
Cache-Out: Leaking Cache Memory Using
Hardware Trojan

Mohammad Nasim Imtaiz Khan, Asmit De and Swaroop Ghosh

Abstract— Data leakage is an important security concern in
current systems. Existing data leakage prevention techniques
assume that the underlying hardware platform is secure and
free from tampering. In this work, we present Cache-Out, a
class of system attacks involving hardware compromised with
a Trojan embedded in the CPU. We assume that a memory
Trojan trigger is present in L1 d-cache and gets activated if one
particular address of L1 d-cache is hammered with a particular
data pattern for a certain number of times. Once the Trojan is
triggered, accessing another address delivers payloads such as,
read disturb, write disturb, retention failure and information
leakage. We mainly exploit the advanced circuit features em-
ployed in the peripherals of nanometer cache memories such
as, Wordline Underdrive (WLUD) (prevents read disturb) and
Negative Bitline (NBL) (assists write) for Static RAM (SRAM)
to deliver the payloads. Simulation indicates that WLUD
and NBL manipulation can inject read and write failures,
respectively. We also show that WLUD activation during write
operation can inject write failure. Furthermore, NBL along
with column multiplexing can also be leveraged to steal data.
We validated Cache-Out using GEM5 architectural simulator.
We propose L1 address obfuscation, read/write verification,
scrambling Error Correcting Code (ECC) bits and trusted ECC
as countermeasures. Results indicate that read/write verification
incurs 7.56µm2 of area and 0.1µW/91.3µW of static/dynamic
power in 22nm technology for 64-bit word size.

I. INTRODUCTION

Globalization of semiconductor design and fabrication
processes have lead to Integrated Circuits (ICs) becoming
increasingly vulnerable to malicious modifications in the
form of Hardware Trojans [1]. Ideally, these modifications
should be detected during the pre-Silicon verification and
the post-Silicon testing. However, adversaries can design
Trojans that only activate under rare conditions and remain
undetected during the test phase. The Trojans, once activated,
perform undesirable operations such as, operation failure or
even leak sensitive data. This threat is of special concern
to government agencies, military [2], technology developers,
finance, and energy sectors. Incidents such as, tampering of
server motherboards by Chinese manufacturers that affected
top US companies like Amazon, Apple etc. [3] and hardware
fabricated with hidden-backdoor to disable radars in Syria [4]
serve as a strong motivation to investigate the possibility of
hidden components in the design and manufacturing process.

Memory Trojan can lead to read/write/retention failures
and information leakage. In prior works, authors have pro-

*This work is supported by SRC 2847.001, NSF CNS- 1722557.
The authors are with the School of Electrical Engineering and Computer

Science, Pennsylvania State University, State College, PA 16802 USA (e-
mail: muk392@psu.edu; asmit@psu.edu; szg212@psu.edu)

posed memory Trojan trigger circuits and payloads that can
evade testing phase and cause different failures. A Trojan
for embedded SRAM is proposed in [5] which uses unique
data patterns written to pre-selected address to trigger it.
These unique patterns are not tested during standard post-
manufacturing tests and thereby, remains undetected. That
data pattern feeds the input of the Trojan transistors which
short the data node of a victim SRAM cell to ground and
corrupts the data. The feasibility of such Trojan is limited
since the payloads require connecting the bitcells with the
Trojan transistors. This is difficult since bitcells are placed
side by side with a tight margin.

Designing a small, controllable and undetectable Trojan
is the key element to deploy an efficient one. In [6], a
capacitor-based analog Trojan trigger, A2, is presented which
is controllable, stealthy and small. In [7], another capacitor-
based Trojan trigger is proposed which gets activated if a
pre-selected address is written with specific data patterns for
a specific number of times. A Trojan trigger similar to [7] has
been considered in this work (details in Section II.A). Once
triggered, the Trojan delivers payloads to the SRAM cache,
such as, a particular L2 cache line. We have considered [7]
for trigger (over [6]) since it, i) is robust against process
and temperature variation; ii) evades post silicon testing and
system level detection mechanisms; and, iii) incurs less area
overhead. However, any trigger that remains hidden and gets
activated under unique condition can serve our purpose.

Once the Trojan trigger is activated, the adversary can
selectively launch read/write failure or information leakage
attack. The conventional Static RAM (SRAM) employs read
and write assist circuits e.g., wordline underdrive (WLUD)
[8] and negative bitline (NBL) [9] in the peripherals to
enable functional read/write operations. This is especially
true for high density, fast and low power cache memories.
In this work, we leverage them to achieve the payloads.
The uniqueness of targeting the peripherals over the bitcell
(similar to the case of [5]) lies in the fact that the component
density in the peripheral area is relaxed.

Attack Model: We assume that adversary can be either
in the design house or fabrication house to tamper with the
memory. We also assume that Trojan triggers such as [7] is
already implemented in the L1 d-cache (in the filler areas
of the non-memory logic, e.g., address pre-decoding and
pipelining units, also called midlogic [10]) and generates a
Trojan signal namely, V Tr, when a pre-selected address is
accessed N times with a pre-selected data pattern. This V Tr
signal can be leveraged to launch the attacks. As mentioned

before, we focus on payloads in this work that can be realized
by inserting Trojans in the memory peripherals. After the
deployment of the chip in a system, the adversary can launch
a malicious program to trigger the Trojan to deliver the
desired payloads. We assume that the adversary has standard
user privileges in the compromised system, where he can
interact with the existing applications running on the system
and can also compile and run his own malicious program.

In summary, we, (a) investigate SRAM peripherals and
their security implications; (b) propose novel Trojans that
can tamper with the read/write assist to launch fault injection
and DoS attacks; (c) propose novel Trojans that can leak
the data by exploiting the column multiplexing and NBL;
(d) demonstrate a data leakage exploit using Cache-Out in
GEM5 simulator; (e) propose countermeasures that prevents
Trojan triggering and detects the payloads.

