
PAM & PAL: Policy-Aware Virtual Machine
Migration and Placement in Dynamic Cloud Data

Centers
Hugo Flores, Vincent Tran, and Bin Tang

Department of Computer Science
California State University Dominguez Hills, Carson, CA 90747, USA

Email: {hflores27,vtran42}@toromail.csudh.edu, btang@csudh.edu

Abstract—We focus on policy-aware data centers (PADCs),
wherein virtual machine (VM) traffic traverses a sequence of
middleboxes (MBs) for security and performance purposes, and
propose two new VM placement and migration problems. We
first study PAL: policy-aware virtual machine placement. Given
a PADC with a data center policy that communicating VM
pairs must satisfy, the goal of PAL is to place the VMs into
the PADC to minimize their total communication cost. Due to
dynamic traffic loads in PADCs, however, above VM placement
may no longer be optimal after some time. We then study
PAM: policy-aware virtual machine migration. Given an existing
VM placement in the PADC and dynamic traffic rates among
communicating VMs, PAM migrates VMs in order to minimize
the total cost of migration and communication of the VM pairs.
We design optimal, approximation, and heuristic policy-aware
VM placement and migration algorithms. Our experiments show
that i) VM migration is an effective technique, reducing total
communication cost of VM pairs by around 30%, ii) our PAL
algorithms outperform state-of-the-art VM placement algorithm
that is oblivious to data center policies by 40-50%, and iii) our
PAM algorithms outperform the only existing policy-aware VM
migration scheme by 20-40%.

Index Terms—Policy-Aware Data Centers, Virtual Machine
Placement, Virtual Machine Migration, Algorithms

I. INTRODUCTION

Recently, Middleboxes (MBs) [8], such as firewalls, load
balancers, and network address translators, are introduced into
cloud data centers to improve security and performances of
virtual machine (VM) applications [37]. In particular, data
center policies (or service function chaining) are established
that require VM traffic to traverse a chain of MBs [24], [28],
[44]. Fig. 1(a) shows such an example. Traffic generated at
VM vm1 goes through a firewall, a load balancer, and a
cache proxy before arriving at VM vm

′

1. In doing so, this
policy filters out malicious traffic, diverts trusted VM traffic
to avoid network congestion, and finally caches the content to
share with other cloud users. We refer to cloud data centers
that implement such policies as policy-aware data centers
(PADCs). Fig. 1(b) shows a small PADC that implements the
same data center policy in Fig. 1(a). A firewall, a load balancer,
and a cache proxy are installed on switches s2, s3, and s4,
respectively. There are four physical machines (PMs), pm1,
pm2, pm3, and pm4, each can store one VM due to its limited
cloud resources (i.e., CPU, memory, and disk I/O).

!"2 pm3

!"$%

s1
s2 s3

s5

pm4

pm1

!"1 pm2
s4

VM PM

VM communication
VM migration

Switch !"'%

firewall

load balancer

cache proxy

!"' !"'%

(a) (b)
Fig. 1. (a) A data center policy. (b) A PADC example.

In this paper, we identify, formulate, and solve two new VM
placement and migration problems in PADCs. Measurements
from Facebook and other production data centers show that
traffic loads (i.e., transmission rates) of communicating VM
applications are highly diverse and dynamic [7], [34]. With an
explosive growth of communicating VM applications and their
ensued network traffic, network resources such as bandwidths
and switches’ processing capabilities become a performance
bottleneck. Thus it is important to design resource-efficient
VM placement and migration algorithms for dynamic cloud
data centers. This is especially crucial for PADCs – as the
VM communication must go through a sequence of MBs, it
generates more network traffic and consumes more network
resources compared to traditional cloud data centers.

Initially, when new cloud applications are submitted and
created as VMs in PADCs, it needs to decide how to place
them for resource-efficient communication. We refer to this
problem as PAL: policy-aware VM placement in PADCs.
Given a PADC with a data center policy that communicating
VM pairs must satisfy, PAL studies how to place the VMs into
the PMs to minimize their total communication cost while
satisfying resource constraints of PMs. Fig. 1(b) shows that
two VM pairs (vm1, vm

′

1) and (vm2, vm
′

2), with the traffic
load of the former much larger than that of the latter, are to be
placed. To reduce network traffic and communication delay, it
is preferred that vm1 and vm

′

1 communicates along a route
that is “shorter” than that of vm2 and vm

′

2. One solution is to
place vm1 and vm

′

1 on pm1 and pm2, and vm2 and vm
′

2 on
pm3 and pm4, respectively, with their respective policy-aware
communication routes shown in black dashed lines.

However, such initial VM placement may no longer be
optimal due to dynamic traffic loads in PADCs. Take Fig. 1(b)

for example. If the traffic load of (vm2, vm
′

2) emerges as much
larger than that of (vm1, vm

′

1), the aforesaid VM placement
becomes inefficient – as vm2 communicates with vm

′

2 via
a route much longer than that of (vm1, vm

′

1), it generates
more network traffic and consumes much of the network
bandwidths. We observe that migrating VMs from one PM to
another might be an effective technique to tackle such dynamic
VM traffic. For example, in Fig. 1(b), it might be a good idea
to “swap” these two VM pairs using VM migrations shown
in red solid lines. In particular, given an existing placement
of communicating VM pairs with dynamic traffic rates, a data
center policy that they must satisfy, the goal is to migrate VMs
to minimize the total cost of migration and communication of
all the VM pairs. We refer to this problem as PAM: policy-
aware VM migration in PADCs.

Consider that VM migration incurs traffic overhead, and
that a large scale PADC typically has tens of thousands of
PMs, as well as hundreds of thousands of communicating
VMs with wide range of changing traffic rates, how to effec-
tively place and migrate VMs in PADCs to achieve optimal
network resource utilization becomes challenging problem. In
this paper we addresses this challenge and design optimal,
approximation, and heuristic policy-aware VM placement and
migration algorithms to solve PAL and PAM. The PAM &
PAL duo potentially achieves ideal resource utilization for a
PADC’s lifetime - after the PAL algorithms create the initial
VM placement to optimize a PADC’s cloud resource utiliza-
tion, the PAM algorithms can then be executed periodically to
optimize a PADC’s network resource utilization in the event
of dynamic VM traffic. To the extent of our knowledge, PAL
and PAM are new problems that have not been studied before.

Using traffic patterns and flow characteristics found in
production data centers, we show that VM migration reduces
the total communication costs of VM pairs by about 30%,
demonstrating that it is an effective technique to alleviate
dynamic VM traffic in PADCs. We also show our policy-
aware algorithms outperform the only existing policy-aware
VM migration algorithm [13] by 20-40%, and the state-of-the-
art VM placement algorithm that is oblivious to data center
policies [31] by 40-50%.

II. RELATED WORK

Service function chaining (SFC) has been a very active
research in recent years. It mainly focused on virtual network
functions (VNFs) (i.e., virtual MBs) with their implementa-
tion and realization [33], [17], [19], [44], [40], VNF place-
ments [25], [32], VNF migrations [15], [29], and other issues
such as availability [16], flow control [35], and finding shortest
SFC [18]. However, given that many network functions still
rely on dedicated hardware as virtual MBs cannot yet match
the performance of hardware MBs, and much existence of
hardware MBs in enterprise networks [23], [36], we consider
hardware MBs, which cannot be easily moved around. How-
ever, our proposed approach still works the VNF scenarios.

