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Abstract: Analog electronic non-volatile memories 
mimicking synaptic operations are being explored for the 
implementation of neuromorphic computing systems. 
Compound synapses consisting of ensembles of stochastic 
binary elements are alternatives to analog memory synapses 
to achieve multilevel memory operation. Among existing 
binary memory technologies, magnetic tunneling junction 
(MTJ) based Magnetic Random Access Memory (MRAM) 
technology has matured to the point of commercialization. 
More importantly for this work, stochasticity is natural to the 
MTJ switching physics e.g devices referred as p-bits which 
mimic binary stochastic neurons. In this article, we 
experimentally demonstrate a novel compound synapse that 
uses stochastic spin-orbit torque (SOT) switching of an 
ensemble of nano-magnets that are located on one shared 
spin Hall effect (SHE) material channel, i.e. tantalum. By 
using a properly chosen pulse scheme, we are able to 
demonstrate linear potentiation and depression in the 
synapse, as required for many neuromorphic architectures. In 
addition to this experimental effort, we also performed 
circuit simulations on an SOT-MRAM based 784×200×10 
deep belief network (DBN) consisting of p-bit based neurons 
and compound synapses. MNIST pattern recognition was 
used to evaluate the system performance, and our findings 
indicate that a significant reduction in recognition error rates 
can be achieved by improving the linearity of the 
potentiation and depression curves using an incremental 
pulse scheme.   

I. INTRODUCTION 
Analog electronic non-volatile memories (eNVMs) have 

attracted attention in the research community for their 
potential as synaptic elements [1]. The conductance of such 
an eNVM can increase or decrease in a continuous analog 
fashion, mimicking the potentiation or depression of a 
synapse. However, while Resistive Random Access Memory 
(RRAM) technology has shown the potential for achieving 
such analog conductance behavior, the reliable fabrication of 
analog RRAM devices has remained challenging [2]. Hence, 
compound synapses that consist of an ensemble of binary 
memory elements have been proposed. Employing the 

probabilistic switching of individual memory elements, 
multilevel operation can be realized in a reproducible 
fashion. In fact, simulations of spiking neural networks 
(SNN)[3] using compound synapses from binary memory 
devices can elucidate the desired performance specifications. 
Moreover, experimental implementations based on an 
arrangement of parallel binary RRAM devices and 
simulations of convolutional neural networks (CNNs) [4] 
demonstrated multi-level operation of such compound 
synapse structures. However, RRAM technology is facing 
challenges in terms of current and voltage scaling and is 
prone to process variability and instabilities. On the other 
hand “MRAM has already found a niche market and is 
heading toward disruptive growth” according to Bhatti et al. 
[5]. Spin transfer torque (STT)-MRAM is close to foundry 
scale production [6][7] and wafer-scale manufacturability 
has been shown even for SOT-MRAM [8]. In fact, 
compound synapses based on a series arrangement of STT-
MTJs have already been demonstrated [9][10].  

Here we propose a new SOT-MRAM based compound 
synaptic structure as shown in fig 1(d) as part of a neural 

Fig. 1: (a) Graph representation of the 784×200×10 DBN (b) equivalent 
circuit for the first layer, (c) p-bit as neuron and (d) compound synapse 
implemented with MRAM cells.  



network that utilizes yet another MTJ based element, i.e. a p-
bit in fig 1(c) [11][12] as a binary stochastic neuron. (For 
details on the topic of p-bits see e.g. [11]). While the above 
mentioned STT-MTJ based synapse shares the same READ 
and WRITE path, implying that the resistance of the READ 
path affects the resistance of the WRITE path, our SOT 
synapse does not suffer from this problem, since writing 
occurs by means of the spin Hall effect (SHE), as discussed 
below. Moreover, in general SOT-MRAM is expected to 
perform better in terms of endurance, power consumption 
and speed [8]. In this article, we first experimentally 
demonstrate a novel spintronics compound SOT based 
synapse (fig 3a) and then utilize a modified version of this 
device (fig 1d) to simulate a spin-based based deep belief 
network (DBN). In particular, we have explored the accuracy 
of a 784×200×10 DBN as shown in fig 1 for MNIST pattern 
recognition, noting that the realization of a synaptic network 
with MRAM elements presents an attractive opportunity to 
build an all-MRAM based DBN. It is also worth noticing that 
the compound synaptic structure proposed here can readily 
be utilized in bio-inspired computing architectures such as 
oscillatory neural networks [13], reservoir computing [14], 
population coding [15] to just name a few, which all utilize 
the dynamics of stochastic or oscillatory MTJs to mimic 
neuronal functionality. Furthermore, multiple neuromorphic 
computing architectures have been proposed using stochastic 
memristive devices in [10][16][17][18]. 

