Session: Full Paper

SPAA 20, July 15-17, 2020, Virtual Event, USA

Optimal Resource Allocation for Elastic and Inelastic Jobs

Benjamin Berg"
Carnegie Mellon University
Pittsburgh, PA, USA
bsberg@cs.cmu.edu

Weina Wang
Carnegie Mellon University
Pittsburgh, PA, USA
weinaw@cs.cmu.edu

ABSTRACT

Modern data centers are tasked with processing heterogeneous
workloads consisting of various classes of jobs. These classes differ
in their arrival rates, size distributions, and job parallelizability.
With respect to parallelizability, some jobs are elastic, meaning
they can parallelize linearly across any number of servers. Other
jobs are inelastic, meaning they can only run on a single server. Al-
though job classes can differ drastically, they are typically forced to
share a single cluster. When sharing a cluster among heterogeneous
jobs, one must decide how to allocate servers to each job at every
moment in time. In this paper, we design and analyze allocation
policies which aim to minimize the mean response time across jobs,
where a job’s response time is the time from when it arrives until
it completes.

We model this problem in a stochastic setting where each job
may be elastic or inelastic. Job sizes are drawn from exponential
distributions, but are unknown to the system. We show that, in the
common case where elastic jobs are larger on average than inelastic
jobs, the optimal allocation policy is Inelastic-First, giving inelastic
jobs preemptive priority over elastic jobs. We obtain this result
by introducing a novel sample path argument. We also show that
there exist cases where Elastic-First (giving priority to elastic jobs)
performs better than Inelastic-First. We provide the first analysis of
mean response time under both Elastic-First and Inelastic-First by
leveraging techniques for solving high-dimensional Markov chains.

KEYWORDS

scheduling, parallelism, elastic jobs, stochastic modeling

“This author is supported in part by the Facebook Graduate Fellowship

TThis author is supported in part by NSF-CMMI-1938909, NSF-XPS-1629444, and
NSF-CSR-1763701

#This author is supported in part by a Google Research Award, an Infor Research
Award, a Carnegie Bosch Junior Faculty Chair and NSF grants CCF-1824303, CCF-
1845146, CCF-1733873 and CMMI-1938909

SThe author is supported in part by the National Science Foundation Graduate Research
Fellowship Program under grant DGE 1745016.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400265

Mor Harchol-Balter’
Carnegie Mellon University
Pittsburgh, PA, USA
harchol@cs.cmu.edu

75

Benjamin Moseley™
Carnegie Mellon University
Pittsburgh, PA, USA
moseleyb@andrew.cmu.edu

Justin Whitehouse$
Carnegie Mellon University
Pittsburgh, PA, USA
jwhiteho@andrew.cmu.edu

ACM Reference Format:

Benjamin Berg, Mor Harchol-Balter, Benjamin Moseley, Weina Wang, Justin
Whitehouse. 2020. Optimal Resource Allocation for Elastic and Inelastic
Jobs. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA °20), July 15-17, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3350755.3400265

1 INTRODUCTION
1.1 Motivation

Modern data centers are tasked with processing astonishingly di-
verse workloads on a common set of shared servers [49]. These jobs
differ not only in their resource requirements on a single server, but
also in how effectively they scale across multiple servers [13]. For
instance, a simple client query may run on a single server and com-
plete in just milliseconds. Conversely, a data intensive job may run
for hours even when parallelized across dozens of servers [41]. The
challenge facing system architects is to build data centers which,
in light of this heterogeneity, achieve low response time — the time
from when a job enters the system until it completes.

The state-of-the-art in many data centers is to allow users to
specify their own server requirements, and then over-provision the
system. By always ensuring that idle servers are available, system
designers avoid having to make tough resource allocation decisions
while users always receive the resources they request. Unfortu-
nately, these over-provisioned systems are expensive to build and
waste resources [18]. Most large-scale data centers, for example,
run at an average utilization of less than 20% [49].

To try and reduce this waste, many cluster scheduling systems
have been proposed in the literature [13, 30, 38, 39, 41, 47]. These
scheduling systems aim to maintain low response times without
having to over-provision the system. One way to achieve this goal
[13, 47] is to have the system scheduler determine resource al-
locations rather than allowing users to reserve resources. While
these schedulers often work well in practice, none of them offer
theoretical response time guarantees.

1.2 The Problem

We propose a simple model of heterogeneous traffic running in
a multiserver data center. Our goal is to design a resource alloca-
tion policy which dynamically allocates servers to jobs in order to
minimize the mean response time across jobs. We assume jobs are
preemptible, and that an allocation policy can change a job’s server

https://doi.org/10.1145/3350755.3400265
https://doi.org/10.1145/3350755.3400265

Session: Full Paper

allocation over time. In particular, we will consider a system of k
servers which processes jobs that arrive over time from a workload
consisting of two distinct job classes. The first class of jobs, which
we call elastic, consists of jobs which can run on any set of servers
at any moment in time. We assume that elastic jobs experience a
speedup factor proportional to the number of servers they run on.
That is, an elastic job which completes in 2 seconds on a single
server would complete in 1 second on 2 servers, or .5 seconds on
4 servers. The second class of jobs, which we refer to as inelastic,
consists of jobs which are not parallelizable. While an inelastic job
can run on any server, it can only run on a single server at any
moment in time. A resource allocation policy must determine, at
every moment in time, how to allocate servers to each job in system,
both elastic and inelastic.

In practice each job also has some amount of inherent work
associated with it. This inherent work, which we call a job’s size,
determines how long it takes to complete the job on a single server.
We assume that job sizes are unknown to the system, but are drawn
independently for each job from an exponential distribution. To
further model the heterogeneity of a workload, we allow elastic
and inelastic job sizes to be drawn from two different exponential
distributions, with rates ug and py respectively.

Even given the simplicity of the model above, devising an optimal
scheduling policy is non-trivial. For instance, consider the problem
of dividing k servers between one elastic job and one inelastic job
which are both of size 1. On the one hand, we know that completing
jobs quickly benefits mean response time, so one might think to
run the elastic job on all k servers before running the inelastic job.
On the other hand, this schedule leaves k — 1 servers idle while the
inelastic job completes. We could thus have created a more efficient
schedule by running the elastic and inelastic jobs simultaneously,
giving k — 1 servers to the elastic job and 1 server to the inelastic
job. It turns out that the more efficient schedule is optimal in this
case, but in general, a good scheduling policy must balance the
trade-off between completing elastic jobs quickly and preventing
long periods of low server utilization. This question becomes even
more complex if the elastic and inelastic jobs have different sizes.

1.3 Elastic and Inelastic Jobs in the Real World

It is common to find systems which use a shared set of servers to
process both elastic and inelastic jobs. Typically in such settings
the elastic jobs have more inherent work than the inelastic jobs.
For example, consider a cluster which must process a stream of
many MapReduce jobs [12]. From the cluster’s point of view, this
workload produces a stream of map stages and reduce stages. Map
stages (elastic) are designed to be parallelized across any number
of servers and do a large amount of processing. Reduce stages
(inelastic) are inherently sequential and do much less total work
than a map stage. As another example, modern machine learning
frameworks [41] advocate the use of a single platform for both the
training and serving of models. Training jobs (elastic) are large,
requiring large data sets and many training epochs. Distributed
training methods such as distributed stochastic gradient descent
are also designed to scale out across an arbitrary number of nodes
[36]. Once a model has been trained, serving the model (inelastic),
which consists of feeding a computed model a single data point

76

SPAA 20, July 15-17, 2020, Virtual Event, USA

in order to retrieve a single prediction, is done sequentially and
requires comparatively little processing power.

It is less common for elastic jobs to be smaller than inelastic
jobs in practice, given the overhead involved in writing parallel
code. If the amount of inherent work required for a job is small to
begin with, system developers may not choose to add the additional
data structures and synchronization mechanisms required to make
the job elastic. One exception is HPC workloads. In this setting,
there are often both malleable jobs (elastic) [20] and jobs with hard
requirements (inelastic). While malleable jobs are designed to run
on any number of cores, jobs with hard requirements demand a
fixed number of cores. It is unclear which class of jobs we would
expect to involve more inherent work.

The model presented in this paper is flexible enough to capture
all of the above examples.

