all 1 ≤ k ≤ d.

3. Suppose η0, . . . , η2g−1 are differentials in H0(X,Ω(D)), for some effective divisor D, and η0, . . . , ηg−1 are
a basis of H0(X,Ω). Then we have that for all k < 2g − 1, rHk ∈ H0(X,D[1]).

Proof . For part (1), we use the characterisation of cik from Lemma 6.11. By (24), changing the basepoint b
changes r by a constant, but does not alter the ri(π).
For part (2), it suffices to prove this after a finite extension of the base field, and by part (1) we may assume that
b is taken to be Weierstrass. As we did in the étale setting, we observe that w then induces an automorphism
of the bundle A|Y . With respect to the affine trivialisation of A at b, w acts as -1 on the VdR component, and
acts as 1 on the WdR component. By functoriality, the involution must respect w, and hence we conclude all
the rHik must be zero. Similarly, by the explicit description of ξk given in equation (23), we see that the residue
of ξk is equal to the residue of a sum of differentials which are even with respect to the hyperelliptic involution,
and hence zero. For part (3), this follows from the defining property (see (24)) of the function c used to define
the cHik.

We now explain how to carry out some of these calculations for a hyperelliptic curve. We consider X/K given
by y2 = f(x) = x2g+2 + a2g+1x

2g+1 + · · ·+ a0, and let Y = X − {∞±} and ωi = xidx/2y. The set {ω0, . . . , ω2g}
forms a basis of H1

dR(Y ), and the set {ω0, . . . , ωg−1} forms a basis of H0(X,Ω1). In general ω0, . . . , ω2g−1 will
not form a basis of H1

dR(X), so we take η0, . . . , η2g in the K-span of ω0, . . . , ω2g forming a basis of H1
dR(Y ) such

that η0, . . . , ηg−1 form a basis of H0(X,Ω1) and η0, . . . , η2g−1 form a basis of H1
dR(X). Let WdR be any filtered

quotient of ∧2V dR. By truncating the power series expansion of x2g+2
√
f(x−1), we find polynomials fi,∞± in

uK[u] such that
ωi − dfi ∈ u−1K[u]du.

Similarly we find the functions gi,∞± and hi,∞± .
In the notation of the previous section, r = 2, m = g, and for x =∞±, we may take the uniformiser tx to

be u := x−1. The function

(c, r) : (u−gK[u]/K[u])× (u−gK[u]/K[u])→ H0(X,O(g∞))×Kg

is given as follows: let s(x) =
∑g

i=1 siu
−i be a representative of an element of u−gK[u]/K[u]. For any polynomial

s(x), we have c(s(x), s(x)) = s(x) and r(s(x)) = 0. Define B = (Bij) by loc∞+(ωi+g)−
∑
Biju

jdu ∈ K[u]du.
Then (c(s(x),−s(x)) = 0 and r(s(x),−s(x)) = B−1(s), where s := (s1, . . . , sg).



Quadratic Chabauty and Rational Points II 37

6.7 Frobenius structure on the universal connection of a hyperelliptic curve

In order to complete the description of the filtered φ-module structure, we need to describe the Frobenius action
on the fibres AdR(b, z) of the connection AdR. Although it will not be needed in this paper, for completeness we
briefly outline how this computation might be carried out for a general curve.

Let XFp be the special fibre of a smooth model of X over Zp, and let φ be an overconvergent lift of the
absolute Frobenius morphism to some wide open subspace in the rigid analytification of XQp . The analytifications
of the pointed connections (An, 1) may be viewed as universal pointed objects (A†n, 1) in the category of unipotent
isocrystals on XFp . The action of Frobenius on the category of unipotent isocrystals induces a Frobenius structure
on A†n, and one may reduce the problem of computing the action of Frobenius on AdR(b, z) to that of computing
this Frobenius structure.

For a hyperelliptic curve, we use the hyperelliptic splitting principle to determine the filtered φ-module
AdR(b, z) when b = z is a Weierstrass point. This gives a characterisation of the φ-module structure of AdR(b, z)
for general b and z in terms of Coleman integrals.

Lemma 6.14. 1. Let X be a hyperelliptic curve, and ηi as in Section 6.6. With respect to the affine
trivialisation, the unipotent φ-equivariant isomorphism

Qp ⊕ VdR ⊕WdR
'−→ AdR(b, z)

is given by 1 0 0∑2g−1
i=0 Ti

∫ z
b
ηi 1 0∑

1≤k≤d

(∑
0≤i,j≤2g−1 τijk

∫ z
b
ηiηj

)
Sk

∑
0≤i,j≤2g−1,1≤k≤d−τijkT ∗i ⊗ Sk

∫ z
w(b)

ηj 1

 ,

modulo F 0 Hom(VdR,WdR).

2. For general smooth projective X, there are constants cφik, independent of z, such that the φ-equivariant
isomorphism is given by 1 0 0∑2g−1

i=0 Ti
∫ z
b
ηi 1 0∑

1≤k≤d

(∫ z
b
ξk +

∑
0≤i,j≤2g−1 τijk

∫ z
b
ηiηj

)
Sk

∑
0≤i<2g,1≤k≤d(c

φ
ik −

∑
0≤j<2g τijk

∫ z
b
ηj)T

∗
i ⊗ Sk 1

 .

Proof . We compute the isomorphism as the composite of φ-equivariant isomorphisms

Qp ⊕ VdR ⊕WdR
'−→ AdR(b)

'−→ AdR(b, z).

We compute the latter isomorphism first. By definition, such an isomorphism is given by iterated Coleman
integrals, as in [10, Corollary 3.3]. More precisely, for all z1, z2, z3 in Y (Qp), the unipotent φ-equivariant
isomorphism

AdR(z1, z2)
'−→ AdR(z1, z3)

is given by

1 7→ 1 +

2g−1∑
i=0

∫ z3

z2

ηi ⊗ Ti +

d∑
k=1

(

∫ z3

z2

ξk +
∑

0≤i<j≤2g−1

τijk

∫ z3

z2

(ηiηj − ηjηi))Sk

Ti 7→ Ti −
∑

0≤j≤2g+r−2,1≤k≤d

τijk

∫ z3

z2

ηj ⊗ Sk,

Sk 7→ Sk.

