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Abstract

A simple analytical theory for the thermodynamic properties of a multicom-
ponent liquid mixture adsorbed in a random porous media is proposed. The
mixture is modeled by an n-component fluid of hard-sphere Morse (HSM) par-
ticles and the media is represented by the matrix of HSM obstacles randomly
distributed in a configuration of HS fluid quenched at equilibrium. We combine
scaled particle theory (SPT) and the corresponding version of the second-order
Barker-Henderson (BH2) perturbation theory to describe the thermodynamics
of the system. To assess the accuracy of the theory, Monte Carlo computer sim-
ulations are performed to determine the structure of the corresponding reference
system and the chemical potential of the HSM liquid confined in a random HSM
matrix. Based on agreement between the theoretical predictions and Monte
Carlo simulation data, the structure of the reference system is shown to be ac-
curately predicted using radial distribution functions of the n + l1-component
hard-sphere mixture with the n component representing the fluid and the one
component representing the matrix obstacles. Theoretical predictions for the
chemical potential are also in a very good agreement for the model for systems

with weak fluid-matrix attractive interactions, though slight deviations are ob-
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served as the strength of the fluid-matrix attraction and/or matrix density is
increased. With minimal adjustment of the HSM potential, the phase behav-
ior of the Lennard-Jones and square-well fluids adsorbed in the matrix are also
described. Due to its simplicity, the theory could be used in a number of ap-
plications to predict the properties of simple fluid mixtures with any number of
components adsorbed in the porous media.
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1. Introduction

Understanding the thermodynamic properties and phase behavior of fluids
and fluid mixtures adsorbed in porous media is of substantial interest for both
fundamental science and engineering applications [1, 2, 3, 4]. Porous materi-
als are widely used as adsorbents in numerous technological processes, such as
filtration and purification, heterogeneous catalysis, adsorption and separations.
The properties of the fluids confined in porous media are known to be markedly
different from those in the bulk, which represents a challenge for their under-
standing and description on the molecular level. For example, the liquid-gas
phase diagrams of *He[5], N2 [6], and the mixture of isobutyric acid and water
[7] confined in dilute silica gel are much narrower than those in the bulk, with
the critical points shifted toward the lower temperatures.

Describing the thermodynamics and phase behavior of fluids in porous media
is challenging due to the necessity of taking into account the effects of confine-
ment, the fluid-media interaction, the random nature of the pores and their
interconnection, etc. Additionally, the phase behavior of adsorbed fluids is very
sensitive to the microscopic structure of the adsorbent. Even for porous materi-
als with the same geometrical and statistical properties, such as porosity, size of
the obstacles, and distribution of pore sizes, the corresponding fluid phase dia-

grams can be qualitatively quite different, e.g. having either one or two critical
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points [8]. However, since the pioneering work of Madden and Glandt [9], Mad-
den [10] and subsequent important work of Given and Stell [11], considerable
progress has been achieved in the theoretical description of the structural prop-
erties and thermodynamics of fluids confined in porous media. In [9, 10, 11], the
porous medium is modeled as a quenched disordered configuration of particles.
The properties of the liquids adsorbed in such medium (the so-called matrix) are
described using the corresponding version of the Ornstein-Zernike (OZ) equa-
tion called the replica OZ (ROZ) equation, supplemented by analogues of the
standard closures of the OZ equation utilized in liquid state theory. In the
meantime a number of extensions and modifications of the ROZ approach have
been developed and applied (see [4, 12] and references therein). These include
extensions of the ROZ theory in the framework of the reference interaction site
model (RISM) approach [13, 14, 15] and multi-density integral equation for-
malism of Wertheim for associating fluids [16, 17, 18, 19, 20, 21], extensions of
the ROZ equation’s treatment of systems with Coulombic interactions [22, 23]
and inhomogeneous systems [24, 25]. In addition to the ROZ approach density
functional theory based approaches for inhomogeneous systems have also been
proposed [26, 27, 28].