The paper is organized as follows: Section II describes
the background of the Trojan trigger used in this work
along with the background on system architecture; Section
III describes the background of SRAM. Section IV presents
SRAM read/write assist techniques, their vulnerabilities and
ways to manipulate them; Section V demonstrates data leak-
age by Cache-Out attack using GEM5; Section VI presents
a discussion on the practicality of memory Trojans and
possible defenses; Finally, Section VII draws the conclusion.

II. BACKGROUND

In this section, we describe the background on the Trigger
circuit used in this work and the system architecture.

A. Trigger Design [7]

The trigger circuit (Fig. 1) is designed to be activated if a
particular memory address (AddSET , chosen during Trojan
design) is written with a specific data pattern, P SET for
at least NSET times. The trigger has two inputs namely,
V (AddSET) and V (P SET). V (AddSET) (= 1V) is the wordline
enable signal of AddSET . For V (P SET), a simple logic
circuit can be implemented which outputs logic 1 (1V) if
a specific data pattern is sent to data bus. For example, let’s
consider that the data bus width is 8-bits. Assume that four
specific data bits are taken to design the trigger logic e.g.,
data[0], data[3], data[4] and data[6]. The logic circuit outputs

Fig. 1: Capacitor-based Trojan trigger circuit proposed in [7].

(a)

Virtual

Memory

Physical

Memory

4KB Page

4KB Frame
5

4

3

2

1

0

3

2

1

0 V
ir

tu
al

 P
ag

e
N

u
m

b
er

s

(V
P

N
)

P
h

y
si

ca
l

F
ra

m
e

N
u

m
b

er
s

(P
F

N
)

VPN Offset

31 12 11 0

Virtual Address

(b)

VPN Offset

Virtual Address

CPU

TLB L1D Cache

L2 Cache

Main
Memory

Index

PPN Offset
IndexTag

Tag

Physical Address

VPN VA: Tag+Index

PA: Tag+Index

PA: PPN+Offset

Fig. 2: (a) Paging in a 32-bit address space with 4KB pages;
(b) cache hierarchy including TLB showing parallel access.

‘1’ if data[0] = data[3] = data[6] = 1 and data[4] = 0. In
practice, data bits with low activation probabilities can be
used to lower the overall probability of unintended assertion.

Whenever AddSET is written with P SET data pattern,
MOSFETs M1 and M3 turn ON and CTrojan charges up
from the V (P SET) via Fowler Nordheim (FN) tunneling
[11] through M2. Note that M2 has a thinner gate oxide
compared to other MOSFETs and its source and drain are
shorted (i.e. M2 behaves as a capacitor). M4 is an OFF
transistor which offsets the gate leakage of M5 and prevents
unwanted charging-up of node X2. M7 keeps node X3 as
low as possible until node X2 charges up sufficiently. The
node X4, that is charged up during the hammering process,
is used as the SET input of an SR latch. SR latch output
(VTr) transitions from 0→ 1 when X4 charges up to ∼0.5V
which requires NSET = 1837. The signal VTr is then used
to deploy the RF Trojan payloads.

The work [7] shows that adversary hammers for a duration
of TON and then stays idle for TOFF and repeats this
cycle. However, the circuit can still be triggered (minimum
TON% = 30) but with a higher NSET since CTrojan does
not significantly leak during the OFF cycle. Therefore, it
becomes even harder to prevent this Trojan activation using
system level techniques such as limiting consecutive accesses
to one particular address up to a threshold.
VRESET can be generated to deactivate the trigger by

writing to AddRESET for at least NRESET times with a
specific data pattern, PRESET and using a circuit similar to
the trigger one. A smaller CTrojan (∼1fF) can be used
in the RESET circuit to minimize the area (NRESET =
92). However, the AND’ed output of V (AddRESET) and
V (PRESET) can also serve as VRESET .

The trigger is robust and evades testing under worst-case

(a) (b) (c) (d)

Fig. 3: SRAM (a) bitcell, (b) stand-by mode, (c) read mode, (d) write mode.

process and temperature variation [7]. Trigger area/static
power are both < 0.0001% of that of a typical memory [12].

B. System Architecture Overview

We consider a X86 microprocessor architecture with L1
(separate instruction and data) and L2 caches, where the L1
cache is virtually indexed and physically tagged to improve
performance, and the L2 cache is physically indexed. The
L1 d-cache is direct-mapped to improve hit times, while the
unified L2 cache is set-associative to reduce miss rates. The
system runs a standard Linux kernel with paging enabled and
a flat linear address space (transparent segmentation).

Memory Paging: Applications running on a specific CPU
architecture have their complete view of the memory (known
as the virtual address space) addressable by the CPU. The
physical memory (and the physical address space) is limited,
and so the virtual address space is divided into smaller
chunks known as virtual pages (Fig. 2a) that are mapped to
the physical memory as physical frames. The corresponding
mapping information (virtual page → physical frame) is
stored in a per-process page table in the OS kernel, and also
cached onto a hardware TLB in the CPU.

Cache Memory: Modern CPUs are equipped with multi-
level caches to improve memory access latency. The cache
hierarchy is shown in Fig. 2b. Each CPU core has two levels
of cache memory, the L1 and L2 cache. In multi-core CPUs,
a L3 cache is also present, and is shared between all the
cores. The L1 cache is closest to the core and is typically
small to enable fast access. The L1 cache is also split into
instruction and data caches. Each cache line is mapped to a
portion to the memory. The lower order bits of the address
is used to index the cache line, while the higher order bits
are used as the cache tag. A tag match for a particular index
signifies a cache hit. For the L1 cache, this mapping is done
with the virtual memory instead of the physical memory.
This allows the system to quickly look-up the data without
the need for a virtual to physical address translation (which
increases the access time). At the same time, the virtual
address is also sent to the paging unit for address translation.
If the data is found in the L1 d-cache, the lookup is complete.
However, if there is a L1 miss, L2 cache is queried. L2
cache is physically indexed, and is larger than L1. L2 is
also mapped set-associative with the physical memory, so
that data is infrequently replaced in the cache. While the L1
cache is being queried, the address translation is done by
the TLB. For a L1 miss, the translated physical address is

used to query the L2 cache, and thereafter the lower memory
hierarchy. We implement the Trojan trigger in the L1 d-
cache. This is to provide the adversary with higher control
of the trigger address, since the adversary can compute the
virtual addresses that can direct-map to the L1 d-cache line
where the trigger is implemented. We target the L2 cache
to deploy the Trojan payload because the data is allowed to
persist in the L2 longer than L1. The Trojan payload can
also be deployed in the L1 cache, however, this can reduce
the possibility for a successful data leak exploit, since the
data in the L1 is likely to be replaced frequently. In systems
with L3 caches, the payload can also be deployed in the L3.
This has the benefit of increasing the window of opportunity
for a successful exploit. However, in multi-core systems, L3
is shared between the cores. Hence, a payload in L3 can
inadvertently corrupt data for processes sharing that data.

