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Abstract— Virtual machine (VM) replication is an effective
technique in cloud data centers to achieve fault-tolerance, load-
balance, and quick-responsiveness to user requests. In this paper
we study a new fault-tolerant VM placement problem referred to
as FT-VMP. Given that different VM has different fault-tolerance
requirement (i.e., different VM requires different number of
replica copies) and compatibility requirement (i.e., some VMs
and their replicas cannot be placed into some physical machines
(PMs) due to software or platform incompatibility), FT-VMP
studies how to place VM replica copies inside cloud data centers
in order to minimize the number of PMs storing VM replicas,
under the constraints that i) for fault-tolerant purpose, replica
copies of the same VM cannot be placed inside the same PM and
ii) each PM has a limited amount of storage capacity. We first
prove that FT-VMP is NP-hard. We then design an integer linear
programming (ILP)-based algorithm to solve it optimally. As ILP
takes time to compute thus is not suitable for large scale cloud
data centers, we design a suite of efficient and scalable heuristic
fault-tolerant VM placement algorithms. We show that a) ILP-
based algorithm outperforms the state-of-the-art VM replica
placement in a wide range of network dynamics and b) that all
our fault-tolerant VM placement algorithms are able to turn off
significant number of PMs to save energy in cloud data centers.
In particular, we show that our algorithms can consolidate (i.e.,
turn off) around 100 PMs in a small data center of 256 PMs and
700 PMs in a large data center of 1028PMs.

Keywords – Fault-Tolerance, Virtual Machine Placement,
Cloud Data Center

I. Introduction

Virtual machine (VM) replication is an effective technique
in cloud data centers [14]. By replicating VMs and placing
their replica copies into different physical machines (PMs) of
the cloud data centers, it not only achieves fault-tolerance of
VM applications in the event of PM failures, reduces cloud
user access latencies, but also distributes the user requests
to VM copies at different PMs thus reducing and balancing
server loads. As such, VM replication has been a popular
practice in production data centers such as Amazon Simple
Storage Service (Amazon S3) [1] and Microsoft Azure [2]. For
example, Amazon S3 Replication can automatically replicate
S3 objects across different AWS Regions while data in an
Azure geo-redundant storage is always replicated three times
in the primary region [1, 2].

However, VM replications bring a few challenges to cloud
data center operators. First, for the fault-tolerant purpose, it
is preferred that multiple replica copies of the same VM
application are placed into different PMs (we refer to this
as fault-tolerance constraint of VMs). This way, in the event

of failures of some PMs, it is hoped at least one copy of
each VM (either the original one or the replica copy) can
still survive and execute to satisfy the user requests. Conse-
quently, such fault-tolerance requirement needs more PMs to
be turned on in order for the VM copies to be accessed. This
unfortunately exacerbates the power consumption in cloud data
centers, which already generates between 1.1% and 1.5% of
the total electricity use worldwide and is projected to rise
even more [21]. In particular, the energy consumption of
PMs contributes a large portion (upto 40-60%) of the total
consumption of a data center. Second, as more VM copies need
to be created and placed unto cloud data centers, it consumes
more cloud resources (i.e., CPUs, storages and memories,
and I/Os). However, each PM in cloud data center still has
limited amount of such cloud resources. We refer to it as
resource capacity constraint of PMs. Third, due to software
and platform compatibility, not all the VM replica copies can
be placed onto all of the PMs. For example, VMware ESXi [6],
a type-1 hypervisor for deploying and serving virtual comput-
ers, requires the users to use the VM compatibility setting to
select the ESXi host when creating a new VM or upgrading an
existing VM. The compatibility setting determines the virtual
hardware available to the VM including virtual PCI slots,
maximum number of CPUs, maximum memory configuration
available to the VMs, and other characteristics. We refer to
this requirement as compatibility constraint of VMs to PMs.

These challenges become more formidable in large scale
production data centers, which run hundreds of thousands of
VMs on many popular virtualization platforms including Citrix
XenServer [3], Microsoft Hyper-V [4], Red Hat KVM [7], and
VMware vSphere [8] while accommodating a wide range of
service level agreements (SLAs) of fault-tolerance from large
number of cloud users. Therefore how to achieve fault-tolerant
and energy-efficient VM placement while addressing aforesaid
challenges becomes an important research problem.

In this paper, we propose FT-VMP: fault-tolerant virtual
machine placement to tackle those challenges. In our model,
a set of VM applications submitted by cloud users, referred to
as original VMs, have already been created and placed inside
some PMs of the cloud data center. We assume that the PMs
with original VMs cannot be turned off as original VMs are
running on these PMs. The fault-tolerance SLA requires that
a number of replica copies (referred to as VM replicas) to be
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made and placed into the cloud data center.1 The goal of FT-
VMP is to place required number of VM replica copies into
the cloud data centers in order to minimize the total number
of active PMs while satisfying the fault-tolerance constraint
of VMs, compatibility constraint of VMs to PMs, and the
resource capacity constraint of PMs.