Similar to the regular OZ approach, straightforward application of the ROZ
theory is difficult as there are a substantial region of thermodynamic states
for which no convergent solutions to the ROZ equation can be found. In ad-
dition, none of the closures of the ROZ equation proposed are amenable to
an analytical solution. Therefore, most of the theoretical studies of the phase
behavior of liquids confined in porous media are based on the application of dif-
ferent approximate perturbation schemes with ROZ equations used to calculate
the thermodynamic and/or structural properties of the corresponding reference
system [29, 30, 31, 32, 33, 34, 35, 36]. In the papers of Kierlik et al. [30, 31, 35],
Trokhymchuk et al. [34] and Patsahan et al. [36] the contribution of the attrac-
tive part of the interaction was calculated using the numerical solution of the
ROZ with a mean spherical approximation (MSA) type of the closure.

Recently, scaled particle theory (SPT) was extended and applied to predict
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the properties of the hard-sphere fluid in porous media [37, 38, 39, 40]. The
media was represented by a matrix of hard-sphere obstacle particles randomly
placed in a configuration of HS fluid quenched at equilibrium. Unlike ROZ the-
ory, this proposed version of SPT provides a closed form analytical expressions
for the thermodynamics of the system. This feature of SPT is very useful, since
it enables one to use an analytical description of the reference system in vari-
ous thermodynamic perturbation theories. Furthermore, predictions from the
present version of SPT are perhaps the most accurate in comparison with pre-
dictions of the currently available theoretical methods for hard-sphere systems,
i.e. ROZ theory.

Additionally, the phase behavior of several model liquids adsorbed in porous
media have been studied using the SPT description of the corresponding refer-
ence systems. These studies include applications of the Barker-Henderson (BH)
perturbation theory to the Lennard-Jones (LJ) fluid [41], the high temperature
approximation to the polydisperse hard-sphere Yukawa fluid [42], Wertheim’s
thermodynamic perturbation theory (TPT) to hard-sphere network forming [43]
and polydisperse square-well (SW) chain [44] fluids, the associative mean spher-
ical approximation (AMSA) [45] and the collective variable method [46] to a
charged hard-sphere fluid.

Confined fluid properties have also been actively studied using simulation
methods, with an emphasis on Monte Carlo (MC) methods. The majority of
these simulations focus on describing the LJ fluid under confinement conditions
through various MC methods, such as standard MC [47], grand-canonical MC
[48, 49, 50, 51], and Gibbs ensemble MC [52, 8]. Confined SW fluids have
also been studied using grand-canonical transition-matrix MC [53]. However,
while LJ and SW fluids are well represented, both simulation and theoretical
approaches that utilize other potentials for the model fluid have been widely
neglected. We note that computer simulations of the phase behavior of fluids
adsorbed in porous media are challenging. During each simulation, the fluid
properties have to be averaged with respect to the different realizations of the

matrix (i.e., porous media), which is time consuming, since each realization re-
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quires a separate simulation. Also it is generally not clear how many realizations
are needed and what size of the matrix sample should be used in order to obtain
sufficiently accurate predictions.

In this paper, we propose a simple analytical theory for predicting the ther-
modynamic properties and phase behavior of liquid mixtures with any number
of components confined in random porous media. The theory is based on the
combination of SPT and second-order BH (BH2) perturbation theory. The lig-
uid is represented by an n-component mixture of the hard-sphere Morse (HSM)
model and the porous media is modeled by the HS fluid quenched at equilib-
rium. The choice of the HSM model and SPT description of the reference system
enables us to formulate a completely analytical version of the second-order BH
perturbation theory for systems with an arbitrary number of components. Note
that previous studies of the phase behavior are based on the numerical solu-
tions of the ROZ equation, which is rather combersome to use even in the one-
component case and quickly becomes impractical as the number of components
increases. The accuracy of the theory, as well as its applicability, is demon-
strated by comparison of the theoretical predictions against corresponding MC

simulations.

