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ABSTRACT

A leading cause of physical injury sustained by elderly persons is the event of unintentionally falling. 
A delay between the time of fall and the time of medical attention can exacerbate injury if the fall 
resulted in a concussion, traumatic brain injury, or bone fracture. The authors present a solution 
capable of finding and tracking, in real-time, the location of an elderly person within an indoor 
facility, using only existing Wi-Fi infrastructure. This paper discusses the development of an open 
source software framework capable of finding the location of an individual within 3m accuracy using 
802.11 Wi-Fi in good coverage areas. This framework is comprised of an embedded software layer, 
a Web Services layer, and a mobile application for monitoring the location of individuals, calculated 
using trilateration, with Kalman filtering employed to reduce the effect of multipath interference. 
The solution provides a real-time, low cost, extendible solution to the problem of indoor geolocation 
to mitigate potential harm to elderly persons who have fallen and require immediate medical help.
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INTRODUCTION

As reported by the World Health Organization’s Global Report on Falls Prevention in Older Age, based 
on research conducted by Blake et al. (Blake et al., 1988), (WHO Global Report on Falls Prevention 
in Older Age, 2007), 35% of population 65 years and over experience at least one unintentional fall 
per year, due to tripping, dizziness, and blackouts. Elderly people are more likely to fall due to loss 
of handgrip strength used for control and stabilization when using walking aids such as walkers and 
canes. Arthritis, dizziness, neuromuscular, cognitive, and foot impairments also contribute to an 
increased prevalence of falling by older people when using stairs and steps, or while turning around 
or reaching for objects. Research by Tinetti found that 61% of elderly nursing home residents fell at 
some point during their first year of residence (Tinetti, 1987), a greater proportion than elderly people 
who live in residential communities. Those assigned to live in assisted living facilities may fall more 
frequently due to greater weakness in their lower extremities, a potential contributing factor for their 
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decision to live in such a facility since facility staff can assist with mobility. Many algorithms and 
embedded technologies have been in research and development for the past several years, which aim 
to work towards the basic goal of detecting a fall and reporting the location of the fallen individual 
to a respective authority.

Indoor geolocation tracking is an evolving technology which aims to calculate the location of an 
individual within an indoor environment. One of the promising classes of this emerging technology 
is to take advantage of existing infrastructure to determine the location of a user (Pahlavan, Xinrong, 
& Makela, 2002). Much work has been carried out to use GPS for indoor location tracking (Álvarez, 
de Cos, Lorenzo, & Las-Heras, 2010; Kjærgaard et al., 2010); however, GPS only has an accuracy 
of 5-50m in an indoor environment (Liu, Darabi, Banerjee, & Liu, 2007).

This paper presents the development of an open source software platform capable of tracking the 
movements of individuals using existing 802.11 Wi-Fi infrastructure. The modularity of the software 
framework developed and its strong use of C++11 design principles enables the framework to be easily 
adapted to a variety of hardware platforms and radio technologies, such as Bluetooth or LoraWAN. 
In addition, this solution provides flexibility of monitoring multiple people using a mobile app.

BACKGROUND

The ability to identify the geographic location of an individual residing outside of a building by 
latitude, longitude, and altitude is easily accomplished using a relatively inexpensive GPS receiver. 
Typical commercially available receivers for under $100 can provide coordinates within a sampling 
time of 30 seconds to an accuracy of 3m. For example, the Copernicus II 12-channel GPS module 
from Trimble is under $70 and can provide updated coordinates with a period of 3s. GPS receivers 
typically use a carrier wave in the L1 band at 1575.42 MHz on which navigation messages are 
modulated. Unfortunately, such microwave signals are significantly attenuated by building roofs and 
walls, rendering GPS unusable in indoor setups.

Indoor position measurements can be accomplished using different mechanisms such as radio 
signals, magnetic fields, and sound waves. Newer, emerging technologies employ computer vision 
to identify objects in a camera field of a view. A vision system can measure distances in between 
recognized objects, and between a user and recognized objects. These measurements provide a system 
with depth perception and can identify how far a user is away from a surface or other rigid body in 
a field of view.

