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Abstract—As the rapid pace of Moore’s Law has been slowing
down, there has been intense activity to ‘“re-invent the tran-
sistor’”. An emerging paradigm is to complement the existing
complementary-metal-oxide semiconductor (CMOS) technology
with new functionalities, rather than finding a drop-in replace-
ment for it. In this paper, we discuss such a complementary
approach that we call Probabilistic Spin Logic (PSL) based on
the concept of a probabilistic or p-bit. p-bits fluctuate between 0
and 1 and can be imagined in between deterministic bits that are
either 0 or 1 and quantum bits that are a superposition of 0 and
1. Interconnected circuits built out of p-bits (p-circuits) can be
broadly useful for Machine Learning and Quantum Computing
in the solution of problems that conventional CMOS may not
be particularly suited for. While such p-bits can be implemented
using standard CMOS technology, we will show that the inherent
physics of nanomagnets can naturally provide an energy efficient
and scalable p-bit implementation through the use of low-barrier
Magnetic Tunnel Junctions (MTJs). In this paper, we provide
a general description of p- bits and p-circuits and discuss their
applications. We review experimental progress towards construct-
ing p-bits and p-circuits exploiting the inherent stochasticity
of nanomagnets, from a physics/device/circuits perspective. In
particular, we identify building blocks for “write” and “read”
operations that can be used in different combinations to construct
functional p-bits and p-circuits. Finally, we discuss prospects and
challenges of PSL as an emerging, unconventional computing
paradigm for a beyond CMOS era.

I. INTRODUCTION AND BROAD OVERVIEW

HILE magnetic materials quickly became relevant as

storage media in the field of high performance com-
puting [2], semiconducting components have dominated the
memory and logic device application space since decades.
Scalability and compatibility for integrated chip manufactura-
bility favored dynamic random access memories (DRAMs)
over magnetic core memories back in the early 1970s. How-
ever, the search for a spintronics-based non-volatile memory
continued because of its intrinsic potential advantage for
low-power applications. The rise of the Magnetic Tunneling
Junction MTJ) [3], [4] opened the door for such a non-
volatile memory and MTJs are today the basic building blocks
of magnetic random access memories (MRAMs). MRAM
has attracted considerable interest since around 2011 as a
non-volatile memory element when it became apparent that
Spin-Transfer-Torque (STT) could be employed as a scalable
writing mechanism [5]. The latest 256Mb MRAM product
from Everspin released in 2016 relies on the STT mechanism
in combination with materials which exhibit perpendicular
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Fig. 1. Conceptual view of bits, p-bits, g-bits: Probabilistic or p-bits are
conceptually in between deterministic bits and quantum bits or g-bits [1].
Deterministic bits are represented by high (1) / low (0) voltages in transistors,
or by stable magnets with two energy minima, while quantum bits are typically
represented by the spin of an electron that is a superposition of 0 and 1. In
this paper, we show how probabilistic bits can be naturally represented by
low barrier nanomagnets whose energy barriers are of the order of the thermal
noise.

magnetic anisotropy (PMA) that allow for higher integration
densities than in-plane magnets. Most recently, Spin-Orbit-
Torque (SOT) has been added into the discussion as a means
to further improve power consumption by separating the Read
and Write path [6] and to create what is called SOT-MRAM.

The above described components: MTJs, PMA materials,
and the mechanism of SOT are the central ingredients for the
work that will be discussed in this article. The main difference
compared to the above however lies in the application space
that will be discussed here, namely spintronics-based compu-
tation rather than memory. Memory requires bits represented
by stable magnets that can store information for long periods
of time. We will focus on probabilistic computation requir-
ing probabilistic or p-bits represented by unstable magnets
(FIG. 1).

About five years ago, as an alternative to the CMOS
transistor the so-called Charge-coupled Spin Logic (CSL)
[7] was proposed, which became the central effort within
the Nanoelectronics Research Initiative (NRI) center Institute
for Nanoelectronics Discovery and Exploration (INDEX) [8].
Different from the earlier concept of employing spin currents
for everything (All Spin Logic: ASL [9]), CSL was developed
based on the idea that interconnects between individual de-
vices could continue using charge currents as in conventional
architectures. The active device element provides the charge-
to-spin conversion at the write side and the spin-to-charge
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Fig. 2. p-bit characteristics: Ideal p-bit device with a dimensionless input /; and a bipolar output m; that is always +1. r is a random number uniformly

distributed between —1 and +1. (b) p-bit output (Solid blue line) as a function

of I;. The average follows a tanh(/;) behavior. (c) p-bit outputs at different

I; are shown. In the case of a time-fluctuating p-bit, the x-axis could be time, in the case of an ensemble averaged p-bit the x-axis could be sample number.

Reprinted with permission from [1]. Copyright (2017) by the American Physica

conversion at the read side and processes information through
the summation of spins in a majority logic approach. Non-
volatility is ensured through the use of stable nanomagnets
on the read and write side. Combining logic and memory in
this way, however, comes at a price of rather high energy
consumption as discussed in various benchmarking efforts
[10]. The energetic barrier F'p that preserves one or the other
magnetic state in the nano-magnet in a non-volatile fashion
is also responsible for the higher energy consumption, and
reducing Ep can enable more efficient devices that can be
a replacement for high performance CMOS circuits [11]. In
this article, we will consider an extreme reduction of £’ and
make it comparable to the thermal energy k7. Under these
conditions noise in the environment can impact the state of
the magnet and a new type of computing unit, which we will
call a probabilistic or p-bit, becomes possible.

Whether or not emerging spintronics devices can offer a
direct replacement of CMOS, for example using low voltage
operation [12], is an open question actively investigated at
this time [13], [14]. An alternative viewpoint that has been
emerging in the last few years is that future electronic devices
will involve novel components that work in conjunction with
CMOS devices, augmenting their functionalities for special-
ized applications [15]. Indeed, there has been a lot of work
in the context of special solvers for computationally hard
problems in recent years, leveraging quantum effects, optical
devices, digital logic, magnetic and other types of materials
[16]-[25]. The objective of this paper is to introduce and
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report the experimental progress towards such an emerging
computing paradigm called Probabilistic Spin Logic (PSL).

II. P-BITS AND P-CIRCUITS

Probabilistic Spin Logic (PSL) is based on the concept of
a probabilistic or p-bit whose output fluctuates between 0
and 1, unlike a deterministic bit that is O or 1 at any given
time. Indeed, the p-bit can be imagined as an intermediate
step between bits and quantum bits (FIG. 1). Quantum or g-
bits, which lie at the heart of quantum computing, are delicate
superpositions of 0 and 1 that need to be realized at cryogenic
temperatures. In contrast, the p-bit is a robust, classical object
that can be naturally represented by existing devices at room
temperature. As such, an intriguing question to ask is could
a subset of the applications targeted by g-bits also be part
of a p-bit paradigm? In a pioneering article that stimulated
the field of quantum computing [26], Feynman made the
observation that efficiently simulating quantum mechanics can
be done by a quantum mechanical computer. What is relatively
less appreciated is that in the same paper, Feynman sets the
stage by making a similar point about probabilistic computing
that in order to efficiently simulate a probabilistic many-
body problem, using a probabilistic computer is natural. The
relevance of the latter statement lies in the fact that many
computationally difficult problems are inherently probabilistic.
Consequently, using the inherent stochasticity of low barrier
nanomagnets could allow a compact, energy-efficient hardware
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Fig. 3. Applications of p-bits and p-circuits: There are two broad applications of correlated p-bits (p-circuits): Applications that are inspired from machine

learning and quantum computing as described in the text.

implementation of p-bits to solve these types of problems and
is thus highly desirable.