There is vast amount of literature of VM migration in cloud
data centers [38], [43], [6], [39], [41], [14]. In particular,

Shrivastava et al. [38] proposed an application-aware VM
migration that minimizes data center network traffic while
considering the combined effects of application dependencies
and network topology. Zhang et al. [43] analyzed how much
bandwidth is required to guarantee the total migration time
and downtime of a live VM migration. Wang et al. [39]
studied how to migrate multiple VMs at the same time with
available bandwidth, and designed a fully polynomial time
approximation algorithm. Cui et al. [14] assumed that data
center topologies are adaptive with reconfigurable wireless
links or optical circuit switches, and proposed VM migration
algorithm with constant approximation ratio.

VM migration studied in this paper, however, differs from
aforesaid work in both goals and models. While existing VM
migration work achieved various objectives such as server
consolidation and energy efficiency, load balancing and fault
tolerance, our work focuses on the dynamic communication
traffic rates existing among VMs. Besides, none of the above
work considered data center policies, thus falling short of
achieving performance and security guarantees brought about
by various of MBs deployed inside PADCs.

Meng et al. [31] designed one of the first policy-oblivious
VM placement algorithms. It is traffic-aware in that it assigns
VMs with large communications to the same PMs or PMs
in close proximity. As PAL is the first to study policy-aware
VM placement thus no closely related work to compare with,
we compare our work with this traffic-aware VM placement.
Alicherry and Lakshman [5] designed optimal and approxi-
mation algorithms that place VMs to minimize data access
latencies. Li et al. [27] studied the VM placement to reduce
the data center network cost as well as the cost utilizating
PMs. Again, they are policy-oblivious thus do not achieve
performance and security guarantees brought by PADCs.

PACE [26] was one of the first to study policy-aware VM
placement. However, it only considers one type of MB thus
does not study data center policy addressed in this paper. The
only closely related work to ours is by Cui et al. [13], [12].
They proposed PLAN, the first policy-aware VM migration
scheme for all-pair VM communications. As the problem
is NP-hard, they provided heuristic algorithms for ordered-
policies. In contrast, we focus on pairwise VM communication
as the east-west traffic within the data center accounts for 75.4
percent of data center traffic [1], and most east-west traffic
in cloud data centers is pairwise [31]. We design optimal,
approximate, and heuristic algorithms for both ordered- and
unordered-policies and show they all outperform PLAN.

III. SYSTEM MODELS

Network Model. We use fat tree [4] to illustrate the problems
and their algorithmic solutions. However, as the problems are
applicable to any data center topology, we model a PADC as
an undirected general graph G(V,E). V = Vp ∪ Vs is a set
of PMs Vp = {pm1, pm2, ..., pm|Vp|} and a set of switches
Vs. E is a set of edges, each connecting either one switch to
another switch or a switch to a PM. Fig. 2 shows a k = 4
PADC where k is the number of ports each switch has.

There are a set of n MBsM = {mb1,mb2, ...,mbn} inside
the PADC, with mbj installed at switch swj ∈ Vs. We adopt
the bump-off-the-wire design [24], which uses a policy-aware
switching layer to explicitly redirect traffic to off-path MBs.
Fig. 2 shows three MBs mb1, mb2 and mb3 installed using
this design. As a switch and its attached MBs are connected by
high-speed optical fibers, the delay between them is negligible
compared to that among switches and PMs [21].

Core Switches

Aggregation
Switches

Edge
Switches

pm1 pm4 pm11 pm16

v2’
v1

mb1

mb2

: PM
: VM
: MB

mb3

v2

Ordered Policy Traversal Unordered Policy Traversal

v1’

Fig. 2. A PADC with 16 PMs: pm1, pm2, ..., and pm16, 3 MBs: mb1,
mb2, and mb3, and two VM pairs: (v1, v

′
1) and (v2, v

′
2). • and I indicate

source and destination VM respectively.

There are l pairs of communicating VMs P =
{(v1, v

′

1), (v2, v
′

2), ..., (vl, v
′

l)} that are already placed into the
PMs. For any VM pair (vi, v

′

i), 1 ≤ i ≤ l, vi and v
′

i are
referred to as its source and destination VM respectively.
Denote the traffic rate or transmission rate of (vi, v

′

i) as λi, and
the traffic rate vector as

−→
λ = 〈λ1, λ2, ..., λl〉. In a dynamic

PADC,
−→
λ is not a constant vector as the VM traffic rates

change over time. In Fig. 2, there are two VM pairs: (v1, v
′

1)

and (v2, v
′

2), with
−→
λ = 〈100, 1〉.

Let V = {v1, v
′

1, v2, v
′

2, ..., vl, v
′

l}. We assume that it needs
one unit of cloud resource to create and execute a VM in
V and leave the more general case with varying resource
demands as future work. Here the resource is an aggregated
characterization of a PM’s hardware resources such as CPUs,
memories, and disk I/O. Denote the resource capacity of PM
pmi as rci, meaning that pmi has rci resource slots. As there
are 2 · l VMs and each needs one resource slot, it must be that∑|Vp|
i=1 rci ≥ 2 · l. Table I shows all the notations.

Cost Model. We model the VM communication and migration
cost as either the delay or energy cost of the network traffic
inside PADCs. We adopt a topology-aware model [31] and
define the communication cost of any VM pair as the number
of network links its traffic traverses multiplied by its traffic
rate (however, our problems and solutions still hold for that
different edges have different costs). The migration cost of
migrating any VM v from PM i to PM j is µ · c

(
i, j
)
. Here,

c(i, j) is the minimum number of hops between any PM (or
switch) i and j, and µ is a migration coefficient that depends
on VM sizes and available network bandwidths.
Justifications. Our VM migration model is different from the
one adopted by most existing literature. Mann et al. [30]
focused on pre-copy [9], one of the original live VM migration
techniques, and modeled the cost of migrating a VM v as

TABLE I
NOTATION SUMMARY

Notation Description
Vp Vp = {pm1, pm2, ..., pm|Vp|} is the set of |Vp| PMs
Vs Set of switches in a PADC
M M = {mb1,mb2, ...,mbn} is the set of n MBs
P P = {(vi, v

′
i), ..., (vl, v

′
l)} is the set of l VM pairs

V V = {v1, ..., vl, v
′
1, ..., v

′
l}

λi Traffic rate between vi and v
′
i , 1 ≤ i ≤ l

−→
λ

−→
λ = 〈λ1, λ2, ..., λl〉

rci Resource capacity of PM pmi, 1 ≤ i ≤ |Vp|
swj Switch where mbj is installed, 1 ≤ j ≤ n
c(i, j) Communication cost between PMs (or switches) i and j
p(v) PM where the VM v is placed under VM placement p
πi Order at which (vi, v

′
i) visits MBs in unordered policy

−→π −→π = 〈π1, π2, ..., πl〉
Cc(p) Total communication cost under p in ordered policy
Cc(p,

−→π) Total communication cost under p in unordered policy
µ Migration coefficient
m(v) PM where the VM v migrates to under VM migration m
Cm(m) Total migration cost with migration m
Cc(m) Total communication cost with migration m
Ct(m) Total migra. and comm. cost with m in ordered policy
Ct(m,

−→π) Total migra. and comm. cost with m in unordered policy

Ms · 1−(Pr/Ba)
n+1

1−(Pr/Ba)
. Here Ms is the image size of v, Pr is its

page dirty rate, Ba is the available bandwidth, and n is number
of pre-copy phases. They suggested the migration cost be a
constant quantity measured by the hypervisor. In contrast, by
acknowledging network delay or energy consumption incurred
by VM migration traffic, our topology-aware model is more
conducive to designing VM migration algorithms for a large-
scale and dynamical traffic environment targeted by this paper.