1.4 Why stochastic analysis?

There has been a sizable amount of work considering the prob-
lem of scheduling jobs onto k parallel servers. The vast majority
of this work considers only inelastic jobs of known sizes, and fo-
cuses on worst-case analysis. Given the optimality of the Shortest-
Remaining-Processing-Time (SRPT) policy in the degenerate case
where k = 1 [48], one might hope that SRPT is also optimal in the
multiserver case where k > 2. Specifically, one might consider a
policy called SRPT-k [19] which always runs the k jobs with the
shortest remaining processing times. Unfortunately, [35] shows
that SRPT-k can be arbitrarily far from optimal. In fact, SRPT-k has
a competitive ratio of ©(log min (p,)) where n is the number of
jobs and p is the ratio of the maximum job size to the minimum
job size. Additionally, [35] shows that this competitive ratio is a
tight lower bound - no online algorithm can do better in the worst
case. Using speed augmentation, SRPT-k is known to be constant
competitive with 1 + € speed for any constant € > 0 [9, 17].

More recently, some work has examined the case of scheduling
parallelizable jobs of known sizes onto k parallel servers. This work
assumes that each job has an arbitrary speedup curve which dictates
its running time as a function of the number of servers on which it
runs. Again using worst-case analysis, [16] shows how to achieve
an O(%)-competitive ratio using (1 + €)-speed servers. Without
using resource augmentation, [31] provides an algorithm with a
competitive ratio of O(log p), where again p is the ratio of the largest
job size to the smallest job size. This competitive ratio essentially
matches the known worst-case lower bound for the problem.

The above results suggest that, without resource augmentation,
there is little room to improve the worst-case performance of sched-
uling policies for parallelizable jobs. This is because the aforemen-
tioned lower bounds for worst-case scheduling directly apply to
the case where jobs are given speedup curves. However, from the
point of view of system designers, this problem remains unsolved!
In particular, a competitive ratio of log p [31] can be arbitrarily high
when job sizes span a wide range, which is common in practice.
Thus, a log p-competitive algorithm could be impractical. Addition-
ally, the results in [16] use an elegant algorithm that is interesting
theoretically, but the algorithm is difficult to implement due to fre-
quent context switches. The problem is that results like [16, 31] and
others (see Section 3) perform badly on adversarial cases which are

Session: Full Paper

uncommon in practice. We therefore propose shifting to stochastic
analysis which discounts the impact of these adversarial cases. By
considering a stochastic analysis, there is the potential to reveal
new algorithmic insights into the problem. It could even be possible
to find online algorithms that are optimal in expectation.

There has been recent work aimed at allocating servers to par-
allelizable jobs in a stochastic setting in order to minimize mean
response time [7]. However, this line of work is in an early stage.
Specifically, [7] only considers the case where all jobs are homoge-
neous with respect to job size and job speedup. While [7] is able
to derive the optimal policy in this simpler case, they explicitly
note the complexity of handling even just two different classes
of jobs. In particular, the problem of allocating to servers to both
elastic and inelastic jobs in a stochastic setting remains completely
open. Although [7] presents some approximate numerical analysis
of the case where jobs are heterogeneous, the techniques used are
computationally intensive and offer no guarantees of accuracy.

1.5 Our Contributions

This paper addresses the problem of allocating servers to both
elastic and inelastic jobs. Section 2 introduces our stochastic model
of elastic and inelastic jobs of unknown sizes which arrive over
time to a system composed of k servers. Using this model, we then
present the following results:

e We propose two natural server allocation policies which aim to
minimize the mean response time across jobs. First, the Elastic-
First policy gives strict preemptive priority to elastic jobs and
aims to minimize mean response time by maximizing the rate at
which jobs depart the system. Second, the Inelastic-First policy
gives strict preemptive priority to inelastic jobs. By deferring
elastic work for as long as possible, Inelastic-First maximizes
system efficiency. It is not immediately obvious if either of these
policies is optimal, or which policy is better.

e We show in Section 4.1 that if elastic and inelastic jobs follow the

same exponential size distribution, Inelastic-First is optimal with
respect to mean response time. This argument uses precedence
relations to show that deferring elastic work increases the long
run efficiency of the system.
Next, in Section 4.2, we show that in the case where elastic
jobs are larger on average than inelastic jobs, Inelastic-First is
optimal with respect to mean response time. This requires the
introduction of a novel sample path argument. Our key insight
is that Inelastic-First minimizes the expected amount of inelastic
work in the system as well as the expected total work in the
system. As long as elastic jobs are larger than inelastic jobs on
average, this suffices for minimizing mean response time.

o In the case where elastic jobs are smaller on average than inelas-
tic jobs, Inelastic-First is no longer optimal. We illustrate this
via a counterexample in Section 4.3 which shows that Elastic-
First can outperform Inelastic-First. In order to determine when
Elastic-First outperforms Inelastic-First, we perform the first
analysis of both the Elastic-First and Inelastic-First allocation
policies in Section 5. This analysis leverages recent techniques
for solving high-dimensional Markov chains. Our analytical re-
sults match simulation.

77

SPAA 20, July 15-17, 2020, Virtual Event, USA

o For the sake of completeness, we also consider the case where job
sizes are known and jobs arrive at time 0. Using standard dual-
fitting techniques for worst-case analysis (e.g. [4, 5]), we show
SRPT-k is a 4-approximation for the objective of minimizing
mean response time. This demonstrates the need for stochastic
modeling and analysis. Indeed, the stochastic setting yields opti-
mality results without resorting to approximations. Due to lack
of space, this final contribution is saved for the Appendix A.

2 OUR MODEL

We consider a model where jobs arrive over time to a system of k
identical servers. Each job has an associated amount of inherent
work which we refer to as the job size. We assume that each of the
k servers processes jobs with a rate of 1 unit of work per second.
Hence, a job’s size is equal to its running time on a single server. We
assume that job sizes are unknown to the system, and are drawn
from exponential distributions.

Each job may be either elastic or inelastic. We assume that elastic
jobs arrive according to a Poisson process with rate Ag, and that
elastic job sizes are drawn independently from an exponential dis-
tribution with rate yg. Similarly, inelastic jobs arrive independently
according to a Poisson process with rate A, and inelastic job sizes
are drawn independently from an exponential distribution with
rate y17. We let Sg and Sy be random variables representing the sizes
of an elastic job or an inelastic job respectively.

Every elastic job can run on any number of servers at any mo-
ment in time. Because each server processes work at rate 1, n servers
process work at a rate of n units of work per second. Hence,

an elastic job of size x completes in x seconds on a single server
but completes in 7 seconds on n servers.

By contrast, inelastic jobs can run on at most one server at any
moment in time.

We note that all of the results presented in this paper hold equally
if inelastic jobs can run on up to some fixed number of servers,
C < k. We can simply renormalize our allocation policies to consider
allocating in units of % servers. After renormalizing, inelastic jobs
can once again receive up to one unit of allocation while elastic jobs
can receive any number of units of allocation. While our results do
not depend on the value of C, we consider the case where C = 1 for
the sake of simplifying our notation.

An allocation policy, =, must determine how many servers to
allocate to each job at any moment in time t. Specifically, 7 can
increase or decrease the allocation to a particular job as it runs.
We assume that servers are capable of time sharing, and thus an
allocation policy may allocate a fractional number of servers to any
job. For any n € Rx0, we assume that an allocation of n servers
processes work at a rate of n units of work per second. At any
moment in time, £, an allocation policy can allocate at most 1 server
to each inelastic job, and at most k servers in total.

We can model this system under any policy 7 as a continuous
time Markov chain where each state denotes the number of elastic
and inelastic jobs currently in the system. That is, we define a
continuous time Markov process {(N}' (¢), N7 (¢)): t > 0} where

(NJ(£),NE (1) € Z2,,, vt > 0.

Session: Full Paper

We define N/ (¢) to be the number of inelastic jobs in system at time
t and we define N7 (¢) to be the number of elastic jobs in system at
time ¢. We let the state (N (¢), NZ (¢)) = (i, j) denote that there are
i inelastic jobs and j elastic jobs currently in the system.

