
Optimal Resource Allocation for Elastic and Inelastic Jobs

Benjamin Berg
∗

Carnegie Mellon University

Pittsburgh, PA, USA

bsberg@cs.cmu.edu

Mor Harchol-Balter
†

Carnegie Mellon University

Pittsburgh, PA, USA

harchol@cs.cmu.edu

Benjamin Moseley
‡

Carnegie Mellon University

Pittsburgh, PA, USA

moseleyb@andrew.cmu.edu

Weina Wang

Carnegie Mellon University

Pittsburgh, PA, USA

weinaw@cs.cmu.edu

Justin Whitehouse
§

Carnegie Mellon University

Pittsburgh, PA, USA

jwhiteho@andrew.cmu.edu

ABSTRACT
Modern data centers are tasked with processing heterogeneous

workloads consisting of various classes of jobs. These classes differ

in their arrival rates, size distributions, and job parallelizability.

With respect to parallelizability, some jobs are elastic, meaning

they can parallelize linearly across any number of servers. Other

jobs are inelastic, meaning they can only run on a single server. Al-

though job classes can differ drastically, they are typically forced to

share a single cluster. When sharing a cluster among heterogeneous

jobs, one must decide how to allocate servers to each job at every

moment in time. In this paper, we design and analyze allocation

policies which aim to minimize the mean response time across jobs,

where a job’s response time is the time from when it arrives until

it completes.

We model this problem in a stochastic setting where each job

may be elastic or inelastic. Job sizes are drawn from exponential

distributions, but are unknown to the system. We show that, in the

common case where elastic jobs are larger on average than inelastic

jobs, the optimal allocation policy is Inelastic-First, giving inelastic

jobs preemptive priority over elastic jobs. We obtain this result

by introducing a novel sample path argument. We also show that

there exist cases where Elastic-First (giving priority to elastic jobs)

performs better than Inelastic-First. We provide the first analysis of

mean response time under both Elastic-First and Inelastic-First by

leveraging techniques for solving high-dimensional Markov chains.

KEYWORDS
scheduling, parallelism, elastic jobs, stochastic modeling

∗
This author is supported in part by the Facebook Graduate Fellowship

†
This author is supported in part by NSF-CMMI-1938909, NSF-XPS-1629444, and

NSF-CSR-1763701

‡
This author is supported in part by a Google Research Award, an Infor Research

Award, a Carnegie Bosch Junior Faculty Chair and NSF grants CCF-1824303, CCF-

1845146, CCF-1733873 and CMMI-1938909

§
The author is supported in part by the National Science Foundation Graduate Research

Fellowship Program under grant DGE 1745016.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400265

ACM Reference Format:
Benjamin Berg, Mor Harchol-Balter, Benjamin Moseley, Weina Wang, Justin

Whitehouse. 2020. Optimal Resource Allocation for Elastic and Inelastic

Jobs. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3350755.3400265

1 INTRODUCTION
1.1 Motivation
Modern data centers are tasked with processing astonishingly di-

verse workloads on a common set of shared servers [49]. These jobs

differ not only in their resource requirements on a single server, but

also in how effectively they scale across multiple servers [13]. For

instance, a simple client query may run on a single server and com-

plete in just milliseconds. Conversely, a data intensive job may run

for hours even when parallelized across dozens of servers [41]. The

challenge facing system architects is to build data centers which,

in light of this heterogeneity, achieve low response time – the time

from when a job enters the system until it completes.

The state-of-the-art in many data centers is to allow users to

specify their own server requirements, and then over-provision the

system. By always ensuring that idle servers are available, system

designers avoid having to make tough resource allocation decisions

while users always receive the resources they request. Unfortu-

nately, these over-provisioned systems are expensive to build and

waste resources [18]. Most large-scale data centers, for example,

run at an average utilization of less than 20% [49].

To try and reduce this waste, many cluster scheduling systems

have been proposed in the literature [13, 30, 38, 39, 41, 47]. These

scheduling systems aim to maintain low response times without

having to over-provision the system. One way to achieve this goal

[13, 47] is to have the system scheduler determine resource al-

locations rather than allowing users to reserve resources. While

these schedulers often work well in practice, none of them offer

theoretical response time guarantees.

1.2 The Problem
We propose a simple model of heterogeneous traffic running in

a multiserver data center. Our goal is to design a resource alloca-

tion policy which dynamically allocates servers to jobs in order to

minimize the mean response time across jobs. We assume jobs are

preemptible, and that an allocation policy can change a job’s server

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

75

https://doi.org/10.1145/3350755.3400265
https://doi.org/10.1145/3350755.3400265

allocation over time. In particular, we will consider a system of k
servers which processes jobs that arrive over time from a workload

consisting of two distinct job classes. The first class of jobs, which

we call elastic, consists of jobs which can run on any set of servers

at any moment in time. We assume that elastic jobs experience a

speedup factor proportional to the number of servers they run on.

That is, an elastic job which completes in 2 seconds on a single

server would complete in 1 second on 2 servers, or .5 seconds on

4 servers. The second class of jobs, which we refer to as inelastic,

consists of jobs which are not parallelizable. While an inelastic job

can run on any server, it can only run on a single server at any

moment in time. A resource allocation policy must determine, at

every moment in time, how to allocate servers to each job in system,

both elastic and inelastic.

In practice each job also has some amount of inherent work

associated with it. This inherent work, which we call a job’s size,

determines how long it takes to complete the job on a single server.

We assume that job sizes are unknown to the system, but are drawn

independently for each job from an exponential distribution. To

further model the heterogeneity of a workload, we allow elastic

and inelastic job sizes to be drawn from two different exponential

distributions, with rates µE and µI respectively.
Even given the simplicity of the model above, devising an optimal

scheduling policy is non-trivial. For instance, consider the problem

of dividing k servers between one elastic job and one inelastic job

which are both of size 1. On the one hand, we know that completing

jobs quickly benefits mean response time, so one might think to

run the elastic job on all k servers before running the inelastic job.

On the other hand, this schedule leaves k − 1 servers idle while the

inelastic job completes. We could thus have created a more efficient

schedule by running the elastic and inelastic jobs simultaneously,

giving k − 1 servers to the elastic job and 1 server to the inelastic

job. It turns out that the more efficient schedule is optimal in this

case, but in general, a good scheduling policy must balance the

trade-off between completing elastic jobs quickly and preventing

long periods of low server utilization. This question becomes even

more complex if the elastic and inelastic jobs have different sizes.

1.3 Elastic and Inelastic Jobs in the Real World
It is common to find systems which use a shared set of servers to

process both elastic and inelastic jobs. Typically in such settings

the elastic jobs have more inherent work than the inelastic jobs.

For example, consider a cluster which must process a stream of

many MapReduce jobs [12]. From the cluster’s point of view, this

workload produces a stream of map stages and reduce stages. Map

stages (elastic) are designed to be parallelized across any number

of servers and do a large amount of processing. Reduce stages

(inelastic) are inherently sequential and do much less total work

than a map stage. As another example, modern machine learning

frameworks [41] advocate the use of a single platform for both the

training and serving of models. Training jobs (elastic) are large,

requiring large data sets and many training epochs. Distributed

training methods such as distributed stochastic gradient descent

are also designed to scale out across an arbitrary number of nodes

[36]. Once a model has been trained, serving the model (inelastic),

which consists of feeding a computed model a single data point

in order to retrieve a single prediction, is done sequentially and

requires comparatively little processing power.

It is less common for elastic jobs to be smaller than inelastic

jobs in practice, given the overhead involved in writing parallel

code. If the amount of inherent work required for a job is small to

begin with, system developers may not choose to add the additional

data structures and synchronization mechanisms required to make

the job elastic. One exception is HPC workloads. In this setting,

there are often both malleable jobs (elastic) [20] and jobs with hard

requirements (inelastic). While malleable jobs are designed to run

on any number of cores, jobs with hard requirements demand a

fixed number of cores. It is unclear which class of jobs we would

expect to involve more inherent work.

The model presented in this paper is flexible enough to capture

all of the above examples.

1.4 Why stochastic analysis?
There has been a sizable amount of work considering the prob-

lem of scheduling jobs onto k parallel servers. The vast majority

of this work considers only inelastic jobs of known sizes, and fo-

cuses on worst-case analysis. Given the optimality of the Shortest-

Remaining-Processing-Time (SRPT) policy in the degenerate case

where k = 1 [48], one might hope that SRPT is also optimal in the

multiserver case where k ≥ 2. Specifically, one might consider a

policy called SRPT-k [19] which always runs the k jobs with the

shortest remaining processing times. Unfortunately, [35] shows

that SRPT-k can be arbitrarily far from optimal. In fact, SRPT-k has

a competitive ratio of Θ(logmin (p, nk)) where n is the number of

jobs and p is the ratio of the maximum job size to the minimum

job size. Additionally, [35] shows that this competitive ratio is a

tight lower bound – no online algorithm can do better in the worst

case. Using speed augmentation, SRPT-k is known to be constant

competitive with 1 + ϵ speed for any constant ϵ > 0 [9, 17].