The well-established Cricket indoor location system developed at MIT uses a combination of 
RF and ultrasound to provide location information via wall- and ceiling-mounted beacons placed 
throughout a building (Priyantha, Chakraborty, & Balakrishnan, 2000), (Priyantha, Miu, Balakrishnan, 
& Teller, 2001), (Teller, Chen, & Balakrishnan, 2003). Cricket uses time difference of arrival between 
RF and ultrasonic signals, which can accurately identify the indoor location of a static object but was 
shown to present difficulties tracking the location of an object in motion.

The indoor location of an object or person using received signal strength was investigated by 
(Álvarez et al., 2010), with the goal of improving the characterization of EM to provide a precise 
indoor location. Álvarez proposed a full wave-based method measurement setup and tested this idea 
in different scenarios. A practical implementation was carried out using a ZigBee-based sensor 
network and was able to achieve a desired accuracy requirement of less than 5% for location error.

Issues faced by estimating indoor location from received signal strength, time of arrival (TOA), 
or time difference of arrival was investigated by (Chitte & Dasgupta, 2008) who found the mean 
square error (MSE) of location measurement increases exponentially with noise power.

Topological discovery with boundary recognition and hole discovery in a wireless sensor network 
can be accomplished using methods based on the Poincare-Perelman Theorem (Wei, Yang, Shen, 
& Zhou, 2012).
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A system named Simultaneous Localization and Configuration (SLAC) to locate devices and 
motion data from users was proposed by (Bulten, Rossum, & Haselager, 2016). The authors showed 
that room level accuracy can be established while simultaneously protecting the privacy of people 
being monitored.

Difficulties faced in indoor geolocation science, and requirements for design and performance 
evaluation of emerging geolocation systems was studied by (Pahlavan et al., 2002), where two 
emerging classes of indoor geolocation systems were identified. The first class uses reliable TOA 
measurements based on wideband, super resolution, or UWB location sensing approaches and employs 
triangulation techniques for positioning. The second class uses existing Wi-Fi infrastructure, more 
unreliable metrics, premeasurement data, and pattern recognition algorithms. The major drawback of 
using pattern recognition is that it requires generation and maintenance of a signature database, which 
is difficult to maintain for environments that continuously change. Both classes showed promising 
performance for emerging indoor geolocation applications.

This project utilizes strictly 802.11 radio signals from Wi-Fi access points to identify a person’s 
position. After calculating the known location of these access points and the signal strength at a 
receiver, the distance can be derived using a modification of the free space equation. In this software 
framework, four access points are selected to derive the location of a user by calculating the distance 
between the user and each access point using trilateration.

SOFTWARE FRAMEWORK ARCHITECTURE

The software framework, presented in this paper, is com- posed of three components: (1) Embedded 
Layer, (2) Middleware Layer, and (3) Mobile Application Layer. The embedded layer is comprised 
of software which runs on a sensor node held by a user. The middleware layer is comprised of 
RESTful Java Web Services and a PostgreSQL database, which connects the Embedded and Mobile 
Application layers. The mobile application layer consists of an Android application, which is used 
to render a user’s location. A diagram of the complete software framework is shown in Figure 1. 
The RESTful API is the fundamental interface between all components of the software framework. 
In terms of data flow, Web Services provide the relative coordinates of known access points to the 
sensor node, and the node responds with the relative Cartesian (x, y, z) coordinates (in meters) of 
its location. The Web Services then translate these coordinates into absolute latitude, longitude, and 
altitude units which are consumed by a mobile application. The three respective layers and their 
operation will now be discussed in detail.