We formally formulate FT-VMP as a graph theoretical
problem and prove that it is NP-hard. We then design an
integer linear programming (ILP)-based algorithm to solve it
optimally. As ILP is not scalable to large scale cloud data
centers, we design a suite of efficient and scalable heuristic
algorithms for FT-VMP. We compare our algorithms with the
state-of-the-art fault-tolerant server consolidation algorithm
[18], which considers all above three constraints and with
the same goal of minimizing active PMs. We show that
a) ILP-based algorithm outperforms the state-of-the-art VM
replica placement in a wide range of network dynamics and
b) that all our algorithms are not only fault-tolerant, but also
energy-efficient, being able to turn off PMs to save energy. In
particular, we show that our algorithms can consolidate around
100 PMs in a small data center of 256 PMs and 700 PMs in
a large data center of 1028PMs.

Finally, we study another relevant problem – Given an
instance of FT-VMP, can all the replica copies be placed inside
the cloud data centers without violating the fault-tolerance,
compatibility, and resource capacity constraints? We refer to
it as feasibility problem of FT-VMP. Finding if any given
instance of FT-VMP is feasible is critical to achieve efficient
operation of a cloud data center. As it enables data center
operators to determine whether the required fault-tolerance
SLAs from users can be satisfied or not before implementing
them, it saves both capital and operational expenditures of
cloud data centers. We formulate this feasibility problem
formally and solve it by designing a maximum flow-based
efficient algorithm. The algorithm is executed on a flow
network that is intricately transformed from the data center
network while encoding all the constraints presented in FT-
VMP. After feasibility is being checked that it is possible
to achieve fault-tolerance VM placement with this instance,
then we apply different algorithms to solve fault-tolerance
VM placement designed in this paper. To the extend of our
knowledge, all the existing fault-tolerant VM placement work
didnot identify and solve this important problem.

Paper Organization. The rest of the paper is organized
as follows. Section II gives an overview of the related lit-
erature and the state-of-the-art fault-tolerant VM placement
techniques. In Section III, we formulate the FT-VMP problem,
prove its NP-hardness, and solve the feasibility problem of
FT-VMP. Section IV presents the different algorithms for
FT-VMP, including ILP-based optimal algorithm and two
efficient heuristic algorithms. In Section V, we compare all the
proposed algorithms with the state-of-the-art [18] and discuss
the results in details. Section VI concludes the paper with some

1In literature, original and replica VMs are also referred to as primary and
backup VMs respectively [24].

possible future work.

II. Related Work
There are different fault-tolerance metrics and mechanisms

proposed for VM placement in cloud data centers. Machida et
al. [20] proposed a k-fault tolerance VM placement method for
consolidated server systems. It ensures that the simultaneous
failure of any k PMs would not make the service unavailable.
As k fault-tolerance is configured based on the hardware
provisions, this metric is from the cloud service provider’s
perspective. In contrast, as our model addresses fault-tolerance
from SLA perspective where different cloud users can request
different number of replica copies, it provides more flexible
customization of fault-tolerance for cloud users. Recently
Zhou et al. [24] et al. further improved k-fault tolerance by
tackling failure recovery of VM replica placement. It proposed
a redundant VM placement approach to minimize network
resource consumption to reassign tasks from a failed primary
VM to a backup VM under the k-fault tolerance constraints.
However, it only focused on the network resource (e.g.,
bandwidth and energy) consumption and does not consider
energy consumption of PMs.

Zhou et al. [25] observed that k-fault tolerance replication
strategies ignore the switch failures and thus cannot achieve
the best effect. They designed a (m,n)-fault tolerance VM
placement algorithm where m redundant PMs are prepared so
as to keep n PMs running at any m PM failures. Luo et al. [19]
studied single-point failure tolerance and proposed a multi-
objective particle swarm optimization algorithm. Goudarzi
and Pedram [14] considered another different fault-tolerance
model. They assumed that each client can have multiple VM
copies placed and executed simultaneously on different PMs,
where each VM copy computing one part of the task requested
by the client. They considered a linear PM energy model
wherein more load on a PM means more energy consumption.
As different PMs have different types with different CPU
power, memories, and bandwidths, it needs to compute how
many VM copies are needed for each client and where to place
them, in order to minimize the energy cost of the active PMs.

All above VM replication work considered either network
resource consumption or PM energy consumption, but not
both. In our previous work [18], we proposed an energy-
efficient VM replication mechanism that considers power
consumptions on PMs as well as on edges and switches inside
the data center networks. It has two steps. First it proposed a
minimum cost flow-based optimal algorithm that minimizes
the energy consumption of distributing VM replica copies
inside the data center networks. It then proposed a server
consolidation algorithm to migrate VM copies around PMs
in order to turn off more PMs to save energy. However, the
proposed server consolidation algorithm (Algorithm 1, [18])
is a heuristic algorithm that does not have any performance
guarantee. In this paper, we formally tackle this problem
and propose one ILP-based optimal solution and two efficient
heuristic algorithms. We show via extensive experiments that
they outperform our previous work most of the time.
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A few recent cloud fault-tolerant systems that are not

directly related to VM replication and placement are reviewed
below. Zheng et al. [23] proposed a component ranking
framework, named FTCloud, for building fault-tolerant cloud
applications. It employed component invocation structures and
invocation frequencies for making significant component rank-
ing. Zhou et al. [26] enhanced network and storage resource
usage in a cloud data center used checkpointing, a basic fault-
tolerant mechanism that periodically saves the execution state
of a VM as an image file. In particular, the identical parts of
all VMs that provide the same service are check-pointed as
service image s that can be shared by other VMs to reduce
the storage resource consumption. Xu et al. [22] proposed
that multiple correlated VMs and their backups are grouped
together to form a Survivable Virtual Infrastructure (SVI) for
a service or a tenant. It determined how to map each SVI to
a physical data center network such that operational costs are
minimized subject to that each VM’s resource requirements
and bandwidth demands between VMs can be guaranteed.