Because job sizes are exponential and arrivals occur according
to a Poisson process, at any moment in time ¢, the distributions of
remaining job sizes and the distributions of times until the next
arrival for each job class can be fully specified by the numbers of
inelastic jobs and elastic jobs in the system. Hence, we will only
consider policies which are stationary and deterministic, meaning
the policy = makes the same allocation decision at every time ¢,
given that the system is in state (i, j). Specifically, we define (i, j)
to be the number of servers allocated to inelastic jobs in state (i,)
under policy 7, and we define (i, j) to be the number of servers
allocated to elastic jobs in state (i, j) under policy xz. Note that

mg)<i V) ez,

g) Sk Lisoy V() €Z2,,
and
mi)+ mpij) <k Y(i.j) € Z2,.

In general, 7;(i, j) + (i, j) could be less than k if there are not a
sufficient number of jobs to use all k servers, or if 7 chooses to idle
servers instead of allocating them to an eligible job.

We refer to a policy 7 as work conserving if and only if, in any
state (i,),

m1(i,j) + (i, j) > i,
and
ar(i,) + wp(i,j) 2 k- Ljsoy-

That is, 7 never leaves servers idle if there is an eligible job in the
system. In Appendix B we show that there exists an optimal policy
which is also work conserving. It therefore suffices to only consider
work conserving policies throughout our analysis.

We define the system load, p to be

= ﬂ + A—E (1)
kpr kpg
In Appendix C we show that for any work conserving policy, 7,
(N (t), N7 (¢)) is an ergodic Markov chain if p < 1. Because there
exists an optimal work conserving policy, (1) is necessary for sta-
bility under any policy 7’. We therefore only consider the regime
where p < 1.
We will track several stochastic quantities in our system. We
define the total number of jobs in the system, N7 (t), as

N7 (t) = N[(t) + NZ (t).

We also define W” (t) to be the total work in the system under policy
7 at time ¢, where total work is the sum of the remaining sizes of
all jobs in the system. Similarly, we let W (¢) and W[(¢) be the
total elastic work and the total inelastic work in the system under
policy 7 at time ¢. These quantities are the sums of the remaining
sizes of all elastic or inelastic jobs respectively. When referring to
the corresponding steady-state quantities, we omit the argument ¢.

We define the random variable T” to be the response time of a job
which arrives to the system in steady-state under policy 7. Here,
the response time of a job is the time from when the job arrives
until it is completed (i.e. its remaining size is 0). Our goal is to find
the policy which minimizes the mean response time.

78

SPAA 20, July 15-17, 2020, Virtual Event, USA

We will investigate the performance of two allocation policies,
Elastic-First (EF) and Inelastic-First (IF). EF gives strict preemptive
priority to elastic jobs, and processes jobs in first-come-first-serve
(FCFS) order within each job class. That is, in any state (i, j) where
Jj > 0, EF allocates all k servers to the elastic job with the earliest
arrival time. In any state (i, j) where j = 0, EF allocates one server to
each inelastic job, in FCFS order, until either all jobs have received
a server or all k servers have been allocated. By contrast, IF gives
strict preemptive priority to inelastic jobs while processing jobs in
FCFS order within each job class. Under IF, in any state (i, j) where
i < k, one server is allocated to each inelastic job and the remaining
k — i servers are allocated to the elastic job with the earliest arrival
time if there is one. In any state (i, j) where i > k, all k servers are
allocated to the inelastic jobs with the k earliest arrival times.

3 PRIOR WORK

Although many real-world systems are tasked with allocating servers
to heterogeneous workloads, these systems do not allocate servers
optimally in order to minimize the mean response time across
jobs. Most large-scale cluster schedulers allow users to explicitly
reserve the number of servers they want [30, 38, 39, 41, 49], only
allowing the system to choose the placement of each job onto its re-
quested number of servers. Some systems have proposed allowing
the system to determine the number of servers allocated to each
job [13, 37, 47] in order to reduce response times. However, these
systems rely on heuristics and do not make theoretical guarantees.

In the theoretical literature, the closest work to the results pre-
sented in this paper come from the stochastic performance model-
ing community. In particular, [7] develops a model of jobs whose
sizes are drawn from an exponential distribution and which re-
ceive a sublinear speedup from being allocated additional servers.
However, [7] only provides optimality results when jobs are ho-
mogeneous, following a single speedup function and a single ex-
ponential size distribution. We emphasize that our paper is the
first ever to consider more than one speed-up curve in the setting
with stochastic arrivals over time and stochastic job sizes. Essen-
tially all other work in the stochastic community has considered
non-parallelizable inelastic jobs. Much of the prior work has been
limited to scheduling jobs on a single server [11]. While there has
certainly been work on scheduling in stochastic multiserver sys-
tems (e.g [1, 6, 19, 23, 24, 29]), this literature assumes that a job
occupies at most one server at a time (that is, all jobs are inelastic).
One notable model that considers jobs that run on multiple servers
is the queueing model motivated from MapReduce [32, 42, 50]. This
work assumes that each job consists of a set of pieces that can be
processed on different machines at the same time. These pieces can
be processed in any order and, critically, a job only completes when
all of its pieces have completed. This model can only be analyzed
exactly when the number of servers is k = 2.

In the worst case setting, the problem of scheduling jobs on iden-
tical parallel servers was introduced in [40] and has been considered
extensively. However, in the classical version of the problem, all
jobs are considered to be inelastic. Given inelastic jobs with known
sizes and known release times, [35] shows a tight lower bound on
the competitive ratio of ©(log min (p, %)) where n is the number of
jobs and p is the ratio of the maximum job size to the minimum job

Session: Full Paper

size. The policy which achieves the best competitive ratio is SRPT-
k, which at every moment schedules the k jobs with the smallest
remaining processing times.

Several prior works have considered scheduling parallelizable
jobs in the worst-case setting. The speed-up curve model was first
addressed by [14]. The best result for mean response time is [16]
which gave a constant competitive algorithm with minimal speed
augmentation. This paper introduced the influential LAPS schedul-
ing algorithm that has been used in a variety of settings [15, 21]. The
work of [31] considers the problem without speed augmentation
and gives a O(log p) competitive algorithm with mild assumptions
on the speed-up curves. Recently, there has been a line of work on
the Directed-Acyclic-Graph (DAG) model for parallelism. Here a
constant competitive algorithm with 1 + € speed augmentation is
known [3]. The work of [2] gave an O(1)-speed, O(1)-competitive
algorithm for mean response time that is practical, using minimal
preemptions. However, the best possible competitive ratio in any
model with release times is still lower bounded by ©(log min (p, %))
since all jobs could be inelastic in the worst case.

4 OPTIMALITY RESULTS

The following sections establish two results. First, we show that
if pur > pE, then IF is optimal for minimizing mean response time.
Second, we show that if yr < pg, then IF is not necessarily optimal.

In Section 4.1, we consider the special case where y; = pg. In
this case where we have homogeneous sizes, analysis is particularly
easy. Unfortunately, the technique used to demonstrate optimality,
which is based on the notion of precedence relations in continuous
time Markov chains, does not extend to when py # ug.

In Section 4.2, we consider the case where uy > pr. Here, we con-
sider a novel sample path argument which allows us to demonstrate
the optimality of IF.

Lastly, in section 4.3, we consider the case where pij < ug. Here,
we construct a very simple example demonstrating that IF is not
optimal in this environment. Furthermore, in this example, we show
the policy EF actually outperforms IF. We do not know what policy
is optimal in this regime.

4.1 Optimality when p; = pp

We first consider the case where p; = pg. In this case, IF is optimal
with respect to minimizing mean response time. As stated in Sec-
tion 1.2, the optimal policy should balance the trade-off between
completing jobs quickly and preserving system efficiency. When
pur = pEg, IF maximizes system efficiency without reducing the
overall completion rate of jobs. We argue this formally in Theorem
1 by leveraging a result from [7].

THEOREM 1. IF is optimal with respect to minimizing mean re-

sponse time when uy = jig.

Proor. Consider the server allocations made by a policy 7 in
any state (i, j). We define the total rate of departures under 7 in the
state (i, j) to be

dﬂ(i9j) = ”E(isj) “HE t T[I(ivj) CHI-

79

SPAA 20, July 15-17, 2020, Virtual Event, USA

Following the terminology of [7], we say that x is in the class of
GREEDY policies if
d7(i,j) = maxd™ (i,j) V(ij) € Z2,.
o >
That is, a policy is in GREEDY if it achieves the maximal rate of
departures in every state.

