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Abstract. Microscopy imaging of plant cells allows the elaborate analysis of
sub-cellular motions of organelles. The large video data set can be e�ciently
analyzed by automated algorithms. We develop a novel, data-oriented algo-
rithm, which can track organelle movements and reconstruct their trajectories
on stacks of image data. Our method proceeds with three steps: (i) identifi-
cation, (ii) localization, and (iii) linking. This method combines topological
data analysis and Ensemble Kalman Filtering, and does not assume a specific
motion model. Application of this method on simulated data sets shows an
agreement with ground truth. We also successfully test our method on real
microscopy data.

1. Introduction. Cell physiology depends on the motion of sub-cellular struc-
tures, furthermore, cytosolic streaming and organelle motility are critical factors
[4, 5, 11, 40, 51]. Such intracellular motion is particularly pronounced in plant cells
and is known to be essential to many cellular functions including growth and overall
health [33]. In particular, organelle motility in plant cells is driven by motor pro-
teins that move directionally along myosin filaments or di↵use in the cell sap and
occasionally switch between these modes. Additionally, di↵erent motor proteins
generate patterns of motion with di↵erent characteristics such as speed, turning
angles, switching frequencies between di↵erent motions. Due to the complex na-
ture of these underlying dynamics, an understanding of organelle motility based on
first principles remains uncharacterized. Instead, intracellular motion is commonly
studied experimentally.

Conventional fluorescence microscopy is one of the most popular techniques em-
ployed for the direct observation of intracellular motion [38, 36, 39, 54]. With the
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well-engineered optical equipment and the fast development of bio-molecular label-
ing techniques, it is now routine to observe organelle dynamics. This in turn has
led to the acquisition of vast datasets. A thorough and accurate reconstruction
of organelle trajectories in these datasets is a necessary task to distinguish motor
protein structures, elucidate their behavior, and globally characterize their motility.
To accomplish this, some studies analyze raw measurements and track sub-cellular
motions manually which has yielded estimates with good accuracy [9, 15, 16, 32, 38].
Nevertheless, manual tracking is tedious, time consuming, unreproducible and un-
realistic for complex datasets with multiple simultaneous motions, especially those
encountered in plant microscopy.

Automated tracking algorithms, capable of analyzing organelle motility datasets,
provide an opportunity to overcome these di�culties and robustly track a large num-
ber of sub-cellular targets. These automated processes o↵er tighter error bounds
and the promise of overcoming the low throughput of manual tracking. Addition-
ally, automated tracking algorithms can reveal large scale motion patterns during
the entire time course of an imaging experiment [10]. Therefore, developing auto-
mated intercellular tracking algorithms for organelles, specifically designed for plant
cell imaging, are essential.

Intracellular tracking can be broken down into four steps: (i) identification, where
the number of moving organelles is estimated first; (ii) localization, where the posi-
tion of each identified organelle is detected in space throughout time; (iii) linking,
where estimated localizations belonging to the same organelle trajectory are con-
nected over time; and (iv) interpretation, where the estimated trajectories are used
to derive quantitative information about the organelle motion [27]. Many methods
for multiple targets tracking have been developed so far [1, 3, 8, 21, 26, 25, 27, 33,
34, 41, 42, 47, 48, 52], but only few of them focus specifically on microscopy image
data, while others are not applicable to image data or fail due to the introduction of
missassignments. The study in [33] provides a solution by using a Bayesian frame-
work on the set of intracellular movements, [21] develops a tracking approach that
combine tracking information in the optimization procedure, [8] presents a method
for simultaneously tracking thousands of targets by adapting the multiple hypoth-
esis tracking algorithm, [44] solves the problem by considering a topological linking
technique with minimal assumptions about the underlying dynamics. In [27], a
survey of all techniques applicable to image data is provided.

In this work, we seek to improve the linking stage. We propose an automated al-
gorithm based on Bayesian identification of organelle parameters, Ensemble Kalman
filter (EnKF) estimations of displacement fields and topological linking on the tra-
jectories space. A Bayesian framework is applied to identify important parameters of
organelles. Subsequently, we use EnKF to estimate the displacements of organelles
since our linking method is based on these displacements. The linking process is
completed by using topological data analysis technique [6, 12, 44, 46] to find the
geometry of the data space. This embeds the data into a topological space, in which
the trajectories can be reconstructed by identifying connected components.

The structure of this paper is as follows. In Section 2, we introduce the back-
ground needed to establish our algorithm, formulate the problem, and give the
technical details of the methodology. Section 3 shows the results when our method
is applied to simulated and real data sets. Finally, a discussion and a conclusion
with future directions are presented in Section 4.
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2. Methods.

2.1. Description of datasets. Datasets that capture the motion of organelles
through conventional fluorescence microscopy are typically provided in a video for-
mat [17, 27, 45]. Essentially, each video-dataset consists of a stack of pixelated

images D = {Fn, tn}Nn=1
, where each image Fn is obtained at time tn during the

course of an experiment.
Ignoring imaging artifacts caused by finite frame rate, dead time, or rolling shut-

ter [27] that are insignificant on the time- and space-scales involved in plant mi-
croscopy [29, 31], we consider images obtained at time levels {tn}n that start at the
experiment’s onset and end with the experiment’s conclusion, denoted t1 = 0 and
tN = T , respectively. Further, we consider intermediate time levels that remain
equidistant tn = (n� 1)�t, where �t = T/(N � 1) is the exposure period used for
the acquisition of the images.

