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Abstract: Analog electronic non-volatile memories
mimicking synaptic operations are being explored for the
implementation of neuromorphic computing systems.
Compound synapses consisting of ensembles of stochastic
binary elements are alternatives to analog memory synapses
to achieve multilevel memory operation. Among existing
binary memory technologies, magnetic tunneling junction
(MT]J) based Magnetic Random Access Memory (MRAM)
technology has matured to the point of commercialization.
More importantly for this work, stochasticity is natural to the
MTIJ switching physics e.g devices referred as p-bits which
mimic binary stochastic neurons. In this article, we
experimentally demonstrate a novel compound synapse that
uses stochastic spin-orbit torque (SOT) switching of an
ensemble of nano-magnets that are located on one shared
spin Hall effect (SHE) material channel, i.e. tantalum. By
using a properly chosen pulse scheme, we are able to
demonstrate linear potentiation and depression in the
synapse, as required for many neuromorphic architectures. In
addition to this experimental effort, we also performed
circuit simulations on an SOT-MRAM based 784x200x10
deep belief network (DBN) consisting of p-bit based neurons
and compound synapses. MNIST pattern recognition was
used to evaluate the system performance, and our findings
indicate that a significant reduction in recognition error rates
can be achieved by improving the linearity of the
potentiation and depression curves using an incremental
pulse scheme.

1. INTRODUCTION

Analog electronic non-volatile memories (eNVMs) have
attracted attention in the research community for their
potential as synaptic elements [1]. The conductance of such
an eNVM can increase or decrease in a continuous analog
fashion, mimicking the potentiation or depression of a
synapse. However, while Resistive Random Access Memory
(RRAM) technology has shown the potential for achieving
such analog conductance behavior, the reliable fabrication of
analog RRAM devices has remained challenging [2]. Hence,
compound synapses that consist of an ensemble of binary
memory elements have been proposed. Employing the
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Fig. 1: (a) Graph representation of the 784x200x10 DBN (b) equivalent
circuit for the first layer, (c) p-bit as neuron and (d) compound synapse
implemented with MRAM cells.

probabilistic switching of individual memory elements,
multilevel operation can be realized in a reproducible
fashion. In fact, simulations of spiking neural networks
(SNN)[3] using compound synapses from binary memory
devices can elucidate the desired performance specifications.
Moreover, experimental implementations based on an
arrangement of parallel binary RRAM devices and
simulations of convolutional neural networks (CNNs) [4]
demonstrated multi-level operation of such compound
synapse structures. However, RRAM technology is facing
challenges in terms of current and voltage scaling and is
prone to process variability and instabilities. On the other
hand “MRAM has already found a niche market and is
heading toward disruptive growth” according to Bhatti et al.
[5]. Spin transfer torque (STT)-MRAM is close to foundry
scale production [6][7] and wafer-scale manufacturability
has been shown even for SOT-MRAM [8]. In fact,
compound synapses based on a series arrangement of STT-
MT]Js have already been demonstrated [9][10].

Here we propose a new SOT-MRAM based compound
synaptic structure as shown in fig 1(d) as part of a neural



network that utilizes yet another MTJ based element, i.e. a p-
bit in fig 1(c) [11][12] as a binary stochastic neuron. (For
details on the topic of p-bits see e.g. [11]). While the above
mentioned STT-MTJ based synapse shares the same READ
and WRITE path, implying that the resistance of the READ
path affects the resistance of the WRITE path, our SOT
synapse does not suffer from this problem, since writing
occurs by means of the spin Hall effect (SHE), as discussed
below. Moreover, in general SOT-MRAM is expected to
perform better in terms of endurance, power consumption
and speed [8]. In this article, we first experimentally
demonstrate a novel spintronics compound SOT based
synapse (fig 3a) and then utilize a modified version of this
device (fig 1d) to simulate a spin-based based deep belief
network (DBN). In particular, we have explored the accuracy
of a 784x200x10 DBN as shown in fig 1 for MNIST pattern
recognition, noting that the realization of a synaptic network
with MRAM elements presents an attractive opportunity to
build an all-MRAM based DBN. It is also worth noticing that
the compound synaptic structure proposed here can readily
be utilized in bio-inspired computing architectures such as
oscillatory neural networks [13], reservoir computing [14],
population coding [15] to just name a few, which all utilize
the dynamics of stochastic or oscillatory MTJs to mimic
neuronal functionality. Furthermore, multiple neuromorphic
computing architectures have been proposed using stochastic
memristive devices in [10][16][17][18].