III. SRAM ARCHITECTURE AND DESIGN TRADE-OFF

In this section, we present the basics of SRAM, SRAM
architecture and write-ability/read-ability trade-off of SRAM.

A. Basics of SRAM

Fig. 3a shows the schematic of 6T-SRAM bitcell. During
read operation, Bitline (BL) and BL are precharged to V dd
and Wordline (WL) is asserted. If the cell stores data 1 (0),
BL voltage stays precharged (discharge) and BL discharges
(stay precharged). Sense amp outputs the data based on the
voltage difference of BL and BL. During write operation,
BL (BL) is driven to V dd (0) for writing data 1 (0). Next,
WL is asserted and the node Q charges (discharges) to V dd
(0). The node holds the data since the back to back connected
inverters (M 1-M 2 and M 3-M 4) ensures data stability.

B. SRAM Architecture

Conventionally, every global column of SRAM consists of
several local columns that share a single sense amp and write
driver (Fig. 4). Each local column has several bitcells (one
in every row). However, only one bitcell from each global
column can be written or read at a time. SRAM has three
modes of operation:

1. Stand-by: In this mode, all the bitlines of same global
column are precharged to V dd and and all wordlines are
driven to ground (Fig. 3b) to hold their data.

2. Read: In this mode, all bitlines are precharged to V dd.
However, the cell to be read is selected through asserting the
corresponding wordline and read column select. In Fig. 3c,

TABLE I: SRAM Cell Design Metrics
Feature M5/M6 M1/M3 M2/M4

Write-ability ↑ ↓ ↓
Read Stability ↓ ↑ ↑
Access Time ↑ ↑ -
Hold-ability - Balance pull up/down

Leakage ↓ ↓ ↓
Area ↓ ↓ ↓

WL[0] is asserted and BL[0] and BL are connected to sense
amp (through read column select) in order to read Cell 1.

3. Write: In this mode, all the bitlines of same global
column are still precharged to V dd. The BL (BL[0]) of the
Cell 1 is discharged to zero via write column select to write
1 (0) (Fig. 3d). The wordline WL[0] is also asserted during
the write operation. Note that in this case Cell 2 is in pseudo-
read and can be disturbed.

C. Write-ability and Read-ability Trade-Off

For better write-ability, the access transistors M 5/M 6
should be stronger while the pull up transistors M 2/M 4 and
pull down transistors M 1/M 3 should be weaker. For better
read-ability, its the other way around. Balanced pull up/down
transistors are needed for hold stability. Table I summarizes
the trade-off for different conditions. ↑ and ↓ means stronger
and weaker transistor respectively.

SRAM design becomes difficult considering the above-
mentioned trade-off. Furthermore, increased process varia-
tion at scaled technologies and the need for low voltage
operation (to reduce power) impose further challenges. For
example, threshold voltage of the SRAM transistor can incur
30mV variation per σ [14]. Therefore, different read/write
assist techniques such as, WLUD [8], negative bit-line [9]
are implemented in the state-of-the-art SRAM. Furthermore,
power gating is implemented to reduce the leakage power
in the stand-by mode. In the next section, we explain these
advanced techniques and describe impact of adversarial ma-
nipulation to cause read/write fault and information leakage.

We have used 22nm PTM technology [15] for SRAM
circuit simulation with 0.8V of supply voltage.

Fig. 4: SRAM architecture for read and write operation
showing global and local columns.

IV. SRAM ASSIST AND ATTACK MODELS

In this section, we present SRAM advanced assist tech-
niques and methods to exploit their vulnerabilities

A. WLUD (Prevents Read Disturb)

Node Q or Q, whichever is at 0V, incurs a disturb during
a read operation. If the disturb voltage crosses the trip
point of the other inverter, the data can flip. WL voltage
is underdriven to V dd−∆ instead of V dd (Fig. 3c) to reduce
the disturb voltage. Fig. 5a shows two techniques proposed
in prior work on WLUD [13], [8].

Inducing Read Disturb: Adversary can manipulate
WLUD in several ways. For example, a PMOS, M 3 with
higher (W/L) compared to M 2 can be inserted in parallel
with M 2 (Fig. 5b) for circuit T1 [13] of Fig. 5a. If both
PMOS (M 2/M 3) are asserted at the same time, WL voltage
becomes higher than V dd−∆. Similarly, a PMOS M 5 shown
in Fig. 5b can fight with M4 to increase the WL voltage.
Note that these malicious transistors are only asserted once
the Trojan gets activated and generate V Tr (Fig. 1).

A higher wordline voltage can cause read disturb to the
weaker bits. This means that the target cell needs to be
weak (due to process variation) for a successful read disturb.
Simulation results indicate that if the wordline is driven to
0.8V instead of 0.6V during read operation, the cells with
more than 5σ variation incurs read disturb (corresponding
error rate = 5.73 × 10-5%). Adversary can intentionally
implement low/high threshold voltage (LVT/HVT) to both
access transistor/pull down network of chosen SRAM cells
to make them vulnerable. Simulation results indicate that
adversary can increase (decrease) threshold voltage of pull
down (access) transistors by 150mV and disable the under-
drive technique to create a definitive read disturb. Fig. 5c
shows the simulation result. Note that these chosen cells do
not incur read disturb with WLUD (0.6V) indicating that
this kind of fault injection evades testing. We call this as
Wordline Overdrive (WLOV) Trojan.

