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Abstract

A simple analytical theory for the thermodynamic properties of a multicom-

ponent liquid mixture adsorbed in a random porous media is proposed. The

mixture is modeled by an n-component fluid of hard-sphere Morse (HSM) par-

ticles and the media is represented by the matrix of HSM obstacles randomly

distributed in a configuration of HS fluid quenched at equilibrium. We combine

scaled particle theory (SPT) and the corresponding version of the second-order

Barker-Henderson (BH2) perturbation theory to describe the thermodynamics

of the system. To assess the accuracy of the theory, Monte Carlo computer sim-

ulations are performed to determine the structure of the corresponding reference

system and the chemical potential of the HSM liquid confined in a random HSM

matrix. Based on agreement between the theoretical predictions and Monte

Carlo simulation data, the structure of the reference system is shown to be ac-

curately predicted using radial distribution functions of the n + 1-component

hard-sphere mixture with the n component representing the fluid and the one

component representing the matrix obstacles. Theoretical predictions for the

chemical potential are also in a very good agreement for the model for systems

with weak fluid-matrix attractive interactions, though slight deviations are ob-
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served as the strength of the fluid-matrix attraction and/or matrix density is

increased. With minimal adjustment of the HSM potential, the phase behav-

ior of the Lennard-Jones and square-well fluids adsorbed in the matrix are also

described. Due to its simplicity, the theory could be used in a number of ap-

plications to predict the properties of simple fluid mixtures with any number of

components adsorbed in the porous media.
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1. Introduction

Understanding the thermodynamic properties and phase behavior of fluids

and fluid mixtures adsorbed in porous media is of substantial interest for both

fundamental science and engineering applications [1, 2, 3, 4]. Porous materi-

als are widely used as adsorbents in numerous technological processes, such as5

filtration and purification, heterogeneous catalysis, adsorption and separations.

The properties of the fluids confined in porous media are known to be markedly

different from those in the bulk, which represents a challenge for their under-

standing and description on the molecular level. For example, the liquid-gas

phase diagrams of 4He[5], N2 [6], and the mixture of isobutyric acid and water10

[7] confined in dilute silica gel are much narrower than those in the bulk, with

the critical points shifted toward the lower temperatures.

Describing the thermodynamics and phase behavior of fluids in porous media

is challenging due to the necessity of taking into account the effects of confine-

ment, the fluid-media interaction, the random nature of the pores and their15

interconnection, etc. Additionally, the phase behavior of adsorbed fluids is very

sensitive to the microscopic structure of the adsorbent. Even for porous materi-

als with the same geometrical and statistical properties, such as porosity, size of

the obstacles, and distribution of pore sizes, the corresponding fluid phase dia-

grams can be qualitatively quite different, e.g. having either one or two critical20
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points [8]. However, since the pioneering work of Madden and Glandt [9], Mad-

den [10] and subsequent important work of Given and Stell [11], considerable

progress has been achieved in the theoretical description of the structural prop-

erties and thermodynamics of fluids confined in porous media. In [9, 10, 11], the

porous medium is modeled as a quenched disordered configuration of particles.25

The properties of the liquids adsorbed in such medium (the so-called matrix) are

described using the corresponding version of the Ornstein-Zernike (OZ) equa-

tion called the replica OZ (ROZ) equation, supplemented by analogues of the

standard closures of the OZ equation utilized in liquid state theory. In the

meantime a number of extensions and modifications of the ROZ approach have30

been developed and applied (see [4, 12] and references therein). These include

extensions of the ROZ theory in the framework of the reference interaction site

model (RISM) approach [13, 14, 15] and multi-density integral equation for-

malism of Wertheim for associating fluids [16, 17, 18, 19, 20, 21], extensions of

the ROZ equation’s treatment of systems with Coulombic interactions [22, 23]35

and inhomogeneous systems [24, 25]. In addition to the ROZ approach density

functional theory based approaches for inhomogeneous systems have also been

proposed [26, 27, 28].