More recently, some work has examined the case of scheduling

parallelizable jobs of known sizes onto k parallel servers. This work

assumes that each job has an arbitrary speedup curve which dictates

its running time as a function of the number of servers on which it

runs. Again using worst-case analysis, [16] shows how to achieve

an O(1ϵ)-competitive ratio using (1 + ϵ)-speed servers. Without

using resource augmentation, [31] provides an algorithm with a

competitive ratio ofO(logp), where againp is the ratio of the largest
job size to the smallest job size. This competitive ratio essentially

matches the known worst-case lower bound for the problem.

The above results suggest that, without resource augmentation,

there is little room to improve the worst-case performance of sched-

uling policies for parallelizable jobs. This is because the aforemen-

tioned lower bounds for worst-case scheduling directly apply to

the case where jobs are given speedup curves. However, from the

point of view of system designers, this problem remains unsolved!

In particular, a competitive ratio of logp [31] can be arbitrarily high

when job sizes span a wide range, which is common in practice.

Thus, a logp-competitive algorithm could be impractical. Addition-

ally, the results in [16] use an elegant algorithm that is interesting

theoretically, but the algorithm is difficult to implement due to fre-

quent context switches. The problem is that results like [16, 31] and

others (see Section 3) perform badly on adversarial cases which are

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

76

uncommon in practice. We therefore propose shifting to stochastic

analysis which discounts the impact of these adversarial cases. By

considering a stochastic analysis, there is the potential to reveal

new algorithmic insights into the problem. It could even be possible

to find online algorithms that are optimal in expectation.

There has been recent work aimed at allocating servers to par-

allelizable jobs in a stochastic setting in order to minimize mean

response time [7]. However, this line of work is in an early stage.

Specifically, [7] only considers the case where all jobs are homoge-

neous with respect to job size and job speedup. While [7] is able

to derive the optimal policy in this simpler case, they explicitly

note the complexity of handling even just two different classes

of jobs. In particular, the problem of allocating to servers to both

elastic and inelastic jobs in a stochastic setting remains completely

open. Although [7] presents some approximate numerical analysis

of the case where jobs are heterogeneous, the techniques used are

computationally intensive and offer no guarantees of accuracy.

1.5 Our Contributions
This paper addresses the problem of allocating servers to both

elastic and inelastic jobs. Section 2 introduces our stochastic model

of elastic and inelastic jobs of unknown sizes which arrive over

time to a system composed of k servers. Using this model, we then

present the following results:

• We propose two natural server allocation policies which aim to

minimize the mean response time across jobs. First, the Elastic-

First policy gives strict preemptive priority to elastic jobs and

aims to minimize mean response time by maximizing the rate at

which jobs depart the system. Second, the Inelastic-First policy

gives strict preemptive priority to inelastic jobs. By deferring

elastic work for as long as possible, Inelastic-First maximizes

system efficiency. It is not immediately obvious if either of these

policies is optimal, or which policy is better.

• We show in Section 4.1 that if elastic and inelastic jobs follow the

same exponential size distribution, Inelastic-First is optimal with

respect to mean response time. This argument uses precedence

relations to show that deferring elastic work increases the long

run efficiency of the system.

• Next, in Section 4.2, we show that in the case where elastic

jobs are larger on average than inelastic jobs, Inelastic-First is

optimal with respect to mean response time. This requires the

introduction of a novel sample path argument. Our key insight

is that Inelastic-First minimizes the expected amount of inelastic

work in the system as well as the expected total work in the

system. As long as elastic jobs are larger than inelastic jobs on

average, this suffices for minimizing mean response time.

• In the case where elastic jobs are smaller on average than inelas-

tic jobs, Inelastic-First is no longer optimal. We illustrate this

via a counterexample in Section 4.3 which shows that Elastic-

First can outperform Inelastic-First. In order to determine when

Elastic-First outperforms Inelastic-First, we perform the first

analysis of both the Elastic-First and Inelastic-First allocation

policies in Section 5. This analysis leverages recent techniques

for solving high-dimensional Markov chains. Our analytical re-

sults match simulation.

• For the sake of completeness, we also consider the case where job

sizes are known and jobs arrive at time 0. Using standard dual-

fitting techniques for worst-case analysis (e.g. [4, 5]), we show

SRPT-k is a 4-approximation for the objective of minimizing

mean response time. This demonstrates the need for stochastic

modeling and analysis. Indeed, the stochastic setting yields opti-

mality results without resorting to approximations. Due to lack

of space, this final contribution is saved for the Appendix A.

2 OUR MODEL
We consider a model where jobs arrive over time to a system of k
identical servers. Each job has an associated amount of inherent

work which we refer to as the job size. We assume that each of the

k servers processes jobs with a rate of 1 unit of work per second.

Hence, a job’s size is equal to its running time on a single server. We

assume that job sizes are unknown to the system, and are drawn

from exponential distributions.

Each job may be either elastic or inelastic. We assume that elastic

jobs arrive according to a Poisson process with rate λE , and that

elastic job sizes are drawn independently from an exponential dis-

tribution with rate µE . Similarly, inelastic jobs arrive independently

according to a Poisson process with rate λI , and inelastic job sizes

are drawn independently from an exponential distribution with

rate µI . We let SE and SI be random variables representing the sizes

of an elastic job or an inelastic job respectively.

Every elastic job can run on any number of servers at any mo-

ment in time. Because each server processes work at rate 1,n servers
process work at a rate of n units of work per second. Hence,

an elastic job of size x completes in x seconds on a single server
but completes in x

n seconds on n servers.

By contrast, inelastic jobs can run on at most one server at any

moment in time.

We note that all of the results presented in this paper hold equally

if inelastic jobs can run on up to some fixed number of servers,

C < k .We can simply renormalize our allocation policies to consider

allocating in units of
k
C servers. After renormalizing, inelastic jobs

can once again receive up to one unit of allocation while elastic jobs

can receive any number of units of allocation. While our results do

not depend on the value ofC , we consider the case whereC = 1 for

the sake of simplifying our notation.

An allocation policy, π , must determine how many servers to

allocate to each job at any moment in time t . Specifically, π can

increase or decrease the allocation to a particular job as it runs.

We assume that servers are capable of time sharing, and thus an

allocation policy may allocate a fractional number of servers to any

job. For any n ∈ R≥0, we assume that an allocation of n servers

processes work at a rate of n units of work per second. At any

moment in time, t , an allocation policy can allocate at most 1 server

to each inelastic job, and at most k servers in total.

We can model this system under any policy π as a continuous

time Markov chain where each state denotes the number of elastic

and inelastic jobs currently in the system. That is, we define a

continuous time Markov process {(N π
I (t),N π

E (t)) : t ≥ 0} where

(N π
I (t),N π

E (t)) ∈ Z2≥0, ∀t ≥ 0.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

77

We define N π
I (t) to be the number of inelastic jobs in system at time

t and we define N π
E (t) to be the number of elastic jobs in system at

time t . We let the state (N π
I (t),N π

E (t)) = (i, j) denote that there are
i inelastic jobs and j elastic jobs currently in the system.

Because job sizes are exponential and arrivals occur according

to a Poisson process, at any moment in time t , the distributions of
remaining job sizes and the distributions of times until the next

arrival for each job class can be fully specified by the numbers of

inelastic jobs and elastic jobs in the system. Hence, we will only

consider policies which are stationary and deterministic, meaning

the policy π makes the same allocation decision at every time t ,
given that the system is in state (i, j). Specifically, we define πI (i, j)
to be the number of servers allocated to inelastic jobs in state (i, j)
under policy π , and we define πE (i, j) to be the number of servers

allocated to elastic jobs in state (i, j) under policy π . Note that

πI (i, j) ≤ i ∀(i, j) ∈ Z2≥0,
πE (i, j) ≤ k · 1{j>0} ∀(i, j) ∈ Z2≥0,

and

πI (i, j) + πE (i, j) ≤ k ∀(i, j) ∈ Z2≥0.
In general, πI (i, j) + πE (i, j) could be less than k if there are not a

sufficient number of jobs to use all k servers, or if π chooses to idle

servers instead of allocating them to an eligible job.

We refer to a policy π as work conserving if and only if, in any

state (i, j),
πI (i, j) + πE (i, j) ≥ i,

and

πI (i, j) + πE (i, j) ≥ k · 1{j>0} .

That is, π never leaves servers idle if there is an eligible job in the

system. In Appendix B we show that there exists an optimal policy

which is also work conserving. It therefore suffices to only consider

work conserving policies throughout our analysis.

We define the system load, ρ to be

ρ ≡
λI
kµI
+

λE
kµE
. (1)

In Appendix C we show that for any work conserving policy, π ,
(N π

I (t),N π
E (t)) is an ergodic Markov chain if ρ < 1. Because there

exists an optimal work conserving policy, (1) is necessary for sta-

bility under any policy π ′
. We therefore only consider the regime

where ρ < 1.