The most relevant work to ours is by Gupta et al. [15]. They
modelled the server consolidation problem as a variant of the
bin packing problem [12] where items to be packed are the
servers being consolidated and bins are the target servers. They
considered both item-item and bin-item incompatibilities and
proposed a two-stage heuristic algorithm. Their item-item and
bin-item incompatibilities are essentially the fault-tolerance
constraints of VMs and compatibility constraints of VMs to
PMs addressed in our paper. However, in our work, as each
VM and its replicas are of unit sizes, it is not a variant of
the bin packing problem (more discussion in Theorem 1).
With this assumption, instead of giving a two-stage heuristic
algorithm, we are able to present an optimal ILP based solution
as well as proving the NP-hardness of this problem. Finally,
it didnot specifically target the problem of fault tolerance VM
placement and its related feasibility problem, which are the
topics of this paper.

III. Problem Formulation of FT-VMP
In this section, we first present the system models and

problem formulation of FT-VMP. We then prove that FT-VMP
is NP-hard by reducing from the vertex coloring problem [12].
Finally, we study feasibility problem of FT-VMP, and design
an efficient algorithm to solve it.

A. Problem Formulation and NP-hardness.

System Models. We illustrate the problem and solutions using
fat tree data center topology [9], shown in Fig. 1. However,
as our problem and solutions are applicable to any data center
topologies, we model a data center as a general graph G(V =
Vp ∪ Vs, E). Here Vp = {1, ..., |Vp|} is a set of |Vp| PMs and
Vs = {|Vp|+1, ..., |V |} is a set of |V | − |Vp| switches. E is a
set of edges; each edge represents a physical link that exists
either between the switches or between switches and PMs.

In our model, there are initially a set of l distinct original
VMs Vm = {v1, v2, ..., vl} that are submitted to the data center
and they are currently be executed. Here vj (1 ≤ j ≤ l) is

TABLE I
NOTATION SUMMARY

Notation Description
Vp Vp = {1, ..., |Vp|} is the set of |Vp| PMs
Vs Vs = {|Vp|+ 1, ..., |V |} is the set of |V | − |Vp| switches
Vm Vm = {v1, v2, ..., vl} is the set of l original VMs
s(j) s(j) ∈ Vp is the source PM of original VM vj
Vd Vd ⊆ Vp is the set of source PMs
rci Resource capacity of PM i, 1 ≤ i ≤ |Vp|
rcei Effective resource capacity of PM i, 1 ≤ i ≤ |Vp|
rj rj ≥ 0 is the number of replica copies required for VM vj
R R = max{r1, r2, ..., rl}
C(j) C(j) ⊂ Vp is the compatibility set of vj , i.e., the set of PMs

that vj and its replica can be placed into
vj,k The kth replica copy of VM vj , vj,0 is original VM vj
r(j, k) Placement function that places v(j, k) at PM r(j, k)
yi yi = 0 if PM i is turned off, yi = 1 if i is turned on
xi,j,k xi,j,k = 1 if r(j, k) = i, 0 otherwise

1

: PM : Replica VM: Original VM

2 163 4 5 6 7 8 9 10 11 12 13 14 15
v1 v2 v3 v4

Fig. 1. A k = 4 fat tree topology. l = 4 original VMs: (v1, v2, ..., v4) are
located at PM 3, 7, 9, 16, respectively. rj = 2.

stored at its source PM s(j) ∈ Vp. A source PM can have
multiple original VMs. We denote the set of source PMs as
Vd ⊆ Vp. For each VM to run, it needs one unit of cloud
resources (i.e., CPUs, memories, and disk I/O) for execution.
Let rci denote the resource capacity of PM i ∈ Vp; that is, the
total number of original or replica VM copies PM i can store
is rci. Thus if i is a source PM of some original VMs, its
available resource capacity becomes rci− |{1 ≤ j ≤ l|s(j) =
i}|. Due to diverse fault-tolerance requirement, it requires to
place rj ≥ 0 copies of vj into the data center (when rj = 0, it
does not need to place any replica copies besides the original
VM vj). Let R = max{r1, r2, ..., rl}. Denote the kth replica
copy of vj ∈ Vm, where 1 ≤ j ≤ l and 0 ≤ k ≤ rj , as vj,k
(vj,0 is the original copy vj). In Fig. 1, there are l = 4 original
VMs, each has two replicas around it (thus rj = 2, 1 ≤ j ≤ 4).
Table I shows all the notations.

We note that although rci is the resource capacity available
at PM i, it is possible that not all of its resources can be
utilized at i. The fault-tolerance constraint, which stipulates
that multiple copies of the same VM be placed at different
PMs in order to survive PM failures, incurs two consequences.
First, any original VM and its replicas must be placed onto
different PMs, thus it must be that R+1 ≤ |Vp|; otherwise, it
is infeasible for FT-VMP (we will give detailed analysis of the
feasibility condition later). Second, as there are l original VMs,
a PM can store at most l VM copies, each from a different
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Fig. 2. NP-hardness proof of FT-VMP by reduction from vertex coloring. The
graph on the left is 3-colorable if and only if in the corresponding instance
of the FT on the right, three PMs can hold all the VM replicas such that
the replicas with conflicts (i.e, nodes with different colors) must be put into
different PMs.