We must of course clearly point out that it is widely believed
that any problem that can be efficiently solved by a proba-
bilistic computer can also be efficiently solved by a classical
computer equipped with a pseudorandom number generator. In
complexity theory, this belief is formally expressed as P=BPP
where P and BPP are the classes of problems that can be
solved in polynomial time by a classical and probabilistic
computer, respectively [?]. Further, it is also widely believed
that the BPP £ BQP where BQP is the class of problems that
can be solved in polynomial time by a quantum computer,
implying quantum computers are more powerful than both
classical and probabilistic computers [?]. Nevertheless, even
though all examples presented in this paper can be simulated
in software by classical computers using Eq. 1 and Eq. 2
that we discuss next, the compact implementation of the p-
bit can lead to large practical improvements in area and speed
in an autonomously operating p-computer [109]. Moreover,
some quantum algorithms such as Quantum Annealing can
be emulated by a network of p-bits as long as they belong
to a special class of systems that are sign-problem free, or
stoquastic [57].

An intuitive application of the inherent stochasticity of
nanomagnets is true Random Number Generation (RNG). The
feasibility of leveraging the stochastic dynamics of stable
and unstable nanomagnets for different applications has been
thoroughly investigated, both theoretically and experimentally
[27]-[35]. Indeed, the p-bit becomes a random number gen-
erator when the input is zero. What distinguishes the p-bit,
however, is the tunability of randomness as a function of an
input parameter (FIG. 2). The tunability feature allows p-bits

to communicate with one another, distinguishing them from
random number generators, to solve computational problems
of interest. Computations of such problems have two main
ingredients. The first is the tunable randomness functionality
as illustrated in FIG. 2. This is sometimes called the “activation
function” or the “neuron” in the field of Machine Learn-
ing. The second ingredient is the interconnection between
p-bits which is sometimes called the “weight matrix” or
the “synapse”. In the next section, we express these two
functionalities mathematically.

A. Ideal p-bit Behavior
The ideal PSL equations are described by a neuron-like and
a synapse-like equation:

m; = sgn{tanh(l;) —r} (D)

I, = ZJijmj—l—hi 2

where I; is the dimensionless current that tunes the probability
of +1/—1 at the output, and r is a random number uniformly
distributed between —1 and +1. This behavior is illustrated
in FIG. 2. Eq. 2 defines the interconnection between p-bits
through a weight matrix [J], and h; is the bias term per p-bit.
Expressed in this form, Eq. 1 and Eq. 2 can be viewed as a
general stochastic neural network. Indeed, Eq. 1 is sometimes

called binary stochastic neuron (BSN) [36].
Eq. 1 and Eq. 2 are essentially the same equations that

were proposed by Hinton and colleagues in the context of
Boltzmann Machines [?], [36]. Boltzmann Machines, some-
times called stochastic Hopfield Networks [37], are typically
associated with a powerful learning algorithm useful for un-
supervised learning tasks implemented in software. As such,



all examples presented in this paper can be simulated by
software models using Eq. 1 and Eq. 2. In the present context,
probabilistic or p-bits in are always implied to be hardware
building blocks. Hardware p-bits need to be active, three-
terminal devices that can drive other units according to an
interconnection matrix and they constitute a building block
for a probabilistic computer that can find use in many areas
of interest in Machine Learning and Quantum Computing as
we explain in the next subsection (FIG. 3). Indeed, as we will
show, probabilistic circuits built out of p-bits do not have to
be symmetrical (as all Boltzmann Networks are), in certain
cases these directed (Bayesian) networks could be useful for
different applications.

B. Broad applications of PSL

Applications with different problems can be encoded to the
weights, [J] matrix, so that a dynamical evolution of p-bits
finds solutions for applications of interest. Finding a suitable
weight matrix for a given problem is not always trivial, though
in some cases, for example implementing simple Boolean
functions that are described by truth tables, one-shot learning
methods exist [1], [38]. For more complicated tasks such as
image recognition the proper weights have to be “learned”,
and this is the main concern of machine learning algorithms.
In some cases, the interconnection matrix [J] can heuristically
be written down with relative ease, but reaching a solution of
interest or more precisely the “ground state” by dynamically
evolving the system can become very difficult, requiring
special techniques such as annealing and quenching to obtain

near ground state solutions [39].

p-circuits can broadly find applications in two disjoint but
very active fields of research, namely, Machine Learning and
Quantum Computing (FIG. 3). In the context of Machine
Learning, hardware p-circuits can enable highly compact and
efficient implementations of restricted and unrestricted Boltz-
mann Machines (BM) as inference networks [40], [41]. While
“learning”, Boltzmann Machines iterate weights by making
use of equilibrium correlations between the “hidden” and
“visible” layer of the neural network [36]. It is well-known that
obtaining exact equilibrium correlations at each iteration can
take a long time in software [42]. Thus, constructing hardware
circuits that naturally evolve toward equilibrium distributions
can significantly speed up learning for Boltzmann Machines
43].
: /inother application in the context of Machine Learning is
Bayesian networks, which are directed networks unlike BM’s
and restricted BMs (RBMs). These networks are typically used
to understand causal relationships between probabilistic vari-
ables in the real world including applications in forecasting,
medical diagnosis and others [45]. Being able to implement
such networks electrically through p-bits could accelerate the
evaluation of deep correlations as well as being able to adjust

variables based on new information [46].
Another application space for p-circuits is concerned with

problems that are typically discussed in the context of Adi-
abatic Quantum Computing (AQC) [47]. This is partly be-
cause the algorithms developed for AQC can directly be used
by probabilistic circuits operating classically. For example,

in the Transverse Ising Hamiltonian a transverse magnetic
field is adiabatically turned off to identify the ground state
of an Ising Hamiltonian, a process that is called Quantum
Annealing (QA) [48]. The resultant Ising Hamiltonian (without
the transverse magnetic field) can directly be implemented
as a p-circuit to find the ground state of a system that is
mapped to, for example, the Traveling Salesman Problem
(TSP) [49]. Such a hardware p-circuit can be used to find
a feasible solution of a given TSP “instance” by changing the
effective “temperature” of the system electrically. The process
of slowly changing temperature to guide a system to its ground
state is called Classical Annealing (CA). Just like quantum
annealers, classical annealers that continuously change the
weight matrix can be implemented in hardware exploiting the
inherent stochasticity of magnets to solve such Combinatorial
Optimization Problems, as shown in panel (2) in FIG. 3
[49]. In addition to changing the effective temperature slowly,
other methods, for example rapidly “cooling” (quenching) the
effective temperature of a fixed weight network could also be
useful [50]. Note that in each case, having electrical control of
the temperature parameter allows a wide range of possibilities
for different annealing schemes. Indeed, building hardware
“Ising Computers” to find the ground state of a problem
of interest with or without electrical annealing has received
significant attention in recent years [17], [S1]-[55].