We will track several stochastic quantities in our system. We

define the total number of jobs in the system, N π (t), as

N π (t) = N π
I (t) + N π

E (t).

We also defineW π (t) to be the total work in the system under policy

π at time t , where total work is the sum of the remaining sizes of

all jobs in the system. Similarly, we letW π
E (t) andW π

I (t) be the
total elastic work and the total inelastic work in the system under

policy π at time t . These quantities are the sums of the remaining

sizes of all elastic or inelastic jobs respectively. When referring to

the corresponding steady-state quantities, we omit the argument t .
We define the random variableT π

to be the response time of a job

which arrives to the system in steady-state under policy π . Here,
the response time of a job is the time from when the job arrives

until it is completed (i.e. its remaining size is 0). Our goal is to find

the policy which minimizes the mean response time.

We will investigate the performance of two allocation policies,

Elastic-First (EF) and Inelastic-First (IF). EF gives strict preemptive

priority to elastic jobs, and processes jobs in first-come-first-serve

(FCFS) order within each job class. That is, in any state (i, j) where
j > 0, EF allocates all k servers to the elastic job with the earliest

arrival time. In any state (i, j)where j = 0, EF allocates one server to
each inelastic job, in FCFS order, until either all jobs have received

a server or all k servers have been allocated. By contrast, IF gives

strict preemptive priority to inelastic jobs while processing jobs in

FCFS order within each job class. Under IF, in any state (i, j) where
i < k , one server is allocated to each inelastic job and the remaining

k − i servers are allocated to the elastic job with the earliest arrival

time if there is one. In any state (i, j) where i ≥ k , all k servers are

allocated to the inelastic jobs with the k earliest arrival times.

3 PRIORWORK
Althoughmany real-world systems are taskedwith allocating servers

to heterogeneous workloads, these systems do not allocate servers

optimally in order to minimize the mean response time across

jobs. Most large-scale cluster schedulers allow users to explicitly

reserve the number of servers they want [30, 38, 39, 41, 49], only

allowing the system to choose the placement of each job onto its re-

quested number of servers. Some systems have proposed allowing

the system to determine the number of servers allocated to each

job [13, 37, 47] in order to reduce response times. However, these

systems rely on heuristics and do not make theoretical guarantees.

In the theoretical literature, the closest work to the results pre-

sented in this paper come from the stochastic performance model-

ing community. In particular, [7] develops a model of jobs whose

sizes are drawn from an exponential distribution and which re-

ceive a sublinear speedup from being allocated additional servers.

However, [7] only provides optimality results when jobs are ho-

mogeneous, following a single speedup function and a single ex-

ponential size distribution. We emphasize that our paper is the

first ever to consider more than one speed-up curve in the setting

with stochastic arrivals over time and stochastic job sizes. Essen-

tially all other work in the stochastic community has considered

non-parallelizable inelastic jobs. Much of the prior work has been

limited to scheduling jobs on a single server [11]. While there has

certainly been work on scheduling in stochastic multiserver sys-

tems (e.g [1, 6, 19, 23, 24, 29]), this literature assumes that a job

occupies at most one server at a time (that is, all jobs are inelastic).

One notable model that considers jobs that run on multiple servers

is the queueing model motivated from MapReduce [32, 42, 50]. This

work assumes that each job consists of a set of pieces that can be

processed on different machines at the same time. These pieces can

be processed in any order and, critically, a job only completes when

all of its pieces have completed. This model can only be analyzed

exactly when the number of servers is k = 2.

In the worst case setting, the problem of scheduling jobs on iden-

tical parallel servers was introduced in [40] and has been considered

extensively. However, in the classical version of the problem, all

jobs are considered to be inelastic. Given inelastic jobs with known

sizes and known release times, [35] shows a tight lower bound on

the competitive ratio of Θ(logmin (p, nk)) where n is the number of

jobs and p is the ratio of the maximum job size to the minimum job

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

78

size. The policy which achieves the best competitive ratio is SRPT-

k, which at every moment schedules the k jobs with the smallest

remaining processing times.

Several prior works have considered scheduling parallelizable

jobs in the worst-case setting. The speed-up curve model was first

addressed by [14]. The best result for mean response time is [16]

which gave a constant competitive algorithm with minimal speed

augmentation. This paper introduced the influential LAPS schedul-

ing algorithm that has been used in a variety of settings [15, 21]. The

work of [31] considers the problem without speed augmentation

and gives a O(logp) competitive algorithm with mild assumptions

on the speed-up curves. Recently, there has been a line of work on

the Directed-Acyclic-Graph (DAG) model for parallelism. Here a

constant competitive algorithm with 1 + ϵ speed augmentation is

known [3]. The work of [2] gave an O(1)-speed, O(1)-competitive

algorithm for mean response time that is practical, using minimal

preemptions. However, the best possible competitive ratio in any

model with release times is still lower bounded byΘ(logmin (p, nk)),
since all jobs could be inelastic in the worst case.

4 OPTIMALITY RESULTS
The following sections establish two results. First, we show that

if µI ≥ µE , then IF is optimal for minimizing mean response time.

Second, we show that if µI < µE , then IF is not necessarily optimal.

In Section 4.1, we consider the special case where µI = µE . In
this case where we have homogeneous sizes, analysis is particularly

easy. Unfortunately, the technique used to demonstrate optimality,

which is based on the notion of precedence relations in continuous

time Markov chains, does not extend to when µI , µE .
In Section 4.2, we consider the case where µI ≥ µE . Here, we con-

sider a novel sample path argument which allows us to demonstrate

the optimality of IF.
Lastly, in section 4.3, we consider the case where µI < µE . Here,

we construct a very simple example demonstrating that IF is not
optimal in this environment. Furthermore, in this example, we show

the policy EF actually outperforms IF. We do not know what policy

is optimal in this regime.

4.1 Optimality when µI = µE
We first consider the case where µI = µE . In this case, IF is optimal

with respect to minimizing mean response time. As stated in Sec-

tion 1.2, the optimal policy should balance the trade-off between

completing jobs quickly and preserving system efficiency. When

µI = µE , IF maximizes system efficiency without reducing the

overall completion rate of jobs. We argue this formally in Theorem

1 by leveraging a result from [7].

Theorem 1. IF is optimal with respect to minimizing mean re-

sponse time when µI = µE .

Proof. Consider the server allocations made by a policy π in

any state (i, j). We define the total rate of departures under π in the

state (i, j) to be

dπ (i, j) = πE (i, j) · µE + πI (i, j) · µI .

Following the terminology of [7], we say that π is in the class of

GREEDY policies if

dπ (i, j) = max

π ′
dπ

′

(i, j) ∀(i, j) ∈ Z2≥0.
That is, a policy is in GREEDY if it achieves the maximal rate of

departures in every state.

Furthermore, [7] defines a class of policies called GREEDY*. A

policy is said to be in GREEDY* if, in every state (i, j), it minimizes

the number of servers allocated to elastic jobs while still maximizing

the total rate of departures. That is, a policy π is in GREEDY* iff

πE (i, j) = min

π ′∈GREEDY
π ′
E (i, j) ∀(i, j) ∈ Z2≥0.

It is shown in [7], using precedence relations, that for any policy

π ∈ GREEDY
∗

E[T π] = min

π ′∈GREEDY
E[T π ′

]. (2)

To leverage this result, we note that when µI = µE in our model,

a policy is in GREEDY if and only if it does not idle servers unnec-

essarily.

We now argue that IF, which is non-idling, must be in GREEDY*.

In states where IF allocates zero servers to elastic jobs, IFE (i, j)
is clearly minimal. In any state (i, j) where IFE (i, j) > 0, servers

cannot be reallocated from elastic jobs to inelastic jobs, since all i
inelastic jobs must already be in service. Hence, reducing IFE (i, j)
in this case results in a policy which is not in GREEDY. IFE (i, j) is
therefore minimal amongst GREEDY policies in any state (i, j), and
IF is in GREEDY*.

We show in Appendix B that there exists an optimal policy which

is non-idling. Hence, when µI = µE , there is an optimal policy in

GREEDY. This implies that there must be an optimal policy in

GREEDY* as well. Because any policy in GREEDY* has the same

rate of departures of elastic and inelastic jobs in every state (i, j),
every policy in GREEDY* has the same mean response time. Thus,

IF, which is in GREEDY*, is optimal with respect to mean response

time.