Similar to the regular OZ approach, straightforward application of the ROZ

theory is difficult as there are a substantial region of thermodynamic states40

for which no convergent solutions to the ROZ equation can be found. In ad-

dition, none of the closures of the ROZ equation proposed are amenable to

an analytical solution. Therefore, most of the theoretical studies of the phase

behavior of liquids confined in porous media are based on the application of dif-

ferent approximate perturbation schemes with ROZ equations used to calculate45

the thermodynamic and/or structural properties of the corresponding reference

system [29, 30, 31, 32, 33, 34, 35, 36]. In the papers of Kierlik et al. [30, 31, 35],

Trokhymchuk et al. [34] and Patsahan et al. [36] the contribution of the attrac-

tive part of the interaction was calculated using the numerical solution of the

ROZ with a mean spherical approximation (MSA) type of the closure.50

Recently, scaled particle theory (SPT) was extended and applied to predict
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the properties of the hard-sphere fluid in porous media [37, 38, 39, 40]. The

media was represented by a matrix of hard-sphere obstacle particles randomly

placed in a configuration of HS fluid quenched at equilibrium. Unlike ROZ the-

ory, this proposed version of SPT provides a closed form analytical expressions55

for the thermodynamics of the system. This feature of SPT is very useful, since

it enables one to use an analytical description of the reference system in vari-

ous thermodynamic perturbation theories. Furthermore, predictions from the

present version of SPT are perhaps the most accurate in comparison with pre-

dictions of the currently available theoretical methods for hard-sphere systems,60

i.e. ROZ theory.

Additionally, the phase behavior of several model liquids adsorbed in porous

media have been studied using the SPT description of the corresponding refer-

ence systems. These studies include applications of the Barker-Henderson (BH)

perturbation theory to the Lennard-Jones (LJ) fluid [41], the high temperature65

approximation to the polydisperse hard-sphere Yukawa fluid [42], Wertheim’s

thermodynamic perturbation theory (TPT) to hard-sphere network forming [43]

and polydisperse square-well (SW) chain [44] fluids, the associative mean spher-

ical approximation (AMSA) [45] and the collective variable method [46] to a

charged hard-sphere fluid.70

Confined fluid properties have also been actively studied using simulation

methods, with an emphasis on Monte Carlo (MC) methods. The majority of

these simulations focus on describing the LJ fluid under confinement conditions

through various MC methods, such as standard MC [47], grand-canonical MC

[48, 49, 50, 51], and Gibbs ensemble MC [52, 8]. Confined SW fluids have75

also been studied using grand-canonical transition-matrix MC [53]. However,

while LJ and SW fluids are well represented, both simulation and theoretical

approaches that utilize other potentials for the model fluid have been widely

neglected. We note that computer simulations of the phase behavior of fluids

adsorbed in porous media are challenging. During each simulation, the fluid80

properties have to be averaged with respect to the different realizations of the

matrix (i.e., porous media), which is time consuming, since each realization re-
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quires a separate simulation. Also it is generally not clear how many realizations

are needed and what size of the matrix sample should be used in order to obtain

sufficiently accurate predictions.85

In this paper, we propose a simple analytical theory for predicting the ther-

modynamic properties and phase behavior of liquid mixtures with any number

of components confined in random porous media. The theory is based on the

combination of SPT and second-order BH (BH2) perturbation theory. The liq-

uid is represented by an n-component mixture of the hard-sphere Morse (HSM)90

model and the porous media is modeled by the HS fluid quenched at equilib-

rium. The choice of the HSM model and SPT description of the reference system

enables us to formulate a completely analytical version of the second-order BH

perturbation theory for systems with an arbitrary number of components. Note

that previous studies of the phase behavior are based on the numerical solu-95

tions of the ROZ equation, which is rather combersome to use even in the one-

component case and quickly becomes impractical as the number of components

increases. The accuracy of the theory, as well as its applicability, is demon-

strated by comparison of the theoretical predictions against corresponding MC

simulations.100

2. Model

We consider a simple liquid mixture confined in a random porous medium.

The liquid is modeled by a multicomponent mixture of hard spheres of different

size with an additional attractive Morse potential. For the porous medium the

model suggested by Madden and Glandt [9, 10] is used, in which a matrix of105

hard-sphere obstacles formed by a fluid of hard particles quenched at equilibrium

is used. In addition to the hard-sphere interaction, the particles of the liquid

interact with the matrix obstacles via the attractive Morse potential. The pair

potential acting between the particles of the system is

Uij(r) = U
(hs)
ij (r) + U

(M)
ij (12), (1)
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where i, j denotes the particle species and takes the values 0, . . . , n, Uij(r)
(hs)

110

is the hard sphere potential

U
(hs)
ij (r) =

 ∞, for r < σij

0, for r > σij = (σi + σj)/2
, (2)

σi is the hard-sphere diameter of the particle of species i, and Uij(r)
(M) is the

Morse potential

U
(M)
ij (r) =

 0, for r < σij

−ε(M)
ij exp [−zij(r − σij)], for r > σij

(3)