For the experimental demonstration we utilize the
intrinsic property of spin devices to exhibit thermally
activated switching of their magnetization that is
probabilistic in nature. We have built and characterized an
array of nanomagnets with perpendicular shape anisotropy
(PMA) located on a tantalum layer that acts as a spin Hall
effect (SHE) channel. Probabilistic switching of the
individual nanomagnets is used to realize our SOT synapse.
Since an individual nanomagnet has a finite probability of
switching for a properly chosen current pulse through the
tantalum layer, the ensemble of nanomagnets shows a
gradual increase (potentiation) or decrease (depression) in
the total magnetization state similar to an analog memory
element. While the observed potentiation and depression is
non-linear with respect to the number of input pulses, a
modified pulse scheme, as discussed below, can be used to
alleviate this issue.

II. EXPERIMENTAL RESULTS

A Ta(5nm)/CoFeB(1nm)/MgO(2nm)/Ta(2nm)
magnetic stack with perpendicular magnetic anisotropy
(PMA) was deposited on a Si/SiO, substrate using sputter
deposition techniques. In the first e-beam lithography step, a
Hall bar was patterned by etching through the entire
Ta/CoFeB/MgO/Ta stack until the SiO, substrate was
reached using Ar ion milling. Subsequently, either a single
nanomagnet or an ensemble of nanomagnets are patterned on
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Fig. 2 (a) SOT switching of a single nanomagnet (binary memory unit) (b)
switching probability (Ps) curve for two different current pulse widths (c)
compound synapse consisting of multiple stochastic binary units (d)
experimental potentiation and depression curves emulating a 4-bit
compound synapse using a SOT device with a single nanomagnet.

the Hall bars and defined by etching through the top part of
the material stack until the bottom Ta layer was reached.
Finally, Ti/Au metal pads were deposited using a standard
lift-off process, enabling contacts to the devices. To detect
the magnetization state of the system, Anomalous Hall Effect
(AHE) measurements were performed using a lock-in
scheme after quasi-static pulses of 20 to 50 us in width were
applied to switch the nanomagnets. Fig 2(a) shows SOT
switching of a fabricated Hall bar with a single nanomagnet
using current pulses of 50 us width in the presence of an in-
plane external field of 20 mT in the current direction. The
Hall bar had a width of around 4 um and the nanomagnet on
top is elliptical in shape with axes dimensions of 1 and 3 um
respectively and the longer axis in the current direction. In
our proof-of-concept devices, we are using an external in-
plane field to break the symmetry during SOT switching of
PMA magnets, similar to the approach used in previous
experiments [19]. Note however that external field-free SOT
switching of PMA magnets can be achieved with a modified
device structure [20][21]. To explore the probabilistic nature
of SOT switching, we first apply a high negative current
(RESET) pulse [width: 50 us] to deterministically switch the
nanomagnet to its -1 state, followed by a positive current
pulse with varying amplitude (SET) to probabilistically
switch the nanomagnet to its +1 state. Fig 2(b) depicts the
average probability of switching. As expected, a higher SET
current amplitude results in a higher probability of switching.
In addition, measurements were also performed employing a
pulse width of 20 us, which resulted in a similar trend but
higher current requirements for the probabilistic switching,



consistent with the expectations for thermally activated spin
torque switching. Note that thermally activated switching of
nanomagnets is inherently probabilistic in nature and even
pulses with widths of nanoseconds shows probabilistic
switching similar to the observation in fig 2(b).