Intriguingly, it has recently been shown that p-bits can
approximate the thermodynamic properties of a class of
quantum circuits, that includes the class of Transverse Ising
Hamiltonians that quantum annealers are based on [56], by
generating a number of replicas of the quantum system [57]
(displayed in panel (3) in FIG. 3). This implies that even
Quantum Annealing, including the transverse magnetic field
can be approximated using classical, room temperature p-bits.
In software implementations this approach is sometimes called
Simulated Quantum Annealing or SQA. There is emerging
evidence on relative benefits of SQA compared to CA [?],
attributed to the SQA’s ability of mimicking “tunneling” out
of local minima which is not possible in CA though it has also
been noted that there might be observable scaling differences
between QA and SQA [?]. It also seems possible that other
quantum systems (such as ferromagnetic Heisenberg models)
can be emulated by p-bits in this manner [57], suggesting the
possibility using highly scaled room temperature p-circuits
replicating thousands of g-bits to approximate a subset of
quantum systems that are sign-problem free.

Another interesting possibility for Boolean logic arises
when the network is undirected: Unlike traditional Boolean
gates that are directed from input to output, there is no
distinction between an output and input terminal in a reciprocal
network. This allows constructing Boolean gates that not only
“find” outputs corresponding to a set of inputs but also a
set of inputs that are consistent with a given output! The
interesting feature of invertibility, also exhibited by another un-
conventional computing framework called “memcomputing”
[60], [61], does not have an analog in traditional computing
and could lead to hardware solutions for many inverse prob-
lems, where computations are difficult in the reverse direction
compared to the forward direction [1] (panel (1) in FIG. 3).



Factorization is one such example, where multiplying two
primes is easy while finding the prime factors of a semiprime
is believed to be difficult. Factorizers out of invertible p-
circuits have been implemented using CMOS emulators [62]
and scalable CMOS chips [63]. In this paper, we will discuss
another method of factoring by casting p-circuits as general
purpose optimizers in Section V-A.

ITII. NANOMAGNETS AS NATURAL RANDOM NUMBER
GENERATORS

In this section, we will discuss how the probabilistic physics
of nanomagnets allows for a straightforward implementation
for random number generation (RNG) which will be used
to implement the p-bit behavior described by Eq. 1. Ar-
guably, the most natural method of obtaining randomness
is a single domain magnet with a low energy barrier that
spontaneously fluctuates between two binary states (up or
down) in the presence of thermal noise. Such nanomagnets
fluctuate in time and their magnetization can be read out as
a telegraphic resistance signal as shown in FIG. 4a. Another
way of obtaining probabilistic behavior is to use a collection
of magnets and exploit their average stochastic switching
behavior in an ensemble of magnets. There are different
methods to implement stochastic devices in this manner as
we will discuss in Section III-B below. Interestingly, even
high barrier magnets allow for tunable stochasticity as will
be discussed in Section III-C.

A. From magnets to devices: Read and write operations

Even though a fluctuating nanomagnet forms the basis of
a p-bit by exploiting the inherent noise in the environment,
the p-bit, as a device, needs to have electrical inputs and
outputs. Therefore the output of a magnetization needs to be
transduced into a voltage or current, which we call the “read”
operation. Similarly, the p-bit, as a device, needs to allow
manipulation of its state by an electrical input, which we call
the “write” operation. As an example, the emerging magnetic
memory technology, the spin-transfer-torque magneto random
access memory (STT-MRAM) uses a Magnetic Tunnel Junc-
tion (MTJ) as its basic building block. An MTJ employs two
magnets, a reference (fixed) layer whose magnetization is fixed
to a particular orientation and a free layer whose magnetization
can switch between two stable states. STT-MRAM employs
the spin-transfer-torque to write information to the free layer
nanomagnet, by depositing a spin-polarized current that is
obtained by running an unpolarized charge current through
the fixed layer. This spin-polarized current causes a reversal
of magnetization of the free layer, flipping the state of the
free layer. Reading the state information is achieved by using
the same MTJ since the resistance of the MTJ depends on the
relative magnetization orientations of the fixed and free layers.
An anti-parallel orientation results in a higher resistance Rap
compared to a parallel orientation, Rp. The difference of the
two is characterized by the Tunneling Magnetoresistance ratio
TMR = (Rap — Rp)/Rp. For present day MTJs, TMR can
be around 100-600% [6], [65]. This change in the resistance
can be sensed by running a small electrical current through
the MTJ.

In this paper, we will also employ the Anomalous Hall
Effect (AHE) as another read mechanism, particularly for
magnets with perpendicular anisotropy (PMA). AHE allows
the reading of a perpendicular magnet in a Hall bar struc-
ture, where a small longitudinal read current gives rise to a
transverse voltage proportional to the z-directed magnetization
in the absence of an external magnetic field. AHE does not
require an additional fixed magnetic layer or a well-engineered
tunnel junction, making it a convenient read out mechanism.
However the magnetoresistance ratios obtained from AHE,
i.e. the relative difference in the read out signals produced
by different magnetization states are typically much smaller
than those obtained from MTIJs [66]. AHE, among other
mechanisms, is a building block for reading out magnetic
information and the devices we demonstrate here using AHE
are proof-of-concept devices that open pathways for ultimate
MTIJ implementations, or other efficient read mechanisms.
In addition, in Section IV-B1, we describe a novel reading
mechanism that does not involve magnetization information
directly but produces a read out voltage based on the magnetic
“easy-axis”.

The specifics of the read and write mechanisms depend
on the particular p-bit implementation and as we will see
in Section IV-B2, sometimes the magnetization state is not
modulated at all, and the electrical read / write can be achieved
by conventional charge-based devices. Next, we first describe
how nanomagnets can be used as natural building blocks for
RNGs and then describe how these building blocks can be
used to engineer electrical p-bit devices with distinct read and
write mechanisms.

B. Low barrier nanomagnets as natural RNGs

A single domain nanomagnet is typically characterized by
an energy barrier E'p that separates two states with opposite
orientations of the magnetic moment. Once the magnet is
placed in one of these states, it stays in this state for a given
amount of time that is called the retention time, 7. In a simple
picture, the retention time has an exponential dependence on
the energy barrier [67]:

T =T19exp(Ep/kT) 3)

where kT is the thermal energy and 7 is a material dependent
constant that is called the “attempt time”. The retention time 7
can be engineered to ensure non-volatility for a desired period
of time, typically 10 years or greater in memory applications
[65].