2. Model

We consider a simple liquid mixture confined in a random porous medium.
The liquid is modeled by a multicomponent mixture of hard spheres of different
size with an additional attractive Morse potential. For the porous medium the
model suggested by Madden and Glandt [9, 10] is used, in which a matrix of
hard-sphere obstacles formed by a fluid of hard particles quenched at equilibrium
is used. In addition to the hard-sphere interaction, the particles of the liquid
interact with the matrix obstacles via the attractive Morse potential. The pair

potential acting between the particles of the system is

Uij(r) = UL (r) + UM (12), (1)
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where ¢, 7 denotes the particle species and takes the values 0,...,n, U;; (r)(hs)

is the hard sphere potential

oo, forr < oy

Ui (r) = 2)

0, forr>al-j:(ai+aj)/2

o0; is the hard-sphere diameter of the particle of species 4, and Uy (r)(M ) is the

Morse potential

0, for r < o;;
UM =9 " ’ (3)
—€;;  exp[—zi;(r —oy5)], forr >0y
Here, as usual, i = 0 denotes hard-sphere obstacles of the matrix, eég/f) =0 and

the screening parameter z;; was chosen to be z;; = 1.8/07.

3. Theory

Theoretical description of the model at hand is carried out using BH2 per-
turbation theory in combination with scaled particle theory [42, 44, 54]. We
assume that the Helmholtz free energy of our liquid mixture can be written as
follows:

A= Anes+ AAM + AAPM (4)

where A,y is Helmholtz free energy of the reference system, and A; and A, the

first and second perturbation terms respectively,

ﬂAA(M) 0 .
S =B e | dr U g () =
ij
(ref)
M G ij (5)
=2mB Y e pipye i — =, (5)
ij
and
/BAA(M) re > Te
PR — PR ZW’J‘/ dr 2 U0 ()20 (r) =
ij 0
(ref)
2 o, 0Gi 7 (s)
— xB2K(ref) Z (6%»1)) pip;e¥ ”Z?TL,:%T (6)

ij
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Gl(.;ef )(s) is the Laplace transform of gl(;ef )(r),

s Here g (r) is the radial distribution function (RDF) of the reference system,

ey — [ g st g red)
G (5)—/0 drre”""g;;" (1), (7)

K(ref) is isothermal compressibility of the reference system, i.e

K= (aran) i

P,y is the pressure of the reference system, 8 = 1/kgT, T is the temperature,
pi is the number density of the component ¢ and p = >, p;.

130 The reference system is represented by the multicomponent hard-sphere fluid
confined in the random porous medium. The thermodynamic properties of
the system are calculated using a recently proposed version of scaled particle
theory (SPT) [39]. In the framework of SPT, explicit analytical expressions
for the Helmholtz free energy and chemical potential of the n-component hard-

135 sphere fluid confined in the hard- sphere random matrix have been derived
[37, 39, 38, 40]. To avoid repetition, we do not present them here and refer
the reader to the original publications.[37, 39, 38, 40]. However, for the sake
of completeness, the SPT expressions for the Helmholtz free energy, chemical
potential and compressibility of the one-component hard-sphere fluid in the

1o matrix, which will be used in our numerical calculations are provided below.

We have

(9)

where

= Qfﬂ(i - 1) T (1 - <ZO)+; i {7%2*236 (1@/732%;3’
O e T e R



wand 19 = wpo0d /6, do = 1 — 1o, 7 = wp10% /6 and ¢ = exp (—Bui™).

Here
o= 6+ 377017'(77; 4) n (197737;02)27 b= g (1 + 1777‘;70)2 , (13)
Bt == (1= ) + 2(19_778770)2 —10Z0 + [3770Z0 - W} (1+7)
— |3n0Zy — W] (1+7)2+n0Zo(147)3, (14)

and Zg = (1 +n9 +n2)/(1 —no)3 and 7 = 01 /00.
The structural properties of the reference system are calculated assuming

150 that the RDFs ggef)(r) can be approximated by the RDFs of the n + 1-

component hard-sphere mixture ggm) (r) with n components representing the
reference system and one component representing the matrix of the hard-sphere
obstacles. To validate this assumption computer simulations have been per-
formed and the results obtained compared against the corresponding theoreti-

155 cal results. Theoretical pair distribution functions have been calculated using
the Percus-Yevick (PY) approximation. One substantial advantage of the PY
approximation is that the closed form analytical expression for the Laplace
transforms of the hard-sphere RDF's GE?S) (s), which enter in to the expressions
for the Helmholtz free energy (5) and (6), are available [55].