□

Why the prior argument does not generalize
Unfortunately, the results of [7] do not extend to the case where

µI , µE . In particular, the proof of (2) uses a precedence relation

between any two states (i, j − 1) and (i − 1, j). This claim essentially

states that a policy π in state (i, j) would perform better by tran-

sitioning to state (i − 1, j) than it would by transitioning to state

(i, j − 1). In the case where µI = µE , this makes perfect intuitive

sense. In this case, both states (i − 1, j) and (i, j − 1) contain the

same amount of expected total work. Hence, it is better to be in

state (i − 1, j), which benefits from having an additional elastic

job. Consider how this intuition changes when µI > µE . In this

case, state (i, j − 1) has less expected total work, but state (i − 1, j)
has more expected elastic work. It turns out that the precedence

relation shown in [7] no longer holds when µI , µE . Moreover,

even if the precedence relations were to hold when µI > µI , [7]
would yield that GREEDY* is optimal amongst GREEDY policies,

not optimal amongst all policies. We must therefore devise a new

argument to reason about the optimal allocation policy when elastic

and inelastic jobs follow different size distributions.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

79

4.2 Optimality when µI ≥ µE
We will show IF is optimal in the more general case of µI ≥ µE .
While our goal is to minimize mean response time, we note that

via Little’s Law [25], it suffices to minimize the mean total number

of jobs in the system.
1

First, we start by defining a class of policies P which serve

inelastic jobs on a first-come-first-serve (FCFS) basis; elastic jobs

can be served in any order. In more detail, a policy π is said to be

in class P if the following hold true:

(1) π is work-conserving.

(2) π serves inelastic jobs in FCFS order. In particular, if π allocates

N servers to inelastic jobs at time t (N may be fractional, and

there may be more than N inelastic jobs in the systems), the

allocation must give ⌊N ⌋ servers to the ⌊N ⌋ inelastic jobs with

the earliest arrival times. If there is a remaining fraction of a

server, it may then be allocated to the inelastic job with the next

earliest arrival time.

Clearly, IF ∈ P.

Road map: Theorem 2 argues that we only need to compare IF
to policies in P. Specifically, P contains some optimal policy that

minimizes the mean number of jobs in system and mean response

time.

Next, in Theorem 3 we present a novel sample path argument

which shows that IF has stochastically less work in the system

than any policy in P. We will directly leverage this fact to show

that, out of all policies π ∈ P, IF has the least expected inelastic

work in system and also the least expected total work in system.

Finally, In Theorem 5 we show that, of all policies in P, IF mini-

mizes the expected number of jobs in system. Thus, by Little’s Law,

IF is optimal with respect to mean response time.

Analysis. We now present Theorem 2.

Theorem 2. The class P contains a policy π which minimizes both

mean response time and mean number of jobs in system. Specifically

E
[
N π] = min

π ′

{
E
[
N π ′

]}
,

and

E
[
T π] = min

π ′

{
E
[
T π ′

]}
,

where N π
is the total number of jobs in the system in steady-state

under policy π , and T π
is the response time of a job in the system

under π in steady-state.

Proof. Recall that we will consider only stationary, determinis-

tic, work-conserving policies whichmake allocation decisions based

on state (i, j). Let π be a stationary, deterministic, work-conserving

policy with the minimal mean number of jobs in system. Figure 1

shows the transition rates out of state (i, j) under π .
We see that the transition rates out of the current state (i, j)

under policy π depend solely on the number of servers allocated to

each type of job. Thus, neither the order in which we serve the jobs

1
Little’s Law states that for any ergodic system with average total arrival rate λ, the
mean response time, E[T] is related to the mean total number of jobs in system, E[N]

via the formula E[T] = E[N]

λ .

i, ji-1,j i+1,j

i, j-1

i, j+1

λI

λE

πI (i, j)µI

πE (i, j)µE

Figure 1: The Markov chain (N π
I (t),N π

E (t)) for a stationary,
deterministic, work-conserving allocation policy, π .
nor how many jobs of each type are running matter. In particular,

we can construct a policy π ′
such that, for any state (i, j),

πI (i, j) = π ′
I (i, j) and πE (i, j) = π ′

E (i, j)

and π ′
serves inelastic jobs in FCFS order. The policy π ′

has the

same Markov chain as π , so the expected numbers of jobs in system

under π and π ′
are identical. Because π is work-conserving, π ′

is

also work-conserving. Hence, π ′
is in P and achieves the minimal

mean number of jobs in system. □

The power of Theorem 2 is that, to show IF is optimal with

respect to mean response time, it now suffices to show:

E
[
N IF

]
≤ E

[
N π] ∀π ∈ P . (3)

However, it is hard to directly compare the numbers of jobs under

different policies.We get around this roadblock by instead analyzing

how the remaining work in the system under IF relates to other

policies π ∈ P. In particular, we obtain the following strong result.

Theorem 3. For all policies π ∈ P, if we assume that

(N π
I (0),N π

E (0)) = (N IF

I (0),N
IF

E (0)),

then:

W IF(t) ≤ST W π (t) and W IF

I (t) ≤ST W π
I (t) ∀t ≥ 0,

whereW π (t) is the total remaining work under policy π at time t ,
W π
I (t) is the remaining inelastic work under policy π at time t , and

≤ST denotes stochastic dominance.

Proof. Fix an arbitrary policy π ∈ P, and let us consider a fixed

arrival sequence, that is, a fixed sequence of arrival times and job

sizes. We couple π and IF under this sequence. Here, it suffices to

consider arrival sequences where the total number of job arrivals

up to any time t is finite, as this occurs with probability 1.

Recall that W π
I (t) and W π

E (t) are respectively the remaining

inelastic and elastic work in the system at time t under scheduling
policy π . Furthermore, also recall thatW π (t), the total work at time

t , is given by:

W π (t) =W π
I (t) +W π

E (t).

In order to show the desired stochastic dominance relations, it

will suffice to show that on any such arrival sequence

W IF

I (t) ≤W π
I (t) and W IF(t) ≤W π (t) ∀t ≥ 0.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

80

First, we see it is immediate that, under our arrival sequence,

W IF

I (t) ≤W π
I (t) for all t ≥ 0. Since IF and π process inelastic jobs

in FCFS order, each inelastic job enters service at least as early under

IF as it does under π . Furthermore, IF never preempts inelastic

jobs. Hence, at each time t , the remaining size of each inelastic job

that has arrived by time t is no larger under IF than it is under π .
Since the inelastic work in system is just the sum of the remaining

sizes of inelastic jobs, the total inelastic work at time t under IF is

less than the total inelastic work at time t under π .
It remains to show that

W IF(t) ≤W π (t) ∀t ≥ 0. (4)

We prove our claim by induction. For a base case, it is clear that

W IF(0) ≤W π (0), as the policies have the same set of jobs at time

zero, and no work has been completed. For any time t , we partition
the interval [0, t) into subintervals [ti , ti+1) such that either

(1) IF allocates all k servers on [ti , ti+1), or
(2) IF allocates strictly less than k servers on [ti , ti+1).

We now induct on i , and show thatW IF(ti) ≤ W π (ti) implies

W IF(ti+1) ≤W π (ti+1).
If the interval [ti , ti+1) falls into case (1), IF is completing work

at the maximal rate of any policy. In particular, IF completes exactly

(ti+1 − ti) · k work on [ti , ti+1]. Let ω denote the work completed

by π on [ti , ti+1). Then, we must have ω ≤ (ti+1 − ti) · k . Since IF
and π experience the same set of arrivals on this interval, we have:

W π (ti+1) −W IF(ti+1) =
(
W π (ti) − ω

)
−
(
W IF(ti) − (ti+1 − ti) · k

)
=
(
W π (ti) −W IF(ti)

)
+ ((ti+1 − ti) · k − ω)

≥ 0.

Thus, we haveW IF(ti+1) ≤W π (ti+1), as desired.
If the interval [ti , ti+1) falls into case (2), IF allocates strictly

less than k servers on [ti , ti+1). We aim to show thatW IF(ti+1) ≤
W π (ti+1). Observe that IF can have no elastic jobs in its system on

[ti , ti+1). This is because we have defined IF to be work-conserving.
Hence, if there was an elastic job, IF would run it on all available

servers.

Observe that, assuming no elastic job arrives at time ti+1,

W IF(ti+1) =W
IF

I (ti+1).

Likewise, we know

W π (ti+1) =W
π
I (ti+1) +W

π
E (ti+1) ≥W π

I (ti+1).

We get the inequality above because π cannot have negative

elastic work at time ti+1. Finally, we have

W π (ti+1) −W IF(ti+1) =
(
W π
I (ti+1) +W

π
E (ti+1)

)
−W IF

I (ti+1)

=
(
W π
I (ti+1) −W IF

I (ti+1)
)
+W π

E (ti+1)

≥W π
I (ti+1) −W IF

I (ti+1)

≥ 0,

where the last inequality follows from the fact that W IF

I (t ′) ≤

W π
I (t ′) for all t ′ ≥ 0. Thus, we haveW IF(ti+1) ≤W π (ti+1).
Note that some elastic work could arrive at exactly time ti+1.

However, this increases the total work in both systems by the same

amount and thus has no effect on the ordering of these quantities.