In a monodomain magnet, the energy barrier is a result
of the total moment that makes up the nanomagnet and an
effective anisotropy field which is a preference of the magnetic
moment to point in a certain axis that is called the “easy-axis”.
The anisotropy field is associated with either the shape or the
crystal structure of the nanomagnet and Ep is thus given by
the following expression:

1
Ep = 5 M.QHx 4)

where M is the saturation magnetization per volume, and €2
denotes volume. M) represents the total magnetic moment
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[64]. Copyright by IEEE (2018).

in the magnetic body, and Hpy represents the anisotropy
field of the nanomagnet. Using lithographical techniques and
different material combinations, both of these factors can
be engineered independently to obtain a desired Ep for a
particular application [64].

1) Reducing net moment: One straightforward approach to
obtain a low Ep is to scale the product M {2, which can be
achieved by using a material with low saturation magnetization
and/or fabricating a nanomagnet with a small volume by
lithographic means and proper processing. Magnets of this
type are sometimes called to be in the superparamagnetic
regime [68].

2) Reducing anisotropy: Another approach to obtain a
small energy barrier is by scaling the anisotropy field H . This
can be achieved by using a material with negligible crystalline
anisotropy and a geometry with negligible shape anisotropy.
An example of such a structure would be a circular disk from
a CoFeB alloy, that ensures that there is no preferred easy
axis. Such circular magnets were first discussed in the context
of nanomagnetic logic. In these magnets, the demagnetization
field keeps the magnet in the plane of the film. However, due to
the lack of a magnetic easy-axis, the magnetization randomly
rotates within the plane with fluctuations that can occur on a
sub-nanosecond time scale due to the large demagnetization
field. It is important to note that to obtain this kind of circular
magnets, the nanomagnet needs to behave as a monodomain
body, avoiding the formation of a vortex structure [69]. This
can be achieved by keeping the ratio of diameter to thickness
of the nanomagnet low enough such that the dipolar self-
energy is less than the exchange energy [69], [70].

3) Combination of reduced anisotropy and moment: In
practice, a combination of these two approaches can be used to
achieve the desired low barrier nanomagnet characteristics. For
example, a perpendicular magnetic anisotropy (PMA) system
presents another way to reduce Hy to obtain a low barrier
nanomagnet. In the case of the so-called “interfacial” PMA
magnets, the effective uniaxial anisotropy is given by:

Heﬁ :Ks/Ms(l/tPMA*Ms/ZuO) (5)

where the first term arises due to an interface anisotropy
(K5 [J/m?]) and the second term arises from the demagneti-
zation field [71]. The competition between these two opposing
fields can be optimized to obtain a very small H¢! by tuning
the thickness of the PMA layer ({pya). As an example of this
approach, we show a Ta/CoFeB/MgO PMA with a thickness
of tppa=1.3 nm. FIG. 4a.

C. High barrier nanomagnets as natural RNGs

The stochastic switching behavior of a collection of high
barrier nanomagnets can be exploited to generate randomness
in different ways [27], [28], [72]-[77]. One specific approach
to obtain tunable stochasticity is to initialize the magnetization
m of a single nanomagnet to be at the top of the energy
“hill” by an external force such as spin-orbit-torque or voltage
control, and then repeat measurements on this single device

to extract statistics from a collection of measurements.
In the case of a PMA magnet, this corresponds to forcing

m to lie in the plane, the hard-axis for the PMA magnet (£
direction in FIG. 4b). Once the external force is removed,
the magnetization relaxes back to one of the two valleys
of energy corresponding to the easy-axes of the magnet.



This experiment has also been realized in a Ta/CoFeB/MgO
system but the magnetic stack is appropriately designed to
have a smaller thickness (tpya=1.0 nm) to ensure strong
perpendicular magnetic anisotropy as can be seen in Eq. 5.
The writing mechanism is through the so-called “spin-orbit-
torque” that arises due to the charge current flowing in the
(£y) direction in heavy metals such as Pt, Ta, W [79],
[80]. It is well-known that the giant spin Hall effect (GSHE)
of the Ta/CoFeB structure can deterministically switch the
PMA magnetization in the presence of a symmetry breaking
magnetic field that is typically applied in the direction of
a charge current or artificially generated by an additional
magnetic layer (see for example, [80]-[83]). In the absence
of any such field, and if the current density through the Ta
layer is large enough, the SOT exerted on the magnet pulls its
magnetization entirely in plane (+z direction), collinear with
the spin current polarization direction. Once the current pulse
is removed, the settled magnetization state is read by means
of the anomalous Hall effect (AHE) using the Ta Hall bar
underneath the magnetic island [84]. As shown in FIG.4b, at
zero external field, when hard axis initialization is performed
repeatedly by applying current pulses to the Ta underlayer,
the final magnetization state is found to be approximately
equally probable in the “up” or the “down” direction. If this
repeated pulsing is performed in the presence of an external
magnetic field, the magnetization relaxes to one direction more
frequently than the other, depending on the field strength,
leading to a sigmoidal response of the ensemble average. It
is important to note that variations or misalignments in the
direction of the magnetic fields could lead to systematic biases
in the up/down probability obtained in this manner. These
variations would generally cause shifts in the sigmoid making
it non-symmetric with respect to the tuning parameter. Such
shifts in the sigmoid can be corrected in the synaptic equation

through the electrically applied individual bias terms, h;.
In the next section, we describe a fully electrical device that

can create such a symmetry breaking magnetic field.

IV. IMPLEMENTING P-BITS IN HARDWARE

So far we have discussed how nanomagnets can be used as
natural random number generators. In this section, we discuss
device designs with electrical input and output terminals
that use such nanomagnets, where different designs will be
equipped with different “read” and “write” mechanisms. We
will classify hardware implementations of p-bits into two
categories: current-controlled or voltage-controlled. Current-
controlled p-bits are low input impedance devices, e.g. devices
that include for the manipulation (write) of the nanomagnet,
a GSHE layer that is used to generate spin-orbit-torque as
discussed in the previous section. Voltage-controlled p-bits
are high input impedance devices whose “write” operation
involves electrical field control, by means of — for exam-
ple — metal-oxide-semiconductor (MOS) transistors or the
magnetoelectric (ME) effect. In traditional electronics, voltage
controlled devices, for example MOS transistors compared to
bipolar junction transistors, have been more successful since
they allow reducing power consumption dramatically. This
observation likely applies in the context of hardware p-bits

as well, but it is worth taking a look at the circuit aspects
of p-bits rather than just this device argument. In fact, when
a number of current controlled devices are interconnected
through a “synapse” circuit (Eq. 2), current controlled devices
can exploit a natural weighted current summation from large
resistors to a small sink resistor. This could be a critical
advantage for current controlled devices since they would not
need additional circuitry, such as transimpedance amplifiers
to convert currents to voltages for performing the synaptic
operation [85]. It is thus worthwhile to consider both current-
controlled and voltage-controlled devices for the time being
and next, we will present various p-bit implementations where
the input and output terminals of Eq. 1 are represented by the
terminal currents and voltages of the device.