160 The chemical potential, u;, and pressure, P, of the system are calculated

using standard thermodynamical relations, i.e.

pi = "D + Api, P =Py + AP, (15)
where
o0 AA;  AA,
Ap; = , 16
" B (5*+57) (16)
{rizi}
- AA;  AA,
AP = ANTIES — . 1
> Pl = = == (17)

i=1
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4. MC simulations details

To assess the accuracy of the theoretical approach proposed, Monte-Carlo
(MC) computer simulations[56] have been performed of the same model as that
studied theoretically, thus providing exact model properties and the ability to
directly test the theory. The simulated system consists of fluid particles im-
mersed in the environment of a matrix formed by a frozen configuration of
randomly dispersed impenetrable hard spheres (HS matrix). We consider the
system in a simulation box of a cubic shape with periodic boundary conditions
applied along three dimensions. The number of the matrix particles Ny is varied
depending on the packing fraction 79 of the system and the HS particle diameter
oo = 01/7, where: 19 = wog No/L3 /6.

Canonical (NVT) MC simulations [56] were performed to determine the
RDF's of the reference system. The fluid-fluid g:(lgef ) (r) and fluid-matrix g(()qef ) (r)
RDFs were obtained from NVT simulations of a hard-sphere fluid confined in
a disordered hard-sphere matrix at various packing fractions of fluid, n;, and
matrix, 7y, particles. Several different values for the size ratio of fluid and
matrix particles 7 have been considered. The number of the matrix particles
in the system N; are chosen depending on their size, i.e., Ny = 10000, 6000,
4000 and 2000, for 7 = 1, 1/2, 1/3 and 1/5, respectively. For each set of
system parameters, eight random matrix configurations are studied and the
RDF's are averaged over these matrix realizations. Each simulation run consists
of 5-10° simulation steps for system equilibration and additional 10° steps for
production. At each step, IN; trial moves of particles are performed, where Ny
is the number of fluid particles. The maximum displacement for trial moves
of fluid particles was adjusted to reach the acceptance rate around 75%. The
RDFs were calculated by sampling the configuration every 5 steps. To speed up
simulations the linked-cell algorithm with a cell size equal to 207 was applied
[56].

Grand-canonical MC (GCMC) simulations were performed to obtain the

average density of a HSM fluid confined in a disordered hard-sphere matrix
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at a fixed chemical potential and constant temperature. [56]. The system was
simulated in a box of the size L = 20071 and a cut-off distance of r, = 1007 used
for both the fluid-fluid and fluid-matrix interactions. The number of matrix
particles Ny was adjusted according to the chosen combination of 7y and 7.
Two values of the matrix packing fraction, 179 = 0.1 and 0.15, have been studied
and are typical values for a wide range of mesoporous materials [2, 3, 4]. The
screening parameter z;; of the HSM potential (3) is z;; = 1.8/01, indicating
that the value of the cut-off distance used is sufficiently large.

All GCMC simulations are performed at the temperature k:BT/egjlw) = 2,
which is very close to the critical temperature of the bulk fluid, but still be-
longs to the supercritical region. For each set of parameters the system is fully
equilibrated starting from a random initial configuration with fluid particles of
density p* = 0.1. Each simulation step consists of translational trial moves with
the maximum displacement 0.207; and insertion/removal attempts. The ratios
of translation and insertion/removal trials are set to 80% and 20%, respectively.
The total number of trials during one simulation step is chosen equal to the
number of fluid particles N;. The number of steps needed to equilibrate the
systems at the considered chemical potentials is typically found to be less than
10°. Afterwards, the fluid density is averaged during at least 10° simulation
steps. To improve statistics at substantially low fluid densities (p103; < 0.01),
the number of simulation steps is increased to 10°. In general, the relative er-
ror of the densities obtained at the different values of the chemical potential
was around 1% or better. For the sake of comparison a HSM fluid in the bulk
is also simulated. Finally, we note that while computer simulations of fluids
adsorbed in porous media are challenging as discussed above, the simulations
performed herein are carried out at temperatures above the critical temperature

and therefore they are expected to be sufficiently accurate.