VM, even though its storage capacity could be larger than l.
We thus define effective resource capacity of PM i, denoted as
rcei , as the maximum resource capacity of i that can be used
to store VMs. rcei is the smaller value between the available
resource at i and the number of the VMs it can further store
(besides its own stored original VMs if it has). That is, rcei =
min{rci−|{1 ≤ j ≤ l|s(j) = i}|, l−|{1 ≤ j ≤ l|s(j) = i}|}.

We define active PMs as PMs that have at least one
VM copy (either original or replica) after VM placement.
Otherwise, it is inactive therefore can be turned off. For any
source PM s(j) ∈ Vd, 1 ≤ j ≤ l, as some original VMs have
already been submitted and are currently being executed there,
they are considered as active PMs thus cannot be turned off.

Problem Formulation of FT-VMP. Recall that vj,k is the kth

replica copy of VM vj ∈ Vm. We define placement function
r : Vm × {1, 2, ..., R} → Vp, indicating that vj,k is placed to
destination PM r(j, k) ∈ Vp. As the original VM vj is located
at s(j), we have r(j, 0) = s(j). Let yi = 0 and 1 indicate that
PM i is inactive and active respectively after VM placement
r. FT-VMP is to find r that minimizes the total number of
active PMs, i.e., min

∑|Vp|
i=1 yi, under

1) fault-tolerance constraint of VMs: For fault-tolerant
purpose, replica copies of the same VM cannot be placed
into a) the same PMs and b) the source PM where the
original VM is located. That is, r(j, k) 6= r(j, k

′
), 1 ≤

j ≤ l, 0 ≤ k 6= k
′ ≤ rj , and

2) resource capacity constraint of PMs: |{1 ≤ j ≤
l|r(j, k) = i}| ≤ rcei , ∀i ∈ Vp, 1 ≤ k ≤ rj , and

3) compatibility constraint of VMs to PMs: some replica
copies cannot be placed into some PMs due to software
or platform incompatibility. We define the compatibility
set of VM vj as the set of PMs that vj and its rj replica
copies can be placed upon, and denote it as C(j) ⊂ Vp.

Theorem 1: FT-VMP is NP-hard.
Proof: We reduce vertex coloring (VC) problem [12], which
is NP-hard, to a special case of FT-VMP. In this special
case, referred to as FT, we only consider the fault-tolerance
constraint and assume no original VMs are placed in the PMs.
Given a graph G = (V,E), VC finds minimum number of
colors to color all the vertices in V such that any two nodes u
and v, (u, v) ∈ E, have different colors. Its decision version
is given an integer k ≤ |V |, VC finds if G is k-colorable; that

is, if there exists a partition of V into k subsets V1, . . . ,
Vk, such that any two nodes u and v with (u, v) ∈ E do not
belong to the same subset Vj , 1 ≤ j ≤ k. The minimum value
of k is called the chromatic number of G, denoted as χ(G).

Given any instance of G(V,E) in VC, we construct an
instance of cloud data center in FT as follows. We let all the
vertices in V be all the VM replica copies to be placed, and let
different colors assigned to vertices in VC represent different
PMs in FT. Further, two replicas are with conflict, meaning
they cannot be placed into the same PM, if their corresponding
vertices in V are connected by an edge. This construction is
demonstrated by the graph in Fig. 2. It shows that the graph
is 3-colorable if and only if three PMs are needed to hold all
the replicas, such that the nodes (i.e., replicas) with different
colors are put into different PMs. We claim that a χ(G) = k
in VC if and only if that all the replica copies can be placed
into k PMs in FT.

First, if χ(G) = k, then k colors can be assigned to nodes
in V such that two nodes u and v with (u, v) ∈ E have two
different colors. As different colors represent different PMs
and u and v are colored differently, the two corresponding VM
replica copies (which have conflict) cannot be placed into the
same PM. Also, all the VM replica corresponding to vertices
with the same color can then be placed in to the same PM
denoted by that color. Therefore if χ(G) = k in VC, then all
the replica copies can be placed into k PMs in FT while no
two replicas with conflict are placed into the same PM.

On the other hand, if all the replica copies can be placed
into k PMs in FT, it must be that any two replicas with
conflict are not placed into the same PM. This shows that
their corresponding vertices in VC, which are connected by
an edge, are colored with different colors. As k PMs are able
to store all the replica copies in FT, it shows that G is k-
colorable in VC.

Note that FT-VMP resembles well-known bin packing pack-
ing [12] in that it packs VM replica copies into PMs while
minimizing number of PMs. In bin packing, items of different
sizes are packed into bins with the goal of minimizing the
number of bins used. We stress that the “varying item sizes”
in bin packing is the key premise that makes it NP-hard. In
FT-VMP, however, as we assume that all the VMs and all
their replicas have the same unit size, we cannot prove the
NP-hardness of FT-VMP by reducing from bin packing. The
computational intractability of FT-VMP comes from its fault-
tolerance constraint of VMs and compatibility constraint of
VMs to PMs. If we consider different VM sizes, FT-VMP
becomes a new variant of bin packing then techniques working
for bin packing might become relevant.

