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Abstract
This work incorporates topological features via persistence diagrams to classify point
cloud data arising from materials science. Persistence diagrams are multisets sum-
marizing the connectedness and holes of given data. A new distance on the space of
persistence diagrams generates relevant input features for a classification algorithm for
materials science data. This distance measures the similarity of persistence diagrams
using the cost of matching points and a regularization term corresponding to cardi-
nality differences between diagrams. Establishing stability properties of this distance
provides theoretical justification for the use of the distance in comparisons of such
diagrams. The classification scheme succeeds in determining the crystal structure of
materials on noisy and sparse data retrieved from synthetic atom probe tomography
experiments.

Keywords Stability · Classification · Persistent homology · Persistence diagrams ·
Crystal structure of materials

Mathematics Subject Classification 62H30 · 62P30 · 55N99 · 54H99

1 Introduction

A crucial first step in understanding properties of a crystalline material is determin-
ing its crystal structure. For highly disordered metallic alloys, such as high entropy
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Fig. 1 Example of a body-centered cubic, and b face-centered cubic unit cells without additive noise or
sparsity. Notice there is an essential topological difference between the two structures: The body-centered
cubic structure has one atom at its center, whereas the face-centered cubic is hollow in its center, but has
one atom in the middle of each of its faces

alloys (HEAs), atom probe tomography (APT) gives a snapshot of the local atomic
environment. APT has two main drawbacks: experimental noise and missing data.
Approximately 65% of the atoms in a sample are not registered in a typical experi-
ment, and those atoms that are captured have their spatial coordinates corrupted by
experimental noise. As noted by Kelly et al. (2013) andMiller et al. (2012), APT has a
spatial resolution approximately the length of the unit cellwe consider, as seen inFig. 1.
Hence the process is unable to see the finer details of a material, making the determi-
nation of a lattice structure a challenging problem. Existing algorithms for detecting
the crystal structure (Chisholm and Motherwell 2004; Hicks et al. 2018; Honeycutt
and Andersen 1987; Larsen et al. 2016; Moody et al. 2011; Togo and Tanaka 2018)
are not able to establish the crystal lattice of an APT dataset, as they rely on symmetry
arguments. Consequently, the field of atom probe crystallography, i.e., determining
the crystal structure from APT data, has emerged in recent years (Gault et al. 2012
and Moody et al. 2011). These algorithms rely on knowing the global lattice structure
a priori and aim to determine local small-scale structures within a larger sample. For
some materials this information is readily known, for others, such as HEAs, the global
structure is unknown and must be inferred. A recent work by Ziletti et al. (2018)
proposes a machine-learning approach to classifying crystal structures of a noisy and
sparse materials dataset, without knowing the global structure a priori. The authors
employ a convolutional neural network for classifying the crystal structure by looking
at a diffraction image, a computer-generated diffraction pattern. The authors suggest
their method could be used to determine the crystal structure of APT data or other
noisy and sparse data from materials science. However, the synthetic data considered
in Ziletti et al. (2018) is not a realistic representation of experimental APT data, where
about 65% of the data is missing (Santodonato et al. 2015) and is corrupted by more
observational noise (Miller et al. 2012). Most importantly, their synthetic data is either
sparse or noisy, not a combination of both. We consider a combination of noise and
sparsity, such as is the case in real APT data.

In this work, we provide a machine learning approach to classify the crystal struc-
ture of a noisy and sparse materials dataset. Specifically, we consider materials that
are either body-centered cubic (BCC) or face-centered cubic (FCC), as these lattice
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structures are the essential building blocks of HEAs (Zhang et al. 2014) and have fun-
damental differences that set them apart in the case of noise-free, complete materials
data. The BCC structure has a single atom in the center of the cube, while the FCC has
a void in its center but has atoms on the center of the cubes’ faces, see Fig. 1. These
two crystal structures are distinct when viewed through the lens of Topological Data
Analysis (TDA). Differentiating between the holes and connectedness of these two
lattice structures allows us to create an accurate classification rule. This fundamental
distinction between BCC and FCC point clouds is captured well by topological meth-
ods and explains the high degree of accuracy in the classification scheme presented
herein.

TDA provides input features for machine learning algorithms, as well as a useful
toolbox for classification. Several authors have used TDA on real-world problems,
see Carlsson et al. (2005), Edelsbrunner et al. (2000), Marchese and Maroulas
(2016), Marchese et al. (2017), Wasserman (2018), Zomorodian and Carlsson (2005),
Maroulas et al. (2019a, b) and the references therein. Persistent homology, which
measures changes in topological features over different scales, is the main framework
considered by these authors.