10
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5. Results and discussion

5.1. Structure of the reference system

We present theoretical predictions for the RDFs of the reference system
gggef )(r) and gégef ) (r) in figures 1-4 compared against the corresponding com-
puter simulation predictions. Four versions of the model matrix with different
porosity (¢o = 1 —19) and different ratios of the sizes of the obstacle and fluid
particles 7 (o = 0.1058 and 7 = 1 (figure 1), g = 0.2206 and 7 = 1/2 (figure
2), no = 0.2972 and 7 = 1/3 (figure 3), no = 0.3901 and 7 = 1/5 (figure 4))
are considered. For each set of 79 and 7 we present results for the RDFs at
high and low values of the fluid packing fraction 7. In all cases studied, very
good quantitative agreement between the theoretical and computer simulation
results can be observed for almost all values of the distance between the par-
ticles . Slightly less accurate predictions from the theory can be seen only in
close vicinity to the contact distance for the RDF gﬂef ) (r) at higher densities

and for the RDF g((ﬁef )(r) at both, high and low densities.

5.2. Thermodynamics of the hard-sphere Morse liquid confined in the matrix

In figures 5-7 theoretical and computer simulation results for the excess
chemical potential as a function of the density of the HSM liquid confined in
the matrix are presented. We have studied three different sets of the model
parameters for the matrix, i.e. 79 = 0.1 and 7 = 1 (figure 5), 7o = 0.15and 7 = 1
(figure 6), o = 0.1 and 7 = 3/2 (figure 7). For each version of the matrix model
parameters three values of the interaction energy eéllw) (6(()11\4)/651;/1) =0,1,1.5)
are considered. The temperature of the system is T = k:BT/egjlw) =2.

In general, the agreement between the theoretical predictions and simula-
tions is good. For the model with ¢p; = 0, the theoretical predictions are very
accurate. As the strength of matrix-fluid attraction €g; is increased, the theory
provides slightly less accurate results for small values of p* and larger values of
no- This decrease in the accuracy of the theoretical results is due to relatively

less accurate predictions of the theory for goi(r), since at these values of p*

11
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and 7o the contribution to the Helmholtz free energy (5) and (6) due to the

matrix-fluid correlations become larger.

5.3. Liquid-vapor phase behavior

Results for the phase behavior of the model are given in figures 8 and 9.
In figure 8 the liquid-vapor phase diagram of the HSM fluid confined in the
hard-sphere matrix at three different values of the matrix packing fraction ny =
0,0.1,0.2 and two different values of the matrix-fluid size ratio 7 = 1,1/2 are
presented. As one would expect with the increase of the matrix packing fraction
the phase envelope and critical point shifts in the direction of lower temperatures
and lower densities. This effect is more pronounced for the models with larger
value of 7. The effects of the attraction between fluid particles and obstacles of
the matrix are shown in figure 9. Here we consider the model with 7y = 0.1,
7 = 1 and 68]1\4) =0, eéjlw)/egllw) =1, 68]1\4)/6521\4) = 3 and e((Jle)/engw) = 6.
With the increase of the strength of fluid-matrix interaction, 6(()]1\/[)/ 6511\/1)’ from
0 to 1 the critical temperature and density increase. With further increase of
the strength of the attraction up to 6(()1;1)/6511\/1) = 6 the critical temperature
noticeably decreases and the critical density becomes almost twice as large.
This behavior can be attributed to the competition between fluid-fluid and
fluid-matrix interactions. With the increase of the fluid-matrix attraction the
formation of the liquid phase requires lower temperatures and higher densities.

Finally in figures 10-14 we compare our theoretical predictions for the liquid-
gas phase diagram for the LJ and hard-sphere SW fluids confined in the LJ and
hard-sphere matrices against the corresponding computer simulation predictions
from the literature [8, 53], as computer simulation results for the phase behavior
of the HSM model are not available. We note that these computer simulations

were carried out taking into account only one matrix realization. In [8], the

authors use a truncated LJ potential

12 6
(LJ) (LJ)
(L) 46511“]) [(017{ ) — <017{ ) ] forr <r.
Ul () = . (18)

0, forr > r.