B. Negative Bitline (Assists Write)

BL (BL) can be driven to negative voltage instead of 0V
for writing data ‘0’ (‘1’). This improves access transistor
strength (more VGS) for reliable write (Fig. 6a).

Inducing Write Error: Adversary can disable NBL that
can cause write errors. The strong bits (intentionally designed
or process variation created) that cannot be written without
NBL fails. Fig. 6b shows the corresponding result. We call
this as NBLW Trojan.

Information Leakage: The idea is depicted in Fig. 6c. It
is assumed that victim and adversary have control over Cell 1
and Cell 2, respectively. The corresponding BLs and BLs of
this two cells are coupled through Trojan transistors (switch).
If the switch is activated (by VTr from Trojan trigger), the
data will be copied to Cell 2 whenever the victim writes to
Cell 1. The adversary can read Cell 2 to leak victims write
data. Fig. 6d shows that the information is copied from Cell
1 to Cell 2 if NBL is implemented. Information leakage will
fail without NBL since the voltage of node Q goes back to its

(a) (b) (c)
Fig. 5: WLUD, (a) implementation circuits T1 [13] and T2 [8]; (b) circuit T1 and T2 modified by Trojan insertion; and, (c)
induced read error by manipulating the WLUD circuit.

(a) (b) (c) (d)

Fig. 6: (a) NBL circuit [9]; (b) NBL manipulation to induce write error; (c) & (d) Trojan insertion to leak information from
Cell 1 to Cell 2 by exploiting column multiplexing and leveraging NBL mechanism.

Fig. 7: Impact of interconnect resistance between two ad-
dresses that are being coupled for NBLI Trojan deployment.
previous state. This is true since NBL gives extra advantage
which ends up writing Cell 2. We call this as NBLI Trojan.

Note that BL precharge transistors should be disabled
during the data leakage in order to prevent any contention.
That can be done by inserting a PMOS transistor between the
precharge and the V dd. Another important point is that Cell
1 and Cell 2 in this example does not need to be located
side by side. In order to investigate that, we coupled the
BLs and BLs with a pass transistor (for full swing) and
considered a series resistance to model the metal resistance,
R to connect both BLs/BLs. The result is shown in Fig.
7. A high resistance leads to a high voltage drop across it
and therefore, Cell 2 does not get enough voltage headroom
to get written. We conclude that R can be up to 1000Ω for
NBLI to leak the cache data. However, adversary can also
leverage upper metal layers to keep R within the limit.

C. Power Gating (Saves Power)

SRAM is power gated during stand-by mode. Various
settings are employed to sleep the cache depending on wake-
up requirement. For example, C1 sleep lowers the SRAM
voltage mildly in anticipation of quick wake-up whereas

(a) (b)
Fig. 8: (a) Hold SNM decreases as sleep voltage is lowered
(to save power); (b) hold error rate increases considering
process variation at lower supply voltage.

C6 lowers the SRAM voltage to maximum possible value
during hibernation. Both PMOS (header) and NMOS (footer)
based sleep have been proposed to cut down Vdd and GND,
respectively. A binary sized (e.g., W, 2W, 4W etc.) parallel
PMOS/NMOS bank is used as header/footer to control the
sleep voltage. For maximum sleep all transistors in the bank
could be turned OFF. Note that, the sleep setting is optimized
after post-Silicon test and therefore, maximum/large sleep
settings may not be used to ensure data retention. However,
the Trojan can enable maximum sleep to launch DoS attack.
We call this as Retention Trojan.

Fig. 8a shows that the hold Static Noise Margin (SNM)
reduces at scaled sleep voltages (due to power gating). SNM
also decreases with higher temperature. This indicates that
the adversary can corrupt the bits by applying excessive
power gating (i.e, lower sleep voltage). We have performed
a 1000 point Monte-Carlo analysis on SRAM with mean
threshold voltage for PMOS = -0.4606V and NMOS =
0.5031V with 120mV (4σ) absolute variation at T = 25◦C.

(a) (b)
Fig. 9: (a) SRAM write time increases as WL voltage is
reduced; (b) write error rate increases considering process
variation at various WL voltages.

The result is shown in Fig. 8b. We note that no error is
incurred if the sleep voltage is scaled down to 0.6V from
0.8V. However, if the adversary tweaks the sleep setting to
reduce the sleep voltage to 0.4V, about 10% of the cells may
loose their data (considering min SNM = 100mV at T =
25◦C). Adversary can also implement similar technique, T2
shown in Fig. 5a to further reduce sleep voltage.

D. Enabling WLUD During Write

Adversary can enable WLUD during write operation by
implementing a Trojan NMOS controlled by VTr in parallel
with transistor M4. In this case, the access transistor will
get lower gate to source voltage even with NBL (same as
without NBL) leading to a write failure. Fig. 9a shows that
SRAM write time (i.e., time to switch the node voltage
after WL assertion) increases as WL voltage is lowered.
The figure also shows the temperature dependency. Next,
we performed a 1000 point Monte-Carlo analysis on SRAM
write operation with the same setup as before for varying
WL voltages at T = 25◦C. The result is shown in Fig.
9b. We conclude that if the WL voltage is reduced to 0.7V
and 0.6, the corresponding write error increases to 14% and
40.8%, respectively. We call this as WLUD Trojan.