In turn, each image Fn is an array of intensity values {Ipn}
P
p=1

, where Ipn denotes
the intensity [18, 49], recorded at time tn of a pixel located at a fixed position
xp 2 R2. We assume that the positions of the pixels {xp}Pp=1

are given and that
they are reported in physical units in the same coordinate system as the sample
under imaging. Ignoring positioning parallel to the optical axis (i.e., ignoring z-
depth), which is not captured in conventional fluorescence microscopy [19, 27, 28],
we consider R2 as a plane perpendicular to the optical axis (for example, without
any loss of generality, R2 can model the focal- or xy-plane).

Depending upon the imaging equipment employed in the experiment (e.g., cam-
eras or other light detectors), intensities may be reported in various forms such
as photon or electron counts, voltages, currents, ADU (Analog Digital Unit), etc
[18, 20, 22, 30, 49]. In this study we assume {Ipn}n,p are given in normalized gray
scale values, i.e., Ipn are measured in arbitrary units (a.u.), with the convention
that lower intensities correspond to darker pixels and vice versa higher intensities
correspond to brighter pixels.

To initiate our method, we model each intensity Ipn as consisting of a background
signal Bp

n, the signal produced by the organelles in the sample Jp
n, and noise np

n.
That is, we model Ipn as

Ipn = Bp
n + Jp

n + np
n.

To find the locations of organelles, we adopt part of the data preprocessing steps and
the Bayesian localization step in [44], briefly summarized in the following. In plant
microscopy, typically the background signal changes smoothly across the frames.
Therefore, we model it as a smooth surface over the entire field of view and remove
it by least square fitting. Next, we model the organelle signal as a sum of Gaussian
intensity peaks

Jp
n =

S̃nX

s=1

h̃s
n exp

✓
�kxp � x̃s

nk2

2(w̃s
n)

2

◆
,

where each peak, labeled by s, is produced by a single organelle [43] that is imaged
with maximum intensity h̃s

n > 0, width w̃s
n > 0, and center x̃s

n 2 R2. We obtain
the total number of organelle peaks S̃n, present in each time level tn, through

thresholding; while we obtain the organelle features {(x̃s
n, h̃

s
n, w̃

s
n)}

S̃n
s=1

through the
maximum a posteriori estimates [7, 14] of a Bayesian model that assumes: (i) the
noises {np

n}p are independent and Gaussian; (ii) the organelles are a priori uniformly
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positioned over the imaged plane; and (iii) the maximum intensities and widths are
a priori distributed over appropriate finite intervals.

Ignoring imaging artifacts that are caused by intra-frame motion, which are
insignificant in plant microscopy [29, 31], we model each localization x̃s

n 2 R2,
as the e↵ective position of a single organelle at time tn. In other words, following
the localization procedure above, we obtain a collection of space-time positions

R̃ = {{(x̃s
n, tn)}

S̃n
s=1

}n ⇢ R2 ⇥ [0, T ] that reveals the positions of every organelle in
the sample only at the experimental time levels {tn}n, see Fig. 1.

Figure 1. The motion of organelles, during an experiment start-
ing at t1 = 0 ending at tN = T , is identified at discrete times tn
(dots). For simplicity, space is represented with one dimension,
although real datasets are two dimensional. The black dots repre-
sent the locations of organelles at di↵erent time levels. R̃ is the set
contains the locations of all black dots.

To proceed with the analysis, we model each organelle’s e↵ective position as an
idealized point and its motion as a 2D trajectory ignoring motion parallel to the op-
tical axis, which is not captured in a typical dataset. Thus, each organelle, labeled
by a, in our formulation corresponds to a continuous function ra : [0, T ] 7! R2,
where [0, T ] represents the time course of the experiment and R2 represents any
plane compatible with the pixel positions {xp}p ⇢ R2. Given a dataset D of raw
experimental observations and a collection of organelle space-time localizations R̃
identified as described above, our main objective from now on will be the compu-
tational reconstruction of {ra}a.

2.2. Ensemble Kalman velocimetry. The motion of the entire set of organelles
in the experiment can be encoded within a family of displacement fields ft!t0(·) :
R2 7! R2, which we use (see Sect. 2.3, below) to distinguish space-time positions
that are visited by each organelle. According to our convention, for any organelle,
its positions x, x0 2 R2 at times t, t0 2 [0, T ] respectively are coupled by the dis-
placement fields x0 = x + ft!t0(x) and x = x0 + ft0!t(x0). At the spatiotemporal
scales probed by conventional fluorescence microscopy, organelles follow irreversible
dynamics [37]. Accordingly, the fields ft!t0(·) and ft0!t(·) are generally uncorre-
lated. So, below we incorporate such lack of correlation by adopting a formulation
with di↵erent forward and backward fields instead of a formulation using only a
single field for both temporal directions.
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In general, the driving dynamics of organelle motion are unknown, thus the
precise form of the fields {ft!t0(·)}t,t0 is unknown as well. Next, we describe a
method to estimate these fields directly from the raw images in D. For our purpose,
it is su�cient to compute displacement fields only at successive time levels. In
particular, we are only interested in 1-level forward fn,+(·) : R2 7! R2 and 1-
level backward fn,�(·) : R2 7! R2 fields, defined by fn,+(·) = ftn!tn+1(·), n =
1, . . . , N � 1, and fn,�(·) = ftn!tn�1(·), n = 2, . . . , N , respectively.

