
Physica D 409 (2020) 132475

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Spatiotemporal chaos and quasipatterns in coupled reaction–diffusion
systems
Jennifer K. Castelino a,b, Daniel J. Ratliff c, Alastair M. Rucklidge a,∗, Priya Subramanian a,d,
Chad M. Topaz e

a School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
b School of Computing, University of Leeds, Leeds, LS2 9JT, UK
c Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
d Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
e Department of Mathematics & Statistics, Williams College, Williamstown MA, 01267, USA

a r t i c l e i n f o

Article history:
Received 30 January 2020
Received in revised form 16 March 2020
Accepted 19 March 2020
Available online 1 April 2020
Communicated by M. Silber

Keywords:
Turing patterns
Brusselator
Three-wave interactions
Quasipatterns
Spatiotemporal chaos

a b s t r a c t

In coupled reaction–diffusion systems, modes with two different length scales can interact to produce
a wide variety of spatiotemporal patterns. Three-wave interactions between these modes can explain
the occurrence of spatially complex steady patterns and time-varying states including spatiotemporal
chaos. The interactions can take the form of two short waves with different orientations interacting
with one long wave, or vice verse. We investigate the role of such three-wave interactions in a coupled
Brusselator system. As well as finding simple steady patterns when the waves reinforce each other,
we can also find spatially complex but steady patterns, including quasipatterns. When the waves
compete with each other, time varying states such as spatiotemporal chaos are also possible. The
signs of the quadratic coefficients in three-wave interaction equations distinguish between these two
cases. By manipulating parameters of the chemical model, the formation of these various states can
be encouraged, as we confirm through extensive numerical simulation. Our arguments allow us to
predict when spatiotemporal chaos might be found: standard nonlinear methods fail in this case.
The arguments are quite general and apply to a wide class of pattern-forming systems, including the
Faraday wave experiment.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Two substances that react and diffuse can form patterns,
an insight first highlighted in the work of Alan Turing [1,2].
Motivated by an interest in embryonic morphogenesis, Turing
studied discrete and continuum models for the spontaneous
emergence of structure in a ring of cells. Depending on the
details of the reaction, a Turing-type system may have a sta-
ble, spatially-uniform steady state in the absence of diffusion.
Two fundamental instabilities may occur. One possibility is a
Hopf bifurcation leading to temporal oscillations with a preferred
wavenumber of zero. The other possibility, driven by diffusion,
is a bifurcation to a steady spatial pattern (Turing pattern) with
non-zero wavenumber, typically stripes or hexagons.

The first laboratory experiment to produce a Turing pattern
came nearly 40 years after Turing’s original work: Ref. [3] reports
the observation of patterns in the chlorite–iodide–malonic acid
(CIMA) chemical reaction. Since the seminal discoveries of [1,3],
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there has been a vast literature on reaction–diffusion patterns
and their applications, which include animal skin pigmenta-
tion [4], the cerebral cortex [5], vegetation ecology [6], plankton
colonies [7], and many others [8,9].

A variation on the classic reaction–diffusion system is the so-
called coupled (or multilayered) system, in which two or more
reaction–diffusion systems are connected together so that they
may influence each other. Because of the additional degrees of
freedom in these coupled systems, they are an amenable setting
in which to investigate how competing instabilities affect pattern
formation. Coupled systems can produce a variety of states in-
cluding simple Turing patterns, standing waves, mixes of Turing
patterns and spiral waves, square and hexagonal superlattice
patterns, and many more [10,11]. Coupled systems are important
in biology, especially in neural, ecological and developmental
contexts; see [12] for examples and for an overview of selected
results.

Unfortunately, it is difficult to manipulate experiments on
the aforementioned biological systems. A common approach to
studying coupled reaction–diffusion systems, then, is to study a
paradigmatic chemical experiment in the laboratory, as in [13]
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Fig. 1. Patterns formed when the chlorine dioxide–iodine–malonic acid (CDIMA) reaction occurs in two layers that are diffusively coupled. Left: Experimental setup:
the chemical reactions occur in the agarose–PVA and PAA–starch layers, separated by an Anapore membrane. Right: Patterns with two different length-scales (0.46mm
and 0.25mm) visualised through a filter transparent to red light (which highlights the pattern in the PAA–starch layer), with the corresponding spatial power spectrum
in the inset.
Source: Reproduced from [13] with permission.

(see Fig. 1). In this work, the experimentalists set up two thin
gels, within each of which the chlorine dioxide–iodine–malonic
acid (CDIMA) reaction takes place. They put the gels in contact
and controlled the strength of coupling between the two layers by
modifying the properties of a membrane placed at the interface,
resulting in different patterns. To complement laboratory exper-
iments, investigators have studied a host of nonlinear partial
differential equation (PDE) models, including the Lengyel–Epstein
model of the CIMA reaction [14] and Brusselator model of a
generic trimolecular reaction [15].