This proves part (2). For part (1), we compute the other isomorphism. By Lemmas 3.6 and 3.7, we know that,
modulo F 0 Hom(VdR,WdR), the φ-equivariant splitting is given by Ti− 7→

∑
j,k τijk

∫
2b−D ηj ⊗ Sk. Again, by

the definition of Coleman integration we have

t(AdR
1 (b, z), IAdR(b, z)) =

∑
0≤i<g

∫ z

b

ηiTi −
∑

τijk

(∫ z

b

ηi

)(∫
z+b−D

ηj

)
⊗ Sk

and for i < g, we have
∫ z
w(b)

ηi =
∫ z
b
ηi +

∫
2b−D ηi.
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Lemma 6.15. 1. Let X be a hyperelliptic curve, and ηi a basis of H1
dR(Y ) as in Section 6.6. Then the

generalised pre-height of A(b, z) is given by

h̃p(A(b, z)) =
∑
k

(
−rHk (z) +

∑
0≤i<j<2g

τijk

∫ z

b

(ηiηj − ηjηi)−
∫ z

b

ηi

∫ b

w(b)

ηj −
∫ z

b

ηj

∫ b

w(b)

ηi)

)
Sk

2. Let X be a general smooth projective curve, Y ⊂ X and (ηi) be as in Section 6.5 and ξ as in Section 6.5.
Then

h̃p(A(b, z)) =
∑
k

(
−rHk (z) +

∫ z

b

ξk −
∑

0≤i<g

cφik

∫ z

b

ηi +
∑

0≤i<j<2g

∫ z

b

(ηiηj − ηjηi)−
∑

g≤i<2g

cHik

∫ z

b

ηi

)
Sk.

Proof . Recall that Lemma 3.9 gives an explicit formula for the p-adic height of a mixed extension given a
representative for its class in F 0\U(Qp, VdR,WdR). Recall from (11) that such a representative is given by
(sH)−1 ◦ sφ, where sφ and sH are isomorphisms Qp ⊕ VdR ⊕WdR which commute with the Hodge filtration and
Frobenius action respectively. Hence the result follows from Lemma 6.14 and from the definition of rHk and cHik.

A corollary of Lemmas 6.13 and 6.15 is the following explicit general formula. Let η0, . . . , η2g−1 be
differentials of the second kind in H0(X,Ω1(D)) for some effective divisor D. Let |D|Fp denote the reduction
mod p of the support of D, and let W ⊂ XQp denote the tube of p-adic points which are not congruent to |D|
mod p.

Proposition 6.4. Suppose m := ρf (J)− 1 > r − g. Then there exist constants aijk, bijk, cijk, bik, cik, rational
functions sk ∈ H0(X,O(D[1])), and differentials of the third kind ξk, such that

X(Qp)U ∩W ⊂ {z ∈ W : RT1,...,Tr−g (F1, . . . , Fm) = 0},

Fk(T1, . . . , Tm, z) =
∑

1≤i,j≤r−g

aijkTiTj +
∑

1≤i≤r−g,0≤j<g

bijkTi

∫ z

b

ηk +
∑

1≤i≤r−g

bikTi

+
∑

0≤i,j<2g

cijk

∫ z

b

ηiηj +
∑

0≤i<2g

cik

∫ z

b

ηi +

∫ z

b

ξk + sk.

Proof . By Proposition 4.1, the set X(Qp)2 is contained in the intersection of the zeroes of Fk. Using the
identity

∫
(ωiωj + ωjωi) =

∫
ωi
∫
ωj , we can write the formula for the generalised pre-height as

∑
cij
∫ z
b
ωiωj +∑

ci
∫ z
b
ωi +

∫ z
b
η + s.

7 Computing X(Kp)U

7.1 Theorem 1.2, general case

We now return to the setting of Section 5.2. Let X be a curve of the form

y2 = x6 + ax4 + ax2 + 1

with a ∈ K0, where K0 is Q or a real quadratic field, and the base field K is a totally real extension of K0.
Let T0,V denote the set of primes of potential type V reduction. Let Lw|Kv be a finite extension over which

X acquires stable reduction. At each v in V0 we choose an ordering of the two components of the special fibre of
the stable model of X over OLw . Over such an extension, the dual graph of a minimal regular model is then a
“line”, i.e., a graph with vertex set {v0, . . . , vn} and edge set {e0, . . . , en−1} where ei is an edge from vi to vi+1.
Define πv : X(Kv)→ Q to be the map sending a point x to i/n, where vi is the unique vertex containing the
reduction of x (note that the ratio i/n is independent of the choice of extension Lw). Finally, if α is a function
from T0,V to Q, we let X(K)α denote the set of rational points for which πv(x) = α(v) for all v ∈ T0,V .
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Theorem 1.2. Let K0 be Q or a real quadratic field. Let K|K0 be a totally real extension. Let X/K0 be a genus
2 curve in the family y2 = x6 + ax4 + ax2 + 1 whose Jacobian has Mordell–Weil rank 4 over K. Let b ∈ X(K)
denote the point (0, 1). Assume that there is a prime p of Q such that

• The prime p splits completely in K|Q.
• The curve X has good reduction at all primes above p, and the action of GK on E[p] is absolutely irreducible.
• If E has complex multiplication by a CM extension L, then L is not contained in K(µp).