Furthermore, [7] defines a class of policies called GREEDY". A
policy is said to be in GREEDY" if, in every state (i,), it minimizes
the number of servers allocated to elastic jobs while still maximizing
the total rate of departures. That is, a policy x is in GREEDY™ iff

mp(i,j)= min _ mp(i,j) V() € Z2,.
£(i,)) Lo dun (1,)) (i,)) € 23,

It is shown in [7], using precedence relations, that for any policy
7 € GREEDY*

E[T"]= min E[T"].

= @)
n’€GREEDY

To leverage this result, we note that when pj = g in our model,
a policy is in GREEDY if and only if it does not idle servers unnec-
essarily.

We now argue that IF, which is non-idling, must be in GREEDY".
In states where IF allocates zero servers to elastic jobs, IFg(i, j)
is clearly minimal. In any state (i, j) where IFEg(i, j) > 0, servers
cannot be reallocated from elastic jobs to inelastic jobs, since all i
inelastic jobs must already be in service. Hence, reducing IF (i, j)
in this case results in a policy which is not in GREEDY. IFg(i,) is
therefore minimal amongst GREEDY policies in any state (i, j), and
IF is in GREEDY™

We show in Appendix B that there exists an optimal policy which
is non-idling. Hence, when py = ug, there is an optimal policy in
GREEDY. This implies that there must be an optimal policy in
GREEDY" as well. Because any policy in GREEDY* has the same
rate of departures of elastic and inelastic jobs in every state (i, j),
every policy in GREEDY" has the same mean response time. Thus,
IF, which is in GREEDY, is optimal with respect to mean response
time.

[m}

Why the prior argument does not generalize

Unfortunately, the results of [7] do not extend to the case where
ur # pg. In particular, the proof of (2) uses a precedence relation
between any two states (i, j — 1) and (i — 1, j). This claim essentially
states that a policy « in state (i, j) would perform better by tran-
sitioning to state (i — 1,) than it would by transitioning to state
(i,j — 1). In the case where y; = pg, this makes perfect intuitive
sense. In this case, both states (i — 1, j) and (i, j — 1) contain the
same amount of expected total work. Hence, it is better to be in
state (i — 1, j), which benefits from having an additional elastic
job. Consider how this intuition changes when py > pg. In this
case, state (i, j — 1) has less expected total work, but state (i — 1, j)
has more expected elastic work. It turns out that the precedence
relation shown in [7] no longer holds when pj # pg. Moreover,
even if the precedence relations were to hold when py > pjy, [7]
would yield that GREEDY" is optimal amongst GREEDY policies,
not optimal amongst all policies. We must therefore devise a new
argument to reason about the optimal allocation policy when elastic
and inelastic jobs follow different size distributions.

Session: Full Paper

4.2 Optimality when p; > pg

We will show IF is optimal in the more general case of yr > ug.

While our goal is to minimize mean response time, we note that

via Little’s Law [25], it suffices to minimize the mean total number

of jobs in the system. !

First, we start by defining a class of policies # which serve
inelastic jobs on a first-come-first-serve (FCFS) basis; elastic jobs
can be served in any order. In more detail, a policy x is said to be
in class % if the following hold true:

(1) 7 is work-conserving.

(2) 7 serves inelastic jobs in FCFS order. In particular, if 7 allocates
N servers to inelastic jobs at time ¢ (N may be fractional, and
there may be more than N inelastic jobs in the systems), the
allocation must give | N| servers to the | N] inelastic jobs with
the earliest arrival times. If there is a remaining fraction of a
server, it may then be allocated to the inelastic job with the next
earliest arrival time.

Clearly, IF € P.

Road map: Theorem 2 argues that we only need to compare IF

to policies in P. Specifically, contains some optimal policy that

minimizes the mean number of jobs in system and mean response
time.

Next, in Theorem 3 we present a novel sample path argument
which shows that IF has stochastically less work in the system
than any policy in P. We will directly leverage this fact to show
that, out of all policies 7 € P, IF has the least expected inelastic
work in system and also the least expected total work in system.

Finally, In Theorem 5 we show that, of all policies in #, IF mini-
mizes the expected number of jobs in system. Thus, by Little’s Law,
IF is optimal with respect to mean response time.

Analysis. We now present Theorem 2.

THEOREM 2. The class P contains a policy & which minimizes both
mean response time and mean number of jobs in system. Specifically

B [N7] = min {B[N7]},

T

and
£15%)=m)

where N is the total number of jobs in the system in steady-state
under policy r, and T™ is the response time of a job in the system
under 7t in steady-state.

Proor. Recall that we will consider only stationary, determinis-
tic, work-conserving policies which make allocation decisions based
on state (i, j). Let 7 be a stationary, deterministic, work-conserving
policy with the minimal mean number of jobs in system. Figure 1
shows the transition rates out of state (i, j) under .

We see that the transition rates out of the current state (i, j)
under policy 7 depend solely on the number of servers allocated to
each type of job. Thus, neither the order in which we serve the jobs

ILittle’s Law states that for any ergodic system with average total arrival rate A, the
mean response time, E[T] is related to the mean total number of jobs in system, E[N]

via the formula E[T] = EB—N] .

80

SPAA 20, July 15-17, 2020, Virtual Event, USA

ij-1

(i,)pE

)
J

AE

i+1,j

i,j+1

Figure 1: The Markov chain (N (¢), Nf (¢)) for a stationary,
deterministic, work-conserving allocation policy, 7.
nor how many jobs of each type are running matter. In particular,
we can construct a policy 7’ such that, for any state (i,),

mp(ij) = m(i,j) and 7p(ij) = mp(i.))

and 7’ serves inelastic jobs in FCFS order. The policy 7’ has the
same Markov chain as 7, so the expected numbers of jobs in system
under 7 and 7’ are identical. Because 7 is work-conserving, 7’ is
also work-conserving. Hence, 7’ is in P and achieves the minimal
mean number of jobs in system. O

The power of Theorem 2 is that, to show IF is optimal with
respect to mean response time, it now suffices to show:

E[NT] <E[N"] Vrzep. 3)

However, it is hard to directly compare the numbers of jobs under
different policies. We get around this roadblock by instead analyzing
how the remaining work in the system under IF relates to other
policies 7 € P. In particular, we obtain the following strong result.

THEOREM 3. For all policies & € P, if we assume that
(NT'(0), N (0)) = (N;(0), N£ (0)),
then:

W'(t) <st W (t) and W[(t) <sT W[(t) vVt >0,

where W’ (t) is the total remaining work under policy n at time t,
W™ (t) is the remaining inelastic work under policy m at time t, and
<st denotes stochastic dominance.

Proor. Fix an arbitrary policy 7 € P, and let us consider a fixed
arrival sequence, that is, a fixed sequence of arrival times and job
sizes. We couple 7 and IF under this sequence. Here, it suffices to
consider arrival sequences where the total number of job arrivals
up to any time ¢ is finite, as this occurs with probability 1.

Recall that W/ (¢) and W] (t) are respectively the remaining
inelastic and elastic work in the system at time ¢ under scheduling
policy 7. Furthermore, also recall that W7 (¢), the total work at time
t, is given by:

W (t) = W (t) + W (1)

In order to show the desired stochastic dominance relations, it

will suffice to show that on any such arrival sequence

Wi (t) < WP(t) and W¥(t) < W*() Vi=0.

Session: Full Paper

First, we see it is immediate that, under our arrival sequence,
WF(t) < W(¢) for all £ > 0. Since IF and 7 process inelastic jobs
in FCFS order, each inelastic job enters service at least as early under
IF as it does under 7. Furthermore, IF never preempts inelastic
jobs. Hence, at each time t, the remaining size of each inelastic job

that has arrived by time ¢ is no larger under IF than it is under 7.

Since the inelastic work in system is just the sum of the remaining
sizes of inelastic jobs, the total inelastic work at time ¢ under IF is
less than the total inelastic work at time ¢ under .

It remains to show that

W*(t) < W () Vi > 0. 4)

We prove our claim by induction. For a base case, it is clear that
W™ (0) < W7(0), as the policies have the same set of jobs at time
zero, and no work has been completed. For any time ¢, we partition
the interval [0, t) into subintervals [¢;, t;+1) such that either
(1) IF allocates all k servers on [t;, tj+1), or
(2) IF allocates strictly less than k servers on [t;, tj+1).

We now induct on i, and show that W (#;) < W7 (¢;) implies
W (tiv1) < WP (tiv1).