Here, as usual, i = 0 denotes hard-sphere obstacles of the matrix, ε
(M)
00 = 0 and

the screening parameter zij was chosen to be zij = 1.8/σ1.115

3. Theory

Theoretical description of the model at hand is carried out using BH2 per-

turbation theory in combination with scaled particle theory [42, 44, 54]. We

assume that the Helmholtz free energy of our liquid mixture can be written as

follows:120

A = Aref + ∆A
(M)
1 + ∆A

(M)
2 , (4)

where Aref is Helmholtz free energy of the reference system, and A1 and A2 the

first and second perturbation terms respectively,

β∆A
(M)
1

V
= 2πβ

∑
ij

ρiρj

∫ ∞
0

dr r2U
(M)
ij (r)g

(ref)
ij (r) =

= 2πβ
∑
ij

ε
(M)
ij ρiρje

zijσij
∂G

(ref)
ij (s)

∂s
|s=zij . (5)

and

β∆A
(M)
2

V
= −πβ2K(ref)

∑
ij

ρiρj

∫ ∞
0

dr r2[U
(M)
ij (r)]2g

(ref)
ij (r) =

= πβ2K(ref)
∑
ij

(
ε
(M)
ij

)2
ρiρje

2zijσij
∂G

(ref)
ij (s)

∂s
|s=2zij . (6)
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Here g
(ref)
ij (r) is the radial distribution function (RDF) of the reference system,125

G
(ref)
ij (s) is the Laplace transform of g

(ref)
ij (r),

G
(ref)
ij (s) =

∫ ∞
0

dr re−srg
(ref)
ij (r), (7)

K(ref) is isothermal compressibility of the reference system, i.e

K(ref) =

(
∂ρ

∂(βPref ))

)
, (8)

Pref is the pressure of the reference system, β = 1/kBT , T is the temperature,

ρi is the number density of the component i and ρ =
∑n
i=1 ρi.

The reference system is represented by the multicomponent hard-sphere fluid130

confined in the random porous medium. The thermodynamic properties of

the system are calculated using a recently proposed version of scaled particle

theory (SPT) [39]. In the framework of SPT, explicit analytical expressions

for the Helmholtz free energy and chemical potential of the n-component hard-

sphere fluid confined in the hard- sphere random matrix have been derived135

[37, 39, 38, 40]. To avoid repetition, we do not present them here and refer

the reader to the original publications.[37, 39, 38, 40]. However, for the sake

of completeness, the SPT expressions for the Helmholtz free energy, chemical

potential and compressibility of the one-component hard-sphere fluid in the

matrix, which will be used in our numerical calculations are provided below.140

We have
βAhs
N

= βµhs −
βPhs
ρ

, (9)

where

βPhs
ρ

=
1

1− η/φ0
φ0
φ

+

(
φ0
φ
− 1

)
φ0
η

ln

(
1− η

φ0

)
+
a

2

η/φ0
(1− η/φ0)2

+
2b

3

(η/φ0)2

(1− η/φ0)3
,

(10)

βµhs = ln
(
Λ3
1ρ
)

+ βµ
(ex)
1 − ln

(
1− η

φ0

)
+

η(φ0 − φ)

φ0φ(1− η/φ0)
+ (1 + a)

η/φ0
(1− η/φ0)

+
(a+ 2b)

2

(η/φ0)2

(1− η/φ0)2
+

2b

3

(η/φ0)3

(1− η/φ0)3
, (11)

Khs =

[
1

1− η/φ0
+

η/φ

(1− η/φ0)2
+ a

η/φ0
(1− η/φ0)3

+ 2b
(η/φ0)2

(1− η/φ0)4

]−1
, (12)
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and η0 = πρ0σ
3
0/6, φ0 = 1− η0, η = πρ1σ

3
1/6 and φ = exp (−βµ(ex)

1 ).145

Here

a = 6 +
3η0τ (τ + 4)

1− η0
+

9η20τ
2

(1− η0)2
, b =

9

2

(
1 +

τη0
1− η0

)2

, (13)

βµ
(ex)
1 = − ln (1− η0) +

9η20
2(1− η0)2

− η0Z0 +

[
3η0Z0 −

3η0(2 + η0)

(1− η0)2

]
(1 + τ)

−
[
3η0Z0 −

3η0(2 + η0)

2(1− η0)2

]
(1 + τ)2 + η0Z0(1 + τ)3, (14)

and Z0 = (1 + η0 + η20)/(1− η0)3 and τ = σ1/σ0.