B. Feasibility Problem of FT-VMP.

Feasibility of FT-VM asks the following question – Given
any instance of FT-VMP, that is, the fault-tolerance require-
ment of cloud users for VM replication and the resource
capacity and compatibility constraints, is it possible to place
all the replica copies into the cloud data center to satisfy
the fault-tolerance requirement without violating the other
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Fig. 3. Flow network G′(V ′, E′) to check the feasibility of FT-VMP. The
value on each edge is its capacity. Note there is no edge between vj ∈ Vm

and i ∈ Vp − C(j) if PM i is not in vj ’s compatibility set C(j).

two constraints? We answer this question by designing a
maximum-flow based technique on a flow network that is
transformed from the data center network. Below we show
how to transform the data center topology G(V,E) of Fig. 1
into a flow network G′(V ′, E′) of Fig. 3.
i). V ′ = {s} ∪ {t} ∪ Vm ∪ Vp, where s is a source node, t is
a sink node, Vm is the set of original VMs, and Vp is the set
of PMs.

ii). E′ = {(s, vj) : vj ∈ Vm} ∪ {(i, t) : i ∈ Vp} ∪
{(vj , i)), ∀vj ∈ Vm, i ∈ C(j)}. We note that between nodes
Vm and Vp, there only exists edges between vj ∈ Vm and
PM in vj’s compatibility set C(j).

iii). Set the capacity of edge (s, vj) as rj , number of replica
copies for VM vj . Set the capacity of edge (i, t) as me

i , the
effective storage capacity of PM i. Set the capacity of edge
(vj , i), vj ∈ Vm and i ∈ Vp, as 1.
We have |V ′| = l+ |Vp|+2 and |E′| = l+ |Vp|+ l · |Vp| −∑l
j |C(j)|. Next we claim that if the maximum amount of flow

computed in above flow network (Fig. 3) is the total number
of replica copies to be placed in the data center, then FT-VMP
is feasible.

Theorem 2: Given any instance of FT-VMP, if the maxi-
mum flow obtained from the corresponding flow network is∑l

j=1 rj , then this instance is feasible.
Proof: We show that if the maximum flow computed in flow
network Fig. 3 is

∑l
j=1 rj , it must be that rj copies of VM

vj , 1 ≤ j ≤ l, are placed inside the cloud data center
Fig. 1 while satisfying all the three constraints viz. fault-
tolerance constraint, compatibility constraint, and resource
capacity constraint.

First, when the amount of flow out of s is
∑l

j=1 rj , as the
edge capacity of (s, vj) is rj , it must be that there are r1
amount of flow on edge (s, v1), r2 amount of flow on (s, v2),
..., and rl amount of flow on (s, vl). This indicates that rj
copies of VM vj are placed inside the cloud data center.

Second, since the capacities of all the edges (vj , i), vj ∈ Vm
and i ∈ Vp, is 1, it guarantees that different replica copies
of the same VM are placed on different PMs, satisfying the

fault-tolerance constraint. Meanwhile, as there does not exist
an edge between VM node vj and PM node i ∈ Vp − C(j),
replica copies of VM vj can only be placed to PMs in its
compatibility set C(j), satisfying compatibility constraint of
VMs.

Finally, as the edge capacity of edge (i, t) is me
j , it only

allows at most me
j amount of flow come in and out of node

i ∈ Vp. This stipulates that PM node i can not store more VM
copies than what its effective resource capacity me

j allows.
This satisfies the resource capacity constraint of PMs.

Maximum Flow Algorithms. There are two kinds of maximum
flow algorithms viz. augmenting path based [10, 11, 16] and
push-relabel based [13, 17]. While both algorithms can yield
strongly polynomial running time, push-relabel in general is
more flexible and efficient than augmenting path. We thus
adopt push-relabel method for maximum flow in our imple-
mentation. As the time complexity of push–relabel maximum
flow algorithm is O(|V ′|2 ·|E′|) for a flow network G(V ′, E′),
and |V ′| = O(l+ |Vp|) and |E′| = O(l ·|Vp|), the running time
for feasibility problem of FT-VMP is O((l + |Vp|)2 · l · |Vp|).

Given an instance of FT-VMP, after finding out that it is
feasible using above maximum flow-based approach, we then
use different algorithms designed in next section to accomplish
various kinds of fault-tolerant VM placement.

IV. Algorithmic Solutions of FT-VMP

A. Linear Programming Solution for FT-VMP.

We present our linear programming formulation as follows.
Besides yi, which indicates if PM i is on or not, we introduce
one more decision variable xi,j,k. xi,j,k = 1 if replica copy
vj,k is placed at PM i; that is, r(j, k) = i. Otherwise, xi,j,k =
0.

min
|Vp|∑
i=1

yi (1)

s.t.
yi = 0, 1 ∀i ∈ Vp (2)
xi,j,k = 0, 1 ∀i ∈ Vp, 1 ≤ j ≤ l, 1 ≤ k ≤ rj (3)
yi = 1, ∀i ∈ Vd (4)∑
i∈Vp

xi,j,k = 1, ∀1 ≤ j ≤ l, 1 ≤ k ≤ rj (5)

yi ≥ xi,j,k, ∀i ∈ Vp − Vd, 1 ≤ j ≤ l, 1 ≤ k ≤ rj
(6)

yi ∗me
i ≥

l∑
j=1

rj∑
k=1

xi,j,k, ∀i ∈ Vp (7)

rj∑
k=1

xi,j,k ≤ 1, ∀i ∈ Vp, 1 ≤ j ≤ l (8)

xi,j,k = 0, ∀1 ≤ j ≤ l, 1 ≤ k ≤ rj , i ∈ Vp − C(j)
(9)