A. Current controlled p-bits

1) Oersted ring based p-bit: The structure shown in
FIG. 4b can be turned into an all-electrical p-bit device
by an elegant design that provides the symmetry breaking
magnetic field electrically. This is achieved by constructing
a metallic ring around the magnet which generates a +z
directed magnetic field when a current flows through it, as
shown in FIG. 5 [86]. The metallic ring is placed on top of
the metallic GSHE layer and electrically isolated from it by
means of an SiO4 layer that is not shown in the figure. FIG. 5b
displays the average magnetization as a function of the current
that controls the magnetic field through the Oersted ring. The
continuous magnetization plot is obtained by averaging the
discrete magnetization at different trials, i.e. after repeating
the same experiment described in Section III-C multiple times
at certain discrete currents through the ring. FIG. 5c-d show
the response of a single device as a function of different trials.
The response of the device can be mapped to Eq. 1 using
appropriate device variables, and this mapping can then be
used to build hardware p-circuits, interconnected to implement
neural network like functionalities, as we will discuss later in

Section V-B.
2) GSHE-based p-bit: A more natural implementation of a

p-bit is by the use of low barrier nanomagnets that have their
magnetization fluctuate in the presence of thermal noise, as
discussed in Section III-B. To realize an all-electrical tunable
p-bit, these magnetic fluctuations need to be converted into
currents or voltages, in the “read” part of the p-bit. A common
method of converting magnetic information to voltages is by
the use of Magnetic Tunnel Junctions (MTJ’s) as mentioned in
Section III-A. FIG. 6 shows a conceptual device that makes
use of an MTJ as the “read” part of the p-bit with a free
layer that can be manipulated by a current through the GSHE
layer underneath, as part of the “write” operation [1]. An
important characteristic of this design is that it resembles the
basic unit cell of the SOT-MRAM technology but replaces
the free layer of the MTJ with a low barrier magnet. At zero
input current, the MTJ resistance would ideally be fluctuating
with approximately 50/50 probability between a high resistive
state, that is defined by an antiparallel arrangement of the
magnetic moments of the low barrier magnet and the fixed
magnet and a low resistive state, where the two magnetization
directions are parallel. Note that in practice the situation of
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Fig. 5. An all-electrical p-bit using high barrier nanomagnets (a) A p-
bit with an SOT clock and a symmetry breaking Oersted field generated by
the circular ring. (b) Average magnetization at different input currents on the
Oersted ring. (¢) and (d) shows the magnetization state at different trials at
-3.3 mA and +3.3 mA. Figure adapted from [86].

50/50 fluctuations might be achieved at a finite write current
on the MTJ due to dipolar pinning fields. This may cause a
constant offset to the sigmoid along the x-axis in FIG. 6b,
which can be corrected at the synaptic function stage. The
fluctuations, i.e. the probability of finding the system in its
parallel or anti-parallel state, are then controlled by the spin-
orbit-torque generated by a current flowing in the heavy metal
layer, tuning the magnetization of the free layer. A small
read voltage across a resistive voltage divider converts the
resistance fluctuations into a voltage, which is then amplified
by an inverter to obtain the electrically controllable tunable
randomness which is a key distinguishing feature of the p-bit,
as we discussed in Section II (FIG. 6b).

Note that in this case, the low barrier nanomagnet needs
to be an in-plane magnet because of the spin-orbit-torque
physics. While devices consisting of stable MTJs and GSHE
layers have been experimentally reported previously, the spin-
orbit-control of an MTJ with a stochastic free layer has not
been experimentally demonstrated before, to the best of our
knowledge. FIG. 6¢ shows initial experimental results on such
a device, where the resistance fluctuations of the MTJ are
plotted as a function of time at different input currents. As
expected, a negative input current Ity results in a higher
probability to find the system in its low resistive state, while a
positive input current Ity results in a higher probability to find
the system in its high resistive state, proving experimentally
the tunability of the random fluctuations of the nanomagnet.
It is worth noting that the above experimental device is by
no means optimized or designed to operate at the expected
sub-nanosecond switching speeds discussed before. In fact,
the effective energy barrier E'p in this prototype device was
rather large, between 15-20 kT, allowing the monitoring of
the magnetic fluctuations.

Moreover, the device in FIG. 6 exhibited a low tunnel
magnetoresistance (TMR), as evident from the small resistance
difference between parallel and the anti-parallel magnetic
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Fig. 6. An all-electrical p-bit using low barrier nanomagnets (a) A
proposed device using a low barrier nanomagnet as the free layer of an MTJ.
The fluctuating read voltage is amplified by an inverter to produce a sigmoidal
response at the output as a function of an input current at the SOT layer. (b)
The simulated time-averaged response of the device. (c) The experimental
response of the structure (without the inverter) at different input currents.
(See [87] for details).

state, which is simply a result of the non-ideal sample
fabrication approach used for this prototype demonstration.
While there is ample space for improved device designs, the
above initial experimental demonstration clearly shows a path
forward towards a p-bit implementation that exhibits all the
desired features as discussed in the early sections of this
article, i.e. in particular the electrically tunable randomness
that is at the heart of this device idea. The principal argument
to build such a device is the compact implementation of the
complex tunable randomness functionality in an all electrical
device. Designing the same functionality in standard CMOS
would require a large area footprint and external random
number generators. The experimental details of this particular
structure can be found in [87].

B. Voltage controlled p-bits

1) Magnetoelectric p-bit: Voltage control of magnetism has
attracted enormous research interest in recent years since it
promises low energy dissipation in magnetic logic and memory
devices (see, for example [88]-[90]). One way of controlling
magnetic properties by electric fields is the use of “multi-
ferroic” heterostructures that couple different phenomena. For
example, a piezoelectric (PE) material that converts voltages
to strain and a magnetostrictive nanomagnet that couples
strain to a change in its magnetic properties can be used to
control magnetic properties with voltages. Such a structure
that combines a CoFeB magnet with a piezoelectric material
Pb(Mg; /3Nby3)0.7Tig.303 (PMN-PT) is shown in FIG. 7a.
To maximize the effect, it is desirable to choose a magnet
with a large magnetostriction coefficient and a piezeoelectric
with a large PE coeffcient. The (011) cut PMN-PT is such
an anisotropic material with large piezoelectric coefficients
with different signs for ds; and dso [91]. Therefore, when
an out-of-plane electric field is applied in the Z direction,
this produces an in-plane strain with different signs in the
Z and g direction. If the strain on the PMN-PT transfers to
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Fig. 7. Towards a voltage controlled p-bit: (a) A proposed schematic
of a piezoelectric / magneotstrictive p-bit. The fluctuations of a low barrier
nanomagnet are turned into voltage fluctuations by an inverse magnetoelectric
effect. (b) Experimental measurement of magnetization vs. an applied field
under different voltages indicate how the magnetic anisotropy of the magnet
is affected by the applied voltage, that causes a strain in the PE, that in turn
modulates the magnetic anisotropy of the magnet through magnetostriction
[94]. (c¢) An equivalent circuit for evaluating the magnetoelectric (ME) read
and write effects, self-consistently. The charge on the PE capacitor causes
a stress-induced change in the magnetic energy (Estress) that enters the
magnetization dynamics (LLG equation), while the change in magnetization
(u) causes a change in the capacitor voltage through a dependent source
(varp). (d) Simulated response of the device shown in (a) in SPICE. The
details of this simulation can be found in [95]. Reprinted Fig. 7 (¢) and
(d) with permission from [95]. Copyright (2018) by the American Physical
Society.