For the experimental demonstration we utilize the 
intrinsic property of spin devices to exhibit thermally 
activated switching of their magnetization that is 
probabilistic in nature. We have built and characterized an 
array of nanomagnets with perpendicular shape anisotropy 
(PMA) located on a tantalum layer that acts as a spin Hall 
effect (SHE) channel. Probabilistic switching of the 
individual nanomagnets is used to realize our SOT synapse. 
Since an individual nanomagnet has a finite probability of 
switching for a properly chosen current pulse through the 
tantalum layer, the ensemble of nanomagnets shows a 
gradual increase (potentiation) or decrease (depression) in 
the total magnetization state similar to an analog memory 
element. While the observed potentiation and depression is 
non-linear with respect to the number of input pulses, a 
modified pulse scheme, as discussed below, can be used to 
alleviate this issue.  

II. EXPERIMENTAL RESULTS 
A Ta(5nm)/CoFeB(1nm)/MgO(2nm)/Ta(2nm) 

magnetic stack with perpendicular magnetic anisotropy 
(PMA) was deposited on a Si/SiO2 substrate using sputter 
deposition techniques. In the first e-beam lithography step, a 
Hall bar was patterned by etching through the entire 
Ta/CoFeB/MgO/Ta stack until the SiO2 substrate was 
reached using Ar ion milling. Subsequently, either a single 
nanomagnet or an ensemble of nanomagnets are patterned on 

the Hall bars and defined by etching through the top part of 
the material stack until the bottom Ta layer was reached. 
Finally, Ti/Au metal pads were deposited using a standard 
lift-off process, enabling contacts to the devices. To detect 
the magnetization state of the system, Anomalous Hall Effect 
(AHE) measurements were performed using a lock-in 
scheme after quasi-static pulses of 20 to 50 us in width were 
applied to switch the nanomagnets. Fig 2(a) shows SOT 
switching of a fabricated Hall bar with a single nanomagnet 
using current pulses of 50 us width in the presence of an in-
plane external field of 20 mT in the current direction. The 
Hall bar had a width of around 4 um and the nanomagnet on 
top is elliptical in shape with axes dimensions of 1 and 3 um 
respectively and the longer axis in the current direction. In 
our proof-of-concept devices, we are using an external in-
plane field to break the symmetry during SOT switching of 
PMA magnets, similar to the approach used in previous 
experiments [19]. Note however that external field-free SOT 
switching of PMA magnets can be achieved with a modified 
device structure [20][21]. To explore the probabilistic nature 
of SOT switching, we first apply a high negative current 
(RESET) pulse [width: 50 us] to deterministically switch the 
nanomagnet to its -1 state, followed by a positive current 
pulse with varying amplitude (SET) to probabilistically 
switch the nanomagnet to its +1 state. Fig 2(b) depicts the 
average probability of switching. As expected, a higher SET 
current amplitude results in a higher probability of switching. 
In addition, measurements were also performed employing a 
pulse width of 20 us, which resulted in a similar trend but 
higher current requirements for the probabilistic switching, 

 

Fig. 2 (a) SOT switching of a single nanomagnet (binary memory unit) (b) 
switching probability (Psw) curve for two different current pulse widths (c) 
compound synapse consisting of multiple stochastic binary units (d) 
experimental potentiation and depression curves emulating a 4-bit 
compound synapse using a SOT device with a single nanomagnet. 

 



consistent with the expectations for thermally activated spin 
torque switching. Note that thermally activated switching of 
nanomagnets is inherently probabilistic in nature and even 
pulses with widths of nanoseconds shows probabilistic 
switching similar to the observation in fig 2(b).  