A. The Embedded Layer
The embedded layer is the component of the software framework that runs on a sensory device operated 
or worn by a user. The embedded layer is written in C++ using object-oriented (OO) design principles 
and is portable across Linux, Windows, iOS, Android, and other platforms. This portability is possible 
due to the use of modern OO design principles and the employment of cross-platform libraries, such 
as BOOST and CPPRestSDK, which removes platform awareness for most of the system. As shown 
in Figure 2, the only part of the system that requires awareness of the underlying OS/Platform is the 
Node Scanner Module. A Node in the framework is defined as an 802.11 access point. Direct OS 
interaction is required at this layer due to the low level of access required to the wireless hardware. 
BOOST is used mainly to enable straightforward, cross-platform, thread safety and thread handling. 
The C++ REST SDK Microsoft project (CPPRestSDK) is used to handle JSON construction and 
parsing along with HTTP Requests.

The Node Reader Module is responsible for creating a known list of nodes and their locations. 
This has been implemented in two different flavors: a file reader and an HTTP GET reader. The 
recommended module to utilize is the HTTP GET reader. This module queries a known list of nodes 
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in JSON format from the middleware Java Web Services and populates a list of nodes known to the 
Location and REST Modules.

The Node Scanner Module is responsible for interfacing with the OS or Platform API, which 
provides data from a Wi-Fi scan or other radio platform. The module provides a list of Nodes populated 
with their respective RSS (Received Signal Strength).

The Location Derivation Module is responsible for deriving the Cartesian (x, y, z) coordinates 
of the user node, based on data from the Node Reader and Node Scanner Modules. The details of the 
implementation will be discussed in the theory of trilateration and implementation sections.

The REST Module is responsible for posting data from the Location Derivation Module to the 
Web Services. This module is also responsible for providing the data to any interested party through 
an HTTP GET route. Trilateration is used to derive the relative location of a particular sensor node 
and depends on the measured Received Signal Strength (RSS) of four different Wi-Fi access points 
(APs) within 32m of the user. Typically, the received signal power within one meter of an AP will 
be approximately -32 dBm, and close to -90 dBm at a distance of 32m. RSS can be modeled using 
equation (1)

RSS N D A= − −( )10
10

log 	

where N represents a signal propagation constant, A the received signal power at 1m, and D a 
distance in meters (Aamodt, July 10, 2006; Chitte & Dasgupta, 2008). With four APs, one can use 
trilateration to locate a user using four distances computed from four RSS values. Let ( , , )x y z  represent 

Figure 1. Software framework architecture overview
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the unknown location of a user and ( , , , )d d d d
1 2 3 4

 represent four distance values obtained from the 
measured RSS between a user’s sensor and four APs. The system of Euclidian distances between the 
user and four APs is given by (2)
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System (3) can be expressed in Ax b=  matrix form as

Figure 2. Embedded layer architecture
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and solved using a least squares approximation (Xu, Ge, Chen, Chen, & Ling, 2012). We then 
solve the general over-determined system using a Gauss–Newton Least Squares Estimate:

A A X A bT T( ) = 	

While the same four access points are being used, the coefficient matrix A does not vary, and 
the Gramian ATA can be factored using LU decomposition and can be solved repeatedly using back 
substitution to obtain a least squares estimate.

Multipath effects (He, Geng, & Pahlavan, 2014), co-channel interference (“CCI”), and adjacent-
channel interference (“ACI”) can reduce the SNR, resulting in location measurement error. Additional 
APs can be incorporated to reduce trilateration error. More than three APs form an overdetermined 
system of equations. We can form three equations in three unknowns by doing additional row 
operations, as we have shown in (4). The optimal signal propagation constant for a noisy indoor 
environment was found to be approximately 2.5. To mediate the error introduced by such environmental 
effects, Kalman filtering is employed. In an ideal system, an RSS value depends directly, and only, 
on the distance between the 802.11 Wi-Fi transmitter and the receiver. Multipath interference, 
electromagnetic interference, and signal fading all play a significant role in causing fluctuations in 
the received signal strength. Hence, it is required that the RSS values are filtered in the time domain 
so to mitigate the effect of such noise. One such method is to employ an extended Kalman filter. The 
equations representing the implemented Kalman filter and given in and are executed on each “tick” 
of the system (Lauszus, 2018, September 10, 2012),

p p q

k p p r

x x k i x

p k p
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= + −( )
= −( )