Thus, for any interval [ti , ti+1), ifW
IF(ti) ≤ W π (ti), then we

haveW IF(ti+1) ≤W π (ti+1). SinceW
IF(0) ≤W π (0), it follows that

this inequality holds at the end of the last subinterval. The end of

this final subinterval is exactly time t . Thus, for any t ≥ 0, we have

W IF(t) ≤W π (t), as desired.
We have thus found a coupling of π and IF such that the amount

of total work and the amount of inelastic work in each system is

ordered at every moment in time. This implies that

W IF

I (t) ≤ST W π
I (t) ∀t ≥ 0

and

W IF(t) ≤ST W π (t) ∀t ≥ 0

as desired. □

In other words, IF is the best policy in P for minimizing remain-

ing inelastic and total work in the system. One possible explanation

for this is that, by deferring parallelizable work, IF ensures that all

k servers are saturated with work for as long as possible.

We now understand that, out of all policies in P, IF is optimal

with respect to minimizing both expected remaining inelastic work

and expected remaining total work at any time t . We now establish

a relationship between expected remaining work and expected

number of jobs in system.

Lemma 4. For any policy π , we have:

E[W π
I] =

1

µI
E[N π

I] and E[W π
E] =

1

µE
E[N π

E],

whereW π
I and N π

I are respectively the inelastic work and number of

inelastic jobs in the system in steady-state under policy π , and where
the size of an inelastic job is SI ∼ Exp(µI).W

π
E ,N

π
E , and µE are the

analogous quantities for elastic jobs.

Proof. We do the proof for the inelastic relationship, but the

proof for the elastic relationship is identical. Let the random variable

N π
I (t) denote the number of inelastic jobs in the system under

policy π at time t . For every ℓ ∈ {1, . . . ,N π
I (t)} we define Rπ

ℓ, I (t)

as the remaining size of inelastic job ℓ under policy π at time t .
RecallW π

I (t) is the remaining inelastic work in system at time t
under policy π . We have the following equivalence:

W π
I (t) =

N π
I (t)∑
ℓ=1

Rπℓ, I (t).

By the memoryless property of the exponential distribution,

the remaining size of jobs ℓ ∈ {1, . . . ,N π
I (t)} are exponentially

distributed. Specifically, Rπ
ℓ, I (t) ∼ Exp(µI), for any policy π or time

t . Thus, N π
I (t) and Rπ

ℓ, I (t) are independent and we have that

E[W π
I (t)] = E[Rπℓ, I (t)] · E[N

π
I (t)]

= E[SI] · E[N
π
I (t)].

As shown in Appendix C, E[N π
I (t)] converges to E[N π

I] as t → ∞.

This implies the convergence of E[W π
I (t)]. Thus, taking the limit

as t → ∞ yields

E[W π
I] = E[SI] · E[N

π
I] =

1

µI
· E[N π

I],

as desired
2
. □

2
Technically, we have only proven that E[W π

I (t)] converges to some value, but not

that it converges to E[W π
I]. This would be sufficient for our subsequent results. In

fact, E[W π
I (t)] converges to E[W π

I] as t → ∞, but we omit this proof for brevity.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

81

We can now show that IF has the lowest expected number of

jobs in system when µI ≥ µE .

Theorem 5. For any policy π , if µI ≥ µE , we have:

E
[
N IF

]
≤ E

[
N π] .

And via Little’s Law, we have:

E
[
T IF

]
≤ E

[
T π] .

Proof. Because there exists an optimal work-conserving policy

in P, it suffices to consider any policy π ∈ P. We write total

work under π asW π =W π
I +W

π
E . Likewise, we have the equality

N π = N π
I + N π

E . First, from Lemma 4, we have the following

equalities:

E[W π
I] =

1

µI
E[N π

I] and E[W π
E] =

1

µE
E[N π

E].

Furthermore, by the stochastic dominance results of Theorem 3,

E[W IF

I] ≤ E[W π
I] and E[W IF] ≤ E[W π]

Thus, we have:

E
[
N IF

]
= E

[
N IF

I + N
IF

E
]

= µIE
[
W IF

I
]
+ µEE

[
W IF

E
]

= (µI − µE)E
[
W IF

I
]
+ µEE

[
W IF

I +W
IF

E
]

≤ (µI − µE)E
[
W π
I
]
+ µEE

[
W π
I +W

π
E
]

(5)

= µIE
[
W π
I
]
+ µEE

[
W π
E
]

= E[N π
I] + E[N π

E] = E[N π]

Note, we leverage the fact µI ≥ µE in (5). If µE > µI , then µI − µE
would be negative, so we would not be able establish a relationship

like (5). This completes the proof. □

We have therefore established that IF is optimal with respect to

mean response time when µI ≥ µE .

4.3 Failure when µI < µE
Now, we consider the case when µI < µE . Here, we demonstrate

that IF is not optimal in minimizing mean response time. In fact, IF
is not even optimal in the simplified environment where there are

only two servers and no arrivals. We construct our counterexample

in Theorem 6 below.

Theorem 6. In general, IF is not optimal for minimizing mean

response time when µI < µE .

Proof. Assume we have k = 2 servers, µE = 2µI , and there are

no arrivals. We show that, if the system starts with two inelastic

jobs and one elastic job, the policy EF outperforms IF.
We directly compute the mean response time for both policies,

starting with IF. We letT IF
denote response time under IF, andT EF

denote response time under elastic first. We have:

E
[
T IF

]
=

3

2µI
+

2

µI + µE
+

µI
µI + µE

(
1

2µE

)
+

µE
µI + µE

(
1

µI

)
=

35

12µI
.

On the other hand, we see:

E[T EF] =
3

2µE
+

2

2µI
+

1

µI
=

33

12µI
.

0, 0 1, 0 2, 0 · · · k-1, 0 k, 0 · · ·

0, 1 1, 1 2, 1 · · · k-1, 1 k, 1 ·

0, 2 1, 2 2, 2 · · · k-1, 2 k, 2 · · ·

...

λI λI λI λI λI λI

µI 2µI 3µI (k-1)µI kµI kµI

λI λI λI λI λI λI

λI λI λI λI λI λI

λE λE λE λE λEkµE kµE kµE kµE kµE

λE λE λE λE λEkµE kµE kµE kµE kµE

λE λE λE λE λEkµE kµE kµE kµE kµE

(a) Full EF chain

0, 0 1, 0 2, 0 · · · k-1, 0 k, 0 · · ·

0,b 1,b 2,b · · · k-1,b k,b · · ·

λI λI λI λI λI λI

µI 2µI 3µI (k-1)µI kµI kµI

λI λI λI λI λI λI

λE λE λE λE λEB B B B B

(b) EF chain with special states

0, 0 1, 0 2, 0 · · · k-1, 0 k, 0 · · ·

0,b1 1,b1 2,b1 · · · k-1,b1 k,b1 · · ·

0,b2 1,b2 2,b2 · · · k-1,b2 k,b2 · · ·

λI λI λI λI λI λI

µI 2µI 3µI (k-1)µI kµI kµI

λI λI λI λI λI λI

λI λI λI λI λI λI

λE λE λE λE λEγ3 γ3 γ3 γ3 γ3

γ1 γ1 γ1 γ1 γ1

γ2 γ2 γ2 γ2 γ2

(c) Final 1D EF chain

Figure 2: The transformation of the 2D-infinite EF chain to
a 1D-infinite chain via the busy period transformation. Spe-
cial states representing anM/M/1 busy period are shown in
(b), and these busy periods are approximated by a Coxian
distribution in (c).

In particular, we have E[T EF] < E [T IF]. Thus, in general, IF is not
optimal when µI < µE . In fact, in this environment, we see EF
outperforms IF. □

5 RESPONSE TIME ANALYSIS RESULTS
From the results of Section 4, we know that IF is optimal with

respect to mean response time when µI ≥ µE . However, Section 4

also shows that EF can outperform IF when µI < µE . This begs the
question of which allocation policy, IF or EF, performs better for

given values of µI and µE .
In this section we derive the mean response time for EF under

a range of values of µI , µE , λI , λE , and k . First, in Section 5.1, we

present the Markov chains for EF. This Markov chain is 2D-infinite.

Then, in Section 5.2, we present a technique from the stochastic

literature called Busy Period Transitions [45, 46] which reduces

the 2D-infinite chain to a 1D-infinite chain. Although Busy Period

Transitions produce an approximation, it is known to be highly

accurate, with errors of less than 1% [26–28, 45, 46]. Finally, in

Section 5.3, we apply standard Matrix-Analytic methods to solve

the 1D-infinite Markov chain, obtaining the stationary distribution

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

82

and finally the mean response time under EF. The analysis for the
IF policy is similar, and thus we defer it to Appendix D.

The results of our analysis for IF and EF are shown in Figures 3, 4,
and 5. We compared our analysis with simulation, and all numbers

agree within 1%. We note that [7] used MDP-based techniques to

analyze allocation policies in a similar model. These previous re-

sults required truncating the state space, and were computationally

intensive. The techniques presented in this section do not require

truncating the state space, can be tuned to arbitrary precision, and

are comparatively efficient.