Data Center Policies. Depending on the application require-
ments, some policies require that the VM traffic to go through
the MBs in a strict order. We refer to such policies as ordered
policies and denote them as (mb1,mb2, ...,mbn). On the other
hand, as MB functions are mostly independent from each
other, some data center policies are considered satisfied as
long as all its MBs are visited by the VM traffic. We refer
to such policies as unordered policies and denote them as
{mb1,mb2, ...,mbn}. In Fig. 2, (v1, v

′

1) traverses MBs under
ordered-policy (mb1,mb2,mb3), resulting in communication
cost of 100 × 10 = 1000 (solid blue line), (v2, v

′

2) traverses
MBs under unordered-policy {mb1,mb2,mb3}, resulting in
communication cost of 1× 8 = 8 (dashed black line).

We refer to the first (and last) visited MB in a policy as
ingress (and egress) MB, and the switch where the ingress
(and egress) MB is installed as ingress (and egress) switch. For
ordered policy, the ingress switch is sw1 and egress switch is
swn. For unordered policy, it needs to find out sw1 and swn as
well as the MB sequence along which VM pair communicates.
As shown in Fig. 1(a), one data center policy is generally
sufficient to serve both security and performance purposes.
We thus assume there is one data center policy (ordered or
unordered) in a PDDC at a time. We adopt FlowTags [17], a
SDN architecture that provides consistent policy enforcement
during VM migration by adding tags in packet headers.

EXAMPLE 1: Fig. 3 shows a k = 2 linear fat tree PADC
with two PMs: pm1 and pm2. Each PM has two resource
slots; the four of them are {rs1, rs2, rs3, rs4}. Two MBs, mb1

and mb2, are installed on edge switch sw1 and aggregation
switch sw2, respectively. There are two VM pairs (v1, v

′

1) and
(v2, v

′

2), v1 and v2 are placed on pm1 while v
′

1 and v2
′ on

pm2.
−→
λ = 〈100, 1〉 and µ = 1. Before migration, the total

communication cost in Fig. 3(a) is 606 under both (mb1,mb2)
and {mb1,mb2}. By migrating v

′

1 to pm1 and v2 to pm2

with migration cost of 12 (solid red line in Fig. 3(a)), the
total communication cost (dotted and dashed black lines in
Fig. 3(b)) becomes 410, a 30% of total cost reduction. We
show this migration is indeed optimal in Section V-A. �

IV. PAL: POLICY-AWARE VM PLACEMENT IN PADCS

A. Ordered Policy.

1) Problem Formulation: Under ordered policy, for any
VM pair communication, the ingress switch is always sw1

and the egress switch is always swn. Given a VM placement
function p, denote the total communication cost of all the l
VM pairs under p as Cc(p). We have Cc(p) =

=
l∑
i=1

λi ·
n−1∑
j=1

c
(
swj , swj+1

)
+

l∑
i=1

λi ·
(
c
(
p(vi), sw1

)
+ c
(
swn, p(v

′

i)
))
.

(1)

The objective of PAL is to find a VM placement p to
minimize Cc(p) while satisfying resource constraint of PMs:
|{v ∈ V|p(v) = i}| ≤ rci, ∀i ∈ Vp. As the first term on the
r.h.s. of Eq. 1 is fixed under ordered policy, we only need to
minimize the second term. Below we design an optimal and
efficient algorithm to solve PAL.

2) VM Placement Algorithm for Ordered Policy: To save
communication costs for VM pairs, the key is to find a set of
resource slots close to the ingress (and egress) switch to place
source (and destination) VMs. We give below definitions.

Definition 1: (Ingress/Egress Costs, Ingress/Egress Re-
source Sets, Optimal Ingress/Egress Sets) A resource slot
rs’s ingress (and egress) cost, denoted as cin(rs) (and ce(rs)),
is the cost between its belonged PM and the ingress switch sw1

(and egress switch swn). Let pm(rs) be the PM rs belongs
to, cin(rs) = c

(
pm(rs), sw1

)
, ce(rs) = c

(
pm(rs), swn

)
.

An ingress (and egress) resource set (IRS and ERS) is a
set of l resource slots that store the l source (and destination)
VMs. The cost of an IRS (and ERS) is the sum of the ingress
(and egress) costs of its resource slots. A pair of IRS and ERS
is optimal, denoted as (Iopt, Eopt), if the sum of their costs
is the minimum among all pairs of IRS and ERS. �
Iopt and Eopt are structures that uniquely arise in PAL.

Algo. 1 below finds such a pair (lines 1-22) and then places
the l VM pairs (in non-ascending order of their traffic rates)
into it (lines 23-30). Its time complexity is O(|Vp|2 · m̄2),
where m̄ is the average resource capacity of a PM.

Algorithm 1: PAL Algorithm for Ordered Policy.
Input: A PADC with ordered policy (mb1,mb2, ...,mbn),

VM pairs P , Vp = {pmi}, resource capacity rci.
Output: A placement p and the total comm. cost Cc(p).
Notations: sel(rsi): true if rsi is selected into either Iopt or

pm1 pm2

mb2

mb1

mb2

mb1

pm1 pm2

(a) Before migration (b) After migration

rs1
rs2

rs3
rs4

v1
v1’

v2
v2’

sw2

sw1

λ
!"
=<100,1>

rs1
rs2

rs3
rs4

v1
v2

v1’
v2’

! = 1

VM migration VM communication

Fig. 3. VM migration achieved 30% of total cost reduction in a linear PADC.

Eopt, initially false for all resource slots.
I and E : arrays of resource slots, each of size l.
i, j: indices for I and E respectively.
k: index for Iopt and Eopt.

1. i = j = k = 1, Cc(p) = 0, p = φ;
2. Sort resource slots in non-descending order of their ingress

and egress costs, store the top 2l in arrays I and E ;
3. while (k ≤ l) // find optimal resource slots for (vk, v

′

k)
4. if (sel[I[i]] == true) i++;
5. if (sel[E [j]] == true) j++;
6. if (I[i] 6= E [j]) // both optimal resource slots are found
7. Iopt[k] = I[i], Eopt[k] = E [j];
8. sel[I[i]] = sel[E [j]] = true;
9. i++, j++;
10. else // one found, now find the other
11. if (cin(I[i]) + ce(E [j + 1]) ≤ cin(I[i+ 1]) + ce(E [j]))
12. Iopt[k] = I[i], Eopt[k] = E [j + 1];
13. sel[I[i]] = sel[E [j + 1]] = true;
14. i++, j += 2;
15. else
16. Iopt[k] = I[i+ 1], Eopt[k] = E [j];
17. sel[I[i+ 1]] = sel[E [j]] = true;
18. i += 2, j++;
19. end if;
20. end if;
21. k++;
22. end while;
23. WLOG, λ1 ≥ λ2... ≥ λl;
24. for (1 ≤ i ≤ l) // place VM pairs and calculate cost
25. Place vi at resource slot Iopt[i];
26. Place v

′

i at resource slot Eopt[i];
27. p = p ∪ {(Iopt[i], Eopt[i])};
28. Cc(p) += λi ∗

(
cin(Iopt[i]) + ce(E

opt[i])
)
;

29. end for;
30. Cc(p) +=

∑l
i=1 λi

∑n−1
j=1 c

(
swj , swj+1

)
;

31. RETURN p and Cc(p).

EXAMPLE 2: Fig. 4(a) shows how Algo. 1 could place
the two VM pairs (v1, v

′

1) and (v2, v
′

2) into the same PADC
in Fig. 3. It gives I = E = {rs1, rs2, rs3, rs4}, from which
it computes Iopt = {rs1, rs3} and Eopt = {rs2, rs4}. It thus
places v1 and v

′

1 in pm1 and v2 and v2
′ in pm2 with total

communication cost of 100 · 4 + 1 · 10 = 410. �
Theorem 1: Algo. 1 finds the VM placement that mini-

VIopt
VEopt v1’ v2’ vr’ vl’