the CoFeB nanomagnet without any loss, applying a vertical
electric field stretches or compresses the magnetic film. This
strain modulates the easy-axis anisotropy of the magnet. In
an exaggerated scenario, the magnet can be imagined to be
stretched to become an ellipse with a major (easy) axis in the
direction of the solid black arrow and for the other voltage
polarity the magnet becomes an ellipse with a major axis in
the direction of the dashed black arrow (FIG. 7a). Indeed, the
change of magnetic properties of an unpatterned CoFeB film
on PMN-PT under various applied electric field conditions
is clearly visible in experimental data shown in FIG. 7b.
A positive voltage enhances the easy-axis anisotropy of the
magnetic field in the [011] direction, making the M-H curve in
FIG. 7b more “square-like”. Note that due to the ferroelectric
nature of the PMN-PT film, the piezoelectric coefficients can
also change under large electric fields, which is why the
response to voltage is symmetric for & 200 V. An important
aspect of the magnetoelectric and the inverse magnetoelectric
effect is that excluding multi-terminal geometries and complex
pulsing schemes [89], [92], the magnetic anisotropy can only
be rotated by 90 degrees, due to the time-reversal symmetric
nature of the stress term in the magnetic energy. For this
reason, deterministic 180 degree switching often employs
additional mechanisms, such as spin-transfer-torque to perform

deterministic 180 degree switching [93].
In a set of recent experiments [94], [96], it was shown that

the reciprocal effect of the magnetoelectric effect can be used
as a means to “read” the magnetic state. The stress induced
modulation of the magnetic anisotropy enters the magnetic
energy through a term that is proportional to the magnetic
easy axis (m2 — mz) as well as the charge induced in the PE
material. For example, for a magnet with a uniaxial anisotropy
the magnetic energy can be written as:

E = Hg(1—m2) + Quar(p) (6)

where y is the pseudo-magnetization m2 — m2, Hg is the

anisotropy energy, +x is the easy-axis, () is the charge that
is developed on the PE material due to an externally applied
electric field and vy, is the magnetoelectric coefficient that
is a combination of the piezoelectric and magnetostrictive
parameters. The magnetic field modulation due to an applied
voltage that enters the magnetization dynamics is obtained
from —V,, E/M:Q where V,, is a gradient with respect to
the magnetization. It is clear from Eq. 6 that in addition to
a change in magnetic anisotropy due to an applied charge
@, a change in p reciprocally causes a change in (), since
OF /O = Qup and this change can be detected electrically,
as shown in [94], [96]. This reciprocal mechanism provides
an opportunity of reading out the easy-axis information of
the magnet without the use of secondary layers or magnetic
tunnel junctions. As such, the inverse magnetoelectric could be
an additional building block that can be used in combination

with other “write” mechanisms to build functional devices.
FIG. 7c illustrates the self-consistent circuit model that

captures the direct and the reciprocal effect, and FIG. 7d
displays the simulated response of a circular low barrier
nanomagnet without a preferred easy-axis. In the presence
of noise, the magnetization is changing stochastically in the
plane of the magnet, and these fluctuations are converted into
a fluctuating voltage at the output, that can be amplified by
an inverter. Applying an input voltage can pin the pseudo-
magnetization to one axis or the other, which provides the
required tunability. This example illustrates how the physics
of low barrier nanomagnets can be creatively combined with
the physics of the magnetoelectric effect that can become
a compact, low-power alternative p-bit using the direct and
inverse magnetoelectric effects without the use of tunnel

junctions.
2) Embedded MRAM-based p-bit: Another highly compact

voltage controlled p-bit design is shown in FIG. 8a. The
voltage control of this design stems from using an n-type metal
oxide semiconductor (NMOS) transistor in conjunction with
an unstable MTJ [97]. As apparent from FIG. 8, this design
again allows to create a tunable random number generator
similar to the cases discussed in FIG. 2, FIG. 5b, FIG. 6b, and
FIG. 7d. However, different from all the other p-bit designs
discussed above, here the NMOS transistor defines the device
operation to a large extent. The MTJ is simply used to create a
fluctuating resistor. The device operates by making the NMOS
resistance much larger or much smaller than the fluctuating

MT]J resistance to provide tunability.
FIG. 8a shows the 1T/IMTJ circuit diagram of this p-bit,

where the MTIJ resistance changes stochastically in the pres-
ence of thermal noise, and the NMOS resistance is controlled
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Fig. 8. Embedded MRAM based p-bit: (a) A compact implementation
of a low barrier nanomagnet (LBM)-based p-bit, where the basic structure
of the p-bit slightly modifies the 1T/IMTJ cell of the emerging STT-
MRAM technology by making the free layer of the MTJ an LBM. (b)
Shows the instantaneous and the long time average of the output at different
input voltages simulated in SPICE, by combining transistor models with
magnetization dynamics. Reprinted with permission from [97]. Copyright by
IEEE (2017).

by the input voltage. In fact, as we will show in FIG. 9b,
this circuit design can be emulated by discrete electronic
components. FIG. 8b shows the input-output characteristics
of this p-bit when the input voltage is swept slowly from
—Vpp/2 to +Vpp/2. The time-averaged output voltage ap-
proximately shows the desired tunable randomness, although
the response is not rail-to-rail for all input voltages in the
stochastic window. Due to the highly noise tolerant nature
of probabilistic circuits, this does not seem to cause any
significant problem as shown by us through detailed p-circuit
simulations for different applications [1], [62].

C. Comparisons of different p-bit realizations

In this section, we have shown and demonstrated different
conceptions of a three-terminal, tunable RNG. We have con-
sidered current-controlled and voltage-controlled designs. In
the current-controlled designs both high barrier and low barrier
nanomagnets were used to obtain the p-bit functionality. In the
case of high barrier magnets, an attractive feature is the use of
technologically mature, stable nanomagnets whose variations
are relatively low and under control. Also, the hard axis
initialization is robust against device to device variations in the
critical current density [64], [86]. The physics of such stable
nanomagnets also have been comprehensively understood and
analyzed since almost all magnetic applications use non-
volatile stable magnets. Even though the fluctuations of low
barrier nanomagnets have received some attention [98], the
theory is by no means at the level of stable magnets. For
example, Brown in his seminal paper that describes thermal
fluctuations dismisses the low barrier limit as “the case of
least interest” [99]. Recent interest in low barrier nanomagnets
has led to theoretical developments (See for example, [100]-
[103]). One surprising result has been that circular in-plane
magnets can fluctuate with sub-ns rates due to a precessional-
like fluctuation mechanism [101] and they can be very hard
to pin with spin-currents, making them robust against read-
disturb issues [102]. Some of these read-disturb issues in the
context of a GSHE-driven, low barrier nanomagnet based p-
bit [1] are discussed in [104]. These combined features make