Then there exist constants λv, µv ∈ Qp for all v ∈ T0,V with the following property: Suppose z0 is a point in
X(K) such that f1(z0) ∧ f2(z0) is of infinite order in ∧2E(K). Then for all α : T0,V → Q, X(K)α is contained
in the finite set of z in X(Kp) satisfying G(z) = 0, where

•

G(z) = det

(
F1(z) +

∑
v∈T0,V

λv(α(v)− πv(b)) F2(z) +
∑

v∈T0,V
µv(α(v)− πv(b))

F1(z0) +
∑

v∈T0,V
λv(πv(z0)− πv(b)) F2(z0) +

∑
v∈T0,V

µv(πv(z0)− πv(b))

)
,

•

F1(z) =

∫ z

b

(ω0ω1 − ω1ω0) +
1

2

∫ z

b

ω0

∫ b

w(b)

ω1,

•

F2(z) = 2

∫ z

b

(−ω0ω3 + aω1ω2 + 2ω1ω4)− 1

2
x(z)−

∫ z

b

ω0

∫ b

w(b)

ω3.

7.2 Computing (cH , rH) for the Kulesz–Matera–Schost family

To complete the proof of Theorem 1.2, by Lemma 5.8, it will be enough to show that, with respect to a suitable
basis of WdR/F

0, we have

h̃p(A(b, z))− 1

2
h̃p([E1, E2]) = (F1(z),−F2(z)).

We shall prove this by explicitly determining the functions fi,x, gi,x, hi,x, c
H and constants rH from Section 6.

Let X be a hyperelliptic curve of the form y2 = x6 + ax4 + ax2 + 1. Denote by {∞+,∞−} the points at
infinity with respect to this model. Suppose b is a rational point of X and U(b) is the quotient of the fundamental
group defined in Section 1. Recall the maps f1 and f2 from the introduction. The set {ω0, . . . ω4} forms a basis
of H1

dR(Y ) and a basis of H1
dR(X) is given by {η0 = ω0, η1 = ω1, η2 = aω2 + 2ω4, η3 = ω3}. Let T0, T1, T2, T3 be

the corresponding dual basis. For the quotient AdR(X), we find that all the ξk are zero, so that

1 7→ −
3∑
i=0

ηi ⊗ Ti, Tj 7→ −
∑

0≤j≤3,1≤k≤3

ηi ⊗ (τijkSk), Sk 7→ 0

extends to a connection on X.

Let ωE = dx/2y denote the canonical Weierstrass differential on E. Let TE,1 and TE,2 denote the basis of
H1

dR(E −O) dual to [ωE ], [xωE ]. The set {S0 = TE,0TE,0, S1 = TE,0TE,1, S2 = TE,1TE,1} forms a basis of WdR,
and the set {S0, S1} forms a basis of WdR/F

0. Since the map τ factors through ∧2VdR, it is enough to specify
its values on the elements Ti ∧ Tj . These may be calculated by observing that

f∗1 [ωE ] = [η1], f2∗[ωE ] = [η0], f∗1 [xωE ] = [η3], f∗2 [xωE ] = [η2].

Hence we deduce by equation (15) that

τ(T0 ∧ T1) = −S0, τ(T0 ∧ T3) = −τ(T1 ∧ T2) = −S1, τ(T2 ∧ T3) = −S2.

With respect to these bases, we find that cH = 0 and rH = (0, 1
2x(z)− 1

2x(b)).
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7.3 Local constants at primes of bad reduction

We now explain how to compute local pre-heights at primes away from p, under the assumption of Hypothesis
(H). First we explain why a non-trivial contribution at v ∈ T0 can only arise when v is a prime of potential type
V reduction.

Lemma 7.1. Suppose X has potential good reduction at v. Then jv is trivial.

Proof . Recall from [49, I.5.8] that, given a profinite group G, closed normal subgroup H, and G-group A, we
get an exact sequence of pointed sets

H1(G/H,AH)→ H1(G,A)
Res−→ H1(H,A).

Applying this when G = Gv, H = Gw is the Galois group of a finite extension Lw of Kv over which X acquires
good reduction. The commutative diagram

X(Kv) H1(Gv, U)

X(Lw) H1(Gw, U)

jv

Res

implies that the composite Res ◦jv is trivial. Hence to prove the lemma it is enough to show that UGw is trivial,
which may be seen from the fact that V and Sym2 VE are pure of weight −1 and −2 respectively over L.

Lemma 7.2. Suppose E does not have potential good reduction at v. Then H1(Gv, U) is trivial.

Proof . We have an exact sequence of pointed sets

H1(Gv, Sym2 VE)→ H1(Gv, U)→ H1(Gv, V ).

Applying Lemma 3.8 with n = 0, we see that H1(Gv, V ) = 0. Hence it is enough to show that H1(Gv, Sym2 VE) =
0. This is well-known (see e.g. [24, Lemma 2.10]), but we recall the proof for the sake of completeness. Let Lw be
a finite extension of Kv over which E acquires semi-stable reduction. Then ResGw VE is a non-trivial extension
of Qp by Qp(1). Hence Sym2 VE is an extension

0→ Qp(2)→ Sym2 VE → (Sym2 VE)/Qp(2)→ 0,

and (Sym2 VE)/Qp(2) is a non-trivial extension of Qp by Qp(1). Then, arguing as in the proof of Lemma
3.8, we have H1

f (Gv, Sym2 VE/Qp(2)) = H1
f (Gv, (Sym2 VE/Qp(2))∗(1)) = 0, hence H1(Gv, Sym2 VE/Qp(2)) = 0.

Similarly H1(Gv,Qp(2)) = 0 for weight reasons.

The only remaining case is where E has potential good reduction but X does not, which implies that X
has potential type V reduction. Again using injectivity of the restriction map we can recover j2,v from its image
in H1(GL, Sym2 VE) which is determined (up to a scalar) by the following Lemma, whose proof will appear in
[12].

Lemma 7.3. For all v ∈ T0 of potential type V reduction, the map

jv : X(Kv)→ H1(Gv, U)

factors as X(Kv)→ Qp → H1(Gv, U), where the first map sends z to πv(z)− πv(b) and the second map is a
vector space homomorphism.
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7.4 Completion of proof

We now explain how to use this explicit description of generalised heights on X to prove Theorem 1.2. This
gives the following proposition.