The work of [16] included a theoretical study of two reaction–
diffusion systems coupled together in a parameter regime near
a codimension-two Turing–Turing bifurcation point. This work
demonstrated that by changing the interlayer coupling strength,
one can manipulate the ratio of the length scales associated with
two resonantly interacting Turing instabilities and encourage the
formation of certain complex patterns in the Brusselator model.
In our present work, we will also carry out a theoretical inves-
tigation of coupled reaction–diffusion systems and we will also
focus on resonant mode interactions. However, in contrast to the
set-up in [16], we will use the within-layer diffusion constants as
control parameters. In experiments, one could manipulate these
diffusion constants by changing properties of the medium of each
layer.

Our work complements a robust literature that has examined
the role of three-wave interactions in the Faraday system, in
which a layer of fluid is vertically vibrated in a time-periodic
fashion, potentially producing standing wave patterns. Patterns
with two dominant length scales, including quasipatterns and
superlattice patterns, have been observed in many Faraday wave
experiments [17–21]. The theory of Faraday three-wave inter-
actions was developed in [22–26], among other sources. Much
of this body of work took the following approach. Based on
symmetry considerations, one can write down amplitude equa-
tions describing the slow-time evolution of modes close to a
codimension-two point where all waves associated with two
different length scales are neutrally linearly stable. By detuning
from that point and assuming that one of the sets of waves is
weakly damped, one can perform a centre manifold reduction
and assess the role that the weakly damped mode has on the
dynamics of the other modes. At a granular level, this influence
is seen as a (potential) contribution to coefficients of cubic terms
in the amplitude equations for the primary pattern modes. The
leading order influence is determined by quadratic terms in the
original amplitude equations.

Our present study focuses on the role of three-mode or three-
wave interactions and, pivotally, builds on, clarifies and extends
the main ideas of [27]. When there are two (nearly) critical
length scales that are not too disparate, two of the shorter wave-
length modes with different orientations can interact with one
of the longer ones, or two of the longer wavelength modes can
interact with one of the shorter ones. In each case, the orien-
tations of the modes are determined by the requirement that
two longer wavevectors add up to a shorter one, or that two
shorter wavevectors add up to a longer one. Pattern formation
can be strongly dominated by these interactions. Rather than
slaving away one set of critical modes and studying cubic terms,
as described above, we instead see how much understanding
may be gleaned by restricting our attention to quadratic terms
near the codimension-two point. This approach, namely, studying
the effect of three-wave interactions on spatiotemporal pattern
formation in reaction–diffusion systems by looking at quadratic
coefficients, has proven successful in the past [27,28]. Our present
work develops a more exhaustive investigation in the context of
layered Turing systems, though the ideas are applicable wherever
a pattern-forming system can have two unstable length scales,
including the Faraday wave experiment.

The rest of this paper is organised as follows. In Section 2
we outline the basic nonlinear three-wave interactions in the
case of pattern formation with two competing wavelengths, and
in Section 3 discuss the role of the quadratic coefficients (and
in particular their signs) in influencing the resulting patterns.
Section 4 presents the two-layer Brusselator model, and Sec-
tions 5 and 6 describe the linear and weakly nonlinear theory
of the model. Numerical results appear in Section 7, and we
conclude in Section 8.

2. Nonlinear three-wave interactions

We first consider patterns in the variations of a real scalar
field U(x, y, t). Assume the system forms patterns with two dis-
tinct length scales. More specifically, and without loss of gen-
erality, we assume that waves with wavenumbers k = 1 and
k = q (q < 1) become unstable and have growth rates r1
and rq respectively. At onset, the pattern U(x, y, t) will contain
a combination of Fourier modes eik·x, with |k| = q or |k| = 1. We
write, close to onset,

U =

∑
qj

wj(t)eiqj·x +

∑
kj

zj(t)eikj·x + higher order terms, (1)
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Fig. 2. Three-wave interactions with two wavenumbers k = 1 (outer circle) and k = q (inner circle) that influence the evolution of z1 (left column) and w1 (centre
column). Each vector is labelled with the amplitude (z1 , w1 , . . . ) of the corresponding mode. First row: three wave vectors of the same length (three long or three
short). Middle row: two long wave vectors and one short, defining an angle θz = 2 arccos(q/2). Bottom row: one long wave vector and two short, defining an angle
θw = 2 arccos(1/2q). This last case only occurs when q > 1

2 . In all cases, the right column gives the quadratic terms in the amplitude equation that result from the
three-wave interactions depicted to the left.

where qj are wavevectors on the circle |k| = q, with mode
amplitudes wj(t), and k j are wavevectors on the circle |k| = 1,
with mode amplitudes zj(t). The overall pattern U is real, so
waves come in equal and opposite pairs with complex conjugate
amplitudes.