The structural properties of the reference system are calculated assuming

that the RDFs g
(ref)
ij (r) can be approximated by the RDFs of the n + 1-150

component hard-sphere mixture g
(hs)
ij (r) with n components representing the

reference system and one component representing the matrix of the hard-sphere

obstacles. To validate this assumption computer simulations have been per-

formed and the results obtained compared against the corresponding theoreti-

cal results. Theoretical pair distribution functions have been calculated using155

the Percus-Yevick (PY) approximation. One substantial advantage of the PY

approximation is that the closed form analytical expression for the Laplace

transforms of the hard-sphere RDFs G
(hs)
ij (s), which enter in to the expressions

for the Helmholtz free energy (5) and (6), are available [55].

The chemical potential, µi, and pressure, P , of the system are calculated160

using standard thermodynamical relations, i.e.

µi = µ
(ref)
i + ∆µi, P = Pref + ∆P, (15)

where

∆µi =
∂

∂ρi |{ρj 6=i}

(
∆A1

V
+

∆A2

V

)
, (16)

∆P =
n∑
i=1

ρi∆µi −
∆A1

V
− ∆A2

V
. (17)
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4. MC simulations details

To assess the accuracy of the theoretical approach proposed, Monte-Carlo165

(MC) computer simulations[56] have been performed of the same model as that

studied theoretically, thus providing exact model properties and the ability to

directly test the theory. The simulated system consists of fluid particles im-

mersed in the environment of a matrix formed by a frozen configuration of

randomly dispersed impenetrable hard spheres (HS matrix). We consider the170

system in a simulation box of a cubic shape with periodic boundary conditions

applied along three dimensions. The number of the matrix particles N0 is varied

depending on the packing fraction η0 of the system and the HS particle diameter

σ0 = σ1/τ , where: η0 = πσ3
0N0/L

3/6.

Canonical (NV T ) MC simulations [56] were performed to determine the175

RDFs of the reference system. The fluid-fluid g
(ref)
11 (r) and fluid-matrix g

(ref)
01 (r)

RDFs were obtained from NV T simulations of a hard-sphere fluid confined in

a disordered hard-sphere matrix at various packing fractions of fluid, η1, and

matrix, η0, particles. Several different values for the size ratio of fluid and

matrix particles τ have been considered. The number of the matrix particles180

in the system N0 are chosen depending on their size, i.e., N0 = 10000, 6000,

4000 and 2000, for τ = 1, 1/2, 1/3 and 1/5, respectively. For each set of

system parameters, eight random matrix configurations are studied and the

RDFs are averaged over these matrix realizations. Each simulation run consists

of 5 · 105 simulation steps for system equilibration and additional 105 steps for185

production. At each step, N1 trial moves of particles are performed, where N1

is the number of fluid particles. The maximum displacement for trial moves

of fluid particles was adjusted to reach the acceptance rate around 75%. The

RDFs were calculated by sampling the configuration every 5 steps. To speed up

simulations the linked-cell algorithm with a cell size equal to 2σ1 was applied190

[56].

Grand-canonical MC (GCMC) simulations were performed to obtain the

average density of a HSM fluid confined in a disordered hard-sphere matrix
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at a fixed chemical potential and constant temperature. [56]. The system was

simulated in a box of the size L = 20σ11 and a cut-off distance of rc = 10σ1 used195

for both the fluid-fluid and fluid-matrix interactions. The number of matrix

particles N0 was adjusted according to the chosen combination of η0 and τ .

Two values of the matrix packing fraction, η0 = 0.1 and 0.15, have been studied

and are typical values for a wide range of mesoporous materials [2, 3, 4]. The

screening parameter zij of the HSM potential (3) is zij = 1.8/σ1, indicating200

that the value of the cut-off distance used is sufficiently large.

All GCMC simulations are performed at the temperature kBT/ε
(M)
11 = 2,

which is very close to the critical temperature of the bulk fluid, but still be-

longs to the supercritical region. For each set of parameters the system is fully

equilibrated starting from a random initial configuration with fluid particles of205

density ρ∗ = 0.1. Each simulation step consists of translational trial moves with

the maximum displacement 0.2σ11 and insertion/removal attempts. The ratios

of translation and insertion/removal trials are set to 80% and 20%, respectively.