Persistent homology is applicable to classification problems as it studies and differ-
entiates holes within data as viewed in different dimensions, e.g., the space enclosed
by a loop is a one-dimensional hole. Overall, persistent homology provides a summary
of the connectedness and holes (empty space in atomic cells) of data, which indirectly
gives information about the shape of the data as well. Indeed, persistent homology
records when different homological features emerge and vanish in the data. This anal-
ysis quantifies the significance of a homological feature and provides a tool to contend
with noisy data. The appearance and disappearance of each homological feature is
calculated and recorded in a persistence diagram. Persistence diagrams yield topolog-
ical summaries of the persistent homology of a dataset and are rich sources of detail
about underlying topological features. The diagrams could be used in distance-based
classifiers (Marchese andMaroulas 2018; Carriere et al. 2017) or vectorized and input
into standard classification algorithms, such as support vector machines (Adams et al.
2017; Bubenik 2015).

Distances on the space of persistence diagrams yield a means of comparison
between diagrams. The Wasserstein and bottleneck distances compute the cost of
the optimal matching between the points in each persistence diagram, while allowing
matching to additional points on the diagonal to allow for cardinality differences and
to prove stability properties as in Cohen-Steiner et al. (2007). Motivated by Marchese
andMaroulas (2018), we consider here the dcp distance, a distance on the space of per-
sistence diagrams. This distance employs the cardinality of the persistence diagrams,
as well as distances between points in the diagrams. It calculates the cost of an optimal
matching between the persistence diagrams without any points added to the diagonal.
A regularization term then considers the cardinality differences between persistence
diagrams.

The stability of the dcp distance is also verified in this paper. This property guarantees
that when the distances between point clouds go to zero, the distances between the
associated persistence diagrams go to zero aswell. Another formulation of this stability
is given in Chazal et al. (2014); using a related approach, we show continuity of the
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mapping of point cloud to persistence diagram under the dcp distance. This analysis
provides insight into how the cardinality of the diagrams changes with the size of the
input point clouds. Additionally, using statistics on the diagram’s cardinality generates
corresponding prediction intervals,which give probabilistic bounds on thedcp distances
between persistence diagrams. The idea is that point clouds generated from the same
process have small variability with respect to cardinality of the persistence diagrams.

The contributions of this work are:

1. The stability of the dcp distance in a continuous fashion.
2. Theoretical and statistical bounds on the number of 1-dim holes represented in a

persistence diagram based on the cardinality of the underlying point cloud.
3. Adcp distance based classification algorithm for the crystal structure of high entropy

alloys using synthetic atom probe tomography experiments.

The work is organized as follows. Relevant definitions and concepts necessary for
persistent homology are presented in Sect. 2. Stability results of the dcp distance are in
Sect. 3, as well as prediction interval bounds. Section 4 demonstrates a classification
scheme for materials science data retrieved from synthetic APT experiments. We
conclude and provide future directions in Sect. 5.

2 Persistent homology background

This section succinctly explains the construction of persistence diagrams, which are
topological summaries of the underlyingpoint cloud space.TheVietoris–Rips complex
provides the necessary computational link between the point cloud, a subset of Rd

under the Euclidean distance, and its persistence diagram. Below we give a brief
summary of the necessary background. For a detailed treatment, see Edelsbrunner and
Harer (2010).

Definition 1 A ν-simplex is the convex hull of an affinely independent point set of
size ν + 1.

Definition 2 For a set of points P , an abstract simplicial complex σ is a collection of
finite subsets of P such that for every set A in σ and every nonempty set B ⊂ A,
we have that B is in σ . The elements of σ are called abstract simplices and are the
combinatorial analogues of the geometric simplices in Definition 1.

Definition 3 For a given threshold ε, theVietoris–Rips complex is a simplicial complex
formed from a set such that corresponding to each subset of ν points of the set, an ν-
simplex is included in the Vietoris–Rips complex each time the subsets have pairwise
distances at most ε.

The Vietoris–Rips complex can be visualized by placing a ball of radius ε/2 at
each point in the set and then adding a ν-simplex at the points corresponding to the
intersection of ν balls. See Fig. 2 for an illustration. For the Vietoris–Rips complex
corresponding to ε, denoted by V Rε , it is clear that V Rε ⊂ V Rε′ for ε < ε′. Thus we
needonly examine specific ε values corresponding to the emergence anddisappearance
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of homological features. These ε values are recorded as ordered pairs (b, d) in a
persistence diagram, where b denotes the birth of a feature and d its death.

As can be seen in Fig. 2, a 0-dim homological feature is a connected component of
a simplex, a 1-dim homological feature is a hole, such as those created by a loop or the
circle S1, and a 2-dim homological feature describes voids, e.g. the inside of a sphere;
see Wasserman (2018) for details. Higher dimensional data analogously yields higher
dimensional holes.

Remark 1 Persistence diagrams can also be computed using a pertinent function g
from a topological space to R. Such a function can act as an approximation to a point
cloud; typical functions used are kernel density estimators as in Fasy et al. (2014) and
the distance to measure function as in Chazal et al. (2011). Homological features are
born and die within the sublevel sets g−1(−∞, t] as t increases. These birth and death
times create another persistence diagram, see Fig. 2f.