The time evolution of the complex mode amplitudes is influ-
enced by nonlinear combinations of other mode amplitudes. The
particular combinations that arise are determined by the lengths
and orientations of the wavevectors, in a manner that can be
explained by focusing on one mode on each circle and examining
the lowest-order combinations that influence the chosen mode.

The two modes we choose are z1(t)eik1·x and w1(t)eiq1·x, as well
as their complex conjugates, illustrated in Fig. 2. We will develop
an ordinary differential equation (ODE) for each mode amplitude
and express it as a truncated Taylor series. The linear terms in
the evolution equation for z1 and w1 are simply r1z1 and rqw1,
respectively, and the starting point for the ODEs describing the
evolution of each mode amplitude is

ż1 = r1z1 + nonlinear terms,
ẇ1 = rqw1 + nonlinear terms.

(2)

Nonlinear functions of U , as written in (1), will involve products
of modes and therefore sums of wavevectors. The combinations of
modes that influence z1 and w1 will be those whose wavevectors
add up to k1 and q1 respectively. The lowest-order nonlinear
terms are quadratic, arising when two vectors (of length 1 or q)
add up to k1 or q1. The simplest interactions involve modes
at 60◦. The wave vectors in these so-called hexagonal states can
be arranged in an equilateral triangle; see Fig. 2, top row. If

k1 = k2 + k3 (all of length 1), and q1 = q2 + q3 (all of length q)
then the equations for ż1 and ẇ1 will have the terms Qzhz2z3 and
Qwhw2w3, where z2, z3, w2 and w3 are the amplitudes of modes
with wavevectors k2, k3, q2 and q3 respectively, and Qzh and Qwh
are coefficients.

As well as equilateral triangles, one may have isosceles tri-
angles with one short and two long sides (Fig. 2, middle row)
and triangles with one long and two short sides (Fig. 2, bottom
row). The latter case can only happen if q > 1

2 . The two isosceles
triangles define related angles

θz = 2 arccos(q/2), θw = 2 arccos(1/2q), (3)

as seen in Fig. 2 [27]. These triangles lead, in different combi-
nations, to contributions indicated in the right column of Fig. 2,
where Qzw , Qzz , Qww and Qwz are further coefficients. The mode
amplitudes are numbered in order of appearance in Fig. 2. The
end result is that, at quadratic order, there are 8 modes that
couple to each of z1 and w1:

ż1 = · · · + Qzhz2z3 + Qzw(z4w4 + z5w5) + Qwww6w7 + · · ·

ẇ1 = · · · + Qwhw2w3 + Qzzz6z7 + Qwz(w8z8 + w9z9) + · · ·
(4)

These 16 additional modes, 8 with wavenumber 1 and 8 with
wavenumber q, will each couple to up to 8 further modes, and
each of these further modes will couple to up to 8 more, as so
on, as outlined in [27].

One might ask, ‘‘where does it all end?’’ The answer depends
on q, as explained in [27]. For q < 1

2 , two short vectors added
together do not extend to the outer circle, and so the interactions
in Fig. 2 (bottom row) do not exist, and the end result is, for
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Fig. 3. Pattern wavevectors involved in three-wave interactions for different values of q = |qj| from (1). (a) q = 1/
√
7 = 0.3780 (θz = 158.2◦), (b) q =

√
2 −

√
3 =

0.5176 (θz = 150◦ , θw = 30◦), (c) q = 0.66 (θz = 141.5◦ , θw = 81.5◦). The angles θz and θw are defined in (3) and Fig. 2.

example, six modes on the inner circle and 12 on the outer, as in
Fig. 3(a). This case can lead to superlattice patterns [18,21,23] or
quasipatterns [29]. For q = 2 sin

(
π
12

)
=

√
2 −

√
3 = 0.5176, the

angles θz and θw (defined in Fig. 2) are 150◦ and 30◦ respectively,
and so all possible three-wave interactions can be accommodated
within a set of 12 vectors of length 1 interleaved with 12 vectors
of length q, as in Fig. 3(b). This special value of q is the only one
in the range 1

2 < q < 1 where three-wave interactions generate
a finite number of modes [27]. For all other 1

2 < q < 1, an infinite
number of modes is generated, as illustrated in Fig. 3(c) for a
generic choice of q.

Of course, Eqs. (2) and (4) go only up to quadratic order. At
cubic order, every wave on the two circles couples to every other
wave, since k1 = k1 + k j − k j = k1 + qj − qj, for any vectors k j
and qj. Given a finite set of modes as in Fig. 3(a, b), one can
work out the amplitude equations, calculate quadratic and cubic
(and higher if needed) coefficients, and analyse which solutions
are possible and stable. Doing this for complex periodic patterns
is challenging because dozens of modes are involved. For quasi-
patterns, there is the additional complication that this process,
where the small-amplitude pattern is expressed as a power series
in a small parameter, leads to divergent series [30,31], though ex-
istence of quasipatterns has been proved in the Swift–Hohenberg
equation [32] and in Rayleigh–Bénard convection [33]. The case
of a potentially infinite set of modes (Fig. 3(c)) is challenging.