Figure 3 presents an overview of our results, showing only the

relative performance of IF and EF as the system load, ρ, is moved

from (a) low load to (b) medium load to (c) high load. In every case,

IF outperforms EF when µI ≥ µE , as expected from Theorem 5.

When µI < µE , Figure 3 shows us that EFcan outperform IF, and
that the region where EF is better grows as ρ increases.

Figure 4 shows the absolute mean response times under IF and

EF as a function of µI . We again examine the system under various

fixed values of ρ. The dotted lines at µI = 1 denote the case where

µI = µE . We therefore know that IF is optimal to the right of this

line in every graph, while EF may dominate IF to the left of this

line. We see that our choice of allocation policy has a major impact

on mean response time.

While Figures 3 and 4 assume that k = 4, our analysis works

equally well with any number of servers, k . Figure 5 shows how
the mean response time under IF and EF changes as k increases

while system load, ρ, remains constant.

5.1 Markov Chains for IF and EF
Figure 2a shows the Markov chain which exactly describes EF. The
corresponding IF chain is given in Appendix D. Recall that the state
(i, j) denotes having i inelastic jobs and j elastic jobs in the system.

This chain is infinite in 2 dimensions – the number of inelastic jobs

and the number of elastic jobs. Because there is no general method

for solving 2D-infinite Markov chains, we provide a technique for

converting this chain to a 1D-infinite Markov chain in Section 5.2.

5.2 Converting From 2D-Infinite to 1D-Infinite
To reduce the dimensionality of the Markov chain for EF we follow

a three step process:

Step 1: Response time of elastic jobs is trivial.Under EF, elastic
jobs have preemptive priority over inelastic jobs. Thus, their behav-

ior is independent of the state of inelastic jobs in the system. We

can therefore model the response time of elastic jobs as anM/M/1

queueing system with arrival rate λE and service rate kµE , which
is well understood in the queueing literature [33]. What remains is

to understand the response time of the inelastic jobs.

Step 2: The busy period transformation. Looking at Figure 2a,
we notice that the chain has a repeating structure when there is at

least 1 elastic job in the system (j ≥ 1). We leverage this repeating

structure to reduce the Markov chain for EF to a 1D-infinite chain.

Specifically, while there are elastic jobs in the system, EF does

not process any inelastic jobs. The length of time where EF is not
processing any inelastic jobs can be viewed as an M/M/1 busy

period. In an M/M/1 system, a busy period is defined to be the

time between when a job arrives into an empty system until the

system empties. In our case, this busy period is the time from when

an elastic job arrives into a system with no elastic jobs until the

system next has 0 elastic jobs. In Figure 2b, we show how to the

entire portion of the Markov chain where j ≥ 0 with a set of special

states which represent the duration of anM/M/1 busy period for

the elastic jobs.

Step 3: Creating 1D chain for inelastic jobs. Looking at Figure

2b, we note the bolded transition arrows (labeled “B”) emanating

from the busy period states. Because the duration of an M/M/1

busy period is not exponentially distributed, we must replace these

special transitions with a mixture of exponential states (a Coxian

distribution) which accurately approximates the duration of a busy

period. A technique for matching the first three moments of the

busy period with a Coxian is given in [45]. The 1D-infinite chain

resulting from this technique is described in Figure 2c.

We use the same three-step technique to make an analogous

simplification of the Markov chain for IF (see Appendix D).

Given these 1D-infinite chains, we now apply standard matrix

analytic techniques to solve for mean response time.

5.3 Matrix Analytic Method
We now explain how to analyze IF and EF using the 1D-infinite

Markov chains developed in the previous section. We do this by ap-

plyingmatrix analyticmethods [34, 43, 44]. Matrix analytic methods

are iterative procedures which compute the stationary distribution

of a repeating, 1D-infinite Markov chain.

Consider Figure 2c, which shows the 1D-infinite chain for EF.
Observe that each column of this chain, after the first column, has

identical transitions. The idea of matrix analytic methods is to

represent the stationary distribution of column j + 1 as a product of
the stationary distribution of column j and some unknownmatrix R.
The matrix R is determined iteratively through a numeric procedure

[34, 43, 44]. This procedure yields the stationary distribution of the

chain. Using the stationary distribution we can easily determine

the mean number of inelastic jobs, and hence the mean response

time for inelastic jobs (recall that the response time for elastic jobs

under EF is trivial). An analogous argument can be applied to solve

the 1D-infinite chain for IF.

6 CONCLUSION
This paper establishes optimality results and provides the first anal-

ysis of policies for scheduling jobs which are heterogeneous with

respect to parallelizability. Specifically, we study amodel where jobs

are either inelastic or elastic: inelastic jobs can parallelize across at

most C servers and elastic jobs parallelize linearly across any num-

ber of servers. We prove that the policy Inelastic-First (IF), which
gives inelastic jobs preemptive priority over elastic jobs, is optimal

for minimizing the mean response time across jobs in the common

case where elastic jobs are larger on average than inelastic jobs.

We provide analysis of mean response times under the Elastic-First

(EF) and Inelastic-First (IF) policies.
There are many open questions in scheduling jobs which are

heterogeneous with respect to their parallelizability. One immediate

follow-up of our work is to find optimal policies when elastic jobs

are smaller on average than inelastic jobs. This paper shows that,

in this setting, EF can outperform IF, but we do not show that EF

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

83

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

E

(a) Low load, ρ = .5

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

E

(b) Med. Load, ρ = .7

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

E

EF Superior

IF Superior

(c) High load, ρ = .9

Figure 3: Heat maps showing the relative performance of IF and EF as a function of µI and µE when k = 4. We fix load ρ and
vary µI and µE . To offset the changes to µI and µE , we change λI and λE to keep ρ constant. In every graph, λI = λE . The red
circles represent settings where IF dominates EF. The blue +’s represent cases where EF dominates IF. As ρ increases, the region
where EF dominates IF grows. However, as expected, when µI ≥ µE IF dominates EF for all loads.

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

E
[

T
]

(a) Low load, ρ = .5

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
[

T
]

(b) Med. load, ρ = .7

0 0.5 1 1.5 2 2.5 3 3.5

I

0

2

4

6

8

10

12

14

16

18

E
[

T
]

EF

IF

(c) High load, ρ = .9

Figure 4: Graphs showing the absolute mean response times under IF and EF as a function of µI when k = 4. In each graph, we
fix system load, ρ, and set µE = 1. We then vary µI . To offset the changes in µI , we change λI and λE to keep ρ constant. In every
graph, λI = λE . The dotted lines at µI = 1 denote the case where µI = µE . Thus IF is optimal to the right of this line, while EF
may dominate IF to the left of this line. We see that the allocation policy has a major impact on mean response time.

2 4 6 8 10 12 14 16

k

5

10

15

20

25

30

35

E
[

T
]

EF

IF

(a) µI = .25, µE = 1

2 4 6 8 10 12 14 16

k

0

1

2

3

4

5

6

7

8

E
[

T
]

EF

IF

(b) µI = 3.25, µE = 1

Figure 5: Graphs showing the mean response time under IF and EF as a function of the number of servers, k under high load
(ρ = 0.9). The values of µI and µE are chosen to represent the extreme ends of Figure 4c (where the performance gap between
the policies is the largest). Even when k = 16, the difference between IF and EF remains large.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

84

is the optimal allocation policy. Furthermore, the model studied

in this paper can be generalized in many ways to capture a broad

range of application scenarios. For example, consider a model where

elastic jobs are not fully elastic as in this paper, but are elastic up

to a certain number of servers. Additionally, we might have more

than two classes of jobs with different levels of parallelizability

and different job size distributions. The problem of finding optimal

policies and providing analysis in these models is wide open.

APPENDIX
A APPROXIMATIONWHEN JOBS ARRIVE AT

THE SAME TIME
In this section we use dual fitting to show that a generalization

of SRPT-k is a 4-approximate algorithm for mean response time if

all jobs arrive at the same time. This case is entirely deterministic.

This result holds in a general parallelizability setting where every

job j is parallelizable up to kj processors. That is, if job j is given
k ′ ≤ k processors, the rate it is processed is min{kj ,k

′}.