An n-bit compound synapse can be realized using 
2n such nanomagnets operating in the probabilistic switching 
regime and working in parallel or series (fig 2(c)). To 
emulate a 4-bit synapse with the “one nanomagnet device”, 
the device was first set to its -1 state as described before. 
Next, 20 SET pulses at a current level of 6.97 mA with a 
pulse width of 20 us were applied to the sample. Note that 
this current level lies in the “finite switching probability” 
region of the nanomagnet in fig 2(b). Due to the probabilistic 
nature of switching, the nanomagnet can switch to its +1 state 
during any of the 20 SET pulses and will remain in this +1 
state for all subsequent SET pulses, since the energetic 
barrier between the -1 and +1 state is of the order of 40kBT. 
Since a 4-bit compound synapse is an ensemble of such 16 
devices, our experiment is repeated 16 times on the same 
device. In this way, instead of using an ensemble of 16 
devices, we are able to use a single device to emulate the 
switching behavior of the ensemble. Fig 2(d) shows the 
outcome of this experiment. The number of nanomagnets 
switched is plotted versus the SET pulse number. The black 
line clearly illustrates the increasing probability of finding 
the one nanomagnet switched in all 16 repeated experiments 
in its +1 state. Such behavior is analogous to the potentiation 
(P) curve of an analog synapse where the conductance 
increases gradually with the number of input pulses. 
Similarly, depression (D) operation can be emulated with our 
“one nanomagnet device” when input current pulses of -7.28 
mA are used – see red curve in fig 2(b). Note that by using 
an MTJ structure instead of our nanomagnet, the plot in fig 
2(d) would result in an incremental change in conductance 
through the MTJ with the number of pulses instead of a 
change in anomalous Hall resistance, making the approach 
much more technology relevant and feasible.  

Next, we have studied an actual 4-bit compound 
synapse. A cross shaped Hall bar structure from tantalum 
with 16 nanomagnets in the cross region was built (see SEM 
image of the device in fig 3(a)). Fig 3(b) shows the 
anomalous Hall resistance versus perpendicular external 
magnetic field of the 16 nanomagnet device with resistance 
steps that correspond to the switching of individual 
nanomagnets. Each nanomagnet’s switching causes a 
resistance change of around 110 mOhm ≈ 1.8 Ohm / 16. Due 
to variations in the coercive fields of the 16 nanomagnets as 
well as the stochastic nature of the nanomagnets' switching 
steps occur at slightly different magnetic fields. As in the 
previous experimental approach, the 16 nanomagnet device 
is initially put in its -1 state, before being subjected to 20 us 
pulses of identical amplitude (pulse scheme I). Fig 3(d) 
shows the resulting P curves for three different current levels 

in addition to one D curve, displaying very similar 
characteristics as fig 2(d). Similar to the emulated P and D 
curves (fig 2(d)), P and D curves of our compound synapse 
are nonlinear with respect to the pulse number and show a 
saturating behavior. Note that such non-linear behavior is 
also observed for analog type RRAM memristors due to the 
nature of filament formation and breaking during the SET 
and RESET process. For neural networks, a non-linear 
response of this type is in general undesirable, since it can 
have a detrimental impact on the accuracy of the network. To 
address this issue, researchers [22] have explored a modified 
pulse scheme in which, instead of using identical pulses, 
pulses with either incrementally increasing pulse-width or 
pulse-amplitude are used. Fig 3(f) shows the result of 
adopting this modified pulse scheme for our 4-bit compound 
synapse. A significantly improved linear characteristic is 
experimentally obtained when increasing the current 
amplitude from 5 mA to 6 mA (P-curve) and decreasing it 
from -4.8 mA to -5.8 mA (D-curve) in steps of 0.05 mA 
(pulse scheme II). Note that for two sweeps (red and black 
curve in fig 3(f)) the magnetization change is not identical as 
individual nanomagnets’ switching is stochastic in nature. 
However, the net magnetization of the magnet ensemble 
shows an overall improved linearity in the characteristics. 