12
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for the interaction between the liquid particles and either the hard-sphere po-
tential or LJ potential analogous to (18) for the interaction between fluid and
matrix particles. Description of the LJ model is carried out using the BH pre-
scription [57] for the effective hard-sphere sizes 011 and o¢;. For the HSM
potential energy parameter 6511\/[) we have used the value obtained as a result
of fitting of the corresponding computer simulation bulk phase diagrams and

(M) (D) _ (D) (L) 1 (L)

for €y, ' we have: €y; ' = €17 (ep1 Description of the model with

hard-sphere SW interaction potential, i.e.

0, forr < oq1
UM () =4 ™) foron <r < dour (19)
0, for )\0'11 S r

is carried out following the scheme similar to that used above. Explicit ex-
pressions for the temperature dependence of 6(111\4) in the case of LJ fluid and
SW fluid are presented in the Appendix. In both cases the value of the HSM
potential decay parameter was chosen to be z = 1.8/0%‘]).

In general, the agreement between the theoretical predictions and simulation
data is good. The theory correctly reproduces the effects of the confinement due
to changes in both the size ratio of the fluid and matrix particles (figure 10)
and in the packing fraction of the matrix ny (figures 11 and 14). With the
increase of the matrix particles size at constant 7y the average size of the pores
increases, which makes the effects of confinement weaker. As a result the critical
temperature and density of the fluid adsorbed in the matrix with larger obstacles
is larger than those of the fluid in the matrix with smaller obstacles (figure 10).
On the other hand, increasing the matrix packing fraction 7y decreases the
porosity and increases the effects of confinement. This effect can be seen in
figures 11 and 14, where due to the increase of 7y the phase envelope shifts in
the direction of lower temperatures and densities. Here theoretical predictions
are in relatively good agreement with computer simulation predictions for lower
and intermediate values of 7, i.e. 79 = 0.05 and 79 = 0.1. In particular, for

the SW fluid, the accuracy of our theory is similar to that of Hvozd et al. [44]

13
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(figure 14). In the latter study, the authors apply the BH2 approach directly to
the SW model in question.

For ng = 0.1 computer simulation for the LJ fluid in the matrix [8] shows the
existence of the two phase transitions with two critical points: one located at
lower density and higher temperature and the other at higher density and lower
temperature. At the same time, MC computer simulations, carried out for the
SW fluid in the matrix [53] with the same value of 7y, shows the appearance
of a single phase transition. In both cases, the theory predicts the existence
of only one phase transition. However, we note that the phase behavior of the
fluid adsorbed in the porous media is very sensitive to even subtle differences
in the matrix structure and for two different realizations of the matrix with the
same porosity, size of the obstacles and distribution of the pore sizes, computer
simulations can produce the phase diagram with and without two phase tran-
sitions [8] . Therefore, the existence of the two phase transitions for the LJ
model at hand is still questionable [50, 58]. With further decrease of the matrix
porosity up to 1o = 0.2, the theoretical phase envelope shifts towards the lover
temperatures and densities (figure 11). In contrast, the computer simulation
phase diagram shifts in the direction of slightly higher temperatures and lower
densities and becomes substantially more narrow. We believe that this disagree-
ment can be explained by the sensitivity of the phase behavior to the matrix
structure, generated in the computer simulations. Next in figures 12 and 13, we
compare predictions of the theoretical predictions and simulation results for the
effects of attraction between LJ fluid and matrix particles. We consider the case
of equal (figure 12) and different (figure 13) sizes of the fluid and matrix parti-
cles. In both cases, an increase in the fluid-matrix attraction leads to a shift of
the phase diagram to higher temperatures. At the same time, while the theo-

retical phase diagram shifts to higher densities, the computer simulation phase

diagram for eOLlJ ) / e%‘]) = 1 is shifted in the opposite direction to lower densities
(figure 12) and for eOLlJ)/e%J) = 1.25 it is moved towards the higher densities

(figure 13). In our opinion this nonmonotonic behavior can be also attributed to

the difficulties in performing computer simulations of the systems in question,
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in particular due to insufficient number of matrix realizations accounted.