Proposition 7.1. With respect to the basis S0, S1 of (Sym2 V dR
E )/F 0, the local heights h̃p(A(b, z)) and

h̃p([E1, E2]) are given by

h̃p(A(b, z)) = (F1(z) +
1

2

∫ z

b

ω0

∫ z

w(b)

ω1)S0 − F2(z)S1, h̃p([E1, E2]) =
1

2

∫ z

b

ω0

∫ z

w(b)

ω1S0.

Proof . We have an isomorphism H1
f (Gp, VE) ' Qp.TE,0 using the basis of H1

dR(E) above, and given extensions

[E1] = λ1.TE,0 and [E2] = λ2.TE,0. Then the class of [E1, E2] in F 0\U(Qp, VdR,WdR) is given by

 1 0 0
λ1TE,0 + λ2TE,1 1 0

λ1λ2S0 λ2T
∗
E,0 ⊗ S0 + λ1T

∗
E,0 ⊗ S0 1

 .

Hence the pre-height of [E1, E2] is given by −λ1λ2, and the result follows from Lemma 5.7.

Hence we find

h̃p(A(b, z))− h̃p([E1, E2]) = (F1(z), F2(z)).

7.5 Examples

In this section, we give three examples of our Theorem 1.2 applied to specific curves X. In the first two examples,
we obtain a finite set of p-adic points containing X(K). In general, if the codimension of Sel(U) in H1

f (Gp, U) is
one, then X(Kp)U will contain extra p-adic points that do not come from X(K). In practice, one can often use
the Mordell–Weil sieve in combination with the Chabauty–Kim method to determine X(K) exactly ([48], [25],
or [6] for an example in the context of the Chabauty–Kim method). Our SageMath code is available on Github
[7].

7.5.1 Example 1: K = Q, a = 31, p = 3

The curve E31 has rank 2 over Q. To determine the local constants, we first need to find the primes of potential
type V reduction. X has potential good reduction at all primes away from 2 and 7, which are both of potential
type V reduction.

1. v = 7: modulo 7, the model y2 = x6 + 31x4 + 31x2 + 1 reduces to y2 = (x2 + 1)3. In particular, with
respect to this model, all Q7-points reduce to a smooth point of the special fibre, and lie on a common
component. Hence all Q7-points reduce to a common component of the minimal regular model over Z7.
Hence they reduce to a common component of the stable model of X over a finite extension of Q7, and so
by (H) the contribution at 7 is zero.

2. v = 2: we observe H1(GQ2
, Sym2 VE) = 0, which implies that H1(GQ2

, U) = 0. One way to see this is to
note that for H1(Q2, Sym2 VE) to be nonzero, it is necessarily the case that HomGQ2

(T3E, T3E) has rank
bigger than 1, which means that the action of inertia at 2 must factor through an abelian subgroup of
GL2(F3). This does not happen at a = 31, because E does not acquire good reduction over any (Z/2)2 or
degree 3 extension of Q2.

Hence our equation for rational points simplifies to F1(z)F2(z0) = F1(z0)F2(z). The set of solutions is tabulated
below. We find X(Q3)U appears to contain 8 non-rational points.
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z ∈ X(F3) x(z) ∈ Zp z ∈ X(Q)
O(37) (0,±1)

(0,±1) 2 · 3 + 2 · 33 + 2 · 35 +O(37)
3 + 2 · 32 + 2 · 34 + 2 · 36 +O(37)

1 +O(37) (1,±8)

(1,±2) 1 + 2 · 3 +O(37) (7,±440)
1 + 3 + 2 · 33 + 34 + 2 · 35 +O(37) ( 1

7 ,±
440
343 )

2 + 2 · 32 + 2 · 33 + 2 · 34 + 2 · 35 + 2 · 36 +O(37) (−7,±440)

(2,±2) 2 + 3 + 2 · 32 + 34 + 2 · 36 +O(37) (− 1
7 ,±

440
343 )

2 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34 + 2 · 35 + 2 · 36 +O(37) (−1,±8)
2 · 3−1 + 1 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34 +O(37)

∞± 3−1 + 1 + 2 · 35 + 2 · 36 +O(37)
∞± ∞±

7.5.2 Example 2: K = Q(
√

3), a = 19, p = 11, p = (2
√

3 + 1)

It follows from the functional equations satisfied by F1 and F2 that, for any z0, the zero set of

F2(z)F1(z0)− F1(z)F2(z0)

is stable under Aut(X), and Fi((±1,±1)) = 0. Hence the fact that each of the known rational points z
from Example 7.5.1 satisfied the identity F2(z)F1(z0) = F1(z)F2(z0) is a trivial consequence of the above
functional equations. It is natural to ask if one can find an example where Theorem 1.2 produces a non-
trivial identity between the Fi evaluated on different rational points (analogous to ‘motivic’ identities between
p-adic polylogarithms evaluated at S-units, or p-adic heights of integral points on elliptic curves). Numerical
experiments suggest that it is rare for the formula in Theorem 1.2 to produce non-trivial identities (i.e. identities
that cannot be explained by the functional equations) that the Fi satisfies on rational points, as when a curve
has many rational points relative to its Mordell–Weil rank, it typically has many potential type V primes.

However, there are instances where the theorem produces non-trivial identities between the values of Fi(z)
on rational points. When a = 19 and K = Q(

√
3), we find that E(K) has rank 2, the prime above 2 is the only

potential type V prime and the set X(Q(
√

3)) has at least 28 points, coming from the Aut(X)-orbits of (0, 1)
together with the points

z1 = (
√

3, 16), z2 = (−
√

3 + 2,−24
√

3 + 40), z3 = (−39
√

3/71 + 98/71,−2736216
√

3/357911 + 5551000/357911).