An n-bit compound synapse can be realized using
2" such nanomagnets operating in the probabilistic switching
regime and working in parallel or series (fig 2(c)). To
emulate a 4-bit synapse with the “one nanomagnet device”,
the device was first set to its -1 state as described before.
Next, 20 SET pulses at a current level of 6.97 mA with a
pulse width of 20 us were applied to the sample. Note that
this current level lies in the “finite switching probability”
region of the nanomagnet in fig 2(b). Due to the probabilistic
nature of switching, the nanomagnet can switch to its +1 state
during any of the 20 SET pulses and will remain in this +1
state for all subsequent SET pulses, since the energetic
barrier between the -1 and +1 state is of the order of 40kgT.
Since a 4-bit compound synapse is an ensemble of such 16
devices, our experiment is repeated 16 times on the same
device. In this way, instead of using an ensemble of 16
devices, we are able to use a single device to emulate the
switching behavior of the ensemble. Fig 2(d) shows the
outcome of this experiment. The number of nanomagnets
switched is plotted versus the SET pulse number. The black
line clearly illustrates the increasing probability of finding
the one nanomagnet switched in all 16 repeated experiments
in its +1 state. Such behavior is analogous to the potentiation
(P) curve of an analog synapse where the conductance
increases gradually with the number of input pulses.
Similarly, depression (D) operation can be emulated with our
“one nanomagnet device” when input current pulses of -7.28
mA are used — see red curve in fig 2(b). Note that by using
an MT]J structure instead of our nanomagnet, the plot in fig
2(d) would result in an incremental change in conductance
through the MTJ with the number of pulses instead of a
change in anomalous Hall resistance, making the approach
much more technology relevant and feasible.

Next, we have studied an actual 4-bit compound
synapse. A cross shaped Hall bar structure from tantalum
with 16 nanomagnets in the cross region was built (see SEM
image of the device in fig 3(a)). Fig 3(b) shows the
anomalous Hall resistance versus perpendicular external
magnetic field of the 16 nanomagnet device with resistance
steps that correspond to the switching of individual
nanomagnets. Each nanomagnet’s switching causes a
resistance change of around 110 mOhm ~ 1.8 Ohm / 16. Due
to variations in the coercive fields of the 16 nanomagnets as
well as the stochastic nature of the nanomagnets' switching
steps occur at slightly different magnetic fields. As in the
previous experimental approach, the 16 nanomagnet device
is initially put in its -1 state, before being subjected to 20 us
pulses of identical amplitude (pulse scheme I). Fig 3(d)
shows the resulting P curves for three different current levels
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Fig 3 (a) Scanning electron microscope (SEM) image of our SOT based
synapse with 16 nanomagnets (b) anomalous Hall effect vs. out-of-plane
magnetic field for the device showing 110 mOhm steps, corresponding to
individual nanomagnet switching (c) pulse scheme I: identical pulses (d)
potentiation and depression curve of the device using pulse scheme 1. 3
different potentiation curves showing that the rate of the potentiation can be
controlled by the current amplitude (e) pulse scheme II: incremental pulses (f)
potentiation and depression curve of the device with pulse scheme II.

in addition to one D curve, displaying very similar
characteristics as fig 2(d). Similar to the emulated P and D
curves (fig 2(d)), P and D curves of our compound synapse
are nonlinear with respect to the pulse number and show a
saturating behavior. Note that such non-linear behavior is
also observed for analog type RRAM memristors due to the
nature of filament formation and breaking during the SET
and RESET process. For neural networks, a non-linear
response of this type is in general undesirable, since it can
have a detrimental impact on the accuracy of the network. To
address this issue, researchers [22] have explored a modified
pulse scheme in which, instead of using identical pulses,
pulses with either incrementally increasing pulse-width or
pulse-amplitude are used. Fig 3(f) shows the result of
adopting this modified pulse scheme for our 4-bit compound
synapse. A significantly improved linear characteristic is
experimentally obtained when increasing the current
amplitude from 5 mA to 6 mA (P-curve) and decreasing it
from -4.8 mA to -5.8 mA (D-curve) in steps of 0.05 mA
(pulse scheme II). Note that for two sweeps (red and black
curve in fig 3(f)) the magnetization change is not identical as
individual nanomagnets’ switching is stochastic in nature.
However, the net magnetization of the magnet ensemble
shows an overall improved linearity in the characteristics.