6. Conclusions

In this paper we propose a simple analytical theory for thermodynamics of
the multicomponent simple liquid mixtures confined in the porous media. The
media is represented by the matrix of hard-sphere obstacles randomly placed in
a configuration of a HS fluid quenched at equilibrium. A simple fluid mixture
is modeled by the n-component hard-sphere mixture with additional attractive
Morse potential between liquid particles and between the particles of the ma-
trix and liquid particles. For the theoretical description, we combine SPT and
second-order BH perturbation theory, appropriately modified to account for the
absence of the interaction between the matrix particles. SPT is used to de-
scribe the thermodynamics of the reference system. We have shown that the
structure of the reference system can be accurately predicted using PY RDFs
of the n 4+ 1-component hard-sphere mixture with the n component represent-
ing the fluid and one component representing the matrix obstacles. Agreement
between theoretical and computer simulation predictions is very good for fluid-
fluid RDF's and slightly less accurate for fluid-matrix RDF's at all densities and
size ratios studied. It is also demonstrated that BH2 perturbation theory for the
n+1-component HSM liquid can be used to give sufficiently accurate predictions
for the thermodynamics of the n-component fluid confined in the matrix with
HSM obstacles. Theoretical predictions for the chemical potential are in a very
good agreement for the model with weak fluid-matrix attraction and becomes
less accurate with the increase of the fluid-matrix attraction and matrix den-
sity. Our SPT-BH2 approach is able to correctly predict the effects due to the
changes in the matrix density, fluid-matrix particles size ratio and strength of
the of fluid-matrix interaction of the liquid-gas phase behavior. With a minimal
adjustment of our HSM potential we were able to reproduce with a reasonable
accuracy computer simulation results for the phase behavior of the L.J and hard-

sphere SW fluids confined in the porous media. Due to its simplicity, the theory
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can be used to study the properties of a simple fluid mixture with any number
of components adsorbed in the hard-sphere matrix. Taking into account the
isomorphism of the fluid adsorbed in disordered hard-sphere matrix [39] we ex-
pect that our theory can be applied also to describe the properties of the fluids

confined in the matrices with the other hard-core morphologies.
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2.8 - T - .

g11(r)

go1(r)

Figure 1: Radial distribution function between fluid hard-sphere particles g11(r) (upper panel)
and fluid and matrix hard-sphere particles go1(r) (lower panel) for the hard-sphere fluid con-
fined in a random hard-sphere matrix. Lines represent predictions of the theory and symbols
stand for computer simulation results. Here 7 = 1, ng = 0.1058, red symbols and lines denote
the system with n = 0.1011 and black symbols and lines denote the system with n = 0.2197.

Here and in figures 2-4 the error in MC simulation predictions do not exceed the size of the

symbols in the figure
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911(7")

901(?“)

Figure 2: Notation is the same as that in figure 1 except that here 7 = 1/2, 9 = 0.2206, red
symbols and lines denote the system with n = 0.0921 and black symbols and lines denote the

system with 7 = 0.2469.
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Figure 3: Notation is the same as that in figure 1 except that here 7 =1/3, o = 0.2972, red
symbols and lines denote the system with n = 0.0869 and black symbols and lines denote the

system with n = 0.2263.
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Figure 4: Notation is the same as that in figure 1 except that here 7 = 1/5, o = 0.3901, red
symbols and lines denote the system with n = 0.0806 and black symbols and lines denote the

system with 7 = 0.2020.
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Bt

1
0.3 0.4 0.5 0.6
p*
Figure 5: Excess chemical potential 5ugez) of the hard-sphere Morse liquid confined in the

matrix at 7% = 2 as a function of the liquid density p*. Lines show predictions of the theory

and symbols stand for computer simulation results. Here 7 = 1, ng = 0.1 and 6811\1) =0 (red
lines and symbols), eéjl\d)/eﬂ/[) = 1 (black lines and symbols) and 66?4)/65?4) = 1.5 (brown

lines and symbols). Green line and symbols represent B,ugex) for the hard-sphere Morse liquid
in the absence of the matrix and p* = pla‘f. Here and in figures 6 and 7 the error in MC