Algo. 3

Optimal,
case 1

Optimal,
case 2

v1 v2 vr vl

VIopt
VEopt v1’ v2’ vr’

v1 v2 vs vr

VIopt
Vv1’ v2’ vt’ vr’

v1 v2 vs vr

1 2 r u v l

(b)

rs1 rs2 rs4

rs1 rs2 rs4rs3
rs3

rs2 rs4

rs1 rs3Iopt
Eopt

(a)

Eopt

Fig. 4. (a) A working example and (b) optimality proof for Algo. 1.

mizes total communication cost for the l VM pairs.
Proof Sketch. First, we prove by induction that (Iopt, Eopt)
computed in Algo. 1 (lines 1-22) is a pair of optimal IRS
and ERS. Second, we prove by contradiction that the VM
placement on Iopt and Eopt in Algo. 1 (lines 23-30) yields
minimum total communication cost. Assume that Algo. 1 is
not optimal and that r, 1 ≤ r ≤ l, is the smallest index at
which Iopt[r] or Eopt[r] store different pair of VMs for Algo. 1
and Optimal. Two cases are shown in Fig. 4(b). Case 1: one
of the two resource slots, Iopt[r] or Eopt[r], stores different
VMs. Case 2: both slots store different VMs. In both cases,
we are able to swap VMs in Optimal (blue curved arrow lines)
to further reduce its cost, due to λ1 ≥ λ2... ≥ λl.
B. Unordered Policy.

1) Problem Formulation.: In unordered policy, besides
a VM placement function p, PAL needs to find the or-
der at which each VM pair visits the MBs. For (vi, v

′

i)
we define an MB traversal function πi : [1, 2, ..., n] →
[1, 2, ..., n], a permutation function indicating the jth MB
that (vi, v

′

i) visits is mbπi(j). Given p and πi, denote
(vi, v

′

i)’s communication cost as cp,π
i

i . Then cp,π
i

i = λi ·
c
(
p(vi), sw

(
πi(1)

))
+ λi ·

∑n−1
j=1 c

(
sw
(
πi(j)

)
, sw

(
πi(j +

1)
))

+λi ·c
(
sw
(
πi(n)

)
, p(v

′

i)
)

. Let −→π = 〈π1, π2, ..., πl〉. The
objective of PAL under unordered policy is to minimize total
communication cost Cc(p,−→π) =

∑l
i=1 c

p,πi

i while satisfying
|{v ∈ V|p(v) = i}| ≤ rci, ∀i ∈ Vp. Below we show that PAL
is NP-hard even for one pair of VMs. We then propose an
approximation algorithm for this special case that yields total
cost at most twice of the optimal.

Theorem 2: Under unordered policy, PAL is NP-hard even
for one pair of VMs (v1, v

′

1 (i.e., l = 1).
Proof: We reduce s-t traveling salesman path problem (TSPP)
[22], which is NP-hard, to this problem. Given a complete
undirected graph K = (VK , EK) with edge cost d : EK →
R+ and a pair of pre-specified vertices s, t ∈ VK , TSPP finds
a shortest Hamiltonian path that starts at s, visits each vertex
exactly once, and ends at t. d satisfies triangle inequality, i.e.,
d(u, v) ≤ d(u, v) + d(v, w) for all u, v, w ∈ VK , When s = t,
TSPP becomes well-known traveling salesman problem (TSP)
[11], which finds a shortest Hamiltonian cycle.

Given VM pair (v1, v
′

1) and an instance of PADC graph
G(V = Vp ∪Vs, E), we construct |Vp| · (|Vp|+ 1)/2 instances
of complete graphs Ki,j = (V i,jK , Ei,jK), 1 ≤ i ≤ |Vp|,

i ≤ j ≤ |Vp|. Here, V i,jK = {pmi, pmj , sw1, sw2, ...swn} and
for (u, v) ∈ Ei,jK , its cost d(u, v) is the cost of the shortest
path connecting u and v in G. Now, if Ka,b has a shortest
Hamiltonian path whose cost is the minimum among the
shortest Hamiltonian paths in all the instances, then placing v1
to pma and v

′

1 to pmb must give the minimum communication
cost for (v1, v

′

1) in G, and vice versa.
2) VM Placement Algorithm for Unordered Policy:
Definition 2: (Optimal Policy Route (OPR).) In a PADC

graph, a policy route of any pair of PMs (pmi, pmj) is a path
or walk starting pmi, visiting all the n MBs at least once, and
ending at pmj . An OPR of (pmi, pmj) gives the minimum
cost, denoted as opr(i, j), among all its policy routes. �

OPR of (pmi, pmj) is essentially the shortest s-t Hamilto-
nian path [22] with s = pmi and t = pmj in a complete
graph of pmi, pmj and all MBs (when pmi = pmj , it
is a Hamiltonian cycle). The existing algorithm achieves
approximation ratio of 5

3 and takes O(n3) [22], where n is the
number of MBs. Below we instead propose another O(n3) but
simpler algorithm to compute a policy route for (pmi, pmj)
and show it has an approximation ratio of 2.

Algorithm 2: Compute A Policy Route for (pmi, pmj).
Input: A PADC graph G, a pair of PMs (pmi, pmj),

and an unordered policy {mb1,mb2, ...,mbn}.
Output: pr(i, j), cost of a policy route for (pmi, pmj).
1. V i,jK = {pmi, pmj , sw1, sw2, ...swn};
2. Construct complete graph Ki,j = (V i,jK , Ei,jK). For edge

(u, v) ∈ Ei,jK , its cost d(u, v) is the cost of the shortest
path connecting u and v in G;

3. Compute a minimum spanning tree MST for Ki,j ;
4. Compute a walk W from pmi to pmj on MST that visits

all vertices in MST using each edge at most twice. Let
the cost of W be pr(i, j);

5. RETURN pr(i, j).

Using Algo. 2, we show in Fig. 5 (blue dashed lines) all
three possible policy routes in the linear PADC of Fig. 3.

Lemma 1: pr(i, j) ≤ 2 · opr(i, j), ∀pmi, pmj ∈ Vp.
Proof: Denote the cost of the MST computed in line 3 as
c(MST), c(MST) ≤ opr(i, j). Since the walk W found in line
4 uses each edge of the MST at most twice, its cost pr(i, j) ≤
2 · c(MST). Thus we have pr(i, j) ≤ 2 · opr(i, j).

Next we present our PAL algorithm Algo. 3. It first com-
putes the policy routes for all the |Vp|·(|Vp|+1)/2 pair of PMs
using Algo. 2 and orders them in the non-descending order of
their costs (lines 1-8). It then places the VM pairs (in the non-
ascending order of their traffic rates) onto the first available
PM pair, and updates the total communication cost accordingly
(lines 9-21). Running time of Algo. 3 is O(|Vp|2 · n3 + l).

Algorithm 3: PAL Algorithm for Unordered Policy.
Input: A PADC with unordered policy {mb1,mb2, ...,mbm},

VM pairs P , Vp = {pmi}, resource capacity rci.
Output: A placement p and the total comm. cost Cc(p,−→π).
Notations: avail(pmi): available resource slots at pmi.
X: all pairs of PMs with their SPR costs.

5
6

1
sw2

sw1

pm1

pm2

1
2 4

pm1

1

2
1

sw2

sw1

1
5

sw2

sw1
4

pm2

K1,1 K1,2 K2,2

(a) (b) (c)

Fig. 5. Illustrating how Algo. 3 places (v1, v
′
1) and (v1, v

′
1) in the linear

PADC of Fig. 3. The blue dashed lines show policy routes when (a) both vi
and v

′
i (i = 1 or 2) are placed in pm1, (b) vi is in pm1 and v

′
i in pm2,

and (c) both vi and v
′
i are in pm2.