/ ( )

1

	

where q is the process noise covariance, r is the measurement noise covariance, x is the Kalman 
filtered value, p is the Estimation Error Covariance, k is the Kalman Gain, and i is the most recently 
measured RSS value. Measurement Covariance is the standard deviation of a set of measured results, 
determined to be 2.36 dBm. This value was derived by taking several measurements of the RSSI 
(dBm) at 1m distance from an 802.11 wireless access point in the test environment. The process 
covariance is the susceptibility of the system to change, determined in this study to be 0.001. This 
value was determined through trials to best match the typical speed at which an individual may move 
around a facility.

The Embedded Layer was implemented in a very modular fashion using OO and C++11 design 
principles. These include but are not limited to polymorphism, inheritance, decorator, and singleton 
patterns. Such modern C++ features such as shared pointers, scoped locks, tasks and initializer 
lists were also heavily utilized. The employment of these principles and features has enabled a very 
flexible, thread-safe, memory safe system to be constructed and be portable across multiple platforms. 
The UML for the completed system can be seen in Figure 3. The Module classes are the core drivers 
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of the system. Each module provides the system with discrete functionality. Some modules, such 
as the Rest Module, rely on other modules to enable operation, however, they do not depend on the 
implementation of those modules. There are four key modules which make up this system: Location 
Module, Rest Module, Scan Module, and the Node Reader Module.

The Location Module Class is responsible for deriving the exact location of the user based on the 
four nodes with the best signal strength in the target node container. In this open source framework, 
the LAPACK linear algebra library is used to solve through calls to DGESV and DGELS for least 
squares approximation and DGETRS for back substitution. The Rest Module Class is responsible for 
providing the location, scan, and target node list data to any interested parties by hosting the JSON 
on a GET Route. The module is also responsible for POSTing derived location data to the remote 
Web Services server. The Scan Module Class is responsible for populating a list of nodes with the 
RSS evident at a Beaglebone (BeagleBoard.org Foundation, 2019) single board computer (SBC) for 
each access point. This list is then used to update the target nodes. The Node Reader Module class 
is responsible for populating a list of Target Nodes which are of known location. This list can be 
obtained from a file in JSON format using the file reader variant or from a web address using the 
GETreader variant.

Additionally, there are data classes used by all modules, such as the Node, Node Container, 
and Location classes that store information relating to access point information or user location 
information. Node class objects are used to identify any node identified in a scan. Target Nodes 
correspond to nodes in which the location is known and can be used for trilateration. Each target node 
is responsible for updating its stored Kalman filtered location when a new RSS value is provided. 
The location data class simply contains the (x, y, z) coordinates for a location and helper methods 
for accessing and modifying this data.

The system is driven by the main class, where all the modules are created and initialized. The 
main loop ensures the system is continuously scanning and updating a user’s location. A target node 
container is created and shared between the location module, node reader module, and scan module. 
When the modules are initialized, the node reader module updates that container with a list of target 
nodes, of known location, which is updated with RSSI measurements as is necessary through the scan 
module. The location module then employs this information to derive relevant, up to date location 
information. This information is then POSTed by the REST Module to a web server and provided to 
a mobile app listener through an HTTP GET route.

B. The Middleware Layer
The middleware layer is comprised of two main components: RESTful Web Services and a PostgreSQL 
back-end database.