simulation predictions do not exceed the size of the symbols in the figure
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Figure 6: The same as in figure 5 except no = 1.5.
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Figure 7: The same as in figure 5 except 7 = 2/3.
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Figure 8: Liquid-gas phase diagram of the hard-sphere Morse liquid confined in disordered
hard-sphere matrix (e(()le) = 0) with no = 0 (solid black line and filled diamond), no = 0.1 and
7 =1 (solid red line and empty circle), 7o = 0.1 and 7 = 1/2 (dashed red line and filled circle),
no = 0.2 and 7 = 1 (solid blue line and empty square), 7o = 0.2 and 7 = 1/2 (dashed blue
line and filled square. Symbols denote position of the critical point). Here T* = kBT/egllw)

and p* = plo"rf.
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*

P

Figure 9: Liquid-gas phase diagram of the hard-sphere Morse liquid confined in disordered

hard-sphere Morse matrix with 7o = 0.1, 7 = 1 and e(()le) = 0 (black line and diamond),

(M)/E(M) — (M)/G(M)

€ /€11~ = 1 (red line and downward triangle), €5, ’/¢;; ° = 3 (blue line and upward

triangle), D 1 M) _ g green line and square). Here T = kT’ M and p* = pro3.
& 01 /€11 11 1
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T*

Figure 10: Liquid-gas phase diagram of the LJ liquid (18) in the bulk (black line and empty
circles), confined in disordered hard-sphere matrix with 1o = 0.05 and agLJ)/‘Jg =1 (red line
and empty circles) and JELJ) Joo = 2/3 ((blue line and empty circles). Lines represent results
of the theory, empty symbols denote computer simulation results [8] and filled symbols denote

3
positions of the critical point. Here T* = kBTKEﬁ’J) and p* = p (ogl"”) S mo).
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p

Figure 11: Liquid-gas phase diagram of the LJ liquid (18) in the bulk (black line and empty
circles), confined in disordered hard-sphere matrix with ogL‘” Joo =1 and 1o = 0.05 (red line
and empty circles), g = 0.1 (blue line and empty circles) and g = 0.2 (green line and empty
circles). Lines represent results of the theory, empty symbols denote computer simulation

results [8] and filled symbols denote positions of the critical point. Here T* = k BTK&%"’I) and

= (7)1 o).
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0 01 02 03 04 05 06 07 08

Figure 12: Liquid-gas phase diagram of the LJ liquid (18) in the bulk (black line and empty
circles), confined in disordered hard-sphere matrix with 7o = 0.05 and JgLJ) Joo = 1 (blue
line and empty circles), and confined in disordered LJ matrix with 7y = 0.05, U&LJ’) Jog =1
and E,gll"” fegll“") =1 (red line and empty circles). Lines represent results of the theory, empty
symbols denote computer simulation results [8] and filled symbols denote positions of the

3
critical point. Here T* = kBTze(lll'J) and p* = p1 (JgLJ)) /(1 mo).
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0 01 02 03 04 05 06 07 08

Figure 13: Liquid-gas phase diagram of the LJ liquid (18) confined in disordered hard-sphere
matrix with 1y = 0.05 and ng"'r) Jfog = 3/2 (blue line and empty circles) and confined in
disordered LJ matrix with no = 0.05, agL"r) Joo = 3/2 and E[()II'J) fegll"'r) = 1.25 (red line and
empty circles). Here T = kBTzeﬁ"’r) and p* = p1 (J%L‘”)a /(1 mo).
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Figure 14: Liquid-gas phase diagram of hard-sphere SW liquid (19) in the bulk (black lines

and empty circles), confined in disordered hard-sphere matrix with 7 = 1 and 7o = 0.05

(red lines and empty circles), o = 0.1 (blue lines and empty circles). Solid and dashed lines

represent results of the present BH2 theory and the version of the BH2 theory of Hvozd et

al. [44], empty circles stand for computer simulation results [53] and filled symbols denote

position of the critical points. Here T* = kBTfEﬁW) and p* = p103 /(1 mo).

Appendix A. Fitting
The expression for the SW potential fit of ng) is
eM(T) = —1.4143(T*) + 3.6596(T*)? — 2.8747(T*) + 1.277.

where T* = kBT/E%J),
The expression for the L] potential fit of fﬂn is

eM)(T) = —0.6767(T*)3 + 1.5671(T*)? — 0.9694(T*) + 0.6733,

where T* = kBT/EﬁW).
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