1. X = φ; avail(pmi) = rci, ∀pmi ∈ Vp;
2. for (i = 1; i ≤ |Vp|; i++)
3. for (j = i; j ≤ |Vp|; j++)
4. Compute pr(i, j) using Algo. 2;
5. X = X ∪ {(i, j, pr(i, j))};
6. end for;
7. end for;
8. Sort X in non-descending order of pr(i, j). Let X be

{(s1, t1, pr(s1, t1)), (s2, t2, pr(s2, t2)), ...};
9. i = 1, j = 1, p = φ, Cc(p,−→π) = 0;

WLOG, λ1 ≥ λ2... ≥ λl;
10. while (i ≤ l) // not all VM pairs are placed yet
11. while

(
avail(sj) ≥ 1 ∧ avail(tj) ≥ 1

)
12. Place vi at PM sj , place v

′

i at PM tj ;
13. p = p ∪ {(sj , tj)};
14. Cc(p,

−→π) += λi ∗ pr(sj , tj);
15. avail(sj)−−, avail(tj)−−;
16. i++;
17. if (i > l) break;
18. end while;
19. j++; // the next available PM pairs
20. end while;
21. RETURN p and Cc(p,−→π).

EXAMPLE 3: Fig. 5 shows how Algo. 3 places (v1, v
′

1)

and (v2, v
′

2), with
−→
λ = 〈100, 1〉, in the linear PADC in Fig. 3.

It computes X = {(1, 1, 4), (1, 2, 6), (2, 2, 10)}. Thus (v1, v
′

1)
is placed at pm1 and communicate in blue dashed line in
Fig. 5(a). As pm1 is now full, (v2, v

′

2) is placed at pm2 and
communicate shown in blue dashed line in Fig. 5(c). The total
communication cost is 100 · 4 + 1 · 10 = 410. �

Theorem 3: Algo. 3 achieves 2-approximation when l = 1.
Proof: Let the placement of (v1, v

′

1) computed by Algo. 3
be (pma, pmb). Let the optimal placement of (v1, v

′

1)
be (pma′ , pmb′) thus their optimal communication cost is
opr(a′, b′). From Lemma 1, we have pr(a′, b′) ≤ 2·opr(a′, b′).
As the costs of all PM pairs are sorted in non-descending order
in Algo. 3, pr(a, b) ≤ pr(a′, b′) ≤ 2 · opr(a′, b′).

V. PAM: POLICY-AWARE VM MIGRATION IN PADCS

A. Ordered Policy.

1) Problem Formulation: In PAM, the initial VM place-
ment is given by a placement function p : V → Vp, indicating
that VM v ∈ V is at PM p(v) ∈ Vp. The total communication
cost of all the l VM pairs with placement p is thus Cc(p)
(Eq. 1). Next, define a VM migration function as m : V → Vp,

meaning that VM v will be migrated from PM p(v) to PM
m(v) (m(v) = p(v) if v does not migrate). Let Cm(m) denote
the total migration cost of all the VM pairs; Cm(m) = µ ·∑l
i=1

(
c
(
p(vi),m(vi)

)
+c
(
p(v

′

i),m(v
′

i)
))

. Let Ct(m) denote
the total cost of all pairs after VM migration m, which is the
sum of the total migration cost and the total communication
cost after VM migration m. Then Ct(m) = Cm(m) +Cc(m)

=
l∑
i=1

λi ·
n−1∑
j=1

c
(
swj , swj+1

)
+

l∑
i=1

(
µ · c

(
p(vi),m(vi)

)
+ λi · c

(
m(vi), sw1

))
+

l∑
i=1

(
µ · c

(
p(v

′

i),m(v
′

i)
)

+ λi · c
(
swn,m(v

′

i)
))
.

(2)

The objective of PAM is to find a VM migration m that
minimizes Ct(m) while satisfying resource constraint of PMs:
|{v ∈ V|m(v) = pmi}| ≤ rci, ∀pmi ∈ Vp. As the first term
on the right hand side in Eq. 2 is fixed under ordered policy, we
only need to minimize the sum of the last two terms. Below we
show that PAM under ordered policy is equivalent to minimum
cost flow problem [3] in a properly transformed flow network.

2) Minimum Cost Flow (MCF) Problem: MCF is formally
defined as follows. Let G = (V,E) be a directed graph.
Denote the capacity and cost of an edge (u, v) ∈ E as
ca(u, v) and d(u, v), respectively. The amount of supply
from source node s ∈ V equals the amount of demand
at sink node t ∈ V . Denote a flow on edge (u, v) as
f(u, v), f : E → R+. f(u, v) is subject to (a) capacity
constraint: f(u, v) ≤ ca(u, v), ∀(u, v) ∈ E and (b) flow
conservation constraint:

∑
u∈V f(u, v) =

∑
u∈V f(v, u), for

each v ∈ V \{s, t}. The goal of MCF is to find a flow function
f such that the total cost of the flow Σ(u,v)∈E

(
d(u, v)·f(u, v)

)
is minimized. MCF can be solved efficiently and optimally by
many combinatorial algorithms [3]. In this paper, we adopt
the scaling push-relabel algorithm proposed by Goldberg [20]
as it works well over a wide range of problem classes. The
algorithm has the time complexity of O(A2 ·B · log(A · C)),
where A, B, and C are the number of nodes, number of edges,
and maximum edge capacity in the flow network, respectively.
Transforming a PADC to a Flow Network. We transform
a PADC G(V,E) into a flow network G′(V ′, E′) following
below five steps, as shown in Fig. 6(a).
Step I. V ′ = {s} ∪ {t} ∪ V ∪ Vp, where s is the source node

and t is the sink node in the flow network.
Step II. E′ = {(s, v)}∪{(v, pmj)}∪{(pmj , t)}, where v ∈ V
and pmj ∈ Vp. Note that it is a complete bipartite graph
between V and Vp.

Step III. For each edge (s, v), set its capacity as 1 and cost
as 0. For each edge (pmj , t), set its capacity as rcj , the
resource capacity of pmj , and cost as 0.

Step IV. For each edge (vi, pmj), set its capacity as 1 and
cost as µ · c

(
p(vi), pmj

)
+ λi · c

(
pmj , sw1

)
. For each edge

(v
′

i, pmj), set its capacity as 1 and cost as µ·c
(
p(v

′

i), pmj

)
+

λi · c
(
pmj , swn

)
.

!

s t

v1
pm1

Vp

Sink
(demand=2#)

(1, 0) (rcj, 0)
Source
(supply=2#)

vi

vl’

pmj

pm|Vp|

vi’

(1, ' () * +, , *-. + 0, ()(*-., 121))

(1, ' () * +,4 , *-. + 0, () *-., 125)

!

s t

v1
pm1

Vp

Sink

(1, 0)

(1, 0)

(2, 0)

(2, 0)
(supply=4)

v2

v2’

pm2v1’

(1, 100)

(1, 506)
(1, 1)
(1, 11)
(1, 206)
(1, 400)
(1, 8)
(1, 4)

(1, 0)
(1, 0)Source

(demand=4)

(1, 0)

(1, 0)

(1, 0)

(a) (b)
Fig. 6. (a) PAM under ordered policy is equivalent to MCF problem. (b) Graph transformation for the PADC in Fig. 3. Highlighted lines show the VM
migrations resulted from the MCF algorithm.

Step V. Set the supply at s and the demand at t as 2l.
Theorem 4: PAM in ordered policy is equivalent to MCF

in G′(V ′, E′) thus can be solved optimally and efficiently.
Proof Sketch: Due to space constraint, we only give a high
level sketch of the proof. By applying MCF algorithm upon
the above flow network, it is able to achieve that a) every
VM in the l VM pairs is assigned to exactly one resource slot
in a PM while b) satisfying the resource capacity constraints
of PMs and c) achieving the minimum total migration and
communication cost for all the l VM pairs.