 

 

Fig 3 (a) Scanning electron microscope (SEM) image of our SOT based 
synapse with 16 nanomagnets (b) anomalous Hall effect vs. out-of-plane 
magnetic field for the device showing 110 mOhm steps, corresponding to 
individual nanomagnet switching (c) pulse scheme I: identical pulses (d) 
potentiation and depression curve of the device using pulse scheme I. 3 
different potentiation curves showing that the rate of the potentiation can be 
controlled by the current amplitude (e) pulse scheme II: incremental pulses (f) 
potentiation and depression curve of the device with pulse scheme II.  

 



III.  APPLICATION-LEVEL SIMULATIONS  
To analyze the effect of the above used switching pulse 

schemes on the application-level behavior of neuromorphic 
architectures, we have used the PIN-Sim framework [23] 
developed by the authors to realize a circuit-level 
implementation of a deep belief network (DBN) using our 
compound synaptic structure as weighted connection and 
MRAM-based p-bits as neurons, as shown in Fig 1. In 
particular, a MATLAB based module [24] is modified 
according to the characteristics of the neurons to perform an 
off-line training activity to tune the weights in a 784×200×10 
DBN architecture. Once the network is trained, the obtained 
weights are mapped to various resistive levels that can be 
realized by our MRAM-based compound synapses, as 
illustrated by (1):   

where the quantization factor (Q) defines the number of 
MTJs used in each compound synapse, and RP and RAP 
represent the resistance of the MTJ in its parallel and anti-
parallel states, respectively. RP and RAP are obtained using 
(2), where TMR is the tunneling magnetoresistance and 
𝑅𝑀𝑇𝐽 = 𝑅𝐴/𝐴𝑟𝑒𝑎, in which RA is the MTJ’s resistance-area 
product, and Area is the surface of the MTJ. The 
accompanying Supplementary Materials provide detailed 
descriptions regarding the structure of the PIN-Sim, as well 

as the fundamentals of DBNs. 

Fig 1(b) shows the structure of a 784×200×10 DBN 
circuit implemented by the modified PIN-Sim framework for 
MNIST pattern recognition application [25]. According to 
the experimental results shown in Fig 3, using the identical 
pulse scheme (scheme I) leads to simultaneous switching of 
multiple MTJs in the compound synapses. This results in 
randomly skipping some of the resistive levels that could be 
ideally realized by the synaptic structures, which we refer to 

as non-linear mapping. In order to model the non-linear 
mapping behavior in the application-level simulations, we 
have used the average of 100 stochastic cases based on the 
mathematical model for the compound synapses that are 
switched by the identical pulse schemes to estimate the most 
probable resistive-levels that could be realized by the pulse 
scheme I. However, utilization of the incremental pulse 
scheme (scheme II) enables leveraging all the possible 
resistive levels that can be realized by a compound synapse, 
which we refer to as linear mapping.   

The application-level simulation results obtained by the PIN-
Sim framework for a 4-bit compound synapse (Q=16) are 
shown in Fig 4, which displays the relation between the 
DBN’s error rate and two different device level parameters 
of the MTJs for nonlinear and linear mapping, respectively. 
In particular, fig 4(a) focuses on the relation between error 
rate and RA while the TMR value is assumed to be 400%, 
and Fig 4(b) shows the error rate versus TMR relation for 
RA= 10 Ωµm2. The obtained results show the significant 
effect of TMR on the accuracy of the network, while 
changing the RA value does not result in a major impact on 
the error rate. Moreover, it is shown in Fig 4 that increasing 

the RA and TMR values can result in reduced power 
consumptions for the entire network. However, realization of 
higher TMR values would impose increased complexity in 
the fabrication process, of which a TMR of ~600% has been 
experimentally demonstrated at room temperature [26]. It is 
worth noting that although our application-level simulation 
results have not considered the stochasticity in the compound 
synaptic structures, which would result in cycle-to-cycle 
variations of the P and D curves as shown in fig 3(f), they 
help gaining insights into the dependence of network 
accuracy on device parameters such as TMR and RA 
products as well as understanding the relation between error 
rates and bit-precision as shown in fig 5. For instance, a bit-
precision of more than 4-bits is not required within the 
trained network, since the error rates will saturate for higher 
bit-precision values. Such findings are particularly important 

Fig. 4: (a) Error rate versus resistance-area, (b) Error rate versus tunneling 
magneto resistance (TMR) for a 784×200×10 DBN with 4-bit compound 
synapses 

 

 

Fig. 5: Error rate versus bits per synapse. 