To calculate the similarity between diagrams for classification problems, a distance
on the space of persistence diagrams is needed. A typical distance is the Wasserstein
distance.

Definition 4 The p-Wasserstein distance between two persistence diagrams X andY is

given byWp(X , Y ) =
(
infη:X→Y

∑
x∈X ‖x − η(x)‖p

∞
) 1
p , where the infimum is taken

over all bijections η, and the points of the diagonal are added with infinite multiplicity
to each diagram. If p → ∞, then W∞(X , Y ) = infη:X→Y supx∈X ‖x − η(x)‖∞ is
the bottleneck distance between diagrams X and Y .

The Wasserstein distance yields the penalty of matched points under the optimal
bijection. Points can be matched to the diagonal of each persistence diagram, which
is assumed to have infinitely many points with infinite multiplicity; this ensures that
a bijection between X and Y actually exists, since X and Y may not have the same
cardinality. In other words, the Wasserstein distance gives no explicit penalty for
differences in cardinality between two diagrams (Fig. 3). Instead, the Wasserstein
distance penalizes unmatched points by using their distance to the diagonal. However,
cardinality differences may play a key role in machine learning problems, and to that
end, Marchese and Maroulas (2018) proposed the dcp distance given below.

Definition 5 Let X and Y be two persistence diagrams with cardinalities n and m
respectively such that n ≤ m and denoted X = {x1, . . . , xn}, Y = {y1, . . . , ym}. Let
c > 0 and 1 ≤ p < ∞ be fixed parameters. The dcp distance between two persistence
diagrams X and Y is

dcp(X , Y ) =
(
1
m

(

min
π∈&m

n∑

'=1

min(c, ‖x' − yπ(')‖∞)p + cp|m − n|
)) 1

p

, (1)

where &m is the set of permutations of (1, . . . ,m). If m < n, define dcp(X , Y ) :=
dcp(Y , X).
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Fig. 2 Begin with a point cloud (a). After increasing the radius of the balls around the points, a 1-simplex
(line segment) forms in the corresponding Vietoris–Rips complex, (b). Eventually, more 1-simplices are
added and a 1-dim hole forms (c). In (d), the persistence diagram tracks all the birth and death times, with
respect to the radius ε/2, of the homological features for each dimension. Using the same points as in (a), the
kernel density estimator function for this point cloud is plotted in (e). A corresponding persistence diagram
is created using sublevel sets in (f). Note the difference between the persistence diagrams in (d) and (f). The
persistence diagram created in (f) has noisy 1-dim features that are not present in the persistence diagram
created directly from the data points
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Fig. 3 Consider two persistence diagrams, one given by the green squares and another by the purple circles.
a TheWasserstein distance imposes a cost of 0.2 to the extra purple point (the '∞ distance to the diagonal).
b The dcp distance imposes a penalty c on the point instead (color figure online)

Remark 2 Note that this distance can be applied to arbitrary point clouds with finite
cardinality as well. As shown in Marchese and Maroulas (2018), a smaller c in Eq. (1)
accounts for local geometric differences, while a larger c focuses on global geometry.
It is precisely by considering differences in cardinality that the dcp distance can dis-
tinguish between features of the point cloud that other distances may miss. Also in
Eq. (1), if X is fixed and m → ∞, then dcp(X , Y ) → c.

3 Stability properties for dc
p distance

The stability of the dcp distance is proved in this section. Stability of the distance
under investigation means that small perturbations in the underlying space result in
small perturbations of the generated persistence diagrams. Adopting the approach of
estimating a point cloud via a pertinent function, e.g. a kernel density estimator as
in Fasy et al. (2014), persistence diagrams may be constructed using sublevel sets as
in Fig. 2f and Remark 1. Their differences can be computed using theWasserstein and
bottleneck distances. Using this functional representation, stability of the Wasserstein
and bottleneck distances has been shown in Cohen-Steiner et al. (2010) and Cohen-
Steiner et al. (2007) respectively, by verifying Lipschitz (and respectively Hölder)
continuity of the mapping from the underlying function of the data to its persistence
diagram in the bottleneck andWasserstein distances. Considering discrete point clouds
whose distances shrink to zero, Theorem 1 shows that the distance between persistence
diagrams goes to zero as well.

Theorem 1 (Stability Theorem) Consider c > 0 and 1 ≤ p < ∞. Let A be a finite
nonempty point cloud in Rd . Suppose that {Ai }i∈N is a sequence of finite nonempty
point clouds such that dcp(A, Ai ) → 0 as i → ∞. Let Xkand Xk

i be the k-dim per-
sistence diagrams created from the Vietoris–Rips complex for A and Ai respectively.
Then dcp(X

k, Xk
i ) → 0 as i → ∞.
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Note that Theorem 1 does not depend on a function created from the points such as
a kernel density estimator as in Fasy et al. (2014), but simply on the points themselves
and the Vietoris–Rips complex generated from these points. In fact, Theorem 1 shows
that the mapping from a point cloud to the persistence diagram of its Vietoris–Rips
complex is continuous under the dcp distance. This continuous-type stability result is
weaker than Lipschitz stability. In order to prove Theorem 1, we first show that if the
dcp distance between the underlying point clouds goes to 0, then eventually the size of
the point clouds must be the same.