The purpose of our present work is to see how far consid-
erations from just the quadratic level can help understand the
outcome when both circles in Fourier space are (potentially)
fully occupied. The example we use to illustrate the ideas is the
two-layer Brusselator model, in Section 4. Before discussing this
model, we review what is known about the role of three-wave
interactions in the formation of complex spatiotemporal patterns
and outline our hypotheses regarding how quadratic coefficients
would influence observed patterns.

3. Role of the quadratic coefficients

Fig. 3 gives the three qualitatively different possible cases. If
q < 1

2 , all three-wave interactions can be accommodated within
a set of 6 vectors of length q and 12 vectors of length 1, as
in Fig. 3(a). This leads to 9 coupled complex amplitude equa-
tions. The resulting patterns are spatially periodic when cos θz
and

√
3 sin θz are both rational, which happens for a dense but

measure zero set of q. Otherwise, the resulting patterns are
quasiperiodic [29]. The second case, as in Fig. 3(b), with q =√
2 −

√
3 = 0.5176, leads to 12 vectors of length q and 12 vectors

of length 1, necessitating 12 complex amplitude equations. In
these two cases, with a finite number of amplitude equations
(which will be explored in more detail elsewhere), standard
nonlinear methods can be employed to obtain equilibrium points,
and (to some extent) their stability, bifurcations, and so forth. In

the third case, with 1
2 < q ̸=

√
2 −

√
3 < 1 as in Fig. 3(c), three-

wave interactions lead to coupling between an infinite number
of modes, and so there is the possibility of an infinite number of
amplitude equations. In this scenario, it is not clear that standard
nonlinear methods will yield useful information.

All three cases involve sets of interacting waves, with the
strongest interactions happening between groups of three. We
illustrate a single set of three interacting waves by taking two
outer vectors coupling to an inner one, with wavevectors k6 +

k7 = q1 and amplitudes z6, z7, w1, as in Fig. 2 (middle row, middle
column). The amplitude equations in this case are of the form:

ż6 = r1z6 + Qzw z̄7w1 + (Az |z6|2 + Azz |z7|2 + Azw|w1|
2)z6

ż7 = r1z7 + Qzw z̄6w1 + (Azz |z6|2 + Az |z7|2 + Azw|w1|
2)z7

ẇ1 = rqw1 + Qzzz6z7 + (Awz |z6|2 + Awz |z7|2 + Aw|w1|
2)w1.

(5)

Here, Az , Azz , Azw , Aw and Awz are cubic coefficients that depend on
the details of the problem and that can in principle be calculated
from governing equations.

Porter and Silber [34] investigated (5) in detail and found
that the dynamics depends on the product of quadratic coeffi-
cients QzwQzz , as well as the linear and cubic coefficients. Typi-
cally, when QzwQzz is positive, there are stable equilibria and no
time-dependent states. On the other hand, when QzwQzz is nega-
tive, in addition to stable equilibria, time-periodic solutions and
chaotic solutions are possible via Hopf and global bifurcations. In
the positive case, the z and w modes can act to reinforce each
other, while in the negative case, there can be time-dependent
competition between z and w modes. The same conclusion ap-
plies equally to the three-wave interaction between two w and
one z mode (Fig. 2, bottom row, left column). Here, the relevant
combination of quadratic coefficients is QwzQww .

These considerations led Rucklidge et al. [27] to hypothesise
how the combinations of quadratic coefficients would influence
patterns, essentially supposing that the qualitative conclusion
of [34] applies also when there are many sets of interacting
waves, even though each individual wave has three-wave inter-
actions with several combinations of modes, as discussed above.
Steady patterns should be expected when QzwQzz > 0 and
QwzQww > 0, and time-dependent patterns should be possible
when one or both pairs of quadratic coefficients are of opposite
sign. When q > 1

2 , complex patterns, with modes at many
different orientations, as in Fig. 3(c), may be possible.

Before developing these ideas further, for the purposes of this
paper, we distinguish between different types of patterns. Simple
patterns are stripes, hexagons (or symmetry-broken hexagons) of
either critical wavelength. There are also rhombs, here taken to
mean patterns with two modes of equal amplitude on one circle
coupled to a third mode on the other circle. Superlattice patterns
are dominated by 12 modes at one wavenumber and 6 at the
other; here we blur the distinction between spatially periodic
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superlattice patterns and quasipatterns [29]. With q < 1
2 , there

is only one type of superlattice pattern, while with 1
2 < q < 1,

there are two types, with six modes on one circle and twelve
on the other, either way around. Regular twelve-fold quasipatterns
have 12 modes (equally spaced) at each wavenumber, as illus-
trated in Fig. 3(b). The patterns discussed so far may have defects,
which can evolve over long timescales [35]. Complex patterns
have large numbers of modes, at both wavenumbers, coupled
through three-wave interactions, as illustrated in Fig. 3(c), but are
not simple patterns with defects as defined here. Time dependent
(periodic, chaotic) versions of each of these types of patterns are
also possible, evolving over shorter timescales. We reserve the
term spatiotemporal chaos for the case when complex patterns
have persistent chaotic dynamics with many positive Lyapunov
exponents as in [36].