Figure 2. Here, x̄j is the position of an organelle producing the
images shown (gray), f̄n,+ and f̄n,� illustrate 1-level forward dis-
placement and backward displacement of x̄j , respectively. For clar-
ity, the image produced by the organelle are shown as multi-peaked
and space as 1D.

We compute the displacement fields following a velocimetric approach. We first
compute displacements {{f̄ j

n,+}N�1

n=1
, {f̄ j

n,�}Nn=2
}Jj=1

⇢ R2 at the discrete time levels
tn, for n = 1, . . . , N , of the images in the dataset D and arbitrarily selected discrete
positions {x̄j}Jj=1

⇢ R2; see Fig. 2. In particular, given a selected position x̄j ,

we compute the displacements f̄ j
n,+, f̄

j
n,� by image registration method between a

sub-region of pixels, centered around x̄j , in image Fn and the images Fn+1, Fn�1,
respectively. Briefly, we consider a transformation T�,✓ : R2 7! R2 that translates
by � 2 R2 and rotates by an angle ✓ 2 [0, 2⇡). Further, we consider Āj gathering all
pixels P such that kx̄j �xPk1  wmax, where wmax > 0 is a parameter controlling
the side length of the region under registration, and set to a small multiple of
the typical organelle size. The image registration reduces to solving the following
minimization problems

f̄ j
n,+ = argmin

�

2

4min
✓

X

P2Āj

���IPn � I
T�,✓(x

P
)

n+1

���
2

3

5 , j = 1, . . . , J, n = 1, . . . , N � 1,

(1)
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f̄ j
n,� = argmin

�

2

4min
✓

X

P2Āj

���IPn � I
T�,✓(x

P
)

n�1

���
2

3

5 , j = 1, . . . , J, n = 2, . . . , N.

(2)

Additionally, to exclude arbitrarily large displacements, we restrict each minimiza-
tion over only displacements k�k  dmax, where dmax > 0 is an upper bound on
the longest distance an organelle can travel during one exposure �t.

To extend our discrete displacements over the entire R2 support, obtain globally
defined displacement fields, and account for the errors introduced in prediction, we
adopt a representation of the forward field

f1,+(·) = u1,+(·), (3)

fn,+(·) =  +(fn�1,+(·)) + un,+(·), n = 2, . . . , N � 1 (4)

and a similar representation for the backward field

fn,�(·) =  �(fn+1,�(·)) + un,�(·), n = 2, . . . , N � 1 (5)

fN,�(·) = uN,�(·), (6)

where  +(·) : R2 7! R2 and  �(·) : R2 7! R2 describe how the displacement fields
change from one frame to its immediate ancestor and predecessor.  +(·), �(·)
could be motion equations of a dynamic system if it was known or just ansatzes
based on previous experience. There is a special case when  +(·), �(·) are identity
functions, this happens when one trusts the displacement fields reserve the same
trend as the previous level. The driving noise {un,+(·)}N�1

n=1
and {un,�(·)}Nn=2

are
independent Gaussian processes with mean zero and covariances that correlates
the x or y components of the displacement fields according to a kernel K(·, ·) :
R2⇥R2 7! (0,1). To facilitate the computations, we leave the x and y components
independent from each other. To ensure smooth fields that do not change rapidly
across organelles, we use the squared exponential kernel

K(x, x0) = �2

u exp

 
�1

2

✓
kx� x0k

`

◆2
!
,

where �2
u > 0 is a constant and we set ` > 0 approximately equal to the diameter

of a single organelle. Here �2
u presents the credibility of prediction system, i.e., if

 +(·), �(·) are quite believable then �2
u should be chosen to be small, vice versa,

if  +(·), �(·) are uninformative then �2
u should be relatively large.

Due to imperfections in image registration, the displacements
{{f̄ j

n,+}N�1

n=1
, {f̄ j

n,�}Nn=2
}j computed through Eqs. (1), (2) may deviate from the

true displacements {{fn,+(x̄j)}N�1

n=1
, {f j

n,�(x̄
j)}Nn=2

}j ⇢ R2 at the corresponding
positions x̄j . To account for such errors, we combine these fields with the dis-
placements {{f̄ j

n,+}N�1

n=1
, {f̄ j

n,�}Nn=2
}j to form a noisy phenomenological observation

model

f̄ j
n,+ = fn,+(x̄

j) + vjn,+, n = 1, . . . , N � 1 (7)

f̄ j
n,� = fn,�(x̄

j) + vjn,�, n = 2, . . . , N

where {vn,+}N�1

n=1
and {vn,�}Nn=2

are independent bivariate Gaussian random vari-
ables with zero mean and variances �2

v > 0. Here �2
v measures the reliability of

observed displacements {{f̄ j
n,+}N�1

n=1
, {f̄ j

n,�}Nn=2
}j acquired from image registration

method, smaller �2
v indicates closer agreement with the true displacement.
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Figure 3. The relations of forward fields and backward fields are
indicated here. (a) shows the approach depiction of forward dis-
placement fields, (b) shows the approach depiction of backward
displacement fields. For clarity, time marches forward in (a) and
backward in (b).