The total number of trials during one simulation step is chosen equal to the

number of fluid particles N1. The number of steps needed to equilibrate the210

systems at the considered chemical potentials is typically found to be less than

105. Afterwards, the fluid density is averaged during at least 105 simulation

steps. To improve statistics at substantially low fluid densities (ρ1σ
3
11 < 0.01),

the number of simulation steps is increased to 106. In general, the relative er-

ror of the densities obtained at the different values of the chemical potential215

was around 1% or better. For the sake of comparison a HSM fluid in the bulk

is also simulated. Finally, we note that while computer simulations of fluids

adsorbed in porous media are challenging as discussed above, the simulations

performed herein are carried out at temperatures above the critical temperature

and therefore they are expected to be sufficiently accurate.220
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5. Results and discussion

5.1. Structure of the reference system

We present theoretical predictions for the RDFs of the reference system

g
(ref)
11 (r) and g

(ref)
01 (r) in figures 1-4 compared against the corresponding com-

puter simulation predictions. Four versions of the model matrix with different225

porosity (φ0 = 1− η0) and different ratios of the sizes of the obstacle and fluid

particles τ (η0 = 0.1058 and τ = 1 (figure 1), η0 = 0.2206 and τ = 1/2 (figure

2), η0 = 0.2972 and τ = 1/3 (figure 3), η0 = 0.3901 and τ = 1/5 (figure 4))

are considered. For each set of η0 and τ we present results for the RDFs at

high and low values of the fluid packing fraction η. In all cases studied, very230

good quantitative agreement between the theoretical and computer simulation

results can be observed for almost all values of the distance between the par-

ticles r. Slightly less accurate predictions from the theory can be seen only in

close vicinity to the contact distance for the RDF g
(ref)
11 (r) at higher densities

and for the RDF g
(ref)
01 (r) at both, high and low densities.235

5.2. Thermodynamics of the hard-sphere Morse liquid confined in the matrix

In figures 5-7 theoretical and computer simulation results for the excess

chemical potential as a function of the density of the HSM liquid confined in

the matrix are presented. We have studied three different sets of the model

parameters for the matrix, i.e. η0 = 0.1 and τ = 1 (figure 5), η0 = 0.15 and τ = 1240

(figure 6), η0 = 0.1 and τ = 3/2 (figure 7). For each version of the matrix model

parameters three values of the interaction energy ε
(M)
01 (ε

(M)
01 /ε

(M)
11 = 0, 1, 1.5)

are considered. The temperature of the system is T ∗ = kBT/ε
(M)
11 = 2.

In general, the agreement between the theoretical predictions and simula-

tions is good. For the model with ε01 = 0, the theoretical predictions are very245

accurate. As the strength of matrix-fluid attraction ε01 is increased, the theory

provides slightly less accurate results for small values of ρ∗ and larger values of

η0. This decrease in the accuracy of the theoretical results is due to relatively

less accurate predictions of the theory for g01(r), since at these values of ρ∗
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and η0 the contribution to the Helmholtz free energy (5) and (6) due to the250

matrix-fluid correlations become larger.

5.3. Liquid-vapor phase behavior

Results for the phase behavior of the model are given in figures 8 and 9.

In figure 8 the liquid-vapor phase diagram of the HSM fluid confined in the

hard-sphere matrix at three different values of the matrix packing fraction η0 =255

0, 0.1, 0.2 and two different values of the matrix-fluid size ratio τ = 1, 1/2 are

presented. As one would expect with the increase of the matrix packing fraction

the phase envelope and critical point shifts in the direction of lower temperatures

and lower densities. This effect is more pronounced for the models with larger

value of τ . The effects of the attraction between fluid particles and obstacles of260

the matrix are shown in figure 9. Here we consider the model with η0 = 0.1,

τ = 1 and ε
(M)
01 = 0, ε

(M)
01 /ε

(M)
11 = 1, ε

(M)
01 /ε

(M)
11 = 3 and ε

(M)
01 /ε

(M)
11 = 6.

With the increase of the strength of fluid-matrix interaction, ε
(M)
01 /ε

(M)
11 , from

0 to 1 the critical temperature and density increase. With further increase of

the strength of the attraction up to ε
(M)
01 /ε

(M)
11 = 6 the critical temperature265

noticeably decreases and the critical density becomes almost twice as large.

This behavior can be attributed to the competition between fluid-fluid and

fluid-matrix interactions. With the increase of the fluid-matrix attraction the

formation of the liquid phase requires lower temperatures and higher densities.