E. Area and Power Analysis of the Payloads

Table II summarizes the area/power overheads for 1-bit
Cache Trojans along with their use case. However, we didn’t
consider the parasitics of interconnects since they only affect
the delay. Note that all the Trojans are implemented in
the peripheral area where there are enough empty space.
Furthermore, accurate measurement and estimation of the
power profile is the key to detect attacks [16]. Techniques
such as [17] can provide accurate characterization of power
consumption in digital systems. However, static power con-
sumed by the Trojans (as shown in Table II) is so little that
it could be overshadowed by process variation and thermal

TABLE II: Features of the Proposed 1-bit Cache Trojans
Trojan Static Dynamic Area Use

Power (nW) Power (µW) (µm2) Case
WLOV 0.0024 1.1 0.0027 DoS
NBLW 0.001 0.34 0.0036 DoS
NBLI 0.004 1.3 0.0144 Data Leak

Retention 0.002 0.28 0.048 DoS
WLUD 0.0024 1.1 0.0027 DoS

Fig. 10: Control signal for NBLI Trojan.

noise. Therefore, we can conclude that the static power
overheads of the Trojans is negligible. The dynamic power
of some cases is high. However, they will only occur one
time (when Trojan gets activated). The area/static power are
both < 0.0001% of that of a typical memory [12].

F. Delay Analysis of the Trigger and Payloads

The Trojan trigger circuit or the payloads will add de-
lays. For example, the gate of M1 and M3 transistors are
connected with the wordline enable signal of AddSET .
Therefore, that address will see an increased delay. However,
note that the wordline of AddSET is driving 512 access
transistors (for a 512bit cache line). Driving two more small
size transistors increases its load by 0.4%. Due to process
variation, this delay addition by the Trojan trigger can not be
detected. Note that the adversary can add two minimal size
back to back inverters between the wordline enable signal of
AddSET and the gate of M1 and M3 transistors. This will
lower the delay addition even further.
Similarly, the payload delays are also minimal since they
are implemented using 1 or 2 basic gates or transistors.
Furthermore, they are only turned ON when the Trojan is
activated. Therefore, during the post-Silicon hardware Trojan
detection, the Trojan needs to be activated which is not
feasible. In summary, the delay addition by the Trojan trigger
or the payloads are insignificant and may not be leveraged
to detect Trojan during post-Silicon testing.

V. INFORMATION LEAKAGE ATTACK DEMONSTRATION

In this section, we describe and demonstrate an attack on
L2 cache to leak information using NBLI Trojan.

A. Attack Description

The example of information leakage attack in Fig. 6c uses
VTr as control signal which is always ON once the Trojan
trigger of Fig. 1 gets activated. However, in practice, the
shorting should be enabled only when the victim address is
getting written after the trigger is activated. Fig. 10 shows
the required control logic. Adversary hammers AddSET of
L1 d-cache with PSET data pattern NSET times to activate
the Trojan trigger of Fig. 1 (i.e. VTr = 1). Next, when there
is a context switch and a write operation is performed by the
victim process to Addx (i.e. V (Addx) = 1), VNBLI becomes
1 and VNBLI becomes 0. Therefore, the pass transistor which
shorts the BLs/BLs of Addx and Addy (two cache lines in
L2), gets turned ON. This copies the data to Addy . The
attack is demonstrated in the next subsection.

The area/static power/dynamic power of the control
logic are 0.0099µm2/0.046nW/0.6µW. For a 64bit data
leakage, the total area/static power/dynamic power are
0.93µm2/0.302nW/83.8µW which includes overheads for the
control logic along with the data copy. The dynamic power is
high since it effectively writes another cache line. However,
this will incur only after the trigger is activated.

B. Attack Demonstration

We describe a simple proof-of-concept attack. The goal is
to gain access to data from process’s address space which
would typically not be accessible to an adversary. Let us
consider a single victim process which accesses a certain
memory location T that is initialized (written) with a specific
bit pattern, and then repeatedly accessed. The number of
accesses to the location is controlled by a user input N .
The memory location T is mapped to the L1 d-cache line
AddSET . Let us also assume that the process stores some
‘secret’ data in memory location S, which is mapped to
the L2 cache line Addx. This ‘secret’ data is not available
for the user to view in its raw form. This can happen for
example, in a program which performs encryption/decryption
in software by using some cryptographic keys. The keys
will not be available to the user, but it may still be loaded
into the process’s memory. The goal of the adversary posing
as the user is to obtain the secret cryptographic key, using
some existing input/output operation in the program. The
process also reads back and prints data from location P to the
user. Address P is mapped to the L2 cache line Addy . The
adversary interacts with the victim program by controlling
N , and forces it to print the secret data using the code which
normally prints from location P .

The malicious Cache-Out Trojan trigger is placed in the
L1 d-cache line AddSET , that monitors its access for NSET

times. This action activates the trigger which generates a sig-
nal for the Trojan payload. The payload deployment circuit
is placed in the L2 cache. When the payload is deployed,
the cache lines Addx and Addy are shorted. Thereafter, any
writes to Addx maliciously copies the data to Addy .

The example program is shown in Listing 1. The adversary
initially provides n (N) as 2000, which is larger than NSET

(= 1837). This makes the process hit the L1 d-cache
line AddSET mapped to addr t (0x602010) for at least
NSET times, which serves as the trigger for the Trojan. The
activated Trojan shorts the addresses addr s (0x602030,
mapped to L2 cache line Addx) and addr p (0x602050,
mapped to L2 cache line Addy). In our example program,
the process writes to addr s ten integers from 1 to 10 in a
loop. The process prints data from addr p and gains access
to the data from addr s. Fig. 11 shows the program output.

In this example, the victim program coincidentally hap-
pened to work in favor of the Trojan, which may not be
the case in reality. However, the adversary can use the same
attack methodology to write his own malicious program with
the knowledge of the address (T) which the Trojan uses as a
trigger, the number of accesses required to trigger the Trojan
(N), and the cache line mappings of secret data S and public

1 void main() {
2 int *addr_t, *addr_s, *addr_p;
3 int i, data;
4

5 /* N: Number of accesses to trigger address,
minimum 1837 */↪→

6 int n = 2000;
7

8 /* T: Address of trigger; value initialized */
9 addr_t = (int*)malloc(sizeof(int));

10 *addr_t = 10;
11

12 /* S: Address of secret data */
13 addr_s = (int*)malloc(sizeof(int));
14

15 /* P: Address of public data */
16 addr_p = (int*)malloc(sizeof(int));
17 *addr_p = 0;
18