If the interval [¢;, ¢;+1) falls into case (1), IF is completing work
at the maximal rate of any policy. In particular, IF completes exactly
(ti+1 — ti) - k work on [t;, ti+1]. Let w denote the work completed
by 7 on [#;, tj+1). Then, we must have w < (tj+1 — t;) - k. Since IF
and 7 experience the same set of arrivals on this interval, we have:

W (ti1) = W (tis1) = (W (t) —) = (W (t:) = (tiv1 — i) - k)
= (W7(t;) = W (1)) + ((tiv1 — ti) - k —)
> 0.
Thus, we have W' (tj+1) < W7 (t;+1), as desired.
If the interval [t;,t;+1) falls into case (2), IF allocates strictly

less than k servers on [t;, tj+1). We aim to show that W (¢;4+1) <
W7 (ti+1). Observe that IF can have no elastic jobs in its system on

[#i, ti+1). This is because we have defined IF to be work-conserving.

Hence, if there was an elastic job, IF would run it on all available
servers.
Observe that, assuming no elastic job arrives at time t;41,

W¥(tiv1) = Wy (tiv1).
Likewise, we know
W (tiv1) = W (tiv1) + WE (tiv1) = W/ (tiv1).

We get the inequality above because 7 cannot have negative
elastic work at time t;;. Finally, we have

W (tiv1) = W (tiv1) = (W] (ti41) + W (tir1)) — Wi (1)
= (W]ﬂ(tiﬂ) - WIIF(tiH)) + W7 (ti+1)
> W/ (tiv1) — Wi (ti41)
>0,

where the last inequality follows from the fact that W}*(t") <
W[(') for all t” > 0. Thus, we have W (t41) < W (ti41).

Note that some elastic work could arrive at exactly time #;41.

However, this increases the total work in both systems by the same
amount and thus has no effect on the ordering of these quantities.

Thus, for any interval [t;, tj+1), if W¥(¢;) < W7 (t;), then we
have W™ (t;11) < W (t;+1). Since W (0) < W7(0), it follows that

81

SPAA 20, July 15-17, 2020, Virtual Event, USA

this inequality holds at the end of the last subinterval. The end of
this final subinterval is exactly time t. Thus, for any t > 0, we have
W (t) < W7(t), as desired.

We have thus found a coupling of 7 and IF such that the amount
of total work and the amount of inelastic work in each system is
ordered at every moment in time. This implies that

W () <st W () V=0

and
W™(t) <sT WT(t) Vi=0

as desired.]

In other words, IF is the best policy in # for minimizing remain-
ing inelastic and total work in the system. One possible explanation
for this is that, by deferring parallelizable work, IF ensures that all
k servers are saturated with work for as long as possible.

We now understand that, out of all policies in P, IF is optimal
with respect to minimizing both expected remaining inelastic work
and expected remaining total work at any time t. We now establish
a relationship between expected remaining work and expected
number of jobs in system.

LEmMA 4. For any policy 7, we have:

LEINT] and E[WF]= —B[NT],

HI HE

where W™ and N[are respectively the inelastic work and number of
inelastic jobs in the system in steady-state under policy x, and where
the size of an inelastic job is Sy ~ Exp(ur). W, N, and pg are the
analogous quantities for elastic jobs.

E[W/] =

Proor. We do the proof for the inelastic relationship, but the
proof for the elastic relationship is identical. Let the random variable
NT'(t) denote the number of inelastic jobs in the system under
policy 7 at time . For every ¢ € {1,..., N['(t)} we define RZI(t)
as the remaining size of inelastic job ¢ under policy 7 at time ¢.

Recall W/ (t) is the remaining inelastic work in system at time ¢
under policy 7. We have the following equivalence:

N7 (1)
Wl () = Z RZI(t).
=1

By the memoryless property of the exponential distribution,
the remaining size of jobs £ € {1,..., N[()} are exponentially
distributed. Specifically, RZ () ~ Exp(uy), for any policy r or time
t. Thus, N (t) and RZ ;(t) are independent and we have that

E[W/ ()] = EIRE (1)) - EINF ()]
= E[S;] - EINF (1))

As shown in Appendix C, E[N] (¢)] converges to E[N['] as t — oo.
This implies the convergence of E[W/*(¢)]. Thus, taking the limit
ast — oo yields

1
— E[N7],
H

as desired 2.]

E[W["] = E[S{] - E[N['] =

2Technically, we have only proven that E[W[(¢)] converges to some value, but not
that it converges to E[W;" |. This would be sufficient for our subsequent results. In
fact, E[W/ (¢)] converges to E[W/"] as ¢ — oo, but we omit this proof for brevity.

Session: Full Paper

We can now show that IF has the lowest expected number of
jobs in system when pj > pg.

THEOREM 5. For any policy ., if ur > pig, we have:
E[N"] <E[N7].
And via Little’s Law, we have:
E[T"] <E[T"].

PRrROOF. Because there exists an optimal work-conserving policy
in P, it suffices to consider any policy 7 € $. We write total
work under 7 as W = W/* + W. Likewise, we have the equality
N7 = NI” + Ng . First, from Lemma 4, we have the following
equalities:

1
HI
Furthermore, by the stochastic dominance results of Theorem 3,

E[W/] < E[W/] and E[W"]<E[W"]

E[W 1= ~E[N7] and E[Wg]zéE[Ng].

Thus, we have:
E[N"] =E [N]" + N{]
= uE [Wi'] + ugE [Wg |
= (up — pp)E [W'] + ugB (W)™ + W]
< (ur = pp)E (W' | + pgE (W + Wi |
= B [W]'] + peE (W |
=E[N]]+E[N7] = E[N"]

®)

Note, we leverage the fact yy > pg in (5). If ug > py, then pr — pg
would be negative, so we would not be able establish a relationship
like (5). This completes the proof. O

We have therefore established that IF is optimal with respect to
mean response time when py > ug.

4.3 Failure when p; < pg

Now, we consider the case when pj < pg. Here, we demonstrate
that IF is not optimal in minimizing mean response time. In fact, IF
is not even optimal in the simplified environment where there are
only two servers and no arrivals. We construct our counterexample
in Theorem 6 below.

THEOREM 6. In general, IF is not optimal for minimizing mean
response time when yy < UE.

PrRoOOF. Assume we have k = 2 servers, yg = 2y, and there are
no arrivals. We show that, if the system starts with two inelastic
jobs and one elastic job, the policy EF outperforms IF.

We directly compute the mean response time for both policies,
starting with IF. We let T denote response time under IF, and T*
denote response time under elastic first. We have:

3 2 1 1 35
E[TF]=—+ + M (—)+ HE (—):—
2pr pr+pE pr+pe \2pe) pr+pe \pr 12pr
On the other hand, we see:

3 2 1 33

pro 12

82

SPAA 20, July 15-17, 2020, Virtual Event, USA

(a) Full EF chain

(c) Final 1D EF chain

Figure 2: The transformation of the 2D-infinite EF chain to
a 1D-infinite chain via the busy period transformation. Spe-
cial states representing an M/M/1 busy period are shown in
(b), and these busy periods are approximated by a Coxian
distribution in (c).

In particular, we have E[T*] < E[T™]. Thus, in general, IF is not
optimal when pjy < pg. In fact, in this environment, we see EF
outperforms IF. O

5 RESPONSE TIME ANALYSIS RESULTS

From the results of Section 4, we know that IF is optimal with
respect to mean response time when pij > pg. However, Section 4
also shows that EF can outperform IF when uj < pg. This begs the
question of which allocation policy, IF or EF, performs better for
given values of iy and pp.

In this section we derive the mean response time for EF under
a range of values of yy, ug, A1, Ag, and k. First, in Section 5.1, we
present the Markov chains for EF. This Markov chain is 2D-infinite.
Then, in Section 5.2, we present a technique from the stochastic
literature called Busy Period Transitions [45, 46] which reduces
the 2D-infinite chain to a 1D-infinite chain. Although Busy Period
Transitions produce an approximation, it is known to be highly
accurate, with errors of less than 1% [26-28, 45, 46]. Finally, in
Section 5.3, we apply standard Matrix-Analytic methods to solve
the 1D-infinite Markov chain, obtaining the stationary distribution

Session: Full Paper

and finally the mean response time under EF. The analysis for the
IF policy is similar, and thus we defer it to Appendix D.