The objective function 1 is to minimize the number of
active PMs. Equations 2 and 3 are the integer constraints of



6
yi and xi,j,k, respectively. Equation 4 indicates that source
PMs (PMs with at least one original VMs) must be turned
on. Equation 5 guarantees that each VM has all its required
number of replica copies placed. Inequality 6 indicates for any
PM that is not a source PM, it must be turned on if at least
one VM replica copy is placed into it. Inequality 7 enforces
the resource capacity constraint of PMs. Inequality 8 enforces
fault-tolerance constraint that different replica copies of the
same VM cannot be placed onto the same PM. And finally,
Equation 9 enforces the compatibility constraint for VMs, that
is, vj and all its replicas can not be placed into PMs that are
in Vp − C(j).

B. Heuristic Algorithm for FT-VMP
In addition to the ILP-based algorithm, we propose two

time-efficient heuristics. One is a greedy algorithm that always
finds the first available PM to place replicas (Algo. 1). The
other is a VM replica migration algorithm (Algo. 2) that
improves an existing server consolidation algorithm (Algo. 1,
[18]).
Greedy VM Repica Placement Algorithm. Algo. 1 works as
follows. As all the source PMs must be turned on, they are
initially the set of active PMs. We sort all the replicas in
the non-descending order of the cardinalities of their com-
patibility sets, and place the ones with smallest compatibility
first. Replicas with small compatibility sets have less number
of compatible PMs to place upon, thus should be placed
first before running out of options. We try to place each
replica into the first available PM in the active PM set while
satisfying fault-tolerance, compatibility, and resource capacity
constraints. If not successful, we turn on another PM in this
replica’s compatibility set that is not an active PM, place this
replica in it, and add it in the active PM set. It stops until all
the replicas are placed in the data center. Sorting takes l · logl,
placing replicas takes l ·R, R = max{r1, r2, ..., rl}. Thus the
time complexity of this algorithm is O(l · (logl +R)).

Algorithm 1: Greedy VM Replica Placement Algorithm.
Input: An FT-VMP instance.
Output: The set of active PMs.
0. Notations:

A: set of active PMs;
1. Sort C(j), 1 ≤ j ≤ l, in the non-descending order of

their cardinalities |C(j)|;
2. WLOG, let |C(1)| ≤ |C(2)| ≤ ... ≤ |C(l)|;
3. A = {s(j)}, 1 ≤ j ≤ l;
4. for (j = 1 to l)
5. for (k = 1 to rj)
6. Let C(j) ∩A = B;
7. if (B == φ) // B is an empty set
8. Let x be the first element in C(j);
9. A = A ∪ {x};
10. else
11. Let x be the first element in B;
12. end if;
13. Place rj,k at x;

14. end for;
15. end for;
16. RETURN A. /*Return the set active PMs */

VM Replica Migration Algorithm. In [18], we proposed an
energy-efficient VM replication mechanism that considers
power consumptions on PMs as well as on edges and switches
inside the data center networks. To accomplish that, it first
minimizes the network energy consumption of distributing the
replica copies using minimum cost flow algorithm, and then
designs a server consolidation algorithm (Algo. 1, [18]) to
moves the VM replicas around to minimize active PMs. Our
VM replica migration algorithm is based upon and improves
this server consolidation algorithm. Below we first introduced
two definitions in [18] and present their server consolidation
algorithm. We then present in detail our VM replica migration
algorithm.

Definition 1: (Target Physical Machine (TPM) of a
Replica VM vj,k.) A TPM of vj,k is a PM that replica VM
vj,k can be possibly moved to while respective the minimum
flow cost resulted from VM replica placement. For replica VM
vj,k, recall its source PM is s(j) and its destination PM from
minimum cost flow is r(j, k). A PM i is a TPM of vj,k if a)
cS(j),r(j,k) = cS(j),i, that is, it has the same replication cost
to s(j) as r(j, k) does, b) it has enough storage to store vj,k,
and c) it does not store original VM vj or any replica VM of
vj , that is, for any VM vj′,k′ PM i stores, j′ 6= j. �

Definition 2: (Consolidating Physical Machine (CPM).)
A physical machine is CPM if it is active and it is not a
source PM. That is, CPMs are PMs that can be potentially
turned off and made inactive. �

The server consolidation algorithm (Algo. 1, [18]) starts
with the CPMs with only one replica, and checks if it can find
a TPM. If so, it moves this replica to this TPM and turns this
CPM off. Then it works on CPMs with two replicas and tries
to move their replicas by finding TPMs. If both of them can
be moved, it turns this TPM off. This continues with CPMs
with more replicas until all the CPMs are being checked.