Finally in figures 10-14 we compare our theoretical predictions for the liquid-270

gas phase diagram for the LJ and hard-sphere SW fluids confined in the LJ and

hard-sphere matrices against the corresponding computer simulation predictions

from the literature [8, 53], as computer simulation results for the phase behavior

of the HSM model are not available. We note that these computer simulations

were carried out taking into account only one matrix realization. In [8], the275

authors use a truncated LJ potential

U
(LJ)
11 (r) =


4ε

(LJ)
11

[(
σ
(LJ)
11

r

)12

−
(
σ
(LJ)
11

r

)6
]

for r < rc

0, for r > rc

. (18)
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for the interaction between the liquid particles and either the hard-sphere po-

tential or LJ potential analogous to (18) for the interaction between fluid and

matrix particles. Description of the LJ model is carried out using the BH pre-

scription [57] for the effective hard-sphere sizes σ11 and σ01. For the HSM280

potential energy parameter ε
(M)
11 we have used the value obtained as a result

of fitting of the corresponding computer simulation bulk phase diagrams and

for ε
(M)
01 we have: ε

(M)
01 = ε

(M)
11 (ε

(LJ)
01 /ε

(LJ)
11 ). Description of the model with

hard-sphere SW interaction potential, i.e.

U
(SW )
11 (r) =


∞, for r < σ11

−ε(SW )
11 , for σ11 ≤ r < λσ11

0, for λσ11 ≤ r
, (19)

is carried out following the scheme similar to that used above. Explicit ex-285

pressions for the temperature dependence of ε
(M)
11 in the case of LJ fluid and

SW fluid are presented in the Appendix. In both cases the value of the HSM

potential decay parameter was chosen to be z = 1.8/σ
(LJ)
11 .

In general, the agreement between the theoretical predictions and simulation

data is good. The theory correctly reproduces the effects of the confinement due290

to changes in both the size ratio of the fluid and matrix particles (figure 10)

and in the packing fraction of the matrix η0 (figures 11 and 14). With the

increase of the matrix particles size at constant η0 the average size of the pores

increases, which makes the effects of confinement weaker. As a result the critical

temperature and density of the fluid adsorbed in the matrix with larger obstacles295

is larger than those of the fluid in the matrix with smaller obstacles (figure 10).

On the other hand, increasing the matrix packing fraction η0 decreases the

porosity and increases the effects of confinement. This effect can be seen in

figures 11 and 14, where due to the increase of η0 the phase envelope shifts in

the direction of lower temperatures and densities. Here theoretical predictions300

are in relatively good agreement with computer simulation predictions for lower

and intermediate values of η0, i.e. η0 = 0.05 and η0 = 0.1. In particular, for

the SW fluid, the accuracy of our theory is similar to that of Hvozd et al. [44]
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(figure 14). In the latter study, the authors apply the BH2 approach directly to

the SW model in question.305

For η0 = 0.1 computer simulation for the LJ fluid in the matrix [8] shows the

existence of the two phase transitions with two critical points: one located at

lower density and higher temperature and the other at higher density and lower

temperature. At the same time, MC computer simulations, carried out for the

SW fluid in the matrix [53] with the same value of η0, shows the appearance310

of a single phase transition. In both cases, the theory predicts the existence

of only one phase transition. However, we note that the phase behavior of the

fluid adsorbed in the porous media is very sensitive to even subtle differences

in the matrix structure and for two different realizations of the matrix with the

same porosity, size of the obstacles and distribution of the pore sizes, computer315

simulations can produce the phase diagram with and without two phase tran-

sitions [8] . Therefore, the existence of the two phase transitions for the LJ

model at hand is still questionable [50, 58]. With further decrease of the matrix

porosity up to η0 = 0.2, the theoretical phase envelope shifts towards the lover

temperatures and densities (figure 11). In contrast, the computer simulation320

phase diagram shifts in the direction of slightly higher temperatures and lower

densities and becomes substantially more narrow. We believe that this disagree-

ment can be explained by the sensitivity of the phase behavior to the matrix

structure, generated in the computer simulations. Next in figures 12 and 13, we

compare predictions of the theoretical predictions and simulation results for the325

effects of attraction between LJ fluid and matrix particles. We consider the case

of equal (figure 12) and different (figure 13) sizes of the fluid and matrix parti-

cles. In both cases, an increase in the fluid-matrix attraction leads to a shift of

the phase diagram to higher temperatures. At the same time, while the theo-

retical phase diagram shifts to higher densities, the computer simulation phase330

diagram for ε
LJ)
01 /ε

(LJ)
11 = 1 is shifted in the opposite direction to lower densities

(figure 12) and for ε
LJ)
01 /ε

(LJ)
11 = 1.25 it is moved towards the higher densities

(figure 13). In our opinion this nonmonotonic behavior can be also attributed to

the difficulties in performing computer simulations of the systems in question,
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in particular due to insufficient number of matrix realizations accounted.335