With this classification in mind, we extend the hypotheses
of [27] as detailed in the points below, and as summarised in
Table 1. Here by finding a pattern, we mean that there are com-
binations of r1 and rq where that pattern is an asymptotic state
obtained when starting from random initial conditions in a do-
main large enough to accommodate a wide range of wavevector
orientations on the two critical circles.

• In all cases, we expect to find steady simple patterns such
as stripes and hexagons, possibly with broken symmetry or
with defects.

• In addition, with q < 1
2 , we expect to find steady super-

lattice patterns with wavevectors as in Fig. 3(a). We may
also find rhombs. If QzwQzz is negative, we expect to find
time-dependent superlattice patterns (and rhombs) with the
same wavevectors, and also spatiotemporal chaos, with all
wavevectors on the two circles being active. We do not
expect to find steady complex patterns.

• With q > 1
2 , we expect to find both types of steady su-

perlattice patterns. We also expect to find steady complex
patterns, with large numbers of wavevectors on both cir-
cles. The combinations of quadratic coefficients relevant to
the two superlattice cases are QzwQzz and QwzQww respec-
tively: if the relevant combination is negative, we expect
to find time-dependent superlattice patterns with the same
wavevectors. If either or both combination is negative, we
expect to find spatiotemporal chaos, with all wavevectors on
the two circles being active. If QzwQzz and QwzQzz are both
negative, we expect to find time dependence more readily.
In general, we expect to find spatiotemporal chaos more
readily than in the q < 1

2 case.
• For the special value q =

√
2 −

√
3 = 0.5176, we expect

to find steady twelve-fold quasipatterns with wavevectors
as in Fig. 3(b). If one or both of QzwQzz or QwzQww is neg-
ative, we expect to find time-dependent quasipatterns and
spatiotemporal chaos.

These considerations neglect the roles that the hexagonal
quadratic coefficients Qzh and Qwh might play.

4. Two-layer Brusselator model

The Brusselator [15,37] is a canonical model of a reaction–
diffusion system. More specifically, it describes an autocatalytic
chemical reaction,

A → X
2X + Y → 3X

B + X → Y + D
X → E.

(6)

The products D, E are generally not of interest because they do
not enter into the autocatalysis. Therefore, we restrict attention to

Table 1
Patterns that a priori we expect to find in different circumstances, in addition
to steady simple patterns (stripes and hexagons).
q QzwQzz > 0 and QwzQww > 0 QzwQzz < 0 or QwzQww < 0

q < 1
2 Steady superlattice patterns

(only QzwQzz is relevant)
Steady and oscillatory
superlattice patterns, possibly
spatiotemporal chaos (only
QzwQzz is relevant)

q > 1
2 Steady superlattice patterns

of both types and steady
complex patterns

Steady and time-dependent
superlattice patterns of both
types, steady complex patterns
and spatiotemporal chaos√

2 −
√
3

= 0.5176
Steady twelve-fold
quasipatterns

Steady and time-dependent
twelve-fold quasipatterns,
steady complex patterns and
spatiotemporal chaos

the reactants X, Y , A, B. In the Brusselator, it is assumed that A, B
are present in great excess, and thus can be treated as constants.
Allowing for spatial diffusion, and using the standard theories
of reaction kinetics, we write down rate laws for X, Y as the
differential equations

∂X
∂t

= A + X2Y − BX − X + DX∇
2X,

∂Y
∂t

= BX − X2Y + DY∇
2Y .

(7)

Through abuse of notation, we have now let A, B, X, Y ≥ 0
represent concentrations of these chemicals rather than symbol-
ising the chemicals themselves. Here, X, Y are time and space
dependent chemical concentrations and, as assumed, A, B are
constant.

Eq. (7) has a spatially homogeneous steady state solution,
namely X = A, Y = B/A. We adopt shifted coordinates for the
dependent variables, letting X = A + U , Y = B/A + V so that
the equilibrium becomes the trivial one, U = 0, V = 0. In these
coordinates, (7) is

∂U
∂t

= (B − 1)U + A2V + DU∇
2U +

B
A
U2

+ 2AUV + U2V ,

∂V
∂t

= −BU − A2V + DV∇
2V −

B
A
U2

− 2AUV − U2V .

(8)

The chemical concentrations are U(x, t) and V (x, t), where x is
the planar spatial coordinate x = (x, y). The diffusion constants
have been relabelled for clarity of notation, that is, DU = DX and
DV = DY .