An implementation of Eqs. (3)-(6), which apply in continuous space, is compu-
tationally intractable yielding to a pertinent discretization. Precisely, we apply a
grid of fixed positions {¯̄x�}⇤�=1

⇢ R2 that may not, in general, coincide with {x̄j}j .
Next, let �n,+(·) : R2 7! R, with n = 1, . . . , N � 1, denote the x component of the
displacement field fn,+(·).

Denoting
⇥
�n,+(¯̄x1) · · · �n,+(¯̄x⇤)

⇤T
by �n,+(

¯̄X⇤) and
⇥
�n,+(x̄1) · · · �n,+(x̄J)

⇤T

by �n,+(X̄J), then according to the Gaussian process u1,+(·), Eq. (3) becomes

⇥
�1,+(

¯̄X⇤) �1,+(X̄J)
⇤T ⇠ N⇤+J

�
0(⇤+J)⇥1,⌃

�
, (8)

where ⌃ =

2

666666664

K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄x⇤) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...
K(¯̄x⇤, ¯̄x1) · · · K(¯̄x⇤, ¯̄x⇤) K(¯̄x⇤, x̄1) · · · K(¯̄x⇤, x̄J)
K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄x⇤) K(x̄1, x̄1) · · · K(x̄1, x̄J)

...
. . .

...
...

. . .
...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄x⇤) K(x̄J , x̄1) · · · K(x̄J , x̄J)

3

777777775

.

Similarly, according to the Gaussian processes {un,+(·)}N�1

n=2
, Eq. (4) becomes

⇥
�n,+(

¯̄X⇤) �n,+(X̄J)
⇤T ⇠ N⇤+J

⇣
 +

⇣⇥
�n�1,+(

¯̄X⇤) �n�1,+(X̄J)
⇤T⌘

,⌃
⌘
,

(9)

where n = 2, . . . , N � 1.
Let �̄j

n,+ 2 R denote the x component of f̄ j
n,+ and further denote the vector

⇥
�̄1
n,+ · · · �̄J

n,+

⇤T
by �̄J

n,+. Then Eq. (7) becomes

�̄J
n,+ ⇠ NJ

⇣⇥
0J⇥⇤ IJ⇥J

⇤ ⇥
�n,+(

¯̄X⇤) �n,+(X̄J)
⇤T

,�2

vIJ⇥J

⌘
, n = 1, . . . , N � 1.

(10)
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Analogous formulas apply for the y component  n,+(·) : R2 7! R of the forward
field, as well as for the x component �n,�(·) : R2 7! R and y component  n,�(·) :
R2 7! R of the backward field. We provide the complete set of equations in the
Appendix.

We consider the Ensemble Kalman Filtering (EnKF) to compute the posterior
point estimates. Let notation [·j ] denote the vector, which contains all elements
corresponding possible value j. In Eqs. (8),(9), {[�j

n,+]}N�1

n=1
are the states in R⇤+J ,

in which predictions are made based on  +(·)(see Eqs. (4),(9)), and {[�̄j
n,+]}N�1

n=1

are the states in RJ , in which the observations are obtained by applying image
registration to the image data. With Eqs. (3),(4),(7) and their vectorized discrete
form (8),(9),(10), EnKF will produce a sequence of updated estimations {[�̂j

n,+]}N�1

n=1

for the x component of forward fields.
To adopt the EnKF algorithm for our problem, we mainly perform predicting and

updating steps iteratively. Denote Q = ⌃ and R = �2
vIJ⇥J , and let E be the size

of an ensemble we choose. In every iteration, instead of using a single estimation,

EnKF generates an ensemble of samples based on multiple predictions �(e)
n in the

following equation,

�(e)
n =  +(�

(e)
n�1

) + [uj
n,+]

(e), [uj
n,+]

(e) ⇠ N(0, Q), e = 1, ..., E,

where one sample is corresponding to one simulation satisfying Eq. (9). Sample
mean and sample variance needed in the following updating steps are computed
subsequently by this ensemble set as follows,

mn =
1

E

EX

e=1

�(e)
n

Cn =
1

E � 1

EX

e=1

(�(e)
n �mn)(�

(e)
n �mn)

T .