Lemma 1 Let A and Ai be as in Theorem 1 such that dcp(A, Ai ) → 0 as i → ∞.
Then Ai and A have the same number of points for i ≥ N0 for some N0 ∈ N.

Proof Denote by |A| the number of points in the point cloudA. Suppose that |Ai | *= |A|
infinitely often. Since dcp(A, Ai ) → 0, for every ε > 0, there is an N ∈ N such that
i ≥ N implies that dcp(A, Ai ) < ε. Let ε = c

|A|+1 , noting that |A| is fixed. By
assumption |Ai | < |A|, |Ai | > |A|, or both, infinitely often. If |A| < |Ai |, then by
Definition 5

dcp(A, Ai ) ≥
(
cp

|Ai | − |A|
|Ai |

) 1
p

≥ c
|Ai | − |A|

|Ai |
. (2)

The function h : N → R given by h(z) = z−|A|
z is strictly increasing. Whenever

|A| < |Ai |, we have |Ai | ≥ |A|+1. The restriction of h to {|A|+1, |A|+2, |A|+3, . . .}
achieves its minimum at |A|+ 1. This shows that the RHS of Eq. (2) is greater than or
equal to c

|A|+1 , whenever |A| < |Ai |, which by assumption happens infinitely often.
This contradicts dcp(A, Ai ) < ε for all i ≥ N . The case where |A| > |Ai | follows
similarly. +,

Lemma 2 Let A and Ai be as in Theorem 1. Suppose the points of each point cloud
Ai are ordered so that Ai = {aπi (1), aπi (2), . . . , aπi (|A|)}, where πi is the permutation
used to calculate the dcp distance between Ai and A as in Eq. (1). Let DA and DAi

be the distance matrices for the points of A and Ai respectively, i.e., the kl-th entry of
DA is ‖ak − al‖d . Then,

(i) ‖DA − DAi ‖∞ → 0 as i → ∞, and
(ii) for some N1 ∈ N, the order of the entries of the upper triangular portion of DA

and DAi is the same for i ≥ N1, up to permutation when either DA or DAi have
duplicate entries.

Proof (i) Let A = {a1, . . . ak}, Ai = {ai1, . . . aik}, and λiα = ‖aα − aiπi (α)
‖d for the

permutation πi in the dcp distance between Ai and A. Suppose that dcp(A, Ai ) → 0.
Note that since c is fixed, then by Lemma 1, there is some Nc such that eventually

dcp(Ai , A) =
(

1
|A| minπi∈

∏
|A|

∑|A|
'=1 ‖a' − aπi (')‖p

d

) 1
p for i ≥ Nc. By assumption

dcp(A, Ai ) → 0, which shows that |A|−
1
p ‖λ‖p → 0 as i → ∞. Thus ‖λi‖p → 0 as

i → ∞.
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Now, let E = DA − DAi .

‖E‖∞ = max
k,l

∣∣‖ak − al‖d − ‖aik − ail ‖d
∣∣

= max
k,l

∣∣‖ak − al‖d + ‖al − aik‖d − ‖al − aik‖d − ‖aik − ail ‖d
∣∣

≤
∣∣‖ak − al‖d − ‖al − aik‖d

∣∣ +
∣∣‖aik − ail ‖d − ‖al − aik‖d

∣∣

≤ ‖ak − aik‖d + ‖al − ail ‖d (3)

The last term in Eq. (3) goes to 0 as i → ∞, proving (i).
(ii) Suppose that them distinct upper triangular entries of DA are ordered from smallest
to largest, say d A

1 < d A
2 < · · · d A

m , wherem ≤ |A|(|A| − 1)/2. For η ∈ {1, . . . ,m+1}
let hη ⊂ [0,∞) be a sequence such that h1 < d A

1 < h2 < d A
2 < · · · < hm < d A

m <

hm+1. Let ‖DA − DAi ‖∞ < h
2 , where h = minη1,η2∈{1,...,m+1}{|hη1 − hη2 |}. We show

that there exists a sequence gη such that |hη − gη| < 2h for each η ∈ {1, . . . ,m + 1}
and hη < d A

j < hη+1 implies gη < d Ai
j ≤ gη+1. Let hη < d A

j < hη+1, and suppose

that it is not the case that hη < d Ai
j ≤ hη+1. Since ‖DA − DAi ‖∞ < h

2 , then either

d Ai
j ∈ (hη−1, hη] or d Ai

j ∈ (hη+1, hη+2]. If the first case is true, then take gη = d A
j − h

2 .