As in [10,16], we consider a two-layer Brusselator model. The
layers are coupled together ‘‘diffusively’’, manifesting as linear
terms with coefficients α, β ≥ 0:

∂U1

∂t
= (B − 1)U1 + A2V1 + DU1∇

2U1 + α(U2 − U1) + NLT(U1, V1),

∂V1

∂t
= −BU1 − A2V1 + DV1∇

2V1 + β(V2 − V1) − NLT(U1, V1),

∂U2

∂t
= (B − 1)U2 + A2V2 + DU2∇

2U2 + α(U1 − U2) + NLT(U2, V2),

∂V2

∂t
= −BU2 − A2V2 + DV2∇

2V2 + β(V1 − V2) − NLT(U2, V2).

(9)

Here, U1,2(x, t) and V1,2(x, t) are chemical concentrations in each
layer. For convenience, we have used shorthand to represent the
nonlinear terms,

NLT(U, V ) ≡
B
A
U2

+ 2AUV + U2V . (10)



6 J.K. Castelino, D.J. Ratliff, A.M. Rucklidge et al. / Physica D 409 (2020) 132475

We have assumed that A and B do not vary across layers, meaning
that each excess reactant is present in the same amount in each
layer. For all calculations in the remainder of this paper, we take
A = 3 and B = 9 as our standard parameter values, as chosen
in [10] to model the CIMA reaction.

5. Linear theory

If we drop the nonlinear terms in (9), we can solve the result-
ing linear PDE in terms of modes eik·x that grow as eσ t . Here, σ

is a growth rate that depends on the wavenumber k = |k|. The
linear problem is represented by a 4 × 4 Jacobian matrix J ,

J =

⎛⎜⎜⎝
B − 1 − DU1k

2
− α A2 α 0

−B −A2
− DV1k

2
− β 0 β

α 0 B − 1 − DU2k
2
− α A2

0 β −B −A2
− DV2k

2
− β

⎞⎟⎟⎠ .

(11)

The growth rates σ are the eigenvalues of J and satisfy the
characteristic equation

σ 4
+ C3σ

3
+ C2σ

2
+ C1σ + C0 = 0, (12)

where the coefficients C0, . . . , C3 are (cumbersome) polynomial
functions of nine parameters: A, B, DU1 , DV1 , DU2 , DV2 , α, β and
the wavenumber k.

If we were to choose DU1 = DU2 and DV1 = DV2 , as done
in [16], then the 4 × 4 matrix J can be decomposed in to two
2 × 2 parts. However, in this case, it turns out that two of the
quadratic coefficients vanish in the weakly nonlinear theory. To
avoid this degeneracy, we take an alternative approach, allowing
the diffusion constants to be different in the two layers. As
mentioned in Section 4, the experimental context is that we take
the chemistry to be identical in the two layers (meaning A, B do
not depend on layer) but take the substrates to be different, so
their diffusion properties will be different.

Rather than fix the values of the parameters, we are aiming
to explore the range of outcomes close to the codimension-two
point where patterns with two length scales are simultaneously
unstable, for a range of values of the wavenumber ratio. There-
fore, we seek parameter values for which σ , when viewed as
a function of k, takes on certain values at local maxima. For
example, if σ has a local maximum at k = 1 and k = q, for some
choice of q, then four conditions must be satisfied: σ = r1 at
k = 1, σ = rq at k = q and dσ

dk = 0 at k = 1, q. The derivative dσ
dk

can be obtained from (12) by differentiating with respect to k:(
4σ 3

+ 3C3σ
2
+ 2C2σ + C1

) dσ
dk

+
dC3

dk
σ 3

+
dC2

dk
σ 2 dC1

dk
σ +

dC0

dk
= 0, (13)

The four conditions result in four equations for the nine parame-
ters listed above (but with k replaced by q), with two additional
parameters σ (1) = r1 and σ (q) = rq. This means that seven
of the parameters can be specified, and four found by solving
the equations. For example, we take our base parameter values
A = 3 and B = 9 [10] and choose q =

√
2 −

√
3 = 0.5176,

appropriate for twelve-fold quasipatterns [38,39]. Additionally,
we choose r1 = rq = 0 in order to be at the codimension-two
point, and we choose α = β = 1. Recall that α and β control
the diffusion of the two chemicals between the two layers, while
DU1 , DU2 , DV1 and DV2 control the diffusion of the chemicals within
each layer. For this choice of seven parameters, the resulting four
polynomial equations for the four remaining unknowns (DU1 , DU2 ,
DV1 and DV2 ) can be worked out; the simplest (shortest) of these

Fig. 4. Linear theory for the two-layer Brusselator model, for q =

√
2 −

√
3 =

0.5176, β = 1, A = 3, B = 9, r1 = 0 and rq = 0. We plot DU1 (black), DV1 (red),
DU2 (blue) and DV2 (green) for 0.45 ≤ α ≤ 7.95. The vertical lines indicate how
the diffusion coefficients vary as q ranges from q = 0.25 to q = 0.66: these
coefficients generally decrease as q increases. The vertical lines are at integer
values of α for DU1 and DV1 , and are shifted by 1

3 for DU2 and by 2
3 for DV2 .