Then the Kalman gain denoted by Gn is calculated by Gn = Cn(Cn + R)�1. It

controls the weight of the predictions �(e)
n and observation [�̄j

n,+] to be involved

in our approximation [�̂j
n,+], where the updated estimation [�̂j

n,+] is obtained by
updating the sample mean of predictions with the observation in the following way,

[�̂j
n,+] = (I �Gn)mn +Gn[�̄

j
n,+]. (11)

Actually, the updated estimation [�̂j
n,+] is a weighted sum of predictions �(e)

n and

observation [�̄j
n,+] depends on �2

u the credibility of prediction system and �2
v the

reliability of observation. Suppose the observation is more reliable, meaning �2
v < �2

u

and �2
v ! 0, then lim�2

v!0 Gn = I, and lim�2
v!0(I � Gn) = 0, hence [�̂j

n,+] in
Eq. (11) has less information from the mean of predictions mn, but contains more
information from the observation [�̄j

n,+], therefore the observation holds a heavier
weight in the updated estimation. Conversely, suppose the prediction process is
more trustworthy, or equivalently, �2

u < �2
v and �2

u ! 0, the updated estimation
weights the predictions more heavily [2]. At the end of every iteration of an EnKF,
samples in the ensemble set are further updated as opposed to Kalman Filter where
the mean value is considered in the next iteration.

�(e)
n = [�̂j

n,+] + [vjn,+]
(e), [vjn,+]

(e) ⇠ N(0, R), e = 1, ..., E.
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Thus, after all iterations, a sequence of updated estimations {[�̂j
n,+]}N�1

n=1
is ob-

tained by applying EnKF. A complete detailed algorithm of EnKF for Organelle
Velocimetry is provided in the Appendix.

The y component of forward fields and backward fields filtering process works
in a similar way. With the discreterized equations given in Appendix and the
approach depiction in Fig. 3, one could perform the EnKF to obtain the improved
estimations {[ ̂j

n,+]}Nn=1
, {[�̂j

n,�]}Nn=1
and {[ ̂j

n,�]}Nn=1
.

2.3. Topological reconstruction. Given a collection of organelle space-time lo-
calizations R̃ and appropriate displacement fields {fn,+(·)}N�1

n=1
and {fn,�(·)}Nn=2

,
our goal is to computationally reconstruct {ra}a. Of course, because the recon-
struction of {ra}a in continuous time is impossible without a motion model capable
of time interpolation, which is unavailable for plant organelles, we focus on re-
constructing trajectories {r̃a}a that are discretized at time levels contained in R̃,
i.e., r̃a = {ra(tn)}n. As we show below, for such discrete reconstruction the com-
puted displacement fields {fn,+(·)}N�1

n=1
and {fn,�(·)}Nn=2

are su�cient.
We adopt a similar linking process as in [44]. Our algorithm (described in depth

below) proceeds in three stages. See Fig. 4 for visual representation. In the first
stage, we embed R̃ into

R =
[

a

�
(ra(t), t)

 
t2[0,T ]

⇢ R2 ⇥ [0, T ].

Then for any two points (x, t) 2 R2 ⇥ [0, T ] and (x0, t0) 2 R2 ⇥ [0, T ], we consider

d ((x, t), (x0, t0)) = kx� x0k+ ↵|t� t0|,

where k · k is the Euclidean norm in R2 and ↵ > 0 is constant. Since d(·, ·) is a
distance in R2 ⇥ [0, T ], our main object of interest R ⇢ R2 ⇥ [0, T ] inherits the
topological properties of a metric space [13, 35, 50]. Essentially, R consists of
the points in space-time R2 ⇥ [0, T ] that are visited by the organelles during the
experiment. AlthoughR globally captures the motion we are interested in revealing,
it leaves individual trajectories indistinguishable. Accordingly, in the second stage,
we partition R into components {Ra}a such that each Ra corresponds to a single
trajectory ra, i.e., we partitionR = [aRa such thatRa =

�
(ra(t), t)

 
t2[0,T ]

⇢ R2⇥
[0, T ]. The partitioning of R can be computationally achieved through construction
of the appropriate topological nerve [12] via the Mapper algorithm [6, 46]. Briefly,
for any ⌧ > 0, such that ⌧ < �t, we consider the overlapping intervals {Tn}N�1

n=1

defined by

T1 = [t1, t2 + ⌧),

Tn = (tn � ⌧, tn+1 + ⌧), n = 2, . . . , N � 2, (12)

TN�1 = (tN�1 � ⌧, tN ]

which are associated with the time levels {tn}n of the provided dataset. For any
(x, t) 2 R we consider the temporal projection PR : R 7! [0, T ] defined by

PR ((x, t)) = t, (x, t) 2 R.