Time Complexity. As the number of nodes, edges, and maxi-
mum edge capacity in G′(V ′, E′) are m̄ · |Vp|, m̄ · |Vp|2, and
m̄ respectively, the MCF takes O

(
m̄3 · |Vp|4 · log(m̄2 · |Vp|)

)
.

EXAMPLE 4: Fig 6(b) illustrates how above transforma-
tion and MCF work for the same PADC in Fig. 3. MCF gives
that v1 and v

′

1 migrate to pm1, v2 and v
′

2 migrate to pm2, with
total cost of 100+11+206+4+101=422. Here 101 is the total
communication cost between ingress switch sw1 and egress
switch sw2. This migration reduces the total cost of 606 before
migration by 30%. Note that as v1 is initially located at pm1

and v
′

2 at pm2, only v
′

1 and v2 actually migrate. �
3) State-of-the-Art VM Migration Scheme: Cui et al. [13]

proposed a policy-aware VM management scheme named
PLAN. The core concept of PLAN is utility of a VM migra-
tion. It is defined as a VM’s communication cost reduction due
to migration minus its migration cost (Definition 1, [13]). The
goal of PLAN is to find a migration scheme that maximizes
the total utility of migrating all the VMs. PLAN is a greedy
algorithm (Algorithm 1, [13]) that works in rounds. In each
round, it computes that which VM is migrated to which PM
with available resources, such that the utility of this migration
is the maximum among all the VMs that have not been
migrated. This continues until all the VMs are migrated, or
no more VM migration gives any positive utility.

PLAN is however a heuristic algorithm that does not offer
any performance guarantee. We prove in Lemma 2 below that
its goal of maximizing the total utilities is equivalent to our
goal of minimizing total communication and migration cost in
PAM, thus we can compare our algorithms with PLAN.

Lemma 2: Minimizing total cost Ct(m) in PAM is equiv-
alent to maximizing total utility in PLAN.
Proof: Denote the utility of migrating VM v as u(v). Under
migration function m, the utility of migrating vi from its
current PM p(vi) to another PM m(vi) is the reduction

of its communication cost to the ingress switch minus the
incurred migration cost. Thus u(vi) = λi ·

(
c
(
p(vi), sw1

)
−

c
(
m(vi), sw1

))
− µ · c

(
p(vi),m(vi)

)
. Similarly, u(v

′

i) =

λi ·
(
c
(
p(v

′

i), swn
)
− c
(
m(v

′

i), swn
))
− µ · c

(
p(v

′

i),m(v
′

i)
)
.

Given a p and a
−→
λ , the total communication cost of the

VMs Cc(p) can be computed using Eq. 1. Thus minimizing
Ct(m) is equivalent to maximizing Cc(p) − Ct(m)

Eqs. 1,2
=∑l

i=1 λi ·
(
c
(
p(vi), sw1

)
+ c
(
swn, p(v

′

i)
)
− c
(
m(vi), sw1

)
−

c
(
swn,m(v

′

i)
))
− µ ·

∑
v∈V c

(
p(v),m(v)

)
=
∑l
i=1

(
u(vi) +

u(v
′

i)
)
, which is the total utility of migrating all the VMs.

B. Unordered Policy.

1) Problem Formulation: Under unordered policy, besides
a VM migration function m : V → Vp, it defines for each
VM pair (vi, v

′

i) an MB traversal function πi : [1, 2, ..., n]→
[1, 2, ..., n]. πi is a permutation function indicating that after
VM migration, the jth MB that (vi, v

′

i) visits is mbπi(j). Let
−→π = 〈π1, π2, ..., πl〉 and let Ct(m,−→π) denote the total cost
of all the VM pairs with m and −→π . Then Ct(m,−→π) =

l∑
i=1

(
µ · c

(
p(vi),m(vi)

)
+ µ · c

(
p(v

′

i),m(v
′

i)
))

+

l∑
i=1

λi ·
(n−1∑
j=1

c
(
sw
(
πi(j)

)
, sw

(
πi(j + 1)

))
+

c
(
m(vi), sw

(
πi(1)

))
+ c
(
sw
(
πi(n)

)
,m(v

′

i)
))

.

(3)

The first and second terms in Eq. 3 are the total migration
cost and total communication cost respectively. The objective
of PAM under unordered policy is to find an m and a −→π to
minimize Ct(m,−→π) while satisfying resource constraints of
PMs: |{v ∈ V|m(v) = i}| ≤ rci, ∀i ∈ Vp.

2) VM Migration Algorithm for Unordered Policy: Algo. 4
below first computes costs for all the |Vp| · (|Vp| + 1)/2
policy routes (lines 2-6). Then for each VM pair (in the non-
ascending order of their traffic rates), it finds a PM pair to
migrate to, such that the resulted cost for this VM pair is the
minimum among all the unassigned VM pairs in this round
(lines 7-23). After the entire migration scheme m is computed,
it finally migrates the VMs and returns the total cost (lines 24
and 25). Its takes O(|Vp|2 · (n3 + l)).

Algorithm 4: PAM Algorithm for Unordered Policy.
Input: A PADC with unordered policy {mb1,mb2, ...,mbn},

Vp = {pmi}, resource capacity rci, VM pair placement p.
Output: A migration scheme m and the total cost Ct(m,−→π).
Notations: i, j: indices for PM pairs; k: index for VM pairs.
ci,j : the total cost of a VM pair if its source VM is

migrated to pm(i) and destination VM to pm(j).
a, b: indices of a PM pair that gives minimum total cost.
avail(pmi): number of available slots at pmi, initially rci.

1. m = φ, Ct(m,−→π) = 0, k = 1, λ1 ≥ λ2... ≥ λl;
2. for (i = 1; i ≤ |Vp|; i++)
3. for (j = i; j ≤ |Vp|; j++)
4. Compute pr(i, j) using Algo. 2;
5. end for;
6. end for;
7. while (k ≤ l) // find PM pair for VM pair (vk, v

′

k)

8. cmin =∞; // minimum total cost for (vk, v
′

k)
9. for (i = 1; i ≤ |Vp|; i++)
10. if (avail(pmi) == 0) continue; // pmi is full
11. for (j = i; j ≤ |Vp|; j++)
12. if

(
(avail(pmj) == 0)∨ // pmj is full

(i == j ∧ avail(pmj) ≤ 1)
)

continue;
13. ci,j = 0;
14. c(pmi) = µ · c(p(vk), pmi), // cost of migrating vk

c(pmj) = µ · c(p(v′

k), pmj); // to pmi, v
′

k to pmj

15. ci,j = λk · pr(i, j) + c(pmi) + c(pmj);
16. if (ci,j < cmin) a = i, b = j, cmin = ci,j ;
17. end for;
18. end for;
19. m = m ∪ {(pma, pmb)}; // update migration scheme m
20. Ct(m,

−→π) += cmin; // update total cost
21. avail(pma)−−, avail(pmb)−−;
22. k++; // the next VM pair
23. end while;
24. Migrate (v1, v1

′), ..., (vl, vl
′) according to m;

25. RETURN m and Ct(m,−→π).

EXAMPLE 5: For the two VM pairs stored in the PADC
of Fig. 3 (a), Algo. 4 will migrate both v1 and v

′

1 to pm1,
resulting in cost of 406 for this pair. As pm1 is now full, it
will then migrate both v2 and v

′

2 to pm2, resulting in cost of
16 for this pair. The total cost of the two pairs is 422. �

Theorem 5: Under unordered policy, PAM is NP-hard even
for one pair of VMs (i.e., l = 1).
Proof: We reduce a variation of the s-t traveling salesman
path problem to this special case. By variation, we mean that
in complete graph K = (VK , EK), each node in VK has a cost.
Thus the cost of the s-t shortest Hamiltonian path includes the
costs of s and t. The rest of the proof is then similar to that in
Theorem 2 with one augmentation: For pmi, its cost c(pmi)
is the migration cost of v1 from p(v1) to pmi; for pmj , its
cost c(pmj) is the migration cost of v1′ from p(v

′

1) to pmj .
Theorem 6: Algo. 4 achieves 2-approximation when l = 1.