Sample numerical values of the diffusion constants are given in Table 2 and in
full in [40]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

is
DU1DU2DV1DV2 + 10DU1DU2DV1 + 10DU1DU2DV2

− 7DU1DV1DV2 − 7DU2DV1DV2 + 99DU1DU2 + 48DV1DV2

+ 11DU1DV1 + 11DU2DV2 − 70DU1DV2 − 70DU2DV1

+ 117DU1 + 117DU2 − 87DV1 − 87DV2 + 135 = 0.

(14)

The coefficients in this (and the other three equations) depend on
the choice that we made for A, B, α, β , q, r1 and rq.

We solve the four polynomial equations numerically, using
Bertini [41]. For our current choice of parameters, there are
24 solutions, of which eight are real but only two (related by
relabelling the two layers) are real and positive:
DU1 = 1.6046, DV1 = 4.6663,

DU2 = 9.8682, DV2 = 25.448.
(15)

The number of real positive solutions varies with α and β: for
example, with β = 1 and q =

√
2 −

√
3, there are none for

α ≤ 0.31 or α ≥ 8, and two (related by relabelling) for 0.32 ≤

α ≤ 7.99. We plot the four diffusion coefficients as functions of α

for β = 1 in Fig. 4 for q =

√
2 −

√
3 = 0.5176, with vertical lines

indicating how the diffusion coefficients vary with q, keeping A, B,
r1 and rq fixed. Sample numerical values of the diffusion constants
for different choices of α and q are given in Table 2 and in full
in [40].

We observe from Fig. 4 that the range from the smallest to
the largest values of the diffusion constants appears to diverge
as α approaches 8. The same happens for other choices of q. In
addition, the ordering of the diffusion constants changes around
α = 7: for α < 7, we have DU1 < DV1 and DU2 < DV2 , which seems
experimentally reasonable, in that one chemical diffuses slower
than the other in either substrate, while for α > 7, this is not true.
For later calculations, we will choose α to vary between 1 and 7.
The experimental relevance of the larger values of α should be
treated with caution.

We conclude our discussion of the linear theory with a sam-
ple dispersion relation (σ (k) plotted as a function of wavenum-
ber k) in Fig. 5, for q =

√
2 −

√
3 and for a range of α, at the
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Fig. 5. Dispersion relation: the largest eigenvalue σ (k) plotted as a function of
wavenumber k, for q =

√
2 −

√
3 = 0.5176, β = 1, and α = 1, 2, . . . , 7.

codimension-two point r1 = rq = 0. The eigenvalue is maximal
at k = q and k = 1, but the minimum for q < k < 1 is about
−0.1 for α = 1, and only about −0.015 for α = 7.

In this dispersion relation, we control the separation and
heights of the growth-rate maxima by varying q, r1 and rq, and
solving for the four diffusion coefficients. For smaller q, the peaks
are well separated and reasonably sharp, while for larger q the
peaks are closer together, broader and the depth of the minimum
is less. For this reason, we limit ourselves to q ≤ 0.66. Since we
want to keep an interval of negative growth-rate between k = q
and k = 1, we (mostly) limit ourselves to r1 ≤ 0.01 and rq ≤ 0.01.

6. Weakly nonlinear theory

Once the uniform state U1 = V1 = U2 = V2 = 0 be-
comes linearly unstable, solutions will grow exponentially until
nonlinear effects become important. The first of these are the
three-wave interactions. The weakly nonlinear theory is stan-
dard [28,42,43], though made more complicated here because
of the codimension-two bifurcation and because there are four
scalar fields in (9). We are concerned only with the leading order
effect of three-wave interactions, and so we need to compute only
up to second order in the weakly nonlinear theory.

We write

u =

⎛⎜⎝U1
V1
U2
V2

⎞⎟⎠ , (16)

and write the PDE (9) as

du
dt

= Lu + NLT(u), (17)

where L is a linear operator representing the linear terms, and all
the nonlinear terms in (9) are in NLT(u). To explore the properties
of solutions close to u = 0, we introduce a small parameter ϵ ≪

1, and we expand u in powers of ϵ:

u = ϵu1 + ϵ2u2 + · · · (18)

Recall that in Section 5, we computed values of DU1 , DV1 , DU2
and DV2 such that the linear operator L had zero eigenvalues
(r1 = rq = 0) at two wavenumbers, k = 1 and k = q, at given
values of A, B, α and β . We now suppose that the linear operator
is perturbed by an order ϵ amount so that the growth rates r1 at
k = 1 and rq at k = q are order ϵ. In practice we perturb DU1 , DV1 ,