Local constants at v above 2: one can compute a semistable model of X over the totally ramified extension
L of Q2 cut out by the polynomial

F (t) = t8 + 32t7 + 448t6 + 3584t5 + 16096t4 + 28160t3 − 18432t2 − 6912

by first computing a smooth model of E over L, for example as described in [40, §10.2.3]. Let β be a root of F
in L, and define γ := 1

3 (β2 + 8β). Using this model, we can show that the regular semistable model of X over

L(
√

3) has 9 irreducible components, and that the map πv : X(Kv)→ {a/8 : 0 ≤ a ≤ 8} is given by

z 7→


0 v(x(z)− 1) > 1, v(x(z)2 + 1− γ) ≥ 3

(3− v(x(z)2 + 1− γ))/2 v(x(z)− 1) > 1, 2 ≤ v(x(z)2 + 1− γ) ≤ 3
1/2 v(x(z)2 + 1− γ) ≤ 2

(v(x(z)2 + 1− γ)− 1)/2 v(x(z)− 1) = 1, 2 ≤ v(x(z)2 + 1− γ) ≤ 3
1 v(x(z)− 1) = 1, v(x(z)2 + 1− γ) ≥ 3

where the valuation v is normalised so that v(2) = 1. For example, this tells us that πv(z0) = 1/2. For z1, z2 and
z3, we are in case 4, since

v(x(z1)2 − 1 + γ) = 5/2, v(x(z2)2 − 1 + γ) = 11/4, v(x(z3)2 − 1 + γ) = 11/4.

Hence πv(z1) = 3/4 and πv(z2) = πv(z3) = 7/8. We find that the divisor

3[z2] + [z3]− 6[z1]

maps to zero in ∧2E(K)⊗Q and in H1(Gv, Sym2 VE). Working at a prime above 11, we compute that

3F1(z2) + F1(z3)− 6F1(z1) = 3F2(z2) + F2(z3)− 6F2(z1) = O(1118).
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The vector space E(K)⊗Q is generated by P1 = (4
√

3 + 7, 24
√

3 + 40) and P2 = (1/3, 16
√

3/9). With respect to
these generators, we have f1(z1) = (−1,−1), f2(z1) = (1, 0), f1(z2) = (0, 1), f2(z2) = (−2,−1). Hence the images
of z1 and z2 in ∧2E(K)⊗Q are P1 ∧ P2 and 2P1 ∧ P2 respectively. Thus we have

λv = 8(F1(z2)− 2F1(z1)),

µv = 8(F2(z2)− 2F2(z1)).

We deduce that X(Q11)2 is contained in the zeroes of(
F1(z) + λv

(
c− 1

2

))(
F2(z1) +

µv
4

)
−
(
F2(z) + µv

(
c− 1

2

))(
F1(z1) +

λv
4

)
,

c ∈ {0, 1/8, . . . , 7/8, 1}. The F11-points of X are ±∞, (0,±1), (±2,±4), (±3,±3), (±4,±5), (±5,±5). Because
X(Q11)U is stable under the automorphism group of X, we need only consider the residue disks corresponding
to the F11-points (0, 1), (2, 4), (3, 3). We find the following points:

z ∈ X(F11) x(z) ∈ Zp z ∈ X(Q)

6 · 11 + 6 · 112 + 6 · 113 + 7 · 114 + 10 · 116 + O(117)

(0, 1) 10 · 11 + 3 · 112 + 8 · 114 + 5 · 115 + 4 · 116 + O(117)

3 · 11 + 5 · 112 + 5 · 113 + 9 · 114 + 2 · 115 + 3 · 116 + O(117)

7 · 11 + 5 · 112 + 10 · 113 + 3 · 114 + 5 · 115 + 116 + O(117)

O(117) (0, 1)

4 · 11 + 5 · 112 + 7 · 114 + 5 · 115 + 9 · 116 + O(117)

8 · 11 + 5 · 112 + 5 · 113 + 114 + 8 · 115 + 7 · 116 + O(117)

11 + 7 · 112 + 10 · 113 + 2 · 114 + 5 · 115 + 6 · 116 + O(117)

5 · 11 + 4 · 112 + 4 · 113 + 3 · 114 + 10 · 115 + O(117)

3 + 3 · 11 + 5 · 112 + 3 · 113 + 2 · 114 + 6 · 115 + 2 · 116 + O(117)

(3, 3) 3 + 6 · 11 + 7 · 112 + 7 · 113 + 7 · 114 + 6 · 116 + O(117)
(
−39
√

3−98
71 , −2736216

√
3−5551000

357911

)
3 + 9 · 11 + 5 · 112 + 5 · 113 + 2 · 114 + 115 + 116 + O(117)

3 + 11 + 7 · 112 + 4 · 113 + 7 · 114 + 4 · 115 + 3 · 116 + O(117)

3 + 4 · 11 + 7 · 112 + 7 · 114 + 5 · 115 + 2 · 116 + O(117)

3 + 7 · 11 + 2 · 112 + 113 + 10 · 114 + 8 · 115 + 9 · 116 + O(117)

3 + 10 · 11 + 10 · 112 + 5 · 113 + 114 + 8 · 115 + 5 · 116 + O(117)

3 + 2 · 11 + 6 · 112 + 8 · 113 + 114 + 9 · 115 + 9 · 116 + O(117) (
√

3− 2, 24
√

3− 40)

3 + 5 · 11 + 6 · 112 + 9 · 113 + 7 · 114 + 4 · 115 + 6 · 116 + O(117)

2 + 7 · 11 + 10 · 112 + 5 · 113 + 5 · 114 + 8 · 115 + 4 · 116 + O(117)

(2, 4) 2 + 3 · 11 + 6 · 112 + 4 · 113 + 3 · 114 + 115 + 7 · 116 + O(117)