Below we make two observations about this algorithm
and propose two critical improvements correspondingly. First,
some replicas in some CPMs are moved regardless the rest
of replicas cannot be moved or not from that CPMs. This
not only does not turn off the considered CPM but also
put some replicas on other PMs, making it more difficult to
turn those PMs off in following steps. To address this, our
improved server consolidation algorithm moves replicas in a
CPM only when all the replicas can be moved out of this CPM;
otherwise none of the replicas are moved. Second, when there
are multiple TPMs that a replica can be moved to, current
server consolidation algorithm randomly chooses any of them.
Our improved algorithm instead will check if any of the TPMs
is a source PM, and if so, move the replica to it. This is
because the source PM cannot be turned off anyway, while
moving replica to a non-source PM makes it more difficult
to “empty” this PM. We referred to this improved algorithm
VM Replica Migration Algorithm (Algo. 2), which is detailed
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Fig. 4. Performance comparison by varying l, number of original VMs.
Here, k = 8, rj = 10, and rci = 10.

below.

Algorithm 2: VM Replica Migration Algorithm.
Input: VM replica placement from minimum cost flow.
Output: The set of active PMs.
0. Notations:

A: set of active PMs;
turn off: true if a CPM can be turned off by having

all its replicas moved to other PMs;
1. Set A as the set of CPMs after minimum cost flow VM

replication in [18];
2. Let m be the largest number of replicas a PM in A has;
3. for (i = 1 to m)
4. Denote the set of CPMs with i replicas as

{cpm1, cpm2, ..., cpmni
}, where ni ≥ 0;

5. for (1 ≤ j ≤ ni) // Try to turn off cpmj

6. turn off = true;
7. Denote the replicas in cpmj as {R1, R2, ...Rx};
8. for (1 ≤ k ≤ x) //replica Rk

9. Find all of Rk’s TPMs T k;
10. if (T k == φ) //Tk is an empty set
11. turn off=false;
12. break;
13. end if;
14. end for;
15. if (turn off == true) // cmpj can be turned off
16. for (1 ≤ k ≤ x) //Move Rk out of cmpj
17. if (There is a source PM in T k)
18. Move Rk to this source PM;
19. else Move Rk to any PM in T k;
20. end for;
21. A = A− {cpmj}; //cpmj is now turned off
22. end if;
23. end for;
24. end for;
25. RETURN A. // Return the set of active PMs

Time Complexity. There are three for loops in Algo. 2. As
m = O(l), where l is the total number of VMs, ni =
O(|V |3/4), where |V |3/4 is the total number of PMs, and
x = O(l), the total time complexity of Algo. 2 is O(l2 · |V |3).

V. Performance Evaluation

Simulation Setting. In this section we compare our designed
algorithms with the existing work. We refer to our ILP-
based algorithm as ILP, the greedy VM replica placement
algorithm as Greedy, the VM replica migration algorithm as
Migration. We also refer to the server consolidation algorithm
in [18] as Consolidation. We implemented ILP using LP
solver lpsolve [5] and wrote our own Java simulator for other
algorithms on a Windows10 computer with Intel Core i7-
6500U 2.50 GHz CPU and 32 GB RAM. We compare all
the algorithms in terms of how many PMs they can turn off.
We consider two different initial VM replica placements in
the simulations. First, we compare them using the VM replica
placement output from the minimum cost flow (MCF) VM
replication in [18], which minimizes the energy consumption
in the VM replication process. Second, we compare them using
random placement of VM replicas. We also plot the inactive
PMs (referred to as IPMs) resulted from each case. Note that
all such IPMs are turned off before we run the four algorithms,
as they do not have any replicas in them. We consider a small
k = 8 data center with 128 PMs and a large k = 16 data center
with 1024 PMs. Each data point in the plots is an average over
ten runs. In all plots, the error bars indicate 95% confidence
interval.

VM replica placement from MCF VM replication. In this
part, we use the VM replica placement that is output by the
MCF-based VM replication algorithm in [18]. Fig. 4 shows
the comparison by increasing the number of original VMs in
the cloud data center l from 20, 40, ..., to 100, while fixing
the number of replicas of each VM rj , 1 ≤ j ≤ l, as 10,
and the resource capacity of each PM rci, 1 ≤ i ≤ |Vp|,
as 10. As l increases, it clearly shows that number of IPMs
decreases, as more VM replicas are placed inside the cloud
data center thus less number of PMs can be turned off. We
observe that when l is small (20 and 40), the performance
of all the four algorithms (ILP, Consolidation, Migration, and
Greedy) are similar, and each of them can further turn off 15-
25 PMs. However, when increasing l, ILP always outperforms
the other three by turning off at least one more PM, as it is
an optimal solution. Also it is observed that with the increase
of l, it gets more difficult to turn off PMs thus the number of
turned-off PMs decreases for all the four algorithms. However,
we do observe that when l increases from 20 to 40, the number
of turned-off PMs increases instead. This is due to the fact
that in this transition, the number of IPMs has a dramatical
decrease, from 22 at l = 20 to 5 at l = 40. This leaves many
PMs with sparse placement of VM replicas, making the task
of VM placement easier at l = 40. When l gets to 100, it
shows that all our designed algorithms viz. ILP, Migration,
and Greedy outperform the Consolidation, demonstrating the
effectiveness of our designed algorithms.