If the second, then take gη = d A
j + h

2 . This proves the existence of the sequence. Now
proceeding by contradiction, if the lemma does not hold for some entries d A

j ∈ DA

and d Ai
j ∈ DAi , then take ‖DA − DAi ‖∞ < 1

2 |d A
j − d Ai

j |. +,

Proof of Theorem 1 By Lemma 1, take |Ai | = |A| without loss of generality. By
Lemma 2 (i), ‖DA − DAi ‖∞ → 0 as i → ∞. If the Vietoris–Rips complex were
computed at every threshold value in [0,∞), then the birth and death times of all
features of all dimensions would be distances between points in the underlying point
cloud (including the birth time of 0 in the 0-dim diagram). Since the order of the entries
of DA and DAi may be taken to be the same from Lemma 2 (ii), the same number of
simplices are formed in the complexes for A and Ai for each dimension of simplex.
Also, the labels of the simplices according to the points of A and Ai are given from
the permutation πi in Lemma 2 (i).

Now, for 0-dim it is clear that for the cardinalities of the persistence diagrams,
|X0| = |X0

i | since for the sizes of their associated point clouds, |Ai | = |A|. For
a higher dimensional feature (k ≥ 1) to appear in the complex, we must have that
a certain number of the distances are less than or equal to the threshold ε and a
certain number of the distances are greater than ε. Lemma 2 (ii) shows that although
the thresholds where the features are created may be different, the same number of
features are formed in the Vietoris–Rips complexes of A and Ai , and these features
are formed in the same order and with the points that correspond under πi .

If Xk = {x1, x2, . . . , x|Xk |} and Xk
i = {x1, x2, . . . , x|Xk

i |}, then we have that |X
k | =

|Xk
i | and that dcp(X

k, Xk
i ) < 2h. Thus dcp(X

k, Xk
i ) → 0 as i → ∞. +,

To provide a practical way to control c in computing the dcp distance of Eq. (1)
and consequently compute the possible fluctuations of the dcp distance, a probabilistic
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upper bound, which relies on least squares, is provided. Specifically, the following
analysis gives predictions on the number of 1-dim holes represented in the persistence
diagram, which we denote by b1. The parameter b1 relies on the number of connected
components (or equivalently the number of points in the point cloud) represented in
the persistence diagram, denoted by b0.

Definition 6 (Pfender and Ziegler 2004) The kissing number in Rd is the maximum
number of nonoverlapping unit spheres that can be arranged so that each touches
another common central unit sphere.

Lemma 3 (Goff 2011) For a finite point cloud with no more than ρ points inRd under
the Euclidean distance, let Md(ρ) denote the maximum possible number of 1-dim
holes in the Vietoris–Rips complex for the point cloud for a given threshold. Then

Md(ρ) ≤ (Kd − 1)ρ . (4)

Proposition 1 Consider a point cloud in Rd with ρ points and its associated persis-
tence diagram. Let B1 denote the possible range of the number of 1-dim holes b1. Then
B1 is such that {0, 1, . . . , -ρ

2 . − 1} ⊆ B1 ⊆ {0, 1, . . . , 1
2 (Kd − 1)ρ2(ρ − 1)}, i.e.

the possible range of b1 is expanding as the number of points, b0, in the point cloud
increases.

Proof We first show the inclusion {0, 1, . . . , -ρ
2 . − 1} ⊆ B1. To form a point cloud

with ρ points that has b1 = 0, simply take the ρ points and arrange them on a line.
To form a point cloud with ρ points that has b1 = -ρ

2 . − 1, arrange the ρ points in
two rows each with -ρ

2 . points. Set the spacing between adjacent points in each of the
rows to be 1 and then place the two rows directly beside each other so that for each
point in the first row, there is exactly one point in the second row at a distance of 1.
Adding edges appropriately creates b1 = -ρ

2 . − 1 squares with side length 1. Thus,
creating the Vietoris-Rips complex and corresponding diagram gives b1 = -ρ

2 . − 1.
For an illustration of the arrangement, see Fig. 4a.

To form a point cloud with ρ points that has b1 ∈ {1, 2, . . . -ρ
2 . − 2}, arrange

2(b1+ 1) points in two rows as in Fig. 4a. Arrange the other ρ − 2(b1+ 1) points in a
line with the minimum distance from any points in the line to points of the two rows
such that it is greater than or equal to 1. Then exactly b1 holes are formed from the
two rows, with no holes formed by the line. For an illustration, see Fig. 4b.