Proof: Let the pair of PMs that (v1, v
′

1) migrate to com-
puted by Algo. 4 be (pma, pmb). Let the optimal VM mi-
gration of (v1, v

′

1) be (pma′ , pmb′) and their optimal total
cost be Coptt (m,−→π). The total cost of (v1, v

′

1) computed by
Algo. 4 Cc(m,

−→π) = λ1 · pr(a, b) + µ · c(p(v1), pma) + µ ·

c(p(v
′

1), pmb) ≤ λ1 · pr(a′, b′) + µ · c(p(v1), pma′) + µ ·
c(p(v

′

1), pmb′) ≤ 2 · λ1 · opr(a′, b′) + 2 · µ · c(p(v1), pma′) +
2 · µ · c(p(v′

1), pmb′) = 2 · Coptt (m,−→π).

VI. PERFORMANCE EVALUATION

In this section we compare our PAL and PAM algorithms
with existing work. For PAL, we name the optimal algorithm
for ordered-policies (Algo. 1) as Optimal and the approxima-
tion algorithm for unordered (Algo. 3) as Approx-PAL, and
compare them with TrafficAware [31], a popular VM place-
ment algorithm that is policy-oblivious. For PAM, we refer to
the minimum cost flow-based algorithm for ordered policies as
MCF and the approximation algorithm for unordered (Algo. 4)
as Approx-PAM, and compare them with PLAN [13].

TABLE II
COMPARING PAM AND PAL ALGORITHMS.

Ordered-Policy Unordered-Policy Existing Work
PAL Optimal Approx-PAL TrafficAware [31]
PAM MCF Approx-PAM PLAN [13]

We consider fat-tree PADCs of size k = 8 with 128 PMs
and size k = 16 with 1024 PMs. The traffic rates of VM pairs
are in the range of [0, 1000] – Following flow characteristics
found in Facebook data centers (Section 5.1, [34]), 25% of
VM pairs have light traffic rates in [0, 300), 70% medium
traffic rates in [300, 700], and 5% heavy rates in (700,1000].
As suggested by Cisco design guide [2], we install a number
of MBs on different aggregation switches in the PADC. As
80% of cloud data center traffic originated by servers stays
within the rack [7], for the initial VM placement in PAM, we
place 80% of the VM pairs into the PMs under the same edge
switches while the rest 20% under different edge switches.
Each data point in the plots is an average of 20 runs with
95% confidence interval. In each run a new set of VM pairs
are migrated (for PAM) or to be placed (for PAL) in the PADC.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

500 1000 1500 2000

T
o
ta

l
c
o
m

m
.
c
o
s
t
(x

1
e
7
)

Number of VM Pairs

Optimal
TrafficAware

(a) Varying l. n = 3, rc = 40.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

20 40 60 80

T
o
ta

l
c
o
m

m
.
c
o
s
t
(x

1
e
7
)

Resource Capaity of PMs

Optimal
TrafficAware

(b) Varying rc. l = 1000, n = 3.

Fig. 7. Comparing with TrafficAware in ordered-policy, k = 16.

Comparing with TrafficAware. As TrafficAware only assigns
VMs (in the non-ascending order of their traffic rates) to
the same PMs or PMs in close proximity, and does not
consider the proximity of the PMs to the MBs, we implement
TrafficAware as follows for fair comparison. In ordered-policy,
it places VM pairs (in non-ascending order of their traffic
rates) to the PMs that are closest to the ingress switch. In
unordered policy, it works like Algo. 3 but only considers
the Hamiltonian cycle case, as TrafficAware always places
VM pairs in the same PM if possible. For ordered-policy,
Fig. 7(a) varies the number of VM pairs l and shows that
Optimal yields 15% less costs than TrafficAware. Fig. 7(b)

varies resource capacities of PMs rc and shows that Optimal
outperforms TrafficAware by around 15-20%. Fig. 8 com-
pares Approx-PAL and TrafficAware under unordered-policy.
It varies l as well as number of MBs n and shows that Approx-
PAL outperforms TrafficAware by 40-50% in all scenarios.
Above results are evident as Optimal and Approx-PAL are
optimal and 2-approximation policy-aware algorithms while
TrafficAware is policy-oblivious, inducing enormous traffic
when VM communication traverses the MBs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

500 1000 1500 2000

T
o

ta
l
c
o

m
m

.
c
o

s
t

(x
1

e
7

)

Number of VM Pairs

Approx-PAL
TrafficAware

(a) Varying l. n = 3, rc = 40.

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 3 5

T
o

ta
l
c
o

m
m

.
c
o

s
t

(x
1

e
7

)

Number of MBs

Approx-PAL
TrafficAware

(b) Varying n. l = 1000, rc = 40.

Fig. 8. Comparing with TrafficAware in unordered-policy, k = 16.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
C

o
s
t
(x

1
e
6
)

Epochs

No migration
MCF, µ =100, rc=20
MCF, µ =100, rc=40
MCF, µ =50, rc=20
MCF, µ =50, rc=40

Fig. 9. Effects of VM migration.

Effects of VM Migra-
tions. We then investigate
how much cost reduction
VM migrations bring to a
PADC (k = 8, l = 1000,
n = 3) compared to with-
out migrations. We con-
sider that the VM migra-
tions take place in epochs.
At the beginning of each epoch, VM pairs change their traffic
rates to new values in [0,1000] following aforesaid Face-
book flow pattern. For migrations, it then executes MCF and
calculates the total migration and communication costs. For
non-migrations, it simply recalculates the total communication
costs of VM pairs using the new traffic rates. We set the
migration coefficient µ = 50 and µ = 100, and let the PADC
run continuously for ten epochs. Fig. 9 shows the total cost of
VM pairs in each epoch with and without VM migrations, for
both rc = 20 and rc = 40. When µ = 100, migration reduces
the total costs of the VM pairs by around 10%, while when
µ = 50, it reduces by around 30%. In either case, cost for
rc = 40 is smaller than rc = 20, as there are more resource
slots available for cost-efficient VM migrations.

 5

 5.5

 6

 6.5

 7

 7.5

0 100 200 300 400 5001000

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Migration coefficient µ

MCF
PLAN

(a) Ordered Policy.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

0 100 200 300 400 5001000

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Migration coefficient µ

Approx-PAM
PLAN

(b) Unordered Policy.

Fig. 10. Comparing with PLAN, k = 8, l = 1000, n = 3, rc = 20.

Comparing with PLAN. We then compare our PAM al-
gorithms with PLAN by increasing µ from 0 to 1000, the

comparable range of the VM traffic rates. As PLAN is not
designed for unordered policy, we implement it as below
greedy algorithm. For each VM pair, PLAN finds a MB closest
to the source VM as ingress MB and the one closest to the
destination VM as egress MB. It then sets a MB sequence
by starting from the ingress MB, visiting an unvisited closest
MB, so on and so forth until all the MBs are visited and
finally the egress MB is visited. Fig. 10(a) shows that when
µ is small, the MCF outperforms the PLAN by around 20%.
With the increase of µ, PLAN starts to perform close to MCF
and finally the same at µ = 1000 due to high migration
cost. Fig. 10(b), however, shows that under unordered-policy,
Approx-PAM outperforms PLAN by around 40% for the entire
range of µ. Fig. 10(b) also shows that migration cost does not
play a role in PLAN for unordered policy.