Consider the following LP relaxation of the problem. We use x j
to denote the inherent size of job j. The variable yj,t is how much

job j is processed at time t .

min

{yjt }

∑
j

∑
t ≥0

(
t

x j
+

1

2kj

)
· yjt LPprimal∑

t ≥0
yjt ≥ x j ∀j∑

j : t ≥0
yjt ≤ k ∀t
yjt ≥ 0 ∀j, t : t ≥ 0

It is easy to show that the above LP lower bounds the optimal

flow time of a feasible schedule. This is essentially an LP for a

k speed single machine plus the standard corrective term in the

objective. See [10] for similar relaxations. The dual of LPprimal is:

max

{α j }, {βt }

∑
j
α j −

∑
t

βt LPdual

α j

x j
−

βt
k

≤
t

x j
+

1

2kj
∀j, t : t ≥ 0

α j ≥ 0 ∀j
βt ≥ 0 ∀t

The algorithm we will use is a natural generalization of SRPT-k

to the case of parallelizable jobs. The algorithm sorts jobs according

to their inherent size in increasing order. We will thus assume that

the jobs are in this order such that x1 ≤ x2 ≤ . . . xn , where n is the

total number of jobs . At any point in time, the algorithm gives the

cores to the jobs in this priority order. Each job j is assigned up to

kj processors and then the algorithm considers the next job in the

list with the remaining processors. We letUj =
∑j−1
i=1 xi be the total

amount of work strictly ahead of job j.
We will assume that the processors the algorithm has are of

speed s ≥ 1. That is, each processor completes s units of work each

timestep. Later we will set s = 2. We compare to an optimal solution

with one speed processors. The following theorem allows us to do

this comparison with minimal loss in the approximation ratio.

Lemma 7 ([22]). Let OPTs denote the value of the total response

time of the optimal algorithm where the optimal algorithm has pro-

cessors of speed s . Then for any s ≥ 1,

OPT1 ≤ sOPTs .

We now define the dual variables. LetQ(t) denote the set of jobs
released and unsatisfied at time t in the algorithm’s schedule. Let

α j =
Uj
ks +

x j
skj

and let βt =
1

s |Q(t)|. Our main claim is the following.

Lemma 8. Let C denote the algorithm’s total completion time. It is

the case that

∑
j α j −

∑
t βt ≥

(
1 − 1

s

)
C . Moreover, α , β correspond

to a feasible dual solution when s = 2.

Lemma 8 is sufficient to prove our theorem.

Theorem 9. The SRPT-k algorithm is a 4-approximation for mean

response time when all jobs arrive at time 0.

Proof. Set s = 2. Lemma 8 ensures that C is at most a factor 2

larger than the optimal solution using 1 speed. Lemma 7 ensures

that the 1 speed optimal is within a factor 2 of the 2 speed optimal.

Together this shows the algorithm is a 4 approximation. □

To prove Lemma 8 we first establish the value of the objective.

Lemma 10.

∑
j α j −

∑
t βt =

(
1 − 1

s

)
C .

Proof. Notice that

∑
t βt =

∑
t
1

s |Q(t)|. This is precisely
1

sC .

Thus, it suffices to prove

Uj
ks +

x j
kj

≥ C . To do so, we show that

Uj
ks +

x j
skj

is an upper bound on job j’s response time. Indeed, we

know that either all k processors are working on work in Uj + x j
with speed s if j is unsatisfied or job j is being worked on with kj
processors with speed s . □

We now show that this setting of the dual variables corresponds

to a feasible dual solution.

Lemma 11. The dual solution α , β is feasible when s = 2.

Proof. We must show that for all jobs j and times t ≥ 0:

α j

x j
−

βt
k

≤
t

x j
+

1

2kj
.

Consider the left hand side for a fixed job j and time t . Let xrj′(t)

be the remaining work left on job j ′ at time t and x
p
j′(t) = x j′−x

r
j′(t)

be the amount of job j ′ that has been processed up to time t . This
is equivalent to the following given the definitions of α and β :

1

x j

(
Uj

ks
+

x j

skj

)
−

1

sk
|Q(t)|

=
1

x j

©­« 1

ks

∑
j′∈[n],x j′<x j

(
x
p
j′(t) + x

r
j′(t)

)
+

x j

skj

ª®¬ − 1

sk
|Q(t)|.

Now consider any job that is in complete at time t . That is, those
in Q(t). We can remove these from the first term by combining

terms with the − 1

sk |Q(t)| term. The prior expression is only less

than the following:

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

85

1

x j

©­« 1

ks

∑
j′∈[n]\Q (t),x j′<x j

(
x
p
j′(t) + x

r
j′(t)

)
+

x j

skj

ª®¬
≤

1

x j

©­« 1

ks

∑
j′∈[n]\Q (t),x j′<x j

(
x
p
j′(t)

)
+

x j

skj

ª®¬ .
[xrj′(t) = 0 for jobs completed at t]

Notice that

∑
j′∈[n]\Q (t),x j′<x j

(
x
p
j′(t)

)
is less than kst . This is

because the summation is counting work that the algorithm has

processed by time t . The algorithm has k processors of speed s .
Thus, the prior term is less than the following:

t

x j
+

1

skj
.

Given the s = 2, we get that the dual solution is feasible. □

Together Lemmas 10 and 11 complete the proof.

B IDLING POLICIES
We define a policy to be idling if it leaves one or more servers idle

rather than allocating them to some eligible jobs.

Theorem 12. For any policy π which unnecessarily idles servers

there exists a non-idling policy π ′
such that

E[T π ′

] ≤ E[T π].

Hence, there exists an optimal policy which is non-idling.

Proof. The proof of this claim appears in [8]. □

C LYAPUNOV STABILITY OF WORK
CONSERVING POLICIES

Theorem 13. For any work-conserving policy π , the associated
Markov chain {(N π

I (t),N π
E (t)) : t ≥ 0} has a stationary distribu-

tion. If we define (N π
I ,N

π
E) to be a random element that follows this

stationary distribution, then

lim

t→∞
(N π

I (t),N π
E (t))

d
= (N π

I ,N
π
E). (6)

Furthermore,

lim

t→∞
E[N π

I (t)] = E[N π
I], (7)

and

lim

t→∞
E[N π

E (t)] = E[N π
E]. (8)

Proof. The proof of this claim appears in [8]. □

D MARKOV CHAINS FOR IF
Figure 6a shows the Markov chain for IF. To analyze this chain we

will use a busy period transformation as described in Section 5.2.

We note that the inelastic jobs under IF see anM/M/k queueing

system, and hence their mean response time is known.We therefore

only need to consider the mean response time of elastic jobs under

IF. When there are more than k inelastic jobs in the system under

IF, elastic jobs receive no service. The time from when there are

first k inelastic jobs in the system until there are k − 1 inelastic

jobs is exactly anM/M/1 busy period. Hence, we perform the same

busy period transformation described in Section 5.2 to the Markov

chain for IF. This results in a 1D-infinite Markov chain which we

can analyze using matrix analytic methods. We depict the busy

period transformation for IF in Figure 6

0, 0 1, 0 2, 0 · · · k-1, 0 k, 0 · · ·

0, 1 1, 1 2, 1 · · · k-1, 1 k, 1 ·

0, 2 1, 2 2, 2 · · · k-1, 2 k, 2 · · ·

...

λI λI λI λI λI λI

µI 2µI 3µI (k-1)µI kµI kµI

λI λI λI λI λI λI

µI 2µI 3µI (k-1)µI kµI kµI

λI λI λI λI λI λI

µI 2µI 3µI (k-1)µI kµI kµI

λE λE λE λE λEkµE (k-1)µE (k-2)µE µE

λE λE λE λE λEkµE (k-1)µE (k-2)µE µE

λE λE λE λE λEkµE (k-1)µE (k-2)µE µE

(a) Full IF chain

0, 0 1, 0 2, 0 · · · k-1, 0 b, 0

0, 1 1, 1 2, 1 · · · k-1, 1 b, 1

0, 2 1, 2 2, 2 · · · k-1, 2 b, 2

...

λI λI λI λI λI

µI 2µI 3µI (k-1)µI B

λI λI λI λI λI

µI 2µI 3µI (k-1)µI B

λI λI λI λI λI

µI 2µI 3µI (k-1)µI B

λE λE λE λE λEkµE (k-1)µE (k-2)µE µE

λE λE λE λE λEkµE (k-1)µE (k-2)µE µE

λE λE λE λE λEkµE (k-1)µE (k-2)µE µE

(b) IF chain with special states

0, 0 1, 0 2, 0 · · · k-1, 0 b1, 0

b2, 0

0, 1 1, 1 2, 1 · · · k-1, 1 b1, 1

b2, 1

0, 2 1, 2 2, 2 · · · k-1, 2 b1, 2

b2, 2

...

...

λI λI λI λI
λI

µI 2µI 3µI (k-1)µI

γ3

γ1γ2

λI λI λI λI
λI

µI 2µI 3µI (k-1)µI

γ3

γ1γ2

λI λI λI λI
λI

µI 2µI 3µI (k-1)µI

γ3

γ1γ2

λE λE λE λE λE

λE

kµE (k-1)µE (k-2)µE µE

λE λE λE λE λE

λE

kµE (k-1)µE (k-2)µE µE

λE λE λE λE λE

λE

kµE (k-1)µE (k-2)µE µE

(c) Final 1D IF chain

Figure 6: The transformation of the 2D-infinite IF chain to
a 1D-infinite chain via the busy period transformation. Spe-
cial states representing anM/M/1 busy period are shown in
(b), and these busy periods are approximated by a Coxian
distribution in (c).