Fig. 5 compare all the algorithms by varying rj , number
of number of replicas of each VM, from 5, 10, 15, to 20.
Although all the four algorithms perform very similarly, ILP
still performs slightly better by being able to turning off one
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Fig. 5. Performance comparison by varying rj , number of replica copies of
each VM. Here, k = 8, l = 50, and rci = 10.
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Fig. 6. Performance comparison by varying rci, storage capacity of each
PM. Here, k = 8, l = 50, and rj = 10.

or two more PMs, thus saving more energy than others. It
also shows that when increasing rj from 5 to 10, the number
of PMs that can be turned off by all the algorithms increases
from around 5 to around 17. This is rather counter-intuitive as
it shows that the more VM replicas in the network, the more
PMs being turned off. However, it can be explained as follows.
When rj = 5 there are around 10 IPMs, while when rj = 10
there are around 3 IPMs. Although there are more replicas
for rj = 10, however, as only 3 IPMs are initially turned off,
the replica placement on the rest active PMs becomes more
sparser than that of rj = 5. As the result, more PMs can
be further turned off at rj = 10. However, when we further
increase rj to 15 and 20, not only is there no IPMs that can
be turned off, none of the four algorithms can further turn off
any PMs due to the dense placement of VM replicas.

Fig. 6 compares all the algorithms by varying the resource
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Fig. 7. Performance comparison in random placement by varying l, number
of original VMs. Here, k = 8, rj = 10, and rci = 30.

capacity of PMs rci from 5, 10, 15, to 20. It shows that the
number of IPMs from the MCF replica placement is less than
five, increasing from 1 at rci = 5 to 3 at rci = 10, 15, and
20. As each PM increases its recourse capacity thus can hold
more VM replicas, placement of VM replicas gets more sparse
thus more PMs (i.e., IPMs) can be turned off. We observe
that with the increase of the resource capacity of each PM,
the number of turned-off PMs increases for all algorithms.
They can further turn off between 8 and 18 more PMs, which
is much larger than the number of IPMs initially turned off.
This demonstrates that all the four algorithms are effective in
moving VM replicas around to consolidate PMs in order to
turn off more PMs. Finally, we observe that when resource
capacity is 5, Greedy outperforms ILP by turning off more
PMs. This is obviously not possible. A further investigation of
the trace data shows that in this case, Greedy cannot place all
the VM replicas while satisfying all the constraints. As such,
the VM replica placement is more sparse in Greedy than that
of ILP to achieve a better consolidation.

Random VM replica placement. Finally, we create a random
initial VM replica placement that satisfies the fault-tolerance,
compatibility, and resource capacity constraints, and execute
these four algorithms on this placement. For compatibility
constraint, we assume that each original VM and its replica
copies cannot be placed to a randomly chosen specific PM
due to software or platform incompatibility. Fig. 7 shows the
performance comparison in a k = 8 data center. It shows that
while increasing number of original VMs l the number of
turned off PMs increases. As l increases from 20 to 60 and to
100, the number of IPMs of the random placement decreases
from 60 to 10 to 2, thus there are more PMs that are initially
on to be turned off by the algorithms. Compared to placement
from MCF-based VM replication (Fig. 4), which can turn off
less than 25 PMs, in random VM replica placement, our algo-
rithms are able to turn off around 100 PMs. This demonstrates
that that our algorithms work particularly effective for random
VM replica placement.

Scalability studies. Lastly, we study the scalability of our
algorithms for random initial placement using a large scale
k = 16 data center of 1024 PMs. As ILP takes long time
to compute, we only compare Greedy, Consolidation, and
Migration. In Fig. 8 we set number of original VMs as 500,
resource capacity of a PM as 10, and change the number of
replicas of each VM rj from 5, 10, 15, to 20. We observe
that the number of IPMs and the number of PMs that can
be turned off by all the three algorithms decrease with the
increase of rj . As more copies of VM replicas are placed,
it gets more difficult to find an IPM or turn off any existing
PMs by moving out their VM replicas to others. Nonetheless,
all algorithms are able to turn off close to 700 PMs. Finally,
Fig. 9 shows that when increasing the resource capacity of
each PM, all three algorithms are able to turn off around
700 PMs, again, due to the effectiveness of our algorithms on
random VM placement. These demonstrate the effectiveness
of our algorithms in turning off PMs thus saving energy in
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large scale data centers.

VI. Conclusion and Future Work
We propose a new fault-tolerant VM placement problem

called FT-VMP. Given that different VMs have different fault-
tolerance requirement and compatibility requirement, FT-VMP
studies how to place VM replica copies inside cloud data
centers in order to minimize the number of PMs that stores
VM replicas under the constraint that PMs have limited storage
capacity. We give this problem a thorough formal treatment
by first proving that it is NP-hard, and then designing an ILP-
based algorithm to solve it optimally. We also design a suite of
time-efficient and scalable heuristic algorithms. Via extensive
simulations, we show that ILP-based algorithm outperforms
the state-of-the-art VM replica placement in a wide range of
network dynamics. Our algorithms are not only fault-tolerant
but also energy-efficient, as they manage to turn off PMs
to save energy while placing multiple replica copies of the
same VM. As a future and ongoing work, we will consider
the energy consumption inside network and take into account
the energy cost of migrating VMs from one PM to another.
We will design an integral approach that minimizes the sum
of energy consumptions in both network and PMs via fault-
tolerant VM placement and migration. Our initial finding is
that as minimizing network energy consumption often is in
conflict with minimizing PM energy consumption, there is
a need for multi-objective optimization techniques with the
solution form of Pareto optimal front.
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