Due to continuity, {P�1

R (Tn)}N�1

n=1
⇢ R forms an open covering of R. By its def-

inition, each pre-image P�1

R (Tn) ⇢ R contains segments of at least one organelle
trajectory, however, due to its inherited topology, each trajectory segment corre-
sponds to only a single connected component within P�1

R (Tn) ⇢ R. Consequently,
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partitioning R into connected components is achieved by, first partitioning each
P�1

R (Tn) into its connected components {Sm,n}Mn
m=1

and, computing subsequently
the nerve of the entire resulting family of components {{Sm,n}Mn

m=1
}N�1

n=1
⇢ R, which

is also an open covering of R. Lastly, in the third stage, we readily obtain discrete
trajectories r̃a by intersecting Ra\R̃. To partition each P�1

R (Tn) into its connected
components {Sm,n}m, we consider

` ((x, t), (x0, t0)) = kx� x0 � ft0!t(x
0)k+ kx0 � x� ft!t0(x)k,

where (x, t) 2 R2 ⇥ [0, T ] and (x0, t0) 2 R2 ⇥ [0, T ]. (x, t) 2 P�1

R (Tn) and (x0, t0) 2
P�1

R (Tn), belong to the same connected component Sm,n if and only if
`((x, t), (x0, t0)) = 0. Therefore, provided the 1-level displacement fields {fn,+(·)}N�1

n=1

and {fn,�(·)}Nn=2
have been already computed, we can use ` to topologically charac-

terize trajectory segments or equivalently connected components of P�1

R (Tn). Con-
sequently, a computational characterization of S̃m,n = Sm,n \ R̃ can be achieved
by an agglomerative clustering on P�1

R (Tn) \ R̃ with linkage `. Specifically, the
restriction `n of ` in P�1

R (Tn) \ R̃, required for each clustering, reduces to

`n ((x, t), (x
0, t0)) =

8
><

>:

kx� x0 � fn+1,�(x0)k+ kx0 � x� fn,+(x)k, t < t0

2kx� x0k, t = t0

kx� x0 � fn,+(x0)k+ kx0 � x� fn+1,�(x)k, t > t0.

3. Results.

3.1. Case I: Velocimetry benchmark. The displacement estimation and linking
processes are tested on a simulated data set consisting of 20 organelles in 100 frames
of video with a time delay �t = 1 s. The trajectories are exhibited in Fig. 5. The
positions of an organelle in each frame are known and are generated by a di↵usion
process, which also contains a drift term, given by

dXt = vxdt+DWt,

dYt = vydt+DWt,

where Wt is a Wiener process, vx = 3 pixel/s, vy = 1 pixel/s, and D = 1 pixel/s.
The starting distances between any two adjacent organelles at t = 0 s is 10 pixels.

Given the location of all organelles in each frame, we apply our displacement
estimation process detailed in Sect. 2.2 to the data set, then calculate the mean
error (in pixels) between the estimated forward (backward) displacement and true
displacement frame by frame, along the x-axis and y-axis respectively. The results
are shown in Fig. 6. The four histograms, almost all mean errors per frame are
around 0.25 pixel and smaller than one pixel, only very few are greater than one
pixel and all are smaller than two pixels, we may see these as outliers.

Given the displacements, we apply the linking process of Sect. 2.3, and the results
are shown in Fig. 7. All organelles are correctly connected by 20 trajectories, each
trajectory spans exactly from t = 0 s to t = 99 s, and the yielding accuracy rate is
100%.

Next we perturb the y-axis direction of the location of simulated organelles, by
adding noise following a uniform distribution U(�✏, ✏) at every time level, where ✏ is
the largest perturbation could be added. We will investigate the cases when ✏ varies
from 1 pixel to 4 pixels. Apply the displacement estimation and linking processes
with our algorithm, then count number of total reconstructed trajectories, number
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Figure 4. (a) shows R̃ as black dots and R as gray lines; (b)
shows R, Tn in Eq. (12) and P�1

R (Tn) as blue segments; (c) shows
R, Tn, P�1

R (Tn), R̃ and reconstructed discrete trajectories. For
visualization purpose, space is shown in 1D.

of reconstructed trajectories longer than 10 s, number of reconstructed trajectories
having 100% agreement with the truth, number of reconstructed trajectories having
at least 90% agreement with the truth and number of reconstructed trajectories
having at least 50% agreement with the truth. The results are in Table 1.

As shown in Fig. 8, when we increase ✏, the trajectories contain larger fluctu-
ations, and any two adjacent trajectories become closer or even intersect. Thus,
larger ✏ causes higher di�culty to detect trajectories. From Table 1, when the
noise is mild (✏ < 2.5 pixels), our reconstructed trajectories remain the same; but
when ✏ becomes large (✏ � 2.5 pixels), the accuracy rate decreases. In fact, when
✏ = 4 pixels, there are no clear patterns for all independent trajectories to be de-
tected, and most of organelles just look scattered in the frame when overlapping all
their positions over the time span of the video.



12 LE YIN, IOANNIS SGOURALIS AND VASILEIOS MAROULAS

Figure 5. Case I: The frame size is 320 by 320 pixels. Trajectories
of 20 organelles are in red spanning from time t = 0 s to t = 99 s.
Their motion is described by a di↵usion process containing both
a di↵usion and a drift term. The starting distance of any two
adjacent organelles at t = 0 s is 10 pixels.

Figure 6. Case I: Four histograms of mean error of each frame.
Each one compares estimated forward and backward displacement
with ground truth along x-axis and y-axis, respectively.
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Figure 7. Case I: Linking result of all trajectories in red. The
accuracy rate is 100%.