The results of our analysis for IF and EF are shown in Figures 3, 4,
and 5. We compared our analysis with simulation, and all numbers
agree within 1%. We note that [7] used MDP-based techniques to
analyze allocation policies in a similar model. These previous re-
sults required truncating the state space, and were computationally
intensive. The techniques presented in this section do not require
truncating the state space, can be tuned to arbitrary precision, and
are comparatively efficient.

Figure 3 presents an overview of our results, showing only the
relative performance of IF and EF as the system load, p, is moved
from (a) low load to (b) medium load to (c) high load. In every case,
IF outperforms EF when ur > ug, as expected from Theorem 5.
When uy < pg, Figure 3 shows us that EFcan outperform IF, and
that the region where EF is better grows as p increases.

Figure 4 shows the absolute mean response times under IF and
EF as a function of y;. We again examine the system under various
fixed values of p. The dotted lines at yy = 1 denote the case where
p1 = pg. We therefore know that IF is optimal to the right of this
line in every graph, while EF may dominate IF to the left of this
line. We see that our choice of allocation policy has a major impact
on mean response time.

While Figures 3 and 4 assume that k = 4, our analysis works
equally well with any number of servers, k. Figure 5 shows how
the mean response time under IF and EF changes as k increases
while system load, p, remains constant.

5.1 Markov Chains for IF and EF

Figure 2a shows the Markov chain which exactly describes EF. The
corresponding IF chain is given in Appendix D. Recall that the state
(i, j) denotes having i inelastic jobs and j elastic jobs in the system.
This chain is infinite in 2 dimensions — the number of inelastic jobs
and the number of elastic jobs. Because there is no general method
for solving 2D-infinite Markov chains, we provide a technique for
converting this chain to a 1D-infinite Markov chain in Section 5.2.

5.2 Converting From 2D-Infinite to 1D-Infinite

To reduce the dimensionality of the Markov chain for EF we follow
a three step process:

Step 1: Response time of elastic jobs is trivial. Under EF, elastic
jobs have preemptive priority over inelastic jobs. Thus, their behav-
ior is independent of the state of inelastic jobs in the system. We
can therefore model the response time of elastic jobs as an M/M/1
queueing system with arrival rate Ag and service rate kug, which
is well understood in the queueing literature [33]. What remains is
to understand the response time of the inelastic jobs.

Step 2: The busy period transformation. Looking at Figure 2a,
we notice that the chain has a repeating structure when there is at
least 1 elastic job in the system (j > 1). We leverage this repeating
structure to reduce the Markov chain for EF to a 1D-infinite chain.
Specifically, while there are elastic jobs in the system, EF does
not process any inelastic jobs. The length of time where EF is not
processing any inelastic jobs can be viewed as an M/M/1 busy
period. In an M/M/1 system, a busy period is defined to be the
time between when a job arrives into an empty system until the

83

SPAA 20, July 15-17, 2020, Virtual Event, USA

system empties. In our case, this busy period is the time from when
an elastic job arrives into a system with no elastic jobs until the
system next has 0 elastic jobs. In Figure 2b, we show how to the
entire portion of the Markov chain where j > 0 with a set of special
states which represent the duration of an M/M/1 busy period for
the elastic jobs.
Step 3: Creating 1D chain for inelastic jobs. Looking at Figure
2b, we note the bolded transition arrows (labeled “B”) emanating
from the busy period states. Because the duration of an M/M/1
busy period is not exponentially distributed, we must replace these
special transitions with a mixture of exponential states (a Coxian
distribution) which accurately approximates the duration of a busy
period. A technique for matching the first three moments of the
busy period with a Coxian is given in [45]. The 1D-infinite chain
resulting from this technique is described in Figure 2c.

We use the same three-step technique to make an analogous
simplification of the Markov chain for IF (see Appendix D).

Given these 1D-infinite chains, we now apply standard matrix
analytic techniques to solve for mean response time.

5.3 Matrix Analytic Method

We now explain how to analyze IF and EF using the 1D-infinite
Markov chains developed in the previous section. We do this by ap-
plying matrix analytic methods [34, 43, 44]. Matrix analytic methods
are iterative procedures which compute the stationary distribution
of a repeating, 1D-infinite Markov chain.

Consider Figure 2c, which shows the 1D-infinite chain for EF.
Observe that each column of this chain, after the first column, has
identical transitions. The idea of matrix analytic methods is to
represent the stationary distribution of column j + 1 as a product of
the stationary distribution of column j and some unknown matrix R.
The matrix R is determined iteratively through a numeric procedure
[34, 43, 44]. This procedure yields the stationary distribution of the
chain. Using the stationary distribution we can easily determine
the mean number of inelastic jobs, and hence the mean response
time for inelastic jobs (recall that the response time for elastic jobs
under EF is trivial). An analogous argument can be applied to solve
the 1D-infinite chain for IF.

6 CONCLUSION

This paper establishes optimality results and provides the first anal-
ysis of policies for scheduling jobs which are heterogeneous with
respect to parallelizability. Specifically, we study a model where jobs
are either inelastic or elastic: inelastic jobs can parallelize across at
most C servers and elastic jobs parallelize linearly across any num-
ber of servers. We prove that the policy Inelastic-First (IF), which
gives inelastic jobs preemptive priority over elastic jobs, is optimal
for minimizing the mean response time across jobs in the common
case where elastic jobs are larger on average than inelastic jobs.
We provide analysis of mean response times under the Elastic-First
(EF) and Inelastic-First (IF) policies.

There are many open questions in scheduling jobs which are
heterogeneous with respect to their parallelizability. One immediate
follow-up of our work is to find optimal policies when elastic jobs
are smaller on average than inelastic jobs. This paper shows that,
in this setting, EF can outperform IF, but we do not show that EF

Session: Full Paper SPAA 20, July 15-17, 2020, Virtual Event, USA

++++++t++o0e0000000 00 tH 4+ttt tttrtttto0000 00 I
o+t . +tH 4+ttt ttrtttto0000 00 tHt bttt bttt o000
S+ 4 o+ o+ . 3 44+ ++++++++++to000000 0 St + 4+ttt t o000
o+ . ++ 4+ttt ++t++ttee00000 00 Tttt Attt 00000
E I I . +t+++++t+t++toee000000 00 tHttt Attt o000 0
257+ 4+ + 4+ o+ . 25 + + 4+ +++++++ 0000000000 257 4+ 4+ 4+ 4+ +++++++++to00000 00
ottt . +++++++++o000000000 00 t++tt+t+ttttro0e0000 00
o+ . f4++++ -+t +0000000000 00 tt+ttttt+ttttrtreee00000e
2 + + + + @ . 2 ++++++ ++ o 0o 0 00 000 0 0 00 2r ++++++++ ++ 0 0 0 0 0 0 00 00
w ottt . w t+++++t+roeeeeeecscccc e w t+++t+t++tt+teeec00e000 00
3 + + + @ . = ++++++ @ 0 0000000 0 0 0 00 =8 ++++++++ o 0 00000000 00
15F + 4+ e . 15/ ++++++00eecse0cc0ss0 e 5f +++++++0000000000000
+ + + . ++ ++ + @ o 0 000 00000 0 0 0 0 +++++++ o 0 00 0000000 00
+ + e . ++ ++ ® o 0 0 00000000 0 0 0 0 ++++++ @ 0 0 000000000 00
Lo+ +e . jf ++++00000000000000 00 4L +++++0000000000000 00
+ e . +++e00eeeecocccscsoscc oo ++++00eeeeccccccsco e
+ . + + ® ® 00 0 0 000000000 0 00 + + + ® @ 000 0 0000 00 0 00 .
05 . . 05l teeeeeceesecccscocco e o5l tteeeeceeeccenene
. . feeesceecccsscseccsso e +eeeeee oo e oo e e | + EFSuperior
R EEE RS R R RS R IF Supe
0 0 0
) 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 0.5 1 15 2 25 3 35
I o "
(a) Low load, p = .5 (b) Med. Load, p = .7 (c) High load, p = .9

Figure 3: Heat maps showing the relative performance of IF and EF as a function of y; and yg when k = 4. We fix load p and
vary py and pr. To offset the changes to u; and pp, we change A; and Af to keep p constant. In every graph, A; = Ag. The red
circles represent settings where IF dominates EF. The blue +’s represent cases where EF dominates IF. As p increases, the region
where EF dominates IF grows. However, as expected, when p; > pg IF dominates EF for all loads.