19 /* Before Trojan activation, P points to public
data */↪→

20 printf("## Before Trojan is activated ##\n");
21 printf("addr_t = %p\tvalue = %d\n", addr_t,

*addr_t);↪→

22 printf("addr_s = %p\tvalue = %d\n", addr_s,
*addr_s);↪→

23 printf("addr_p = %p\tvalue = %d\n", addr_p,
*addr_p);↪→

24

25 /* Trigger the Trojan by N accesses to T */
26 for (i = 0; i < n; i++) {
27 data = *addr_t;
28 }
29

30 /* After Trojan activation, write to S and read
from P */↪→

31 printf("## Trojan activated ##\n");
32

33 for (i = 1; i <= 10; i++) {
34 *addr_s = i;
35 printf("addr_p = %p\tvalue = %d\n", addr_p,

*addr_p);↪→

36 }
37 }

Listing 1: Example attack code using the Cache-Out Trojan

data P . Here, S is in a page frame of the victim process,
while P and T are in the adversary’s exploit program.

We modeled the effects of Cache-Out Trojan in GEM5
[18]. The system is designed with an AtomicSimpleCPU
model running a single core at 1GHz emulating a X86
architecture, with L1 and L2 caches, and connected to a
512MB DDR3 physical memory. L1 I-Cache is 32KB and L1
D-Cache is 64KB, while L2 cache is 2MB. Each cache line
is 64bit wide. The MMU is configured with a 64 entry TLB.
We modified the GEM5 cache source code to implement
the address monitoring (trigger) in L1 d-cache, and address
shorting of two cache lines in L2 cache (payload). The attack
code in Listing 1 is compiled with gnu-gcc. The attack
is evaluated by running the compiled binary in the GEM5
systemWL. As seen in Fig. 11, we were successfully able
to read the data written to addr s by accessing addr p.

VI. DISCUSSION

In this section, we present discussion on the practicality
and scope of memory Trojans and their detection.

Fig. 11: GEM5 console output for the attack code in Listing
1. Note that P reads data of S after Trojan activation.

A. Scope of Attacks

Trigger and Payload Locations: The proposed Cache-
Out Trojan is most effective when the trigger is in L1 and
payload is in LLC. The trigger in L1 makes it easier to
activate it, since if it is repeatedly accessed, it is likely to
persist in L1 and cause higher read/write hits. The payload
in LLC ensures that the data is likely to get frequently
evicted, since LLCs typically have lower miss rates than
higher cache levels. This increases the chances of the pages
in the adversary’s exploit program and the victim program
to simultaneously reside in the cache, providing a higher
attach success. Cache-Out trigger/payload can also be placed
hierarchically closer in the cache (easier implementation)
with the trade-off being lower attack success rate.

Payload Coverage: In a real multi-process system, the
data in the caches are continuously updated and replaced. To
circumvent the issue of data replacement, the adversary may
have to run his exploit multiple times to repeatedly trigger
the Trojan and try to read from his controlled cache line.
Furthermore, the adversary cannot guarantee that the data in
the victim process will use the Trojan deployed cache line.
In this case, the Trojan payload can be sprayed in multiple
LLC cache lines, where each cache line shorting can be
activated by a different trigger address in the L1 d-cache.
Each Trojan payload can cover the entire set of addresses
in the main memory that map to the same victim cache line
in the LLC. The shorting of the cache lines can be between
any addresses in the adversary’s page and the victim’s page.
The implementation is easier if the physical location of the
two cache lines are closer, since it reduces the interconnect
distance. This is practical, since, in a SRAM layout, two
wordlines in neighboring banks may have logically distant
addresses irrespective of their physically location.

Trojan Use Cases: The Trojan can be deployed to launch
generic data-leakage exploits, or it can be tailored to a
specific victim program. The choice of the adversary’s cache
lines can be easily determined, since the exploit program is
written by the adversary. The adversary can easily profile
his exploit program in a cache simulator to determine the
probable cache lines his controlled addresses can map to. For
a generic exploit, the adversary has to randomly place the
payloads spread throughout the LLC. The adversary can then,

depending on the victim program, choose the trigger that
activates the payload that is most suitable for the program
based on its cache access pattern. For a more tailored exploit,
the adversary can profile the victim program and study its
cache access patterns. This will provide the adversary a more
accurate probable cache location for targeting the payload
for that program. The Trojan can then be designed to be
placed in those cache lines which are frequently used by
the application. An example of such attack may be the SSH
daemon which reads the user’s private key to perform SSH
authentication. The adversary can study the cache access
patterns of the daemon process and design the Cache-Out
Trojan payload based on the LLC access patterns of the
SSH daemon. The payload will effectively short the cache
line (S) that loads the SSH private key to an adversary
chosen cache line (P). He can then run his exploit code
based on the designed Trojan to read the SSH key through
his chosen address. A tailored exploit provides simplicity of
implementation; however, the adversary needs to have prior
access to the ‘golden’ chip design/RTL.

B. Fault Injection and DoS Attack

If read/write/retention failure occurs for one polarity (ei-
ther for data ‘0’ or ‘1’), it is considered as fault injection [19].
Such attack can leak system assets [20] such as, keys. One
example is when an adversary induces single-bit or multi-bit
faults in a cryptographic system and performs differential
fault analysis by observing correct and faulty pairs of inputs
and outputs and subsequently derives simplified equations to
extract the keys. Multiple methods for extracting keys using
fault injection have been extensively studied and demon-
strated [21]. However, if failure occurs for both polarities,
it is considered as DoS attack [19].

C. Evading Test and Detection

Trigger Detection: The concealment of the Trojan is
dependent on the stealth of the trigger, i.e., the likelihood
of the trigger being activated under test or normal usage.
Our trigger is activated with repeated access to a specific
address with a unique data pattern. In conventional memory
testing, each memory location is tested for successful write
and readback operation. During March tests, the test pattern
consists of a finite sequence of March elements consisting
increasing or decreasing address order of read and/or write
operations covering all memory cells. This is done to ensure
linear complexity of test time based on the size of memory.
However, such standard test procedures do not account for
multiple repeated write attempts to a memory location, nor
does it account for multiple repeated writes of various data
at the same address (significantly increases test time). Hence,
the trigger is unlikely to get detected under standard tests.