✏ (in pixels) total > 10 s = 100% � 90% � 50%
✏ = 1 20 20 20 20 20
✏ = 1.5 20 20 20 20 20
✏ = 2 20 20 20 20 20
✏ = 2.5 24 24 14 17 20
✏ = 3 32 27 9 14 17
✏ = 3.5 33 30 5 10 15
✏ = 4 53 40 1 4 14

Table 1. Case I: Table of detection result

3.2. Case II: Complex dynamics. Now consider a complex video with 20 or-
ganelles in each frame and 100 frames in total. Each frame has a 380 by 380 pix-
els grid on it. This video has a frame rate of 30 frames per second, which gives
�t = 33.33 ms. There are multiple filaments hiding in the background, and are not
visible in the imagery. Three kinds of motions could happen. An organelle could
attach to or detach from a filament, travel along a filament, or move randomly.
Moreover, an organelle could go through multiple of these three motions in a single
�t.

After importing the video as gray scaled images and filtering out the background
from each frame, our method detects peaks iteratively and applies Bayesian identi-
fication with the following prior distributions:

• ñp
n follows normal distribution N(0, 1),

• zsn follows uniform distribution over the frame,
• hs

n follows translated beta distribution with support (50, 150), mode 100, and
shape parameter ↵ = 5,
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Figure 8. Case I: Positions of organelles over time after adding
perturbation U(�✏, ✏) when ✏ = 0, 1, 1.5, 2, 2.5, 3, 3.5, 4 pixels,
respectively. If ✏ increases, it is more di�cult to detect trajectories,
especially, when ✏ = 4 pixels, there are no clear patterns for all
trajectories to be reconstructed.

• ws
n follows translated beta distribution with support (10, 20), mode 15, and

shape parameter ↵ = 5,

as mentioned in Sect. 2.1. An example of a single frame is shown in Fig. 9.

Figure 9. Case II: The left shows the rough detection result, the
right show the locations after correction. The red dots in the left
penal and blue pentagons in the right penal are the original loca-
tions before Bayesian identification. The red pentagons in the right
panel are the fitted location after Bayesian identification.
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The red dots on the left panel and blue pentagons on the right panel are the
original locations before Bayesian identification. It is clear to see that the three
pairs at the bottom (which have y-value greater than 300) need to be corrected as
part of their corresponding organelles are overlapped. The red pentagons are the
fitted location after Bayesian identification.

For the approximation of displacement fields using Ensemble Kalman filtering(see
Sect. 2.2), since �t = 33 ms is considered extremely small, this ensures the dis-
placement fields do not change rapidly from one frame to the very next. Moreover,
the displacement fields from one level should partially memorize the trend from
the previous level. Thus, lacking more information about the dynamic system, we
choose  (x) =

p
x to imitate a nonlinear decay in the displacement field. Setting

�u = 5 pixels, �v = 2 pixels since we want to give more weight to observations,
then the forward displacement fields of the 17th frame at tn = 0.53 s is displayed
in Fig. 10(a), an area of pixels [140, 230] on x-axis times pixels [260, 350] on y-axis
is enlarged in Fig. 10(b). We can easily observe the displacement fields around
organelles.

Figure 10. Case II: Estimated displacement fields of 17th frame
using EnKF. Panel (a) shows the estimated displacement fields
for the entire focal plane. Panel (b) shows the enlarged area of
[140, 230]⇥ [260, 350] in Penal (a).

The trajectories are reconstructed in Fig. 11. The left panel shows all estimated
trajectories in red concentrate upon the light area. The right panel shows trajec-
tories with ground truth trajectories in black. Most of them coincide, except the
area where our method cannot do the tracking job perfectly when more organelles
collide or stick together. Specifically, we pick four sets of trajectory reconstructions,
exhibited in Fig. 12, each panel shows our reconstructions compared with one true
trajectory, their mean error are 1.20, 2.24, 2.09 and 1.42 pixels, respectively.

3.3. Case III: Real data. Finally, we consider a real grayscale video with a total
of 299 frames, recording the motion of peroxisomes in a plant cell. In plant cells,
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Figure 11. Case II: Trajectories reconstruction result

peroxisomes play a variety of roles including converting fatty acids to sugar and
assisting chloroplasts in photorespiration. The spatial resolution for this video is
0.196 micrometers/pixel and the size of each frame is 79 by 662 pixels. The time
period between successive frames is 82 ms, that is, �t = 82 ms. Fig. 13(a) shows
the first frame of the video, the light spots in the frame are peroxisomes and their
sizes range from 0.5 to 1 micrometer.

The outcomes of our method applied to this video are shown in Fig. 13(b) and
13(c). We plot the estimated trajectories, which only exist in at least 10 consecutive
frames, in Fig. 13(b). We can see that the red trajectories cover almost every
highlighted area. In Fig. 13(c), we exhibit all these 116 trajectories in di↵erent
colors. Mainly two type of trajectories are observed: a long trail when peroxisome
is traveling along the filament; a short trail when peroxisome is wiggling in the cell.
Our developed method is able to track the peroxisomes in di↵erent types of motions
for long time intervals.