RESTful Web Services provide a API that both the Mobile Application and the Embedded 
Layer interact with. The back-end database is accessed through RESTful Web Service invocations 
and is where location data related to known access points and user locations are stored. RESTful 
(Representational State Transfer) architectural style Web Services were built using the Java Glassfish 
library and framework. These RESTful services provide an interface to query and retrieve data 
contained within the database, and a mechanism to write calculated location data to the database. 
Two HTTP GET routes were provided: (1) a route which lists the known access points for a location 
in JSON format, and (2) a route which lists a user’s absolute location as (longitude, latitude, and 
altitude) coordinates. There is also an HTTP POST route which accepts Cartesian (x, y, z) coordinates 
in meters and a physical site number (in JSON format) derived by the embedded layer, and writes the 
corresponding absolute latitude, longitude, and altitude into a PostgreSQL database table. PostgreSQL 
was chosen as a platform to implement a backend database where all data retrieved through Web 
Service invocations is stored, such as the absolute, real-time location of persons. The database consists 
of several tables, including one containing information of known access point locations, and a moving 
window table containing the last 30 timestamped known locations of sensor nodes. To obtain the 
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relative coordinates of each access point in a physical venue, such as a building, a common origin was 
placed in the southwest corner of each venue, then the absolute latitude and longitude of each access 
point were obtained by offsetting the latitude and longitude from the origin. Cartesian coordinates 
(m) of each AP relative to the corner of the building were stored in the database.

Figure 3. UML diagram of the embedded layer
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A UML class diagram for the RESTful Web Services that implement the middleware layer is 
shown in Figure 4. The database manager module maintains a persistent connection with a PostgreSQL 
database and handles errors that occur during a database connection. The KeepAliveManager class 
continuously sends queries to the database to maintain a persistent connection. The NameStorageBean 
class contains a method that updates the location of each sensor in the database using an SQL INSERT 
statement to insert new values into the database and DELETE to delete entries to be aged out. The 
NameStorageBean class also executes an SQL SELECT query operation to retrieve all Wi-Fi access 
point relative Cartesian coordinates from the database to provide a sensor for calculating distances. 
The Geolocation module consumes relative Cartesian coordinates from a sensor and converts the 
relative coordinates into absolute latitude, longitude, and altitude coordinates that are stored in the 
database and used to render a user’s position in a Google map.

C. The Mobile Application Layer
A mobile Android application was developed to render the real-time location of people rendered on 
a Google Map. The mobile application was developed using Android Studio which displays a visual 
representation of an individual’s real-world location. The app employs the Google Maps API with an 
overlay of a building’s architectural floorplan. The application HTTP GETs longitude, latitude, and 
altitude coordinates through Java Web Services deployed in a Glassfish container on host marconi.
sdsu.edu and renders each person’s absolute location as an inverted-drop-shaped icon using the Google 
Maps API. With the architectural floor plan overlay, one can determine which room in a building a 
person is located. In this work, the fourth-floor floorplan of the San Diego State University College 
Engineering building was used as an overlay. Each inverted-drop-shaped icon that marks locations 
in Google Maps represents a different person. Markers also provide information about a particular 
person in terms of location, most recent measured timestamp of location, and the status of the person. 
The status determines if the person it is inside or outside a building. This application is published and 
available in the Google Play Store under the name Fall Prevention Tracker (Proximity Networking, 
2018), and it is possible for multiple individuals on different Android devices to utilize the application 
simultaneously. A screen-shot of the application is shown in Figure 5.

Google Maps API authentication and authorization information is specified in the AndroidManifest.
xml file in the Android build. The app is configured with a Google Maps API key (Google, 2019) 

Figure 4. UML class diagram of the middleware layer
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which is defined as a string resource inside the app code. Each API key is related to an encryption 
key used to sign the resulting build APK file. A different Google Maps API key is required for each 
encryption key. The following functions were implemented within the app’s MapsActivity file to 
carry out different features:

•	 consumeWebService()requests a string response from the URL http://marconi.sdsu.edu:8080/
GeoLocation/resources/app, an endpoint of a Java Web Service to query the fixed coordinates 
of Wi-Fi access points in buildings used in equation 2.

•	 processJSON() unmarshalls JSON-encoded data returned by Web Services and stores the result 
in variables such as timestamp, alt, latitude and longitude.