Memories often employ row-hammer detection techniques
to prevent data corruption. However, such techniques detect
continuous repetitive access (hammering) to the same ad-
dress. This, however, does not affect our trigger, since it can
still be activated without hammering, as long as the adversary
accesses the trigger address the required number of times.

Payload Detection: Since the payloads short two memory
locations on activation, this may reduce the resilience of the
cells in those locations after the Trojan is triggered. During
testing, this may get detected if some reads and writes fail
in those cells. However, this is only possible in the unlikely
event that the trigger is activated during testing. Extensive
delay/power profiling on the hardware may be able to detect
the payload due to the additional overhead, especially if
multiple payloads are deployed.

Bypassing Error Detection: In state-of-the-art memory,
techniques like Cyclic Redundancy Check (CRC) [22] or
Error Correcting Code (ECC) [22] is implemented. The
ECC and/or CRC word is computed for the raw data and
written along with data during write operation. During read
operation, CRC/ECC is again calculated based-on the read
data and matched with the stored CRC/ECC. If read or
even write operation incurs an error, CRCs/ECCs will not
match and the data can be discarded. Furthermore, ECC
can correct 1/2 bits of error (based on the ECC type). For
example, SECDEC ECC can detect double-bit errors and
correct single-bit error. Therefore, fault injection will fail
and adversary can only launch DoS. However, if the CRC or
ECC bits are also tampered to match the data with injected
fault, the manipulated data will be considered as valid data.

D. Countermeasures

The proposed countermeasures are described below. Their
coverage and associated overheads are presented in Table III.

L1 Address Obfuscation: Typically, L1 cache is virtually
indexed and physically tagged. However, this is a vulnera-
bility since adversary can hammer L1 cache using virtual
address. Therefore, L1 address obfuscation (using a PUF,
for example) to change virtual to physical mapping of L1
cache can add a layer of complexity on the adversary. This
is true since the predefined memory address can no longer be
hammered. Similar technique has been shown to be effective
in preventing side-channels in the cache [23].

Read/Write Followed by Validating Read: We propose
to read each address after they are written or read. This
will capture any write failure or read disturb caused by
the Trojans. For example, if a fault is injected during write
operation of one address, reading that address in subsequent
cycle will give a data that does not match with the original
write data. Therefore, write fault injection will be detected
even if ECC fails to catch it. Similarly, if read disturb
(corrupts the original stored data) occurs during read op-
eration, reading it again will output data that will not match
with the first read. Therefore, the read fault injection can
be detected. Note that, in case of read failure (e.g. sense
failure) both read operation may give the same data (if the
fault injection affects both reads) and the fault injection
may remain undetected. Furthermore, if the adversary targets
both read/write operation and verification, fault injection
will remain undetected. However, fault injection during both
read/write operation will require a significant overhead.

Read/write verification will incur, (i) area overhead due
to additional flops (64 flops occupy 7.56µm2 in 22nm

TABLE III: Coverage of the Proposed Countermeasures
Countermeasures Coverage Overhead

L1 address Obfuscation Prevents Trojan Area/Perf.Trigger
Read/Write Verification Fault Injection/DoS Area/Power/Perf.

Scrambling ECC Bits Fault Injection/DoS Routing
Information Leakage Overhead

Trusted ECC Fault Injection/DoS Routing
Information Leakage Overhead

technology, which is <0.001% of a L2 cache area [12]) for
holding the first read/write data; (ii) power overhead due to
additional read operation and extra flops 0.1µW/91.3µW of
static/dynamic power for 64 flops); (iii) performance over-
head due to extra read operation after every read/write. To
minimize the performance loss, the verification can be done
at the memory bank level instead of bringing the data to CPU.
However, this will prevent back-to-back accesses of a bank.
Note that that stretching the cache write operation by 1 cycle
in the L2 cache incurs a minimal performance loss of 0.2%
(based on SPEC CPU2000 benchmark simulations) [24].
Extending the technique to both L1/L2 caches result in 3.6%
performance overhead. Therefore, the expected performance
overhead of the proposed validation technique is very small.

Scrambling ECC Bits: Whenever a data is written to an
address, ECC circuit calculates the corresponding ECC and
stores it along with the write data. Therefore, if adversary
shorts the ECC columns in a similar way as data column
then data copy will go undetected. However, the column
multiplexing for ECC can be scrambled to switch the ECC
bit ordering. For example, ECC logical column n − 1 can
be written to physical column n + m and vice versa. More
complex logical to physical mapping can be implemented
too. If the adversary shorts/tampers the ECC bits blindly
without knowing the mapping, ECC for the data will not
match and data copy will be detected. This can also detect
fault injection/DoS attacks since adversary will not be able
to inject faults to ECC bits correctly without knowing the
mapping. If one particular address incurs frequent errors, that
can be marked corrupted and system can skip using it.

Note that adversary can inject the fault keeping the ECC of
original and fault injected data the same (i.e. ECC collision
attack). Such probability is 2-5 with 5 error correcting bits.
In that case, scrambling ECC cannot detect the attacks.

Trusted ECC: The current implementation of ECC adds
a few global columns in the cache. For example, if the data
width is 64 bit and ECC needs 5 bits, a total of 69 global
columns are implemented in the memory array. This is a
vulnerability since the ECC bits can also be tampered. We
propose to separate the ECC bits from the data bits and store
them in a trusted memory known to be Trojan free through
rigorous validation (possible due to small size). This way
the fault injection, DoS and information leakage attacks can
be detected since ECC bits can be checked to detect the
tampering at run-time (once Trojan is activated). However,
ECC collision attacks cannot be detected through trusted
ECC. Note that Trojan implementation is fairly complex for
ECC collision attacks since it needs to sense the data, find
another data with the same ECC to replace the original one.