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

86

REFERENCES
[1] I.J.B.F. Adan, G.J. van Houtum, and J. van der Wal. Upper and lower bounds for

the waiting time in the symmetric shortest queue system. Annals of Operations

Research, 48:197–217, 1994.

[2] Kunal Agrawal, I-Ting Angelina Lee, Jing Li, Kefu Lu, and Benjamin Moseley.

Practically efficient scheduler for minimizing average flow time of parallel jobs.

In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS

2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 134–144. IEEE, 2019.

[3] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel

DAG jobs online to minimize average flow time. In Robert Krauthgamer, editor,

Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 176–189.

SIAM, 2016.

[4] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted

flow-time explained by dual fitting. In Proceedings of the Twenty-Third Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January

17-19, 2012, pages 1228–1241, 2012.

[5] Spyros Angelopoulos, Giorgio Lucarelli, and Nguyen Kim Thang. Primal-dual and

dual-fitting analysis of online scheduling algorithms for generalized flow-time

problems. Algorithmica, 81(9):3391–3421, 2019.

[6] Eitan Bachmat and Hagit Sarfati. Analysis of size interval task assigment policies.

Performance Evaluation Review, 36(2):107–109, 2008.

[7] Benjamin Berg, Jan-Pieter Dorsman, and Mor Harchol-Balter. Towards optimality

in parallel scheduling. Proceedings of the ACM on Measurement and Analysis of

Computing Systems, 1(2):1–30, 2018.

[8] Benjamin Berg, Mor Harchol-Balter, Benjamin Moseley, Weina Wang, and

Justin Whitehouse. Optimal resource allocation for elastic and inelastic jobs.

https://arxiv.org/abs/2005.09745.

[9] Carl Bussema and Eric Torng. Greedy multiprocessor server scheduling. Oper.

Res. Lett., 34(4):451–458, 2006.

[10] Jivitej S. Chadha, NaveenGarg, Amit Kumar, andV. N.Muralidhara. A competitive

algorithm for minimizing weighted flow time on unrelatedmachines with speed

augmentation. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual

ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May

31 - June 2, 2009, pages 679–684. ACM, 2009.

[11] RichardW Conway, Louis WMiller, andWilliam LMaxwell. Theory of scheduling.

Dover, 2003.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and

qos-aware cluster management. ACM SIGPLAN Notices, 49(4):127–144, 2014.

[14] Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci., 235(1):109–141, 2000.

[15] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable scheduling for

the k-norms of flow time without conservation of work. In Dana Randall, editor,

Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages

109–119. SIAM, 2011.

[16] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary

speedup curves. In Proceedings of the twentieth annual ACM-SIAM symposium on

Discrete algorithms, pages 685–692. SIAM, 2009.

[17] Kyle Fox and Benjamin Moseley. Online scheduling on identical machines using

SRPT. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,

USA, January 23-25, 2011, pages 120–128. SIAM, 2011.

[18] Anshul Gandhi and Mor Harchol-Balter. How data center size impacts the

effectiveness of dynamic power management. In 2011 49th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), pages 1164–

1169. IEEE, 2011.

[19] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. Srpt for multiserver systems.

Performance Evaluation, 127:154–175, 2018.

[20] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V Kalé. Towards

realizing the potential of malleable jobs. In 2014 21st International Conference on

High Performance Computing (HiPC), pages 1–10. IEEE, 2014.

[21] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley,

and Kirk Pruhs. Scheduling heterogeneous processors isn’t as easy as you

think. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,

pages 1242–1253. SIAM, 2012.

[22] Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. Stochastic online

scheduling on unrelated machines. In Integer Programming and Combinatorial

Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada,

June 26-28, 2017, Proceedings, pages 228–240, 2017.

[23] Varun Gupta, Karl Sigman, Mor Harchol-Balter, and Ward Whitt. Insensitivity

for ps server farms with jsq routing. ACM SIGMETRICS Performance Evaluation

Review, 35(2):24–26, 2007.

[24] Mor Harchol-Balter. Task assignment with unknown duration. Journal of the

ACM, 49(2):260–288, March 2002.

[25] Mor Harchol-Balter. Performance modeling and design of computer systems:

queueing theory in action. Cambridge University Press, 2013.

[26] Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-Wolf, and

Mark Squillante. Cycle stealing under immediate dispatch task assignment. In

Proceedings of the 15th ACM Symposium on Parallel Algorithms and Architectures,

pages 274–285, San Diego, CA, June 2003.

[27] Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-Wolf, and

Mark Squillante. Task assignment with cycle stealing under central queue. In

Proceedings of the 23rd International Conference on Distributed Computing Systems,

pages 628–637, Providence, RI, May 2003.

[28] Mor Harchol-Balter, Takayuki Osogami, Alan Scheller-Wolf, and AdamWierman.

Multi-server queueing systems with multiple priority classes. Queueing Systems:

Theory and Applications, 51(3–4):331–360, 2005.

[29] Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew Young. Surprising results

on task assignment in server farms with high-variability workloads. In ACM

Sigmetrics 2009 Conference on Measurement and Modeling of Computer Systems,

pages 287–298, 2009.

[30] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for

fine-grained resource sharing in the data center. In NSDI, volume 11, pages 22–22,

2011.

[31] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric Torng. Competitively

scheduling tasks with intermediate parallelizability. ACM Transactions on Parallel

Computing (TOPC), 3(1):1–19, 2016.

[32] Cheeha Kim and Ashok K Agrawala. Analysis of the fork-join queue. IEEE

Transactions on computers, 38(2):250–255, 1989.

[33] Leonard Kleinrock. Queueing systems, volume 2: Computer applications, volume 66.

Wiley New York, 1976.

[34] Guy Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in

Stochastic Modeling. ASA-SIAM, Philadelphia, 1999.

[35] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel

machines. Journal of Computer and System Sciences, 73(6):875–891, 2007.

[36] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.

Can decentralized algorithms outperform centralized algorithms? a case study

for decentralized parallel stochastic gradient descent. In Advances in Neural

Information Processing Systems, pages 5330–5340, 2017.

[37] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E Gonzalez, Ion

Stoica, and Alexey Tumanov. Hypersched: Dynamic resource reallocation for

model development on a deadline. In Proceedings of the ACM Symposium on

Cloud Computing, pages 61–73, 2019.

[38] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. Heracles: Improving resource efficiency at scale. In Proceed-

ings of the 42nd Annual International Symposium on Computer Architecture, pages

450–462, 2015.

[39] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

Bubble-up: Increasing utilization in modern warehouse scale computers via

sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International

Symposium on Microarchitecture, pages 248–259, 2011.

[40] Robert McNaughton. Scheduling with deadlines and loss functions. Management

Science, 6(1):1–12, 1959.

[41] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,

et al. Ray: A distributed framework for emerging {AI} applications. In 13th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}

18), pages 561–577, 2018.

[42] Randolph Nelson and Asser Tantawi. Approximate analysis of fork/join synchro-

nization in parallel queues. Transactions on Computers, 37(6):739–743, 1988.

[43] Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins

University Press, 1981.

[44] Marcel F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applica-

tions. Marcel Dekker, 1989.

[45] Takayuki Osogami and Mor Harchol-Balter. Closed form solutions for mapping

general distributions to quasi-minimal PH distributions. Performance Evaluation,

63(6):524–552, 2006.

[46] Takayuki Osogami, Mor Harchol-Balter, and Alan Scheller-Wolf. Analysis of cycle

stealing with switching times and thresholds. In Proceedings of ACM Sigmetrics,

pages 184–195, San Diego, CA, June 2003.

[47] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo.

Optimus: an efficient dynamic resource scheduler for deep learning clusters. In

Proceedings of the Thirteenth EuroSys Conference, pages 1–14, 2018.

[48] Donald R Smith. A new proof of the optimality of the shortest remaining pro-

cessing time discipline. Operations Research, 26(1):197–199, 1978.

[49] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. Large-scale cluster management at google with borg. In

Proceedings of the European Conference on Computer Systems, pages 1–17, 2015.

[50] Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and

Rayadurgam Srikant. Delay asymptotics and bounds for multitask parallel jobs.

Queueing Systems, 91(3-4):207–239, 2019.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

87

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 The Problem
	1.3 Elastic and Inelastic Jobs in the Real World
	1.4 Why stochastic analysis?
	1.5 Our Contributions

	2 Our Model
	3 Prior Work
	4 Optimality Results
	4.1 Optimality when I = E
	4.2 Optimality when I E
	4.3 Failure when I < E

	5 Response Time Analysis Results
	5.1 Markov Chains for IF and EF
	5.2 Converting From 2D-Infinite to 1D-Infinite
	5.3 Matrix Analytic Method

	6 Conclusion
	A Approximation when Jobs Arrive at the Same Time
	B Idling Policies
	C Lyapunov Stability of Work Conserving Policies
	D Markov Chains for IF
	References