•	 modifyLocation(string timestamp, string data, double latitude and double longitude) repositions 
an inverted-drop-shaped icon in the app display to indicate a person’s updated location.

•	 updateMarkers() modifies the location of a person by implementing an HTTP GET request to 
a Web Service, and then converting the returned JSON data into HTML text for formatting and 
displaying in an app popup window.

•	 checkIfPeopleOutside() generates an app notification by changing the color of the marker from 
green to red if a tracked person is found to reside outside of a building. This function is used to 
provide immediate assistance if a person leaves a designated area.

•	 moveCamera(), createOverlay(), addPeopletoApp() are used to assist the above methods in 
displaying images within the app by enabling focus and by rendering new inverted-drop-shape 
icons to indicate the presence of new people being tracked.

Class Person stores location and identity data of each person being tracked, and a 
CustomInfoWindow Adapter is used to customize the content and layout of a window that displays 
the latest information about each person.

Figure 6 shows a UML class diagram of the mobile Android Application. The 
CustomInfoWindowAdapter class is used to customize the window that renders inverted-drop-
shaped icons. The Person class gets information about a single person using methods getName(), 
getTimestamp(), getLatLng() and getStatus()). This information is then shown on a Google Map.

TESTING AND RESULTS

A modular, flexible, portable, end to end, open source framework has been developed, capable of 
deriving the location of people using existing Wi-Fi infrastructure. To evaluate location accuracy, five 
Beaglebone embedded ARM Linux single board computers, named (User0, User1, User2, User3, 
and User4), were employed, each with a TI WiLink 8 radio. Two 6dB, vertically polarized, high 
gain antennas were employed on each device to boost the RSSI (Received Signal Strength Indicator) 
present at the WiLink chip. The solution was powered by a 2000mAh battery and was contained 
within a 3D printed housing. The devices are shown in Figure 7. Multiple tests were completed to 
evaluate the Kalman Filter, the execution time of the LAPACK functions, and the effectiveness of 
the location derivation.

The performance of the Kalman Filter was evaluated by stationing the test platform in a single 
location and comparing the raw RSSI data with the Kalman filtered RSSI data. The location was 
the San Diego State University IoT lab with high incidences of multipath interference and obstacle 
induced path loss. The results of the sampling can be seen in Figure 8.

Three LAPACK functions were utilized for solving the system of equations shown in . DGELS 
solves an over or underdetermined system using the LU factorization of matrix A. DGESV solves an 
over or underdetermined system through partial pivoting and row interchanges to factorize A. The 
factored form of A is then used to solve the system of equations. DGETRS solves a system of equations 
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given the LU factorization of A, which will be a constant matrix while a person’s associated access 
points do not change. The LU factorization of A can be computed a single time, thus enabling DGETRS 
to be employed to repeatedly solve a system of equations, which is computationally less expensive. 
The time taken for each of these methods to solve the system was measured: 18000 ns for DGELS, 
10000 ns for DGESV, and 6000 ns for DGETRS. As one can see, DGETRS is three times faster 
than DGELS and, if this system were to be synthesized for hardware or low-level system software, it 
would be beneficial to utilize DGETRS instead of DGELS or DGESV wherever possible. However, 
it is worth noting that at least one call to DGESV will be required to derive the factorized A matrix.

The system was tested in a relatively noisy university engineering environment with 
electromagnetic interference and large multipath losses. The fourth floor of the San Diego State 
University (SDSU) Engineering Building was the chosen environment. The test platform was found to 
have a scan refresh rate of around 2 Hz. There was also a settle time of 10 seconds for the Kalman filter.