2 + 10 · 11 + 8 · 112 + 3 · 114 + 4 · 115 + O(117)
(
− 1√

3
, 19
√

3
9

)
2 + 6 · 11 + 6 · 112 + 2 · 113 + 5 · 116 + O(117)

2 + 2 · 11 + 9 · 112 + 113 + 10 · 114 + 4 · 116 + O(117)

2 + 9 · 11 + 4 · 112 + 10 · 113 + 114 + 6 · 115 + O(117)

2 + 5 · 11 + 3 · 112 + 8 · 113 + 3 · 114 + 4 · 115 + 2 · 116 + O(117)

2 + 11 + 4 · 112 + 113 + 4 · 114 + 10 · 115 + 8 · 116 + O(117)

2 + 8 · 11 + 5 · 112 + 2 · 113 + 9 · 115 + 3 · 116 + O(117)

7.5.3 Example 3: K0 = Q(
√

11),K = K0(
√

2883589 + 3072
√

11), a = −1− 512
√

11

In general, a major drawback to applying Theorem 1.2 is the need to have enough rational points to solve for the

undetermined constants µv, λv, Fi(z0). For example, this is illustrated by the case K = Q(
√

2883589 + 3072
√

11),
a = −1− 512

√
11. The curve X has potential good reduction away from primes above 2, 11, 229 and 787. Under

GRH, the elliptic curve E has rank 1 over K0 and rank 2 over K. The j-invariant of E is not integral at the
prime above 2 (this is the reason for the choice of a) and the prime above 11, hence by Lemma 7.2 there are no
local contributions at these primes. The reason for the obscure choice of K is that it is quite rare to find a totally
real K for which E has rank two and X has non-trivial rational points. This particular K was constructed by
computing the Mumford representation of the divisor 2(0, 1)− 2(0,−1).

The prime 787 splits in K0. In the embedding v1 : K0 → Q787 sending
√

11 to 621 modulo 787, the curve
XQ787,v has good reduction. In the embedding v2 : K0 → Q787 sending

√
11 to 166 modulo 787, the factorization

of f modulo 727 is (x2 + 1)3, hence the singular points of the original model are not F787-rational. The prime
v2 splits completely in K, hence we obtain two primes w1 and w2 of type V reduction, but in both cases the
function πwi is constant on X(Kwi).
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The prime 229 splits in K0. In the embedding v3 : K0 → Q229 sending
√

11 to 34 modulo 229, XQ11,v

has good reduction. In the embedding v4 : K0 → Q229 sending
√

11 to 195 modulo 229, XQ11,v has type V
reduction. v splits in K|K0, hence there are two primes w3 and w4 for which the function πwi is non-constant.
Over Kwi(2291/6), X acquires semistable reduction, and one can show that the target of the maps πwi is
{0, 1/2, 1}, with

π−1
wi ({0, 1}) = {z ∈ X(Kwi) : valwi(x(z)2 + 1) > 0}.

where valwi is the valuation on Kwi . The non-trivial rational points of X of small height X are given by

the Aut(X)-orbit of

(√
2883589+3072

√
11

2 , 1476400640
√

11+20185085
8

)
, and hence all of the (known) rational points

z satisfy πwi(z) = 1/2. To determine (a finite superset of) X(Kp)2 in this case, one would presumably have
to find some other way of constructing (and computing localisations of) non-trivial cohomology classes in
H1(GK,T , Sym2 VE), or dually of H1(GK,T , ad0 VE).

A Appendix: Universal enveloping algebras in unipotent Tannakian categories

In this appendix we recall certain notions regarding universal pointed objects in unipotent Tannakian categories.
None of the material is original. These objects are studied in [29, §2], [3, §3] and [11, §6.2] in the context of
specific unipotent Tannakian categories, but as we explain below, the constructions can be made in much greater
generality. A lot of the results are also implicit in [22], but formulated slightly differently.

A.1 Universal pointed objects in neutral Tannakian categories

Before we proceed to the properties of unipotent Tannakian categories, we record a tautological relationship
between changing fibre functors and twisting by path torsors. Let C be a neutral Tannakian category over a
field K, with fibre functors ω1, ω2. Via Tannaka duality, we view ωi as an equivalence of strict tensor categories
from C to the category of representations of π1(C, ωi). The torsor of isomorphisms of functors π1(C;ω1, ω2) is a
(π1(C, ω1), π1(C, ω2))-bitorsor, giving an equivalence of categories

twω1,ω2
: (π1(C, ω1)− rep)→ (π1(C, ω2)− rep)

V 7→ π1(C;ω1, ω2)×π1(C,ω1) V.

We deduce the following result.

Lemma A.1. We have an isomorphism of functors

twω1,ω2 ◦ ω1
'−→ ω2,

given by π1(C;ω1, ω2)×π1(C,ω1) ω1(V)→ ω2(V) being the map sending (σ, v) to σ(v), (for V in V, σ ∈
π1(C;ω1, ω2)(K), v ∈ ω1(V)).

When U = lim←−Un is a pro-unipotent group over a field K, a representation of U will always mean a
continuous representation, i.e. one which factors through Un for some n. The completed universal enveloping
algebra R of U is the completion of the universal enveloping algebra of Lie(U) with respect to its augmentation
ideal. An R module will always mean a continuous R-module.

Definition A.2. Let (C, ω) be a neutral Tannakian category over a field K. We say that (C, ω) is unipotent if
π1(C, ω) is pro-unipotent and for all V,W in C, the K-dimension of Ext1

C(V,W ) is finite.

By Tannaka duality, the statement that π1(C, ω) is pro-unipotent is equivalent to the condition that every
non-zero object W of C admits a non-trivial morphism 1→W.

Definition A.3. Let C be a unipotent Tannakian category with fibre functor ω. We say X ∈ C is n-unipotent if
it admits a filtration X = X0 ⊃ X1 ⊃ . . . ⊃ Xn+1 = 0 such that, for all i, Xi/Xi+1 is isomorphic to a direct sum
of copies of the unit object 1 (this includes the possibility that Xi/Xi+1 = 0). Let Cn denote the full sub-category
of C consisting of n-unipotent objects (note that this is not a tensor sub-category in general). We denote by ωn
the restriction of ω to Cn.