VII. CONCLUSIONS

In this paper, we investigate the advanced circuit features
employed in the cache (SRAM) peripherals and show that
adversary can manipulate them to launch fault injection/DoS
attacks. The adversary can also leverage bitline shorting in
order to leak cache data. We demonstrate a data leakage
exploit using the Cache-Out Trojan in the GEM5 simulator.
Finally, we propose countermeasures to prevent the Trigger
and detect the Trojans payload.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan
Taxonomy and Detection,” IEEE Design Test of Computers, vol. 27,
pp. 10–25, Jan 2010.

[2] “Trusted Integrated Circuits (TRUST). [Online]. Available:
https://www.darpa.mil/program/trusted-integrated-circuits. Accessed:
Oct 28, 2018,” 2018.

[3] “The Big Hack: How China Used a Tiny Chip to Infiltrate U.S.
Companies. [Online]. Available: https://bloom.bg/2owldii. Accessed:
Oct 28, 2018,” 2018.

[4] “The Hunt for the Kill Switch. [Online]. Available:
https://spectrum.ieee.org/semiconductors/design/the-hunt-for-the-
kill-switch. Accessed: Oct 28, 2018,” 2008.

[5] T. Hoque, X. Wang, A. Basak, R. Karam, and S. Bhunia, “Hardware
Trojan Attacks in Embedded Memory,” in 2018 IEEE 36th VLSI Test
Symposium (VTS), pp. 1–6, April 2018.

[6] K. Yang, M. Hicks, Q. Dong, T. Austin and D. Sylvester, “A2:
Analog Malicious Hardware,” in 2016 IEEE Symposium on Security
and Privacy (SP), pp. 18–37, May 2016.

[7] M. N. Imtiaz Khan, K. Nagarajan, and S. Ghosh, “Hardware trojans
in emerging non-volatile memories,” in 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), pp. 396–401, March 2019.

[8] E. Karl, Y. Wang, Y. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya,
K. Zhang, K. Mistry, and M. Bohr, “A 4.6GHz 162Mb SRAM Design
in 22nm Tri-Gate CMOS Technology with Integrated Active VMIN-
Enhancing Assist Circuitry,” in 2012 IEEE International Solid-State
Circuits Conference, pp. 230–232, Feb 2012.

[9] S. Mukhopadhyay, R. M. Rao, J. Kim, and C. Chuang, “SRAM Write-
Ability Improvement with Transient Negative Bit-Line Voltage,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,
pp. 24–32, Jan 2011.

[10] U. Bhattacharya, W. Yih, F. Hamzaoglu, N. Yong-Gee, W. Liqiong, C.
Zhanping; J. Rohlman; I. Young, K. Zhang, “45nm SRAM Technology
Development and Technology Lead Vehicle,” in Intel Technology
Journal, vol. 12, pp. 111–120, June 2008.

[11] N. M. Ravindra and J. Zhao, “Fowler-Nordheim Tunneling in Thin
SiO2 Films,” Smart Materials and Structures, 1992.

[12] M. Chang and P. Rosenfeld and S. Lu and B. Jacob , “Technology
comparison for large last-level caches: Low-leakage sram, low write-
energy stt-ram, and refresh-optimized edram,” in 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA), pp. 143–154, Feb 2013.

[13] M. Yabuuchi and M. Morimoto and Y. Tsukamoto and S. Tanaka and
K. Tanaka and M. Tanaka and K. Nii , “16nm FinFET High-k/Metal-
gate 256-kbit 6T SRAM Macros with Wordline Overdriven Assist,” in
2014 IEEE International Electron Devices Meeting, Dec 2014.

[14] S. Ghosh, S. Mukhopadhyay, K. Kim, and K. Roy, “Self-Calibration
Technique for Reduction of Hold Failures in Low-power Nano-Scaled
SRAM,” in Proceedings of the 43rd Annual Design Automation
Conference, DAC ’06, (NY, USA), pp. 971–976, ACM, 2006.

[15] “22nm PTM Technology File [Online]. Available:
http://ptm.asu.edu/modelcard/lp/22nm˙lp.pm. Accessed: Feb 10,
2019,” 2018.

[16] J. Wu, Y. Shi, and M. Choi, “Measurement and evaluation of power
analysis attacks on asynchronous s-box,” IEEE Transactions on In-
strumentation and Measurement, vol. 61, pp. 2765–2775, Oct 2012.

[17] V. Konstantakos, K. Kosmatopoulos, S. Nikolaidis, and T. Laopou-
los, “Measurement of power consumption in digital systems,” IEEE
Transactions on Instrumentation and Measurement, Oct 2006.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, Aug. 2011.

[19] M. N. I. Khan and S. Ghosh, “Fault injection attacks on emerging
non-volatile memory and countermeasures,” in Proceedings of the 7th
International Workshop on Hardware and Architectural Support for
Security and Privacy, HASP ’18, pp. 10:1–10:8, ACM, 2018.

[20] Bhattacharya, Sarani and Mukhopadhyay, Debdeep, “Formal Fault
Analysis of Branch Predictors: Attacking Countermeasures of Asym-
metric Key Ciphers,” Journal of Cryptographic Engineering, vol. 7,
pp. 299–310, Nov 2017.

[21] S. Bhasin and D. Mukhopadhyay, “Fault injection attacks: Attack
methodologies, injection techniques and protection mechanisms,” in
Security, Privacy, and Applied Cryptography Engineering, Springer,
2016.

[22] G. -H. Asadi and M.B. Tahoori, “Soft Error Mitigation for SRAM-
based FPGAs,” in 23rd IEEE VLSI Test Symposium (VTS’05), pp. 207–
212, May 2005.

[23] F. Liu, “Newcache: Secure cache architecture thwarting cache side-
channel attacks,” IEEE Micro, vol. 36, Sep. 2016.

[24] A. Goel, P. Ndai, J. P. Kulkarni, and K. Roy, “Read/access-preferred
(reap) sram - architecture-aware bit cell design for improved yield and
lower vmin,” in 2009 IEEE Custom Integrated Circuits Conference,
pp. 503–506, Sep. 2009.