4. Discussion and conclusion. In this work, we have developed a novel, data-
oriented method for the analysis of experimental measurements. Our method com-
bines Topological Data Analysis (TDA) and advanced filtering techniques. Key
features of our approach include the adoption of Mapper with necessary modifica-
tions, while using Gaussian processes and EnKF to facilitate the clustering involved
in the computation of the associated nerve.

Unlike earlier tracking approaches, our method can proceed with or, most impor-
tantly, without a motion model. Without invoking a motion model, a reasonable
guess may relax a strong requirement in the analysis of biological data, especially
those obtained from in vivo microscopy at the level between cellular and molecular.
In the opposite case, with a motion model, more precise inference can be incor-
porated into final estimation. In both cases, we estimate the displacement field
from the data. In essence, our approach resembles data-driven clustering. However,
our method implicitly assumes a phenomenological motion type that is exclusively
informed by the observations. In any case, reconstructed tracks are valid if the
computed of estimated displacement fields are consistent.
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Figure 12. Case II: Four specific sets of trajectory reconstruc-
tions vs ground truth. Each panel shows reconstructions versus
one true trajectory. The upper left is amplified from the area
[290, 380] ⇥ [40, 130] in Fig. 11; the upper right is amplified from
the area [40, 190]⇥ [190, 340] in Fig. 11; the bottom left is amplified
from the area [80, 210] ⇥ [200, 330] in Fig. 11; the bottom right is
amplified from the area [230, 380]⇥ [200, 350] in Fig. 11;

Comparing to the work in [44], the EnKF works in the case of minimal assump-
tions. Moreover, it can achieve more precise results if additional knowledge of the
dynamic system is enforced. EnKF has the advantage that it can inherit some
trends from previous time step, and fit the nonlinear system, which could be more
e↵ectively applied when a sophisticated motion model is known in a real world
analysis.

Earlier attempts obtained estimates of displacement fields using a combination of
heuristics and conventional Kalman Filtering (KF). Given that motion patterns are
highly non-linear, conventional KF lacks robustness and no longer works. Here, in-
stead we develop a principled approach that models the displacement fields through
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Figure 13. Case III: Panel (a) is the first frame of the video. Panel
(b) exhibits all estimated trajectories in red. Panel (c) further
shows each estimated trajectory in di↵erent colors.

Gaussian processes and we apply EnKF, which is shown to successfully estimate the
desired dynamics under a wide range of motion conditions. Specifically, we have
tested our novel methodology against ground truth trajectories on realistically ob-
tained synthetic data capturing organelle motion and also on real experimental data.
Of course, further investigation of the robustness of the reconstructed trajectories
is problem specific and needs to consider the spatiotemporal scales that may di↵er
among physical systems.

Despite the key innovations introduced here, our method proceeds by breaking
down the tracking problem into separate phases, i.e., identification, localization,
linking, which follows the conventional tracking paradigm [27]. We achieve some
coupling between these phases in the velocimetry stage. However, full coupling in a
manner that allows improved inference in any phase to fuse into all other phases re-
mains to be developed. Such approach has been recently applied successfully on data
from confocal microscopy [23, 24, 53], however, due to the massive size of wide-field
datasets, such as those acquired in plant microscopy, extensive modifications are
required. For this, future research is required to yield a comprehensive framework
where identification, linking and velocimetry are unified and treated simultaneously.
Due to high stochastisity in the underlying data, e.g. motion, uncertainty, and de-
tection noise, it is natural to seek such a monolithic approach within the Bayesian
context. However, a fully Bayesian approach requires overcoming at least two im-
portant barriers: (1) Bayesian foundations of nerves and displacement fields; and
(2) non-trivial computational costs which would increase significantly.

In conclusion, we have proposed a novel algorithm to track organelles in mi-
croscopy video. Our intracellular tracking algorithm can successfully reconstruct
organelle trajectories as we show with example applications to synthetic and real
data. This method optimizes parameters of organelles based on data captured in
images, combine predictions with observations in estimating organelle movement,
and link organelles based on topological analysis.
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word picture: An introduction to super-resolution data analysis, Chemical Reviews, 117
(2017), 7276–7330.

[28] J. W. Lichtman and J.-A. Conchello, Fluorescence microscopy, Nature Methods, 2 (2005),
910.

[29] I. Lichtscheidl and I. Foissner, Video microscopy of dynamic plant cell organelles: Principles
of the technique and practical application, Journal of Microscopy, 181 (1996), 117–128.

[30] S. Liu, M. J. Mlodzianoski, Z. Hu, Y. Ren, K. McElmurry, D. M. Suter and F. Huang, sCMOS
noise-correction algorithm for microscopy images, Nature Methods, 14 (2017), 760.

[31] C. W. Lloyd, The plant cytoskeleton: The impact of fluorescence microscopy, Annual Review

of Plant Physiology, 38 (1987), 119–137.
[32] D. C. Logan and C. J. Leaver, Mitochondria-targeted GFP highlights the heterogeneity of

mitochondrial shape, size and movement within living plant cells, Journal of Experimental

Botany, 51 (2000), 865–871.
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[37] A. Nebenführ and R. Dixit, Kinesins and myosins: Molecular motors that coordinate cellular
functions in plants, Annual Review of Plant Biology, 69 (2018), 329–361.
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