Lemma A.4. Let U be a pro-unipotent group over a field K. Let R be its completed universal enveloping
algebra. Let I be the augmentation ideal of R. Under the equivalence between representations of U and R-
modules, n-unipotent representations of U correspond to R-modules for which the action of R factors through
R/In+1.
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Proof . Let X be a representation of U for which the action of R factors through R/In+1. Then X is n-unipotent,
with filtration Xi := IiX. Conversely, if X is n-unipotent with filtration (Xi), then I annihilates Xi/Xi+1, hence
In+1 annihilates X.

Define An(C, ω) to be the K-vector space

An(C, ω) := Hom(ωn, ωn).

More generally, for fibre functors ω, ν on C, we define

An(C;ω, ν) := Hom(ωn, νn).

We also have an interpretation of An(C;ω, ν)∗ in terms of O(π1(C;ω, ν)). The pro-finite dimensional vector
space Hom(ω∗, ν∗) has a co-commutative co-product structure given by

lim←−An(C;ω, ν)→ lim←−An(C;ω, ν)⊗2

f 7→
(
v ⊗ w 7→ f(v ⊗ w)

)
where V,W ∈ C, v ∈ ω(V ), w ∈ ω(W ), and we identify f(v ⊗ w) ∈ ν(V ⊗W ) with an element of ν(V )⊗ ν(W )
by tensor compatibility of ν.

Lemma A.5. We have functorial isomorphisms of K-algebras

O(π1(C;ω, ν))∗ ' lim−→An(C;ω, ν)∗.

Proof . Surjective homomorphisms
lim−→An(C;ω, ν)∗ → K

which are compatible with the algebra structure correspond to non-zero tensor compatible morphisms of functors
from ω to ν, which are necessarily isomorphisms by [22, Proposition 1.13]. Applying a similar argument over a
general K-algebra S, we deduce that Spec(lim−→An(C;ω, ν)∗) satisfies the defining property of π1(C;ω, ν).

In the case when ω = ν, we obtain a Hopf algebra structure on lim←−An(C, ω) from this isomorphism. The
product structure obtained is exactly the product structure on End(ω).

Definition A.6. We define the category Cω of pointed objects as follows. An object of Cω is a pair (V, v),
with v ∈ ω(V). A morphism of pointed objects f : (V1, v1)→ (V2, v2) is a morphism f : V1 → V2 in C such that
ω(f)(v1) = v2. We say that (Vn, vn) is a universal n-unipotent pointed object if Vn is n-unipotent, and for every
n-unipotent pointed object (W,w), there exists a unique morphism (Vn, vn)→ (W,w) in Cω. We say a pro-object
((Vn, vn))n>0) in Cω is a universal pointed pro-object if for all (W,w) in Cω, there exists a unique morphism
(Vn, vn)→ (W,w) for all n� 0.

If, for all n, (Vn, vn) is a universal n-unipotent pointed object, then (by definition) there is a unique way
to give ((Vn, vn))n>0 the structure of a pro-object in Cω, and this pro-object is a universal pointed pro-object,
since every W in C is n-unipotent for n� 0.

Lemma A.4 implies that universal pointed pro-objects in unipotent Tannakian categories exist, and are
isomorphic to the completed universal enveloping algebra of U . An equivalent form of this Lemma can be found
in [11, Proposition 6.2.1 and Proposition 6.2.2].

Lemma A.7. Let (C, ω) be a unipotent Tannakian category.

1. For all n, a universal n-unipotent pointed object (An(C, ω), en) exists (and hence is unique up to unique
isomorphism). The pro-object ((An(C, ω))n, (en)n) is a universal pointed pro-object in (C, ω). Furthermore,
under Tannaka equivalence the universal pointed pro-object in C is canonically isomorphic, as a pointed
pro-π1(C, ω)-representation, to the completed universal enveloping algebra of Lie(π1(C, ω)).

2. Let (Vn, en) be a universal n-pointed object in Cω. Then, for any fibre functor ν, we have an isomorphism

ν(An(C, ω)) ' An(C;ω, ν).
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Proof . 1. This theorem is proved in [29, Theorem 2.1] in the case that Ext2(1,1) = 0. The general case
is proved in [3, Proposition 3.4]. In both cases, the proof is given in the context of specific unipotent
Tannakian categories of interest (e.g. unipotent Qp-local systems on XK,ét, unipotent flat connections on
X/K, etc.) but the proofs work in a more general context. An alternative proof of these results is to use
Tannaka duality to reduce to the case where C is the category of representations of a pro-unipotent group
with finite-dimensional abelianisation, and ω is the forgetful functor.
Take R to be the completed universal enveloping algebra of its Lie algebra. The Hopf algebra R has an
augmentation ideal I, and we define Rn := R/In+1. By Lemma A.4, an object is n-unipotent if and only
if it is annihilated by In+1. It follows that (Rn, ω(1)) is the universal pointed n-unipotent object: for a
pointed n-unipotent object (V, ω(v)), the unique morphism Rn → V is just given by r 7→ r · v.

2. If (An(C, ω), en) is a universal pointed object, then by definition An(C, ω) represents the functor ωn, with
isomorphism

Hom(An(C, ω), .) ' ω

given by

(An(C, ω)
f−→ V ) 7→ ω(f)(en).

We denote the universal n-unipotent pointed object of Cω by An(C, ω), as in the lemma. By the universal
property, for all n > 1 we have unique morphisms of pointed objects

(An(C, ω), en) 7→ (An−1(C, ω), en−1)

and as explained above, the inverse limit is the Tannaka dual of the completed universal enveloping algebra of
Lie(π1(C, ω)), with (en) corresponding to the unit element 1. We denote by IC the kernel of the morphism

lim←−An(C, ω)→ K

associated to the unique (pro-)morphism
lim←−An(C, ω)→ 1

defined by sending en to 1. Then under the identification of lim←−An(C, ω) with the completed universal enveloping
algebra of Lie(π1(C, ω)), IC corresponds to the augmentation ideal.