6. Conclusions

In this paper we propose a simple analytical theory for thermodynamics of

the multicomponent simple liquid mixtures confined in the porous media. The

media is represented by the matrix of hard-sphere obstacles randomly placed in

a configuration of a HS fluid quenched at equilibrium. A simple fluid mixture340

is modeled by the n-component hard-sphere mixture with additional attractive

Morse potential between liquid particles and between the particles of the ma-

trix and liquid particles. For the theoretical description, we combine SPT and

second-order BH perturbation theory, appropriately modified to account for the

absence of the interaction between the matrix particles. SPT is used to de-345

scribe the thermodynamics of the reference system. We have shown that the

structure of the reference system can be accurately predicted using PY RDFs

of the n + 1-component hard-sphere mixture with the n component represent-

ing the fluid and one component representing the matrix obstacles. Agreement

between theoretical and computer simulation predictions is very good for fluid-350

fluid RDFs and slightly less accurate for fluid-matrix RDFs at all densities and

size ratios studied. It is also demonstrated that BH2 perturbation theory for the

n+1-component HSM liquid can be used to give sufficiently accurate predictions

for the thermodynamics of the n-component fluid confined in the matrix with

HSM obstacles. Theoretical predictions for the chemical potential are in a very355

good agreement for the model with weak fluid-matrix attraction and becomes

less accurate with the increase of the fluid-matrix attraction and matrix den-

sity. Our SPT-BH2 approach is able to correctly predict the effects due to the

changes in the matrix density, fluid-matrix particles size ratio and strength of

the of fluid-matrix interaction of the liquid-gas phase behavior. With a minimal360

adjustment of our HSM potential we were able to reproduce with a reasonable

accuracy computer simulation results for the phase behavior of the LJ and hard-

sphere SW fluids confined in the porous media. Due to its simplicity, the theory
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can be used to study the properties of a simple fluid mixture with any number

of components adsorbed in the hard-sphere matrix. Taking into account the365

isomorphism of the fluid adsorbed in disordered hard-sphere matrix [39] we ex-

pect that our theory can be applied also to describe the properties of the fluids

confined in the matrices with the other hard-core morphologies.
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Figure 1: Radial distribution function between fluid hard-sphere particles g11(r) (upper panel)

and fluid and matrix hard-sphere particles g01(r) (lower panel) for the hard-sphere fluid con-

fined in a random hard-sphere matrix. Lines represent predictions of the theory and symbols

stand for computer simulation results. Here τ = 1, η0 = 0.1058, red symbols and lines denote

the system with η = 0.1011 and black symbols and lines denote the system with η = 0.2197.

Here and in figures 2-4 the error in MC simulation predictions do not exceed the size of the

symbols in the figure
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Figure 2: Notation is the same as that in figure 1 except that here τ = 1/2, η0 = 0.2206, red

symbols and lines denote the system with η = 0.0921 and black symbols and lines denote the

system with η = 0.2469.
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Figure 3: Notation is the same as that in figure 1 except that here τ = 1/3, η0 = 0.2972, red

symbols and lines denote the system with η = 0.0869 and black symbols and lines denote the

system with η = 0.2263.
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Figure 4: Notation is the same as that in figure 1 except that here τ = 1/5, η0 = 0.3901, red

symbols and lines denote the system with η = 0.0806 and black symbols and lines denote the

system with η = 0.2020.
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Figure 5: Excess chemical potential βµ
(ex)
1 of the hard-sphere Morse liquid confined in the

matrix at T ∗ = 2 as a function of the liquid density ρ∗. Lines show predictions of the theory

and symbols stand for computer simulation results. Here τ = 1, η0 = 0.1 and ε
(M)
01 = 0 (red

lines and symbols), ε
(M)
01 /ε

(M)
11 = 1 (black lines and symbols) and ε

(M)
01 /ε

(M)
11 = 1.5 (brown

lines and symbols). Green line and symbols represent βµ
(ex)
1 for the hard-sphere Morse liquid

in the absence of the matrix and ρ∗ = ρ1σ3
1 . Here and in figures 6 and 7 the error in MC

simulation predictions do not exceed the size of the symbols in the figure

.
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Figure 6: The same as in figure 5 except η0 = 1.5.
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Figure 7: The same as in figure 5 except τ = 2/3.
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Figure 8: Liquid-gas phase diagram of the hard-sphere Morse liquid confined in disordered

hard-sphere matrix (ε
(M)
01 = 0) with η0 = 0 (solid black line and filled diamond), η0 = 0.1 and

τ = 1 (solid red line and empty circle), η0 = 0.1 and τ = 1/2 (dashed red line and filled circle),