(a) Low load, p = .5 (b) Med. load, p = .7 (c) High load, p = .9

Figure 4: Graphs showing the absolute mean response times under IF and EF as a function of ;i when k = 4. In each graph, we
fix system load, p, and set ug = 1. We then vary 1. To offset the changes in 1, we change A; and Af to keep p constant. In every
graph, A; = Ag. The dotted lines at y; = 1 denote the case where y; = pup. Thus IF is optimal to the right of this line, while EF
may dominate IF to the left of this line. We see that the allocation policy has a major impact on mean response time.

Fl
P

(@) pr = .25, pgp =1 (b) pr =3.25, ugp =1
Figure 5: Graphs showing the mean response time under IF and EF as a function of the number of servers, k under high load

(p = 0.9). The values of y; and ur are chosen to represent the extreme ends of Figure 4c (where the performance gap between
the policies is the largest). Even when k = 16, the difference between IF and EF remains large.

84

Session: Full Paper

is the optimal allocation policy. Furthermore, the model studied
in this paper can be generalized in many ways to capture a broad
range of application scenarios. For example, consider a model where
elastic jobs are not fully elastic as in this paper, but are elastic up
to a certain number of servers. Additionally, we might have more
than two classes of jobs with different levels of parallelizability
and different job size distributions. The problem of finding optimal
policies and providing analysis in these models is wide open.

APPENDIX

A APPROXIMATION WHEN JOBS ARRIVE AT
THE SAME TIME

In this section we use dual fitting to show that a generalization
of SRPT-k is a 4-approximate algorithm for mean response time if
all jobs arrive at the same time. This case is entirely deterministic.
This result holds in a general parallelizability setting where every
job j is parallelizable up to k; processors. That is, if job j is given
k’ < k processors, the rate it is processed is min{kj, k’}.

Consider the following LP relaxation of the problem. We use x;
to denote the inherent size of job j. The variable y; ; is how much
job j is processed at time ¢.

t 1
Z Z (; + %) " Yjt I—Pprimal

min
{yje})
Zyjt 2 X vj
t>0
Z yir < k Vit
j:t>0
yir = 0 Vj,t:t>0

It is easy to show that the above LP lower bounds the optimal
flow time of a feasible schedule. This is essentially an LP for a
k speed single machine plus the standard corrective term in the
objective. See [10] for similar relaxations. The dual of LPyyima is:

max aj—) Pr LPgual
CANTA! 2‘ ! Zt: .
aj t 1
J& < — 4 — Vj,t:t>0
Xj k Xj ij
aj = 0 Vj
Bt = 0 \Z;

The algorithm we will use is a natural generalization of SRPT-k
to the case of parallelizable jobs. The algorithm sorts jobs according
to their inherent size in increasing order. We will thus assume that
the jobs are in this order such that x; < x3 < ...xp, where n is the
total number of jobs . At any point in time, the algorithm gives the
cores to the jobs in this priority order. Each job j is assigned up to
k;j processors and then the algorithm considers the next job in the

list with the remaining processors. We let U; = Z]l: x; be the total
amount of work strictly ahead of job j.

We will assume that the processors the algorithm has are of
speed s > 1. That is, each processor completes s units of work each
timestep. Later we will set s = 2. We compare to an optimal solution
with one speed processors. The following theorem allows us to do
this comparison with minimal loss in the approximation ratio.

85

SPAA 20, July 15-17, 2020, Virtual Event, USA

LEMMA 7 ([22]). Let OPT; denote the value of the total response
time of the optimal algorithm where the optimal algorithm has pro-
cessors of speed s. Then for any s > 1,

OPT; < sOPT;.

We now define the dual variables. Let Q(t) denote the set of jobs
released and unsatisfied at time ¢ in the algorithm’s schedule. Let
aj = % + SXT’ and let §; = %|Q(t)|. Our main claim is the following.

J

LEmMMA 8. Let C denote the algorithm’s total completion time. It is
the case that 3 aj — Xy fr = (1 - %) C. Moreover, a, 5 correspond

to a feasible dual solution when s = 2.
Lemma 8 is sufficient to prove our theorem.

THEOREM 9. The SRPT-k algorithm is a 4-approximation for mean
response time when all jobs arrive at time 0.

PROOF. Sets = 2. Lemma 8 ensures that C is at most a factor 2
larger than the optimal solution using 1 speed. Lemma 7 ensures
that the 1 speed optimal is within a factor 2 of the 2 speed optimal.
Together this shows the algorithm is a 4 approximation. O

To prove Lemma 8 we first establish the value of the objective.
LemMmA 10. 305 — X fr = (1 - %) C.

Proor. Notice that }; fr = s %|Q(t)|- This is precisely %C.

. U x
Thus, it suffices to prove £ + z—] > C. To do so, we show that
J

U . %

Btk is an upper bound on job j’s response time. Indeed, we

know that either all k processors are working on work in U; + x;
with speed s if j is unsatisfied or job j is being worked on with k;
processors with speed s. O

We now show that this setting of the dual variables corresponds
to a feasible dual solution.

LEmMmA 11. The dual solution a, § is feasible when s = 2.

Proor. We must show that for all jobs j and times ¢ > 0:

§ ot 1

xj kT oxj

Consider the left hand side for a fixed job j and time ¢. Let x;,(t)

be the remaining work left on job j” at time ¢ and xﬁ () =xj —x;,(t)

be the amount of job j” that has been processed up to time ¢. This

is equivalent to the following given the definitions of @ and f:

1 (Ui xj 1

= (—f + —f) - =100
sk

xj \ks = skj

1/1
-)

J €lnl, xjr <x;

- X 1
(x;i(t) +xj,(t)) + é - Zlowl.

~

Now consider any job that is in complete at time ¢. That is, those
in Q(t). We can remove these from the first term by combining
terms with the —# |Q(t)| term. The prior expression is only less
than the following:

Session: Full Paper

1 1 Z (xp r Xj
i .,(t)+x<,(t))+—
J J .
A jen\ Q@) xy <x; skj
1 1 i
< —|= (x‘.’,(t))+x—’
xj\ ks J sk;j
7 eln\Q().xy <x;

[x;,(t) = 0 for jobs completed at ¢]

Notice that Zj’e[n]\Q(t),xj/<xj (x]’i(t)) is less than kst. This is

because the summation is counting work that the algorithm has

processed by time t. The algorithm has k processors of speed s.

Thus, the prior term is less than the following:
t 1
xSk
Given the s = 2, we get that the dual solution is feasible. O

Together Lemmas 10 and 11 complete the proof.

B IDLING POLICIES
We define a policy to be idling if it leaves one or more servers idle

rather than allocating them to some eligible jobs.

THEOREM 12. For any policy m which unnecessarily idles servers
there exists a non-idling policy =’ such that

E[T"'] < E[T™].
Hence, there exists an optimal policy which is non-idling.

Proor. The proof of this claim appears in [8]. O

C LYAPUNOYV STABILITY OF WORK
CONSERVING POLICIES
THEOREM 13. For any work-conserving policy 7, the associated
Markov chain {(N(¢), NZ (t)): t > 0} has a stationary distribu-
tion. If we define (N[', NT) to be a random element that follows this
stationary distribution, then

Jim (NT(1), N (6) £ (NJ',NF). ©)
Furthermore,
Jim E[N7 (1) = E[NF], @)
and
Jim E[NZ (1) = E[NZ]. ®)
Proor. The proof of this claim appears in [8]. O

D MARKOV CHAINS FOR IF

Figure 6a shows the Markov chain for IF. To analyze this chain we
will use a busy period transformation as described in Section 5.2.
We note that the inelastic jobs under IF see an M/M/k queueing
system, and hence their mean response time is known. We therefore
only need to consider the mean response time of elastic jobs under
IF. When there are more than k inelastic jobs in the system under
IF, elastic jobs receive no service. The time from when there are
first k inelastic jobs in the system until there are k — 1 inelastic
jobs is exactly an M /M /1 busy period. Hence, we perform the same

86

SPAA 20, July 15-17, 2020, Virtual Event, USA

busy period transformation described in Section 5.2 to the Markov
chain for IF. This results in a 1D-infinite Markov chain which we
can analyze using matrix analytic methods. We depict the busy
period transformation for IF in Figure 6

(k-1)pur

At

(k-D)ur

(k-Dur

(k-pe

(k-2)u

(c) Final 1D IF chain

Figure 6: The transformation of the 2D-infinite IF chain to
a 1D-infinite chain via the busy period transformation. Spe-
cial states representing an M/M/1 busy period are shown in
(b), and these busy periods are approximated by a Coxian
distribution in (c).