III. APPLICATION-LEVEL SIMULATIONS

To analyze the effect of the above used switching pulse
schemes on the application-level behavior of neuromorphic
architectures, we have used the PIN-Sim framework [23]
developed by the authors to realize a circuit-level
implementation of a deep belief network (DBN) using our
compound synaptic structure as weighted connection and
MRAM-based p-bits as neurons, as shown in Fig 1. In
particular, a MATLAB based module [24] is modified
according to the characteristics of the neurons to perform an
off-line training activity to tune the weights in a 784x200x10
DBN architecture. Once the network is trained, the obtained
weights are mapped to various resistive levels that can be
realized by our MRAM-based compound synapses, as
illustrated by (1):

fori=1:(Q+1)do
RSynapse(i) =

RoRap/ (Ryp(Q = (i — D) + Rp(i — 1)) (M
end
Rp=Ryr) , 0=0°
R(6) = {RAP = Ryr)(1+ TMR), 6 = 180° @)

where the quantization factor (Q) defines the number of
MTIJs used in each compound synapse, and Rp and Rup
represent the resistance of the MTJ in its parallel and anti-
parallel states, respectively. Rp and R,p are obtained using
(2), where TMR is the tunneling magnetoresistance and
Ryr; = RA/Area, in which R4 is the MTJ’s resistance-area
product, and Area is the surface of the MTJ. The
accompanying Supplementary Materials provide detailed
descriptions regarding the structure of the PIN-Sim, as well
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as non-linear mapping. In order to model the non-linear
mapping behavior in the application-level simulations, we
have used the average of 100 stochastic cases based on the
mathematical model for the compound synapses that are
switched by the identical pulse schemes to estimate the most
probable resistive-levels that could be realized by the pulse
scheme 1. However, utilization of the incremental pulse
scheme (scheme II) enables leveraging all the possible
resistive levels that can be realized by a compound synapse,
which we refer to as linear mapping.

The application-level simulation results obtained by the PIN-
Sim framework for a 4-bit compound synapse (Q=16) are
shown in Fig 4, which displays the relation between the
DBN’s error rate and two different device level parameters
of the MTIJs for nonlinear and linear mapping, respectively.
In particular, fig 4(a) focuses on the relation between error
rate and R4 while the TMR value is assumed to be 400%,
and Fig 4(b) shows the error rate versus TMR relation for
RA= 10 Qum?. The obtained results show the significant
effect of TMR on the accuracy of the network, while
changing the RA value does not result in a major impact on
the error rate. Moreover, it is shown in Fig 4 that increasing
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Fig. 5: Error rate versus bits per synapse.

the RA and TMR values can result in reduced power
consumptions for the entire network. However, realization of
higher TMR values would impose increased complexity in
the fabrication process, of which a TMR of ~600% has been
experimentally demonstrated at room temperature [26]. It is

Fig. 4: (a) Error rate versus resistance-area, (b) Error rate versus tunneling

magneto resistance (TMR) for a 784x200x10 DBN with 4-bit compound worth noting that although our application-level simulation

synapses results have not considered the stochasticity in the compound

as the fundamentals of DBNs.