Comparing Ordered- and Unordered-Policy. Finally, we
compare our own algorithms in ordered- and unordered-policy.
For PAL algorithms, the cost difference is Optimal−Approx-PAL

Optimal ;
for PAM algorithms it’s MCF−Appox-PAM

MCF . Fig. 11(a) shows that
when varying l, Approx-PAL costs around 20-30% less than
Optimal while Approx-PAM costs around 10% less than MCF.
Fig. 11(b) shows that when varying rc, Approx-PAL costs
around 20-30% less than Optimal while Approx-PAM costs
around 10-20% less than MCF. This is because unlike in
ordered policy wherein VMs must traverse the MBs in a
specific order, in unordered policy, VM pairs can choose more
cost-efficient sequences of MBs to traverse.

 0

 10

 20

 30

 500 1000 1500 2000

C
o

s
t

d
if
fe

re
n

c
e

 (
%

)

Number of VM Pairs

PAL
PAM

(a) Varying l. n = 3, rc = 40.

 0

 10

 20

 30

 20 40 60 80

C
o

s
t

d
if
fe

re
n

c
e

 (
%

)

Resource Capcity

PAL
PAM

(b) Varying rc. l = 1000, n = 3.

Fig. 11. Comparing ordered- and unordered-policy, k = 16, µ = 100.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we study VM placement and VM migration
in PADCs namely PAM and PAL. We uncover a suite of
new policy-aware algorithmic problems and design optimal,
approximation, and heuristic algorithms. We show VM mi-
gration is an effective technique to alleviate dynamic VM
traffic in PADCs and our results outperform the state-of-the-
arts. We will study if the optimality and approximability of
our algorithms still hold when VMs have different resource
demands. Finally, we will look into VNF migration and then
a holistic VNF+VM migration to achieve ultimate resource
optimization in PADCs.

ACKNOWLEDGMENT

This work was supported by NSF Grant CNS-1911191.

REFERENCES

[1] Cisco global cloud index: Forecast and methodology, 2016 to 2021 white
paper. https://www.cisco.com/c/en/us/solutions/service-provider/global-
cloud-index-gci/white-paper-listing.html.

[2] Cisco virtualized multi-tenant data center, version 2.0 compact pod
design guide. http://hyperurl.co/hpj2xt.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, 2008.

[5] M. Alicherry and T.V. Lakshman. Optimizing data access latencies in
cloud systems by intelligent virtual machine placement. In Proc. of
IEEE INFOCOM, 2013.

[6] A. Beloglazov and R. Buyya. Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints. IEEE Transactions on Parallel and Distributed
Systems, 24(7):1366 – 1379, 2013.

[7] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proc. of the ACM IMC 2010.

[8] B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues, 2002.
https://tools.ietf.org/html/rfc3234.

[9] C. Clark, K. Fraser, and S. Hand. Live migration of virtual machines.
In Proc. of NSDI 2005.

[10] R. Cohen, L. Lewin-Eytan, J. Seffi Naor, and D. Raz. Almost optimal
virtual machine placement for traffic intense data centers. In Proc. of
Infocom 2013.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2009.

[12] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros. Synergistic policy and
virtual machine consolidation in cloud data centers. In Proc. of Infocom
2016.

[13] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Plan: Joint
policy- and network-aware vm management for cloud data centers. IEEE
Transactions on Parallel and Distributed Systems, 28(4):1163–1175,
2017.

[14] Y. Cui, Z. Yang, S. Xiao, X. Wang, and S. Yan. Traffic-aware virtual ma-
chine migration in topology-adaptive dcn. IEEE/ACM TRANSACTIONS
ON NETWORKING, 25(6):3427 – 3440, 2017.

[15] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca. An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures. IEEE/ACM
Transactions on Networking, 25(4):2008–2025, 2017.

[16] J. Fan, C. Guan, Y. Zhao, and C. Qiao. Availability-aware mapping of
service function chains. In Proc. of IEEE INFOCOM 2017.

[17] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags. In Proc. of USENIX NSDI 2014.

[18] G.R. Gupta G. Sallam, B. Li, and B. Ji. Shortest path and maximum
flow problems under service function chaining constraints. In Proc. of
IEEE INFOCOM 2018.

[19] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. Opennf: Enabling innovation in network function
control. In Proc. of the ACM SIGCOMM 2014.

[20] A. V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. J. Algorithms, 22:1–29, 1997.

[21] A. Gushchin, A. Walid, and A. Tang. Scalable routing in sdn-
enabled networks with consolidated middleboxes. In Proc. of ACM
Hotmiddlebox, 2015.

[22] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are
more difficult than cycles. Operations Research Letters, 10:291 – 295,
1991.

[23] H. Huang, S. Guo, J. Wu, and J. Li. Service chaining for hybrid network
function. IEEE Transactions on Cloud Computing, 7:1082–1094, 2019.

[24] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer
for data centers. In Proc. of the ACM SIGCOMM 2008.

[25] T. Kuo, B. Liou, K. C. Lin, and M. Tsai. Deploying chains of virtual
network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking, 26(4):1562–1576, Aug 2018.

[26] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo. Pace: Policy-aware application cloud embedding. In
Proc. of IEEE INFOCOM 2013.

[27] X. Li, J. Wu, S. Tang, and S. Lu. Let’s stay together: Towards traffic
aware virtual machine placement in data centers. In Proc. of IEEE
INFOCOM, 2014.

[28] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin. Improve service chaining
performance with optimized middlebox placement. IEEE Transactions
on Services Computing, 10(4):560–573, 2017.

[29] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu. On dynamic service function
chain deployment and readjustment. IEEE Transactions on Network and
Service Management, 14(3):543–553, 2017.

[30] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer. Remedy: Network-aware steady state vm management for
data centers. In Proc. of the NETWORKING 2012.

[31] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In Proc.
of IEEE INFOCOM, 2010.

[32] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K. Ramakrish-
nan, and T. Wood. Virtual function placement and traffic steering in
flexible and dynamic software defined networks. In The 2015 IEEE
International Workshop on Local and Metropolitan Area Networks.

[33] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
Simplefying middlebox policy enforcement using sdn. In Proc. of the
ACM SIGCOMM 2013.

[34] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In Proc. of the ACM SIGCOMM
2015.

[35] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. Provably efficient algo-
rithms for joint placement and allocation of virtual network functions.
In Proc. of Infocom 2017.

[36] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proc. of
NSDI 2012.

[37] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud servfce. In Proc. of the ACM SIGCOMM 2012.

[38] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.H. Liu, and
S. Banerjee. Application-aware virtual machine migration in data
centers. In Proc. of Infocom 2011, mini conference.

[39] H. Wang, Y. Li, Y. Zhang, and D. Jin. Virtual machine migration
planning in software-defined networks. In Proc. of Infocom 2015.

[40] W. Wu Z. Xu J. Gu K. K. Ramakrishnan Y. He X. Qian Y. Jiang,
Y. Cui. Speedybox: Low-latency nfv service chains with cross-nf
runtime consolidation. In Proc. of IEEE ICDCS 2019.

[41] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan. Stochastic
load balancing for virtual resource management in datacenters. IEEE
Transactions on Cloud Computing (Early Access), 2018.

[42] F. Zhang, G. Liu, X. Fu, and Ramin Yahyapour. A survey on virtual
machine migration: Challenges, techniques, and open issues. IEEE
Communications Surveys & Tutorials, 20:1206–1243, 2018.

[43] J. Zhang, F. Ren, and C. Lin. Delay guaranteed live migration of virtual
machines. In Proc. of Infocom 2014.

[44] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula. Steering: A software-defined networking for inline
service chaining. In Proc. of the IEEE ICNP 2013.