Session: Full Paper

REFERENCES

(1]

(2]

3

=

[4

=

(9]

[10]

(1]
[12]
[13]

[14]
[15]

[16]

[17]

(18]

=
o

[20

[21]

[22]

[23

[24]

IJ.B.F. Adan, GJ. van Houtum, and J. van der Wal. Upper and lower bounds for
the waiting time in the symmetric shortest queue system. Annals of Operations
Research, 48:197-217, 1994.

Kunal Agrawal, I-Ting Angelina Lee, Jing Li, Kefu Lu, and Benjamin Moseley.
Practically efficient scheduler for minimizing average flow time of parallel jobs.
In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 134-144. IEEE, 2019.

Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel
DAG jobs online to minimize average flow time. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 176-189.
SIAM, 2016.

S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted
flow-time explained by dual fitting. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 1228-1241, 2012.

Spyros Angelopoulos, Giorgio Lucarelli, and Nguyen Kim Thang. Primal-dual and
dual-fitting analysis of online scheduling algorithms for generalized flow-time
problems. Algorithmica, 81(9):3391-3421, 2019.

Eitan Bachmat and Hagit Sarfati. Analysis of size interval task assigment policies.
Performance Evaluation Review, 36(2):107-109, 2008.

Benjamin Berg, Jan-Pieter Dorsman, and Mor Harchol-Balter. Towards optimality
in parallel scheduling. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1-30, 2018.

Benjamin Berg, Mor Harchol-Balter, Benjamin Moseley, Weina Wang, and
Justin Whitehouse. Optimal resource allocation for elastic and inelastic jobs.
https://arxiv.org/abs/2005.09745.

Carl Bussema and Eric Torng. Greedy multiprocessor server scheduling. Oper.
Res. Lett., 34(4):451-458, 2006.

Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive
algorithm for minimizing weighted flow time on unrelatedmachines with speed
augmentation. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 679-684. ACM, 2009.

Richard W Conway, Louis W Miller, and William L Maxwell. Theory of scheduling.
Dover, 2003.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and
qos-aware cluster management. ACM SIGPLAN Notices, 49(4):127-144, 2014.
Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci., 235(1):109-141, 2000.
Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable scheduling for
the k-norms of flow time without conservation of work. In Dana Randall, editor,
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
109-119. SIAM, 2011.

Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary
speedup curves. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 685-692. SIAM, 2009.

Kyle Fox and Benjamin Moseley. Online scheduling on identical machines using
SRPT. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 120-128. SIAM, 2011.

Anshul Gandhi and Mor Harchol-Balter. How data center size impacts the
effectiveness of dynamic power management. In 2011 49th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pages 1164—
1169. IEEE, 2011.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. Srpt for multiserver systems.
Performance Evaluation, 127:154-175, 2018.

Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V Kalé. Towards
realizing the potential of malleable jobs. In 2014 21st International Conference on
High Performance Computing (HiPC), pages 1-10. IEEE, 2014.

Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley,
and Kirk Pruhs. Scheduling heterogeneous processors isn’t as easy as you
think. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,
pages 1242-1253. SIAM, 2012.

Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. Stochastic online
scheduling on unrelated machines. In Integer Programming and Combinatorial
Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada,
June 26-28, 2017, Proceedings, pages 228-240, 2017.

Varun Gupta, Karl Sigman, Mor Harchol-Balter, and Ward Whitt. Insensitivity
for ps server farms with jsq routing. ACM SIGMETRICS Performance Evaluation
Review, 35(2):24-26, 2007.

Mor Harchol-Balter. Task assignment with unknown duration. journal of the
ACM, 49(2):260-288, March 2002.

87

[25]

[26

[27

[29

[30

&
2

'S
o

@
=

'
&,

(39]

[40

[41

[42

[43

[44

[45

[46

SPAA 20, July 15-17, 2020, Virtual Event, USA

Mor Harchol-Balter. Performance modeling and design of computer systems:
queueing theory in action. Cambridge University Press, 2013.

Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-Wolf, and
Mark Squillante. Cycle stealing under immediate dispatch task assignment. In
Proceedings of the 15th ACM Symposium on Parallel Algorithms and Architectures,
pages 274-285, San Diego, CA, June 2003.

Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-Wolf, and
Mark Squillante. Task assignment with cycle stealing under central queue. In
Proceedings of the 23rd International Conference on Distributed Computing Systems,
pages 628-637, Providence, RI, May 2003.

Mor Harchol-Balter, Takayuki Osogami, Alan Scheller-Wolf, and Adam Wierman.
Multi-server queueing systems with multiple priority classes. Queueing Systems:
Theory and Applications, 51(3-4):331-360, 2005.

Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew Young. Surprising results
on task assignment in server farms with high-variability workloads. In ACM
Sigmetrics 2009 Conference on Measurement and Modeling of Computer Systems,
pages 287-298, 2009.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, volume 11, pages 22-22,
2011.

Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric Torng. Competitively
scheduling tasks with intermediate parallelizability. ACM Transactions on Parallel
Computing (TOPC), 3(1):1-19, 2016.

Cheeha Kim and Ashok K Agrawala. Analysis of the fork-join queue. IEEE
Transactions on computers, 38(2):250-255, 1989.

Leonard Kleinrock. Queueing systems, volume 2: Computer applications, volume 66.
Wiley New York, 1976.

Guy Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in
Stochastic Modeling. ASA-SIAM, Philadelphia, 1999.

Stefano Leonardi and Danny Raz. Approximating total flow time on parallel
machines. Journal of Computer and System Sciences, 73(6):875-891, 2007.
Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 5330-5340, 2017.

Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E Gonzalez, Ion
Stoica, and Alexey Tumanov. Hypersched: Dynamic resource reallocation for
model development on a deadline. In Proceedings of the ACM Symposium on
Cloud Computing, pages 61-73, 2019.

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. Heracles: Improving resource efficiency at scale. In Proceed-
ings of the 42nd Annual International Symposium on Computer Architecture, pages
450-462, 2015.

Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture, pages 248-259, 2011.

Robert McNaughton. Scheduling with deadlines and loss functions. Management
Science, 6(1):1-12, 1959.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. Ray: A distributed framework for emerging {Al} applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
18), pages 561-577, 2018.

Randolph Nelson and Asser Tantawi. Approximate analysis of fork/join synchro-
nization in parallel queues. Transactions on Computers, 37(6):739-743, 1988.
Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins
University Press, 1981.

Marcel F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applica-
tions. Marcel Dekker, 1989.

Takayuki Osogami and Mor Harchol-Balter. Closed form solutions for mapping
general distributions to quasi-minimal PH distributions. Performance Evaluation,
63(6):524-552, 2006.

Takayuki Osogami, Mor Harchol-Balter, and Alan Scheller-Wolf. Analysis of cycle
stealing with switching times and thresholds. In Proceedings of ACM Sigmetrics,
pages 184-195, San Diego, CA, June 2003.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo.
Optimus: an efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference, pages 1-14, 2018.

Donald R Smith. A new proof of the optimality of the shortest remaining pro-
cessing time discipline. Operations Research, 26(1):197-199, 1978.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at google with borg. In
Proceedings of the European Conference on Computer Systems, pages 1-17, 2015.
Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and
Rayadurgam Srikant. Delay asymptotics and bounds for multitask parallel jobs.
Queueing Systems, 91(3-4):207-239, 2019.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 The Problem
	1.3 Elastic and Inelastic Jobs in the Real World
	1.4 Why stochastic analysis?
	1.5 Our Contributions

	2 Our Model
	3 Prior Work
	4 Optimality Results
	4.1 Optimality when I = E
	4.2 Optimality when I E
	4.3 Failure when I < E

	5 Response Time Analysis Results
	5.1 Markov Chains for IF and EF
	5.2 Converting From 2D-Infinite to 1D-Infinite
	5.3 Matrix Analytic Method

	6 Conclusion
	A Approximation when Jobs Arrive at the Same Time
	B Idling Policies
	C Lyapunov Stability of Work Conserving Policies
	D Markov Chains for IF
	References