circular in-plane magnets ideal candidates for the 1T/IMTJ
design shown in Section. IV-B2, though it has been pointed
out that they may be prone to an increased level of variations
[?], [103]. Numerical results suggest that when energy barriers
of such low barrier nanomagnets are comparable or less than
about a few kT, fluctuation rates only weakly depend on
the size of the energy barrier [101]. Among alternatives, the
1T/1IMTJ design seems to be the most technologically mature,
given that embedded MRAM is now close to commercializa-

tion by several foundries at this time [105]-[107].
Another contrast between high and low barrier magnets is

related to biasing and clocking circuitry. The use of high
barrier nanomagnets requires each p-bit to be updated by
additional control circuitry that makes the operation of a p-
circuit non-autonomous or sequenced. On the other hand, the
use of low-barrier nanomagnets removes the need for such
sequencing and control circuitry because each p-bit can flip
autonomously. For symmetric networks, the update order does
not matter as long as the synaptic roundtrip time is faster than
the fastest p-bit in the system, ensuring the network converges
to the expected Boltzmann distribution for a given weight
matrix [108]. A sequencerless, autonomous operation is an

attractive feature of using low-barrier nanomagnets [109].
Finally, even though the purely voltage-controlled p-bit

design discussed in FIG. 7 has not yet been experimentally
demonstrated, it is worth analyzing the prospects of similar
capacitively driven designs that exploit the voltage control
of magnetism (VCM). This can lead to extremely energy
efficient building blocks and is an active area in the context
of emerging beyond-CMOS devices [12]-[14]. An example of
a probabilistic bit that makes use of such a voltage-controlled
mechanism has been proposed recently in [44].

V. IMPLEMENTING P-CIRCUITS IN HARDWARE

In previous sections, we outlined different hardware imple-
mentations of individual p-bits making use of the stochastic
behavior of nanomagnets. While a single p-bit can be used as
a true tunable random number generator for different applica-
tions, interconnected p-bits can implement a much bigger set
of problems as we discussed in Section II-B. In this section,
we will discuss experiments involving more than one p-bit that
are interconnected through a synaptic network and show how
applications inspired by Quantum Computing and Machine

Learning can be targeted with p-circuits.
Before we show specific examples, a few general comments

regarding the dynamical behavior of p-circuits are in order.
The behavior of Eq. 1-2 is such that any p-circuit will evolve
towards the low-energy states of a given system specified
by the eigenstates of the [J] matrix. For symmetrically con-
nected networks, Eq. 2 can be derived from a classical cost
function, E, such that I; = —9F/Om,. For linear synapses
that are described by Eq. 2, the cost function becomes a
general, Ising-like Hamiltonian E(m) = —3_, . Jiymym;.
This means that when p-circuits evolve in time, individual
p-bits are ultimately distributed according to a Boltzmann
distribution described by p(m) o exp[—SE(m)] where g
is an effective inverse-temperature. The number of steps that
is required for the network to reach Boltzmann distribution,



namely the “mixing time”, depends on the network topology
and the effective temperature, with no generic answers [110],
[111]. What a hardware accelerator can do is to significantly
speed up the time for a step. For the hardware p-circuit to
follow the Boltzmann distribution, however, Eq. 2 needs to
be computed faster than the fastest p-bit in the system [108].
This is a reasonable restriction since typical delays due to
resistive/capacitive crossbars or CMOS circuits are of the order
of picoseconds while magnetic fluctuations are of the order
of nanoseconds or at best, hundreds of picoseconds. Note
that as long as the synapse is fast, the order of updates in
a symmetric network does not matter (provided that updates
are not simultaneous as in “Gibbs sampling” [1], [112]), and
this allows an autonomous, clockless operation of p-circuits,
greatly simplifying their design. This feature also makes them
robust to variations because p-bits can have varying fluctuation
rates, as long as they are not too fast compared to synapse
delays.

A. Factorization with p-circuits

FIG. 9a displays a generic structure of a neural network
where 4 asynchronously running p-bits are interconnected by
a weight logic unit that performs the synaptic function for a
given problem. In this example, a p-bit design that emulates the
1T/1IMTJ design discussed in Section IV-B2 is implemented.
The design uses a stochastic MTJ emulator with a 2 by 1
analog multiplexer (MUX) to choose a high (Rap) or low
(Rp) resistance connected to a supply voltage. The “select”
signal of the multiplexer is generated by a microcontroller
that produces a telegraphic bitstream with equal up and down
probability to choose Rap or Rp. In addition, the select signal
is also programmed to simulate MTJ “pinning”, that is, when
a large current flows through the circuit when the transistor
is on, the microcontroller chooses a select signal to favor one
of the resistive paths, rather than producing a bitstream with
equal up and down probability. The circuit shown in FIG. 9b
represents a low-level, compact emulation of the 1T/IMTJ
p-bit and is used to build an asynchronous 4 p-bit network
that is constructed to perform integer factorization. A separate
Arduino microcontroller is used to read the instantaneous p-bit
voltages and to produce a voltage that is routed back to the
p-bits as their respective inputs. Since this voltage (according
to Eq. 2) is generally analog, a Digital to Analog Converter

(DAC) is used in conjunction with the Arduino.
Factoring integers can be achieved by different weights

using p-circuits. For example, in the past we have shown that
factorizers can be obtained by constructing binary multipliers
and then use the invertibility feature of p-circuits to factor
numbers [1], [108]. Here, we demonstrate another method to
factor integers by casting factoring as an optimization problem
[113]-[115]. The idea is to construct an energy function that
optimizes a function like E = (XY — Z)? where X and
Y are the prime factors of a semiprime Z. Once the energy
function is identified, it can be used to obtain input currents to
p-bits by computing the change in total energy as a function
of magnetization (—9JF/dm;) for each p-bit. Note that this
method requires a different synapse function for every given
semiprime, while a generic multiplier operating in reverse can
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Fig. 9. p-circuits as general purpose optimizers: (a) General p-circuit
architecture where a network of p-bits are interconnected by a CMOS-
based weight logic. and a conceptual circuit level emulation of the 1T/IMTJ
p-bit described in FIG. 8a. As a proof-of-concept p-bit, this design is
implemented using a 2 by 1 MUX that receives a telegraphic random signal
from a microcontroller to randomly select a resistance of Rap and Rp.
(b) Experimental average output of emulated p-bit. (¢) Experimental results
obtained from the autonomous 4 p-bit network for the uncorrrelated case
where each p-bit is fluctuating randomly. (d-e) Experimental results for the
correlated case to factor number 35 =5 x 7=7x 5,and 49 =7 x 7.

factor any number that it can multiply. If the weight logic is
easily programmable as in FIG. 9a, factoring different numbers
can be achieved by reprogramming the synapses. In FIG. 9b-
¢, two examples, i.e. factoring 35 and 49 are shown that
were obtained by the MUX-based p-circuit. The MUX based
circuit is a stand in for actual MTJs, indeed an 8 bit p- circuit
using MTJs has recently been implemented in hardware for the
problem of factorization [116]. Factoring by optimizing a cost
function serves as one example of a broad class of optimization
problems that can be solved by p-circuits in hardware.