Next, we verify the inclusion B1 ⊆ {0, 1, . . . , 1
2 (Kd −1)ρ2(ρ −1)}. By Lemma 3,

the number of 1-dim holes in the Vietoris-Rips complex for a fixed radius ε for the
point cloud is bounded above by (Kd − 1)ρ. The homology of the Vietoris-Rips
complex changes at most

(ρ
2

)
times as the radius ε increases due to the maximum of(ρ

2

)
distinct distances between points in the point cloud. Therefore, there can be at most

1
2 (Kd −1)ρ2(ρ −1) 1-dim holes formed over the entire evolution of the Vietoris-Rips
complex. This gives the desired bound of b1 ≤ 1

2 (Kd − 1)ρ2(ρ − 1). +,
Now, let N point clouds be generated from some process, and N corresponding

persistence diagrams be created. For each persistence diagram Xk
i , k ∈ {0, 1}, i =

1, . . . , N , record the cardinality bi0 of the 0-dim diagram and the cardinality bi1 of
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Fig. 4 An example of 8-point arrangements to visualize the proof of Proposition 1. aA3- hole configuration
versus b a 2-hole configuration

the 1-dim diagram. Let b0 ∈ RN×2 be the predictor matrix whose rows are [1 bi0]
and b1 ∈ RN be the vector of responses with entries bi1. Proposition 1 gives that
the possible range of b1 is increasing as b0 grows, which yields that an increase in
variance as b0 grows may be present, i.e., heteroscedasticity exists. Thus the anal-
ysis of the change in number of 1-dim holes as the size of the point cloud changes
needs to account for heteroscedasticity in order to capture the non-constant vari-
ance behavior. Therefore to estimate the number of 1-dim holes, we use weighted
least squares as in Efron and Hastie (2016). If W ∈ RN×N is the weight matrix
W = diag(a1, . . . , aN ), then a weighted least-squares regression can be found for
b1 = b0γ + ε, where εi ∼ N (0, σ 2

i ). The approximation is then given by b0γ̂ = b1,
with γ̂ = (bT0 Wb0)−1bT0 Wb1. In turn, Proposition 2 provides bounds from prediction
intervals using weighted least squares for the dcp distance.

Proposition 2 Suppose N point clouds are generated from a process, and N corre-
sponding persistence diagrams are created. For each persistence diagram Xk

i , k ∈
{0, 1}, record the cardinality of the 0-dim diagram bi0 and of the 1-dim diagram bi1.
Let b0 ∈ RN×2 be the predictor matrix whose rows are [1 bi0] and b1 ∈ RN be the
vector of responses of bi1. Assume the model b1 = b0γ + ε, where εi ∼ N (0, σ 2

i )

depends on the value of the input bi0. Let X
1 and Y 1 be persistence diagrams generated

from the same process as b0 with |X0| = µ. Considering the (1 − α) · 100%-level
prediction interval for b1, the distance dcp(X

1, Y 1) is bounded above by

(
minπ∈&m

∑n
'=1 min(c, ‖x1'−y1π(')‖∞)p+cp2t1−α,N−2s

√
[1 µ](bT0 Wb0)−1[1 µ]T+µ

) 1
p
.

Proof Prediction intervals can be constructed for the cardinality of a 1-dim diagram
for an instance of point cloud size b0∗ using standard results on weighted least squares.
Specifically, for level (1 − α) · 100% a prediction interval for the new response
b̂1

∗ is sought. To calculate this interval for a new response from the mean pre-

dicted response b̂1
∗ = γ̂ b0∗, note that b̂1

∗ − b1∗ has the distribution b̂1
∗−b∗

1
Var(b̂1

∗−b1∗)
∼

tN−2. Also, Var(b̂1
∗ − b1∗) = Var(ε)[1 b0∗](bT0 Wb0)−1[1 b0∗]T + Var(ε)

w∗ , where
w∗ = 1

b∗
0
, the weight corresponding to b0∗. Prediction intervals for b∗

1 are thus

b̂1
∗ ± t1−α/2,N−2s

√
[1 b0∗](bT0 b0)−1[1 b0∗]T + b0∗, where s2 = ε̂TWε̂

N−2 , the unbi-
ased estimator for Var(ε), using the residuals ε̂. Thus the cardinality difference term

123



V. Maroulas et al.

in the calculation of the dcp distance as in Eq. (1) is bounded above by the length of
the prediction interval with (1 − α) · 100%-level confidence. Substituting this length
into Eq. (1) gives the result. +,

4 Classification of materials data

Here we describe the dcp-distance based classification of crystal structures of high
entropy alloys (HEAs) using atom probe tomography (APT) experiments (Fig. 5).
Recall that the building blocks of HEAs are either body-centered cubic (BCC) or
face-centerd cubic (FCC). Topological considerations are a natural fit for this problem
since BCC and FCC crystal structures enjoy a different atomic configuration within a
unit cell. Indeed, the BCC structure has one atom at its center, but the FCC contains a
void (recall Fig. 1a, b). This distinction is important from the viewpoint of persistent
homology.

However, topology alone is insufficient to distinguish between noisy and sparse
BCC and FCC lattice structures accurately. If we count the number of atoms in a unit
cell (see Fig. 1a, b) one may see that a BCC unit cell has two atoms, one at the center
and 1/8th of an atom at the unit cell’s corners, as it shares part of these corner atoms
with its neighboring cells. Similarly, an FCC unit cell has four atoms; the same 1/8th

of the corner atoms plus one-half of each of the six atoms on the cell’s faces. In both
cases, the atoms on the faces and lattice points are shared with the cell’s neighbors
and are only counted as a proportion contributing to the unit cell.