A.2 Computing the graded pieces of An(C, ω)

The vector space An(C, ω) has a filtration with graded pieces 1,Ker(Ak(C, ω)→ Ak−1(C, ω)), (1 ≤ k ≤ n). Under
the identification of An(C, ω) with a quotient Rn of the universal enveloping algebra of Lie(π1(C, ω)) given by
Lemma A.7, this filtration is the I-adic filtration, where I ⊂ R is the image of augmentation ideal in Rn.

In [3], a cohomological construction of An(C, ω) is given, which gives an inductive description of the graded
pieces IiC/I

i+1
C of An(C, ω) in terms of ext groups in C. As we will only need this when n = 2, we only state this

case (the general case is somewhat more elaborate, and can be found in [3, §3.6]).

Lemma A.8. 1. We have a functorial isomorphism

Ext1
C(1,1) ' (IC/I

2
C)
∗.

2. We have a functorial isomorphism

(I2
C/I

3
C) ' Ker(Ext1

C(1,1)⊗2 ∪−→ Ext2
C(1,1))∗

where the cup product is the Yoneda cup product. Moreover the diagram

(IC/IC)
⊗2 (Ext1(1,1)∗)⊗2

(I2
C/I

3
C) Ker(Ext1

C(1,1)⊗2 ∪−→ Ext2
C(1,1))∗

'

'

commutes.
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Proof . This is a special case of [3, Proposition 3.4].

This gives a cohomological description of the graded pieces of the central series filtration on π1(C, ω).
To explain this, we first explain how An(C, ω), which by the above is a quotient of the universal enveloping
algebra of π1(C, ω), can also be thought of as a quotient of the universal enveloping algebra of the maximal
n-unipotent quotient of π1(C, ω). Recall that the universal enveloping algebra of a Lie algebra L is isomorphic
to the tensor algebra of L modulo the two sided ideal generated by x⊗ y − y ⊗ x− [x, y] for x, y ∈ L. A more
general statement which implies the lemma below can be found in [11, Proposition 1.0.9].

Lemma A.9. Let L be a nilpotent Lie algebra, and let R be its completed universal enveloping algebra. Let

R be the universal enveloping algebra of Ln, and Rn := R/I
n+1

, where I ⊂ R is the augmentation ideal. Then
the natural map R→ R induces an isomorphism Rn ' Rn.

Proof . This can be seen from the characterisation of Rn and Rn in terms of universal properties. Alternatively,
it can be computed directly: the map R→ Rn is surjective and factors through Rn, hence it is enough to
show that this map is injective. By the description of R given above, we see that the ith term of the central
series filtration of L is contained IiR. Hence the induced map L→ Rn factors through L→ Ln, and hence the
surjection R→ Rn factors uniquely through R→ R by the universal property of R, and hence through Rn.

Let U2 denote the maximal 2-unipotent quotient of π1(C, ω), and let L2 denote its Lie algebra. Let R2

denote the quotient of the universal enveloping algebra of Lie(π1(C, ω)) by the third power of its augmentation
ideal. From Lemma A.9 we obtain an isomorphism I2

C/I
3
C ' [L2, L2]⊕ Sym2 Lab

2 . Taking exponentials yields a
short exact sequence

1→ [U2, U2]→ I2
C/I

3
C → Sym2 U1 → 1.

Hence we obtain the following corollary of Lemma A.8.

Lemma A.10. We have a functorial exact sequence

1→ Ker(∧2 Ext1
C(1,1)→ Ext2

C(1,1))∗ → U2 → Ext1
C(1,1)∗ → 1.
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Vol. I, Birkhäuser Boston, (1990): 333-400.

[15] Chabauty, C. “Sur les points rationnels des courbes algébriques de genre supérieur à l’unité” C. R. Math.
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du Bois-Marie 1967–1969 (SGA 7 I) Lecture Notes in Math. 288, Berlin–New York: Springer, 1972.

[29] Hadian, M. “Motivic fundamental groups and integral points” Duke Math. J., 160 (2011): 503–565.

[30] Hain, R.M. “The Geometry of the Mixed Hodge Structure on the Fundamental Group”, In Algebraic
Geometry: Bowdoin 1985, 247–282, Proc. Sympos. Pure Math., Vol. 46. Providence, RI :American
Mathematical Society, 1987.

https://github.com/jbalakrishnan/QCII


Quadratic Chabauty and Rational Points II 49

[31] Hain, R. M. “Relative weight filtrations on completions of mapping class groups”, In Groups of
diffeomorphisms, 309–368, Adv. Stud. Pure Math., Vol. 52. Math. Soc. Japan, Tokyo, 2008.

[32] Hain, R. M. and Matsumoto, M. “Weighted completion of Galois groups and Galois actions on the
fundamental group of P1 − {0, 1,∞} Compositio Math., 139 (2003), 119–167.

[33] Hain, R. M. and Matsumoto, M. “Galois actions on fundamental groups of curves and the cycle C − C−
J. Inst. Math. Jussieu, 4 (2005), 363–403.

[34] Kim, M. “The unipotent Albanese map and Selmer varieties for curves” Publ. Res. Inst. Math. Sci., 45
(2009): 89–133.

[35] Kim, M. “The motivic fundamental group of P1 \ {0, 1,∞} and the theorem of Siegel” Invent. Math., 161
(2005): 629–656.

[36] Kim, M. and Tamagawa, A. “The l-component of the unipotent Albanese map” Math. Ann., 340 (2008):
223-235.

[37] Kim, M. “Massey products for elliptic curves of rank 1” J. Amer. Math. Soc., 23 (2010): 725–747.
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