Fig 1(b) shows the structure of a 784x200x10 DBN
circuit implemented by the modified PIN-Sim framework for
MNIST pattern recognition application [25]. According to
the experimental results shown in Fig 3, using the identical
pulse scheme (scheme I) leads to simultaneous switching of
multiple MTJs in the compound synapses. This results in
randomly skipping some of the resistive levels that could be
ideally realized by the synaptic structures, which we refer to

synaptic structures, which would result in cycle-to-cycle
variations of the P and D curves as shown in fig 3(f), they
help gaining insights into the dependence of network
accuracy on device parameters such as TMR and RA
products as well as understanding the relation between error
rates and bit-precision as shown in fig 5. For instance, a bit-
precision of more than 4-bits is not required within the
trained network, since the error rates will saturate for higher
bit-precision values. Such findings are particularly important



to guide future experiments, since the fabrication complexity
of compound synaptic structures can significantly increase
with larger bit-precision and TMR values. Finally, by
comparing the non-linear and linear mapping realized by the
identical (scheme I) and incremental (scheme II) pulse
schemes, a significant decrease in the error rates for the linear
mapping method compared to the non-linear mapping can be
observed from fig 4. This highlights the effectiveness of the
incremental pulse scheme approach investigated herein. It is
worth noting that while cycle-to cycle (C2C) variations
induced by the natural stochasticity of our synapses may
change the absolute error rate values reported here, the
relative accuracy plotted in fig 4 is important to understand
the impact of the switching pulse schemes on the
performance of the entire network. The obtained results
highlight various opportunities for future work, such as: 1)
investigating deeper neuromorphic architectures for large-
scale applications, 2) leveraging the intrinsic stochasticity of
the compound synapses to realize an energy-efficient
training approach for quantized neural networks[3][4], or 3)
applying multi-objective optimizations to tune the network
parameters by including device models in the simulation
loop.

To wverify the energy improvements of our
compound synaptic structure over a CMOS-based weighted
connection, we have utilized the values reported in [27] and
[28] to estimate the energy consumption for weighted sum
operations in a 784x200x10 DBN using integer and floating-
point (FP) multiplication and add (MAC) operations. As
listed in Table I, the 4-bit compound synapse based DBN

TABLE I: ENERGY CONSUMPTION COMPARISON FOR WEIGHTED-SUM
OPERATIONS IN A 784x200x10 DBN.

Energy Consumption
Weighted MAC Operations Memory AC?CSS
Connections per Instruction
per Total Cache | DRAM
Instruction (n)) (p)) (n])
8-bit Integer [27] 0.23 pJ 36 100 1.3-2.6
32-bit Integer [27] 3.2 pl 510 100 1.3-2.6
16-bit FP [27] 1.5 pl 240 100 1.3-2.6
32-bit FP [27] 4.8 pJ 730 100 1.3-2.6
4-bit Compound )
Synapse NA! 0.21 Near-Zero

(1) It is not available (NA) since all the MAC operations in the crossbar
are performed simultaneously through the intrinsic physical
characteristics of the compound synapses. We can only obtain the total
energy consumption of the crossbar, which can later be used to
estimate the energy per instruction, i.e. 0.0013 pJ.

circuit can realize approximately two orders-of-magnitude
energy improvements over their CMOS-based counterparts.
Note that increasing the bit-precision in a compound synapse
from 4-bit to 16-bit or 32-bit can result in higher energy
consumption, but this increase will not be beyond the
significant energy reductions that are achieved compared to
the integer and FP DBNs. Moreover, it was shown in [28]

that memory accesses normally consume more energy than
arithmetic operations. Since our compound synapses indeed
operate as memory cells, they enable in-memory
computation, which decreases the memory access energy
consumptions to near-zero values, as indicated in Table I.
Finally, it should be noted that in this work we have only
focused on the energy consumption which can be realized by
our compound synapses, while authors have shown in [23]
that the p-bit based neuron can also contribute to several
orders of magnitudes energy reduction with respect to
previously reported energy-efficient CMOS-based activation
functions for DBN structures.

IV. CONCLUSION

In conclusion, we have experimentally demonstrated
proof-of-concept ~ 4-bit compound synapses using
probabilistic spin-orbit torque switching. A modified
incremental pulse scheme is shown to result in improved
linearity of the synaptic behavior. Furthermore, circuit-level
simulations of DBNs consisting of stochastic spin-torque
devices, namely p-bits and compound synapses show that the
linearity in the synaptic behavior and high TMR-values are
crucial device parameters to achieve low error rates.
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