Another way to see this difference in cardinality is by plotting the number of
connected components against the number of holes for both BCC and FCC crystal
structures. Figures 6, 7c, d depict that FCC structures have larger point clouds, and
consequently, a greater number of connected components. Observe in Fig. 6 that the
number of connected components and 1-dim holes are greater in the FCC diagrams
than the BCC diagrams. Consequently, we must account for more than just homo-

Fig. 5 Image of APT data with atomic neighborhoods shown in detail on the left and right. Each pixel
represents a different atom, the neighborhood of which is considered. Certain patterns with distinct crystal
structures exist, e.g., the orange region is copper-rich (left), but overall no pattern is identified. Putting a
single atomic neighborhood under a microscope, the true crystal structure of the material, which could be
either BCC (Fig. 1a) or FCC (Fig. 1b), is not revealed. This distinction is obscured due to experimental
noise (color figure online)
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Fig. 6 a A persistence diagram generated by a BCC lattice. b A persistence diagram generated by an FCC
lattice. The data has a noise standard deviation of τ = 0.75 and 67% of the atoms are missing. Note that
the BCC diagram has two prominent (far from the diagonal) points representing 1-dim holes and fewer
connected components and 1-dim holes than does the FCC diagram

Fig. 7 Top: Number of connected components (in this case atoms), b0, against the number of 1-dim
homological features, b1, of the persistence diagrams. One can see the presence of heteroscedasticity since
the variance of b1 increases as b0 increases. Bottom: Same as in top but using a quadratic transformation of
the predictor variable, along with the weighted least squares fit line and 95% prediction intervals provided
by Proposition 2
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logical differences when considering persistence diagrams derived from these atomic
neighborhoods. Variability in the size of the underlying point clouds must be con-
sidered, as verified in Proposition 2. Given the salient topological and cardinality
differences between these two crystal structures, we seek to classify their associated
persistence diagrams via these essential differences. To that end, we consider the dcp
distance given in Eq. (1).

In the numerical experiments, the point clouds (atomic neighborhoods) are extracted
from a sample containing approximately 10,000 atoms. We remove atoms, to create
spasity, and add Gaussian noise to the larger sample mirroring those levels found in
true APT experimental data. To create these neighborhoods, we consider a fixed vol-
ume around each atom in the perturbed sample and those atoms within the volume are
recorded for our classification methodology. Here we consider N = 1, 000 synthetic
atomic neighborhoods (NBCC = 500 BCC structures and NFCC = 500 FCC struc-
tures)with noise and sparsity levels similar to those found in trueAPTexperiments. Let
q = (q1, . . . , qM )T be the atoms’ positions within an atomic neighborhood. Applying
the persistent homology machinery of Sect. 2, one obtains the associated persistence
diagram denoted by Xq , see Fig. 6. For our classification problem, we are interested
in the conditional probability, π̃ j = P(Yi = j | Xi ), of the persistence diagram Xi
being in class Y j , for j = 0 (BCC) or j = 1 (FCC). To that end, we consider a logistic
regression model,

log
(

π̃ j

1 − π̃ j

)
= α +

L∑

i=1

ϕi (#i ), (5)

where ϕi is some pertinent smooth function, and # ∈ RN×8 is the feature matrix
whose i th row is

#i = (E0
i,B,E1

i,B,Var
0
i,B,Var

1
i,B,E0

i,F ,E1
i,F ,Var

0
i,F ,Var

1
i,F ). (6)

For any persistence diagram Xk
i with k-dimensional homology (k = 0, 1), Ek

i,B =
1

NBCC

∑NBCC
j=1 dcp(X

k
i , X

k
j ) and Varki,B = 1

NBCC−1
∑NBCC

j=1 (dcp(X
k
i , X

k
j ) − Ek

i,B)
2

respectively yield the average and variance of the distance between Xk
i and the col-

lection of all BCC persistence diagrams. Similarly, Ek
i,F and Varki,F are the average

and variance of the distance between Xk
i and the collection of all FCC persistence

diagrams.
We perform 10-fold cross validation on the 1,000 synthetic crystal structures. In

other words, the data is divided randomly into 10 folds, and 9 folds of the data are used
as a training set. For any unknown crystal structure in the remaining fold, the feature
vector of the unknown crystal structure is computed according to Eq. (6) and used as
input for the decision tree classifier. Similarly, the other 9 folds are each used once
as test sets employing the same procedure. The tree finds the best fit for the features
from the additive model in Eq. (5) and returns the class of the unknown structure.