η0 = 0.2 and τ = 1 (solid blue line and empty square), η0 = 0.2 and τ = 1/2 (dashed blue

line and filled square. Symbols denote position of the critical point). Here T ∗ = kBT/ε
(M)
11

and ρ∗ = ρ1σ3
1 .
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Figure 9: Liquid-gas phase diagram of the hard-sphere Morse liquid confined in disordered

hard-sphere Morse matrix with η0 = 0.1, τ = 1 and ε
(M)
01 = 0 (black line and diamond),

ε
(M)
01 /ε

(M)
11 = 1 (red line and downward triangle), ε

(M)
01 /ε

(M)
11 = 3 (blue line and upward

triangle), ε
(M)
01 /ε

(M)
11 = 6 (green line and square). Here T ∗ = kBT/ε

(M)
11 and ρ∗ = ρ1σ3

1 .
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Figure10: Liquid-gasphasediagramoftheLJliquid(18)inthebulk(blacklineandempty

circles),confinedindisorderedhard-sphere matrixwithη0=0.05andσ
(LJ)
1 /σ0=1(redline

andemptycircles)andσ
(LJ)
1 /σ0=2/3((bluelineandemptycircles).Linesrepresentresults

ofthetheory,emptysymbolsdenotecomputersimulationresults[8]andfilledsymbolsdenote

positionsofthecriticalpoint. HereT∗=kBT/
(LJ)
11 andρ∗=ρ1 σ

(LJ)
1

3
/(1 η0).
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Figure11:Liquid-gasphasediagramoftheLJliquid(18)inthebulk(blacklineandempty

circles),confinedindisorderedhard-spherematrixwithσ
(LJ)
1 /σ0=1andη0=0.05(redline

andemptycircles),η0=0.1(bluelineandemptycircles)andη0=0.2(greenlineandempty

circles). Linesrepresentresultsofthetheory,emptysymbolsdenotecomputersimulation

results[8]andfilledsymbolsdenotepositionsofthecriticalpoint.HereT∗=kBT/
(LJ)
11 and

ρ∗=ρ1 σ
(LJ)
1

3
/(1 η0).
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Figure12: Liquid-gasphasediagramoftheLJliquid(18)inthebulk(blacklineandempty

circles),confinedindisorderedhard-sphere matrix withη0 =0.05andσ
(LJ)
1 /σ0 =1(blue

lineandemptycircles),andconfinedindisorderedLJ matrixwithη0=0.05,σ
(LJ)
1 /σ0=1

and
(LJ)
01 /

(LJ)
11 =1(redlineandemptycircles).Linesrepresentresultsofthetheory,empty

symbolsdenotecomputersimulationresults[8]andfilledsymbolsdenotepositionsofthe

criticalpoint. HereT∗=kBT/
(LJ)
11 andρ∗=ρ1 σ

(LJ)
1

3
/(1 η0).
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Figure13:Liquid-gasphasediagramoftheLJliquid(18)confinedindisorderedhard-sphere

matrix with η0 =0.05andσ
(LJ)
1 /σ0 =3/2(bluelineandemptycircles)andconfinedin

disorderedLJ matrix withη0=0.05,σ
(LJ)
1 /σ0=3/2and

(LJ)
01 /

(LJ)
11 =1.25(redlineand

emptycircles). HereT∗=kBT/
(LJ)
11 andρ∗=ρ1 σ

(LJ)
1

3
/(1 η0).
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Figure14: Liquid-gasphasediagramofhard-sphereSWliquid(19)inthebulk(blacklines

andemptycircles),confinedindisorderedhard-sphere matrix withτ=1and η0 =0.05

(redlinesandemptycircles),η0=0.1(bluelinesandemptycircles).Solidanddashedlines

representresultsofthepresent BH2theoryandtheversionofthe BH2theoryof Hvozdet

al.[44],emptycirclesstandforcomputersimulationresults[53]andfilledsymbolsdenote

positionofthecriticalpoints. HereT∗=kBT/
(S W)
11 andρ∗=ρ1σ3

1/(1 η0).

Appendix A. Fitting455

TheexpressionfortheSWpotentialfitof
(M )
11 is

(M )
11 (T)=−1.4143(T∗)3+3.6596(T∗)2−2.8747(T∗)+1.277. (A1)

whereT∗=kBT/
(LJ)
11 ,

TheexpressionfortheLJpotentialfitof
(M )
11 is

(M )
11 (T)=−0.6767(T∗)3+1.5671(T∗)2−0.9694(T∗)+0.6733, (A2)

whereT∗=kBT/
(SW)
11 .
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