An important feature of the cost function implemented here
is its non-linearity. Typically, the energy function involves 2-
body interactions involving terms such as £ = Zij m;m;
that commonly arise in Ising type Hamiltonians [117]. These
2-body interactions produce linear synapses since the dimen-
sionless input that is computed from (—9FE/Om) produces
linear equations that can be written as matrix products, {/} =
[J][{m}, as in Eq. 2. However, in general, the cost function



N2- Child

(@) N1 - Parent

[/
Clig Uz

GND
~ GND| GND
o
(Rl
(b)
no connection
neg connection
® pos connection
2
.i: -
=
©
K] i
o
S
o
P(CU|PU) P(CD|PU) P(CUIPD) P(CD|PD)
Conditional Probabilities Histogram
Fig. 10. Hardware Bayesian circuits with p-bits: (a) Experimental

implementation of a 2 p-bit network to implement a directed p-circuit using the
p-bit described in FIG. 5. (b) Experimentally obtained conditional probability
histogram of device N2 (Child) when device N1 (Parent) is up or down, for
example, CU/PU denotes the probability of Child node being up when the
Parent node is set to the up state. Three cases are given corresponding to no
connection, positive connection and negative connection as defined in the text
(Adapted from [86]).

could include higher order interactions (such as m;m;my)
that can lead to non-linear synapses with more functionality
[118]. Such non-linear synapses do not seem to be easily
implementable by traditional crossbar arrays but could be
realized by high level CMOS-based devices.

Solving the factorization problem, unlike many other op-
timization problems, requires to reach the absolute ground
state of the problem rendering even very close approxima-
tions useless [114]. In general, however, finding approximate
solutions to optimization problems are of great interest and our
general objective here is to show how autonomously operating
p-circuits can serve as energy-efficient hardware accelerators
for this class of problems.

B. Bayesian Network with magnetic p-circuits

As a final experimental example, in FIG. 10 we present
an all-electrical implementation of a 2 p-bit Bayesian circuit
using the high-barrier clocked p-bit introduced in FIG. 5.
Bayesian networks are commonly used to process causal
relations between random variables, where a parent node
controls a child node, based on a prior probability distribution.
A Conditional Probability Table (CPT) describes the causal,
probabilistic relationship.

For networks involving multiple layers with many “parent”
nodes controlling multiple “child” nodes, the calculation of
causal relationships between each node can become compu-
tationally intractable using analytical approaches like Bayes

theorem [119], [120]. Therefore, building and utilizing hard-
ware Bayesian networks can help accelerate these functions.

As a simple example of how hardware Bayesian networks
can be constructed, we use 2 of the p-bits that were introduced
in FIG. 5 to demonstrate a conditional probability network as
shown in FIG. 10. Spin-orbit torque (SOT) clocks are applied
for a sequential hard-axis initialization first starting with
device N1 (Parent) similar to the operation of the individual
p-bit described in Sections III-C and IV-Al. Next, the same
initialization approach is applied to device N2 (Child). As
before, magnetization states are read using Anomalous Hall
Effect (AHE) with a small read current. The AHE voltages are
amplified to £Vpp using a discrete operational amplifier (OP-
AMP), in order to drive the next stage. The synaptic function is
implemented by using discrete resistors R1 and R2, such that
during the hard-axis initialization of N2, the magnetization
state information of N1 is provided as an input to the Oersted
ring of N1 using an OP-AMP through resistances R1 and
R2. A positive connection corresponds to R1= 810 Q and
R2 is open-circuited (R2 — o) and a negative connection
corresponds to the case where R1 is open-circuited and R2
= 810 2, while no connection corresponds to both R1 and R2
being open-circuited. FIG. 10 shows correlations between the
child and the parent where the probability of child being UP
(DN) given parent is UP (DN) is high for a positive connection.
For a negative connection, on the other hand, the conditional
probability of child being UP (DN) given parent is DN (UP) is
high. Note that the CPT is uniquely determined by the choice
of resistors and can be adjusted to implement other CPT’s [46].
Details on the operation of this particular two p-bit circuit can
be found in reference [86].

VI. PROSPECTS AND CHALLENGES

We have discussed several alternatives of building hardware
p-bits and p-circuits by exploiting the inherently stochastic
nature of nanomagnets. It is important to note that fully digital
implementations of Eq. 1 and Eq. 2 are possible and p-circuits
using 50 [108] to 500 [121] p-bits have been demonstrated
using standard CMOS units such as microcontrollers and
FPGAs unlike the nanodevice implementations discussed in
this paper. A key finding is that the inherent stochasticity
of nanomagnet based p-bits can enable highly compact and
efficient hardware implementations of p-circuits that would
consume a much larger area and power in corresponding
CMOS implementations [40]. Random number generation is
typically achieved using standard CMOS devices in Linear
Feedback Shift Register (LFSR) circuits that consume a large
amount of area and provide pseudo random numbers, as
opposed to true random numbers that are generated by the
stochasticity of nanomagnets. Detailed Energy-Delay evalua-
tions of some of the p-bits discussed here support this view
[102].

While p-bits lend themselves naturally to implementations
of Binary Stochastic Neurons (BSNs), we have not discussed
the synaptic operation in detail, except briefly illustrating
CMOS synapses in Section V-A. Using emerging nanodevices
replacing CMOS synapses, such as memristors or novel nan-



odevices to accelerate the synaptic function involves a rich

literature (see for example, [85], [122]-[124]).
At this time, there are many alternatives to implement

synapses, for example resistive networks to implement p-
circuits of the type we discussed in FIG. 10 or CMOS
synapses of the type discussed in FIG. 9. As mentioned in the
beginning of Section V, an asynchronous implementation of
p-circuits, without any global clocks and sequencers, requires
the synaptic operation to be carried out much faster than the
activation function. To address this, in the future, memristive
or capacitive networks could be integrated on to the p-bit
activation directly [125], somewhat similar to the True North
architecture [126], to speed up the synaptic function. In a
recent FPGA-based demonstration [109], it has been argued
that an autonomously functioning probabilistic computer based
on an embedded MRAM design could achieve 10*° flips per
second that could be useful for solving difficult optimization
problems.

There are many challenges ahead for p-circuits to become
efficient high-level accelerators for a broad class of prob-
abilistic functions. Overcoming variations at the individual
device level, realizing better TMR ratios to improve power
dissipation and the integration of synapses with local p-bits
are tasks ahead, to just name a few. On the algorithmic end,
it is imperative to find weight matrices that are sparse and
discrete so that the requirements on the synaptic functions are
relaxed. An intriguing near-term direction of p-circuits is the
use of embedded MRAM technology, perhaps integrated with
a fast synaptic function such as a GPU that implements a >
1000 p-bit network. Such a probabilistic circuit could become
a highly efficient “p-computer” for applications in the active
fields of Quantum Computing and Machine Learning.
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