For our numerical experiments, the persistence diagrams are constructed using the
C++ Ripser software, and the scikit-learn decision tree implementation. The studies
(Miller et al. 2012; Santodonato et al. 2015) estimate that approximately 65% of the
data ismissing. However, an estimate of the experimental noise is not provided. In fact,
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Table 1 The atomic positions in
the APT data are N (0, τ2)
distributed with 67% of the
atoms missing

τ c-value Accuracy (%)

0.0 0.01 99

0.25 0.05 99.4

0.75 0.03 96.5

1.0 0.13 96.4

We employ the dcp classifier, where c has been optimized in each noise
level case. The accuracy in the 10-fold cross validation is listed in the
third column

0.0 0.2 0.4 0.6 0.8 1.0
Standard Deviation

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu
ra
cy

Wasserstein, p = 2
dcp, p = 2, c = 0.05

Counting

Fig. 8 10-fold cross validation accuracy scores for dcp (red), Wasserstein (blue), and counting (green)
classifiers, plotted against different standard deviations, τ , (see Table 1) of the normally distributed noise
of the atomic positions. In each instance, the sparsity has been fixed at 67% of the atoms missing, as in a
true APT experiment (color figure online)

as noted by Larson (2013), Miller (2014), the noise varies between experiments and
specimens. Our synthetic data replicates this resolution by drawing from a Gaussian,
(Gault et al. 2010;McNutt et al. 2017;Moody et al. 2011),N (0, τ 2), with four different
levels of variance to give a more representative approximation of true APT datasets.
Computing the dcp distances with p = 2 to imitate typical Euclidean distance, we
find different values of c via a grid search for these four different levels of variance,
τ 2, in both 0- and 1-dim homology, employing a different dataset than is used for the
classification. In each case, a geometric sequence of 10 values between 0.01 and 1 is
taken into account. The results and the associated algorithmic accuracy are presented
in Table 1.

As a comparison the feature matrix in Eq. (6) is also calculated using the Wasser-
stein distance, choosing p = 2. Moreover, we adopt a counting classifier which
takes into account only the number of points in an atomic neighborhood as the input
feature in the tree classifier. Our dcp classifier successfully dichotomizes these 1000
persistence diagrams generated by BCC and FCC lattice structures at better than 96%
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accuracy, where accuracy is measured as (1 - Misclassification rate). The dcp classifier
outperforms both the Wasserstein and the counting classifier, see Fig. 8. These results
demonstrate that using just the differences in cardinality between the two classes of
crystal structures is insufficient to distinguish between them.

As demonstrated in Proposition 2, there is a relationship between the number of
connected components, b0, (number of atoms in this case) and the number of 1-
dim homological features, b1, in the persistence diagrams. Fig. 7a, b demonstrate
this relationship, as well as the presence of heteroscedasticity between b0 and b1,
also verified by the Breusch-Pagan test (Breusch and Pagan 1979) with a p value of
9.3×10−54 for FCC cells and a p value of 2.01×10−47 for BCC cells. Figs. 7a, b also
provide 95% prediction intervals for b1 based on the weighted least squares regression
analysis of Proposition 2. To that end, this exact fine balance between the number of
atoms in a neighborhood and the associated topology created by the positions of these
atoms in the cubic cell is captured by the dcp distance.

5 Conclusions

This work combined statistical learning and topology to classify the crystal struc-
ture of high entropy alloys using atom probe tomography (APT) experiments. These
APT experiments produce a noisy and sparse dataset, from which we extract atomic
neighborhoods, i.e., atoms within a fixed volume forming a point cloud, and apply
the machinery of Topological Data Analysis (TDA) to these point clouds. Viewed
through the lens of TDA, these point clouds are a rich source of topological infor-
mation. Indeed, employing persistent homology, we summarized the shape of these
atomic neighborhoods and classified their crystal structures as either BCC or FCC.
The classifier was based on features derived from the new distance on persistence
diagrams, denoted herein by dcp. This distance is different from all other existing dis-
tances on persistence diagrams in that it explicitly penalizes differences in cardinality
between diagrams.

We proved a stability result for the dcp distance, demonstrating that small pertur-
bations of the underlying point clouds resulted in small changes to the dcp distance.
We also provided guidance for the choice of the c parameter by looking at confidence
bounds using a function of the cardinalities of the persistence diagrams.

The classification results presented herein could aid materials science researchers
by providing a previously unavailable representation of the local atomic environment
of high entropy alloys fromAPT data. Themethodology need not be limited to a binary
choice between BCC and FCC, e.g. entropy-stabilized oxides (Rost et al. 2015) are
amenable to APT characterizations and our process could be generalized to those
materials as well. Moreover, as APT experiments produce datasets on the order of 10
million atoms, materials science research has moved into the realm of big data, and
the necessary computational and modelling tools have yet to be developed for this
regime according to Katsoulakis and Zabaras (2017). The dcp classifier, coupled with
our ongoing research of quantifying local atomic distributions as in Spannaus et al.
(2019), aims to recover global atomic structure of high entropy alloys.
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