𝒇𝒐𝒓 𝑖 = 1 : ሺ𝑄 + 1ሻ 𝒅𝒐 
 𝑹𝑺𝒚𝒏𝒂𝒑𝒔𝒆ሺ𝑖ሻ =

𝑅𝑃𝑅𝐴𝑃 ሺ𝑅𝐴𝑃൫𝑄 − ሺ𝑖 − 1ሻ൯ + 𝑅𝑃ሺ𝑖 − 1ሻΤ ሻ 
𝒆𝒏𝒅 

 
(1) 

 
𝑅ሺ𝜃ሻ = ൜

𝑅𝑃 = 𝑅𝑀𝑇𝐽            ,   𝜃 = 0°

𝑅𝐴𝑃 = 𝑅𝑀𝑇𝐽ሺ1 + 𝑇𝑀𝑅ሻ,   𝜃 = 180°
  (2) 

 



to guide future experiments, since the fabrication complexity 
of compound synaptic structures can significantly increase 
with larger bit-precision and TMR values. Finally, by 
comparing the non-linear and linear mapping realized by the 
identical (scheme I) and incremental (scheme II) pulse 
schemes, a significant decrease in the error rates for the linear 
mapping method compared to the non-linear mapping can be 
observed from fig 4. This highlights the effectiveness of the 
incremental pulse scheme approach investigated herein. It is 
worth noting that while cycle-to cycle (C2C) variations 
induced by the natural stochasticity of our synapses may 
change the absolute error rate values reported here, the 
relative accuracy plotted in fig 4 is important to understand 
the impact of the switching pulse schemes on the 
performance of the entire network. The obtained results 
highlight various opportunities for future work, such as: 1) 
investigating deeper neuromorphic architectures for large-
scale applications, 2) leveraging the intrinsic stochasticity of 
the compound synapses to realize an energy-efficient 
training approach for quantized neural networks[3][4], or 3) 
applying multi-objective optimizations to tune the network 
parameters by including device models in the simulation 
loop. 

To verify the energy improvements of our 
compound synaptic structure over a CMOS-based weighted 
connection, we have utilized the values reported in [27] and 
[28] to estimate the energy consumption for weighted sum 
operations in a 784×200×10 DBN using integer and floating-
point (FP) multiplication and add (MAC) operations. As 
listed in Table I, the 4-bit compound synapse based DBN 

circuit can realize approximately two orders-of-magnitude 
energy improvements over their CMOS-based counterparts. 
Note that increasing the bit-precision in a compound synapse 
from 4-bit to 16-bit or 32-bit can result in higher energy 
consumption, but this increase will not be beyond the 
significant energy reductions that are achieved compared to 
the integer and FP DBNs. Moreover, it was shown in [28] 

that memory accesses normally consume more energy than 
arithmetic operations. Since our compound synapses indeed 
operate as memory cells, they enable in-memory 
computation, which decreases the memory access energy 
consumptions to near-zero values, as indicated in Table I. 
Finally, it should be noted that in this work we have only 
focused on the energy consumption which can be realized by 
our compound synapses, while authors have shown in [23] 
that the p-bit based neuron can also contribute to several 
orders of magnitudes energy reduction with respect to 
previously reported energy-efficient CMOS-based activation 
functions for DBN structures. 

IV. CONCLUSION 

In conclusion, we have experimentally demonstrated 
proof-of-concept 4-bit compound synapses using 
probabilistic spin-orbit torque switching. A modified 
incremental pulse scheme is shown to result in improved 
linearity of the synaptic behavior. Furthermore, circuit-level 
simulations of DBNs consisting of stochastic spin-torque 
devices, namely p-bits and compound synapses show that the 
linearity in the synaptic behavior and high TMR-values are 
crucial device parameters to achieve low error rates.  
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