The efficiency of the system was tested based on three parameters: precision, accuracy, and delay. 
Numerous exercises were conducted with the help of five Beaglebone boards each representing a 
person. Precision determines the efficiency of the system to compute the distance of the user and 
showcase it on the map. An experimental setup with various locations and different Wi-Fi coverage 
areas was created. Table 1 showcases locations of all the access points used for precision testing which 
are represented as green dots in Figure 9. Tables 2 and 3 represent various test cases where the boards 
were moved around different locations in the same room. The actual distance and calculated distances 
were recorded. It was seen that in a good coverage area zone (RSSI -38 dBm) the 3D error was found 
out to be in the range of 1 to 2.25 meters whereas in a weak Wi-Fi zone (RSSI -63dBm) a 3D error 
of 3 to 5.5 meters was experienced. Figure 9 shows test cases of weak Wi-Fi coverage as black dots.

Accuracy measures if a person is correctly identified to reside in the room shown on the app. 
Boards were placed at various locations on the entire floor each having different Wi-Fi strength. 
Figure 10 is a screenshot of a scenario where all the BeagleBoards were placed at different locations 
in a single room.

Figure 5. Mobile android application using the google maps API
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Figure 6. UML class diagram of the mobile application layer

Figure 7. Developed Beaglebone platform (user0, user1, user2, user3, and user4)
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Another scenario was examined where three boards, User2, User1, and User0, were placed at 
different locations in the hallway on the fourth floor and two boards, User3 and User4, in a single 
room. The boards could successfully detect their location, as shown in Figure 11.

However, there is a key limitation of the system and that is an inability to differentiate between 
signal attenuation due to distance and signal attenuation due to obstacle-induced path loss. This means 
the system may derive the location of an individual to reside outside the boundaries of a building 
instead of the actual location, as shown in Figure 12.

Also, another example of this limitation is when the board enters a low Wi-Fi coverage zone. 
Figure 13 is a map displaying the WLAN coverage area on the fourth floor of the SDSU Engineering 
building where the test was conducted. As shown, the red color represents the areas where the Wi-
Fi coverage is the strongest and the green colored areas are the low Wi-Fi coverage zones. During 
the test, it was experienced that when a user enters these green zones (RSSI -75dBm) the calculated 
distances have errors of 2 meters. This is due to not having enough APs in range of the board.

Figure 14 shows an event where User2 enters a weak Wi-Fi zone of the building (RSSI -75dBm). 
Hence the system derives the location of the individual to be a few meters away from their actual 
location as seen on the app.

Delay was calculated as the difference between the time a person walks into a location and 
the time when the movement is updated on the app. A detailed analysis of situations where people 
carrying different boards were made to enter low to high Wi-Fi coverage areas was carried out. 
Results for these experiments can be seen in Tables 4 and 5. The difference in time when a person 
actually enters a location, and timestamp shown on the app, was computed. It was observed that in 
a good coverage area, delay calculated was about 3 to 5 seconds. Whereas in a low Wi-Fi coverage 
area this delay increases to about 12 seconds.

Figure 8. Kalman filtered result

Table 1. Location of access points used for precision test cases

Access Points Location Coordinates (x, y, z) (meters)

Trig 1 (0.61, 0.56, 1.52)

Trig 2 (6.68, 0.26, 2.49)

Trig 3 (1.9, 4.75, 1.84)

Trig 4 (9.3, 7.35, 2.41)
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FUTURE WORK

Thus far, the developed system is fully capable of deriving the location of a user, if four or more known 
access points are within range. However, several avenues exist for future work. The employment of 
machine learning technologies could help improve the accuracy of the derived location. For example, 
one use of this technology could include measuring the wireless signal strengths at several known 
locations within a facility. This information could then be used to generate a set of decision trees 
which could be employed to more accurately derive a location. As was previously mentioned, the 
advantage of this software framework is that it can be easily compiled and run on several platforms 
by simply developing platform specific scan module implementations. Future work will include the 
implementation of several platform-specific modules for iOS, Android, and Windows.

CONCLUSION

This paper presents the development of a multiplatform, indoor, geolocation framework that uses the 
standard 802.11 protocol to determine a person’s physical location within an indoor facility within 
a typical accuracy of 3m. The complete solution is entirely new, has not been applied in any form 

Table 2. Precision values for weak Wi-Fi coverage areas (RSSI: -63 dBm) and less

Actual Coordinates (x1, y1, 
z1,), meters

Calculated Coordinates 
(x2,y2, z2), meters

3D Euclidian Distance 
Error, meters

Number

(9.26, 7.35, 0.93) (7.67, 4.80, 5.40) 5.38 1

(4.22, 1.89, 0.73) (4.01, 2.75, 2.35) 5.12 2

(5.59, 1.74, 0.75) (5.94, 2.45, 3.56) 2.91 3

(1.32, 5.74, 1.12) (3.81, 9.11, 4.71) 5.51 4

(5.59, 2.49, 0.75) (7.89, 0.76, 3.15) 3.74 5

Figure 9. Weak Wi-Fi test cases
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elsewhere, and provides a framework for monitoring the real-time location of individuals through a 
mobile device. The presented software framework provides opportunities for further expansion. The 
system employs modern C++11 and object-oriented design principles and is portable, expandable, 
thread safe and memory safe. The performance of the system has been profiled and many areas for 
further development have been outlined. This project is an open source indoor geolocation framework 
for tracking the location and movements of individuals. It is hoped that this technology will be 
employed and used by others, especially in assisted living facilities to help reduce the time it takes 
for elderly persons in need of care to be quickly located, potentially saving lives.

All source code for the Embedded Layer that executes on the BeagleBone Black single board 
computer, the Middleware Layer Netbeans (The Apache Software Foundation, 2019) project that 
implements RESTful Web Services in a Glassfish Web Application container, and the Mobile 
Application Layer Android Studio project, is publicly available in GitHub (Gala & Paolini, 2019).
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Table 3. Precision values for good Wi-Fi coverage area (RSSI: -38 dBm)

Actual Co-ordinates (x1, y1,z1), 
meters

Calculated Coordinates (x2, y2,z2), 
meters

3D Euclidian Distance Error, 
meters

(8.57, 3.05, 0.74) (7.68, 2.45, 0.97) 1.09

(4.22, 3.54, 0.73) (4.79, 3.06, 2.85) 2.24

(6.69, 2.24, 0.75) (7.13, 2.53, 2.17) 1.51

(8.01, 6.44, 0.90) (7.43, 4.82, 1.74) 1.91

(7.41, 2.49, 0.75) (6.56, 3.98, 0.30) 1.77
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Figure 10. Example of all BeagleBoards placed in a single room. (The figure was obtained from a screen capture on a Samsung 
Galaxy S3 mobile phone with a 4.8in frame at a pixel density of 306ppi (pixels per inch). While not clear in this printed image, 
architectural details and room numbers can be clarified using the zoom (pinch/spread) finger gesture in the app.)

Figure 11. Example of good coverage
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Figure 12. Example of location error due to signal attenuation. (The following figure was obtained from a screen capture on a 
Samsung Galaxy S3 mobile phone with a 4.8in frame at a pixel density of 306ppi (pixels per inch). While not clear in this printed 
image, architectural details and room numbers can be clarified using the zoom (pinch/spread) finger gesture in the app.)



International Journal of Interdisciplinary Telecommunications and Networking
Volume 12 • Issue 2 • April-June 2020

18

Figure 13. WLAN coverage map for the fourth floor of the SDSU engineering building

Figure 14. Example of a poor Wi-Fi coverage area
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Table 4. Delay values for weak Wi-Fi coverage areas (RSSI: -63 dBm)

Actual Time Timestamp Delay (seconds)

15:03:42 15:03:48 6

15:11:13 15:11:15 8

16:22:06 16:22:12 6

16:22:57 16:23:09 12

19:19:49 19:19:55 6

Table 5. Delay values for good Wi-Fi coverage areas (RSSI -38 dBm)

Actual Time Timestamp Delay (seconds)

13:04:01 13:04:05 4

13:04:50 13:04:55 5

14:30:41 14:30:45 4

15:19:23 15:19:26 3

15:22:28 15:22:32 4
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