DU2 and DV2 and do it in such a way that there are local maxima
in the growth rate remain at k = 1 and k = q. We can scale
r1 → ϵr1 and rq → ϵrq and write the linear operator L as

L = L0 + ϵL1 + · · · , (19)

where L0 is a singular linear operator, and ϵL1 is the largest
part of the perturbation of the linear operator from L0. Finally,
we scale time so that d/dt → ϵd/dt . With these choices of
scaling, the time derivative, the linear terms, and the lowest-
order nonlinear terms all appear at the same order. Substituting
into (17), we have

ϵ2 du1

dt
= ϵL0u1 + ϵ2L0u2 + ϵ2L1u1 + ϵ2NLT2(u1) + O(ϵ3), (20)

where NLT2 represents the quadratic nonlinear terms.
The operator L0 is singular: L0eik·xv1 = 0 whenever |k| = 1,

and L0eiq·xvq = 0 whenever |q| = q, where v1 and vq are the
eigenvectors of the zero eigenvalues of the Jacobian matrix (11),
with k replaced by 1 and q respectively. We normalise the eigen-
vectors so that v1 · v1 = 1 and vq · vq = 1. Following the example
of Section 5 and (15), with A = 3, B = 9, α = 1 and β = 1, we
find

v1 =

⎛⎜⎝ 0.8416
−0.5198
0.1377

−0.0496

⎞⎟⎠ and vq =

⎛⎜⎝ 0.5288
−0.4550
0.6201

−0.3589

⎞⎟⎠ . (21)

With these eigenvectors, the general solution to L0u1 = 0 is
similar to the expression in (1):

u1 =

⎛⎝∑
qj

wj(t)eiqj·x

⎞⎠ vq +

⎛⎝∑
kj

zj(t)eikj·x

⎞⎠ v1, (22)

where {qj} and {k j} are arbitrary sets of vectors on the two circles
|qj| = q and |k j| = 1. Writing u1 in this way solves the O(ϵ) part
of (20).

The O(ϵ2) part of (20) is
du1

dt
= L0u2 + L1u1 + NLT2(u1). (23)

Recall that L0 is singular and so cannot simply be inverted to
find u2 as a function of u1. Thus, before solving for u2, a solvability
condition must be imposed. The standard method is to define an
inner product between vector-valued functions f (x) and g(x) on
the domain Ω of the problem:⟨
f , g

⟩
=

1
|Ω|

∫
Ω

f̄ (x) · g(x) dx, (24)

where f̄ is the complex conjugate of f and |Ω| is the area of the
domain. We define L†

0, the adjoint of L0, by requiring that⟨
f ,L0g

⟩
=

⟨
L†

0f , g
⟩

(25)

for all f and g . We restrict to functions on Ω that satisfy periodic
boundary conditions. In this case, the adjoint operator L†

0 is just
the transpose of L0. Having defined L†

0, we solve L†
0e

ik·xv
†
1 = 0

and L†
0e

iq·xv
†
q = 0 to find the normalised adjoint eigenvectors v

†
1

and v
†
q , with |k| = 1 and |q| = q. For our example, these are

v
†
1 =

⎛⎜⎝0.8416
0.5198
0.1377
0.0496

⎞⎟⎠ and v†
q =

⎛⎜⎝0.5288
0.4550
0.6201
0.3589

⎞⎟⎠ . (26)

Then, for any u2,⟨
eik1·xv

†
1,L0u2

⟩
=

⟨
L†

0e
ik1·xv

†
1, u2

⟩
= 0,⟨

eiq1·xv†
q,L0u2

⟩
=

⟨
L†

0e
iq1·xv†

q, u2

⟩
= 0,

(27)
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where k1 and q1 represent any vectors on the two critical circles.
Thus, taking the inner products of eik1·xv

†
1 and eiq1·xv

†
q with (23)

results in the solvability conditions⟨
eik1·xv

†
1,

du1

dt

⟩
=

⟨
eik1·xv

†
1,L1u1 + NLT2(u1)

⟩
,⟨

eiq1·xv†
q,

du1

dt

⟩
=

⟨
eiq1·xv†

q,L1u1 + NLT2(u1)
⟩
.

(28)

Taking u1 to be made up of waves with wavevectors from all the
combinations of wavevectors in Fig. 2 results in amplitude equa-
tions (including the values of the coefficients) up to quadratic
order, as written in (4). We will take two specific examples,
focusing only on the quadratic coefficients, and compute Qzh, Qzz
and Qzw . For these, we need NLT2(u1), which is (for A = 3 and
B = 9):

NLT2(u1) =

⎛⎜⎝ 3U2
1 + 6U1V1

−3U2
1 − 6U1V1

3U2
2 + 6U2V2

−3U2
2 − 6U2V2

⎞⎟⎠ , (29)

where (U1, V1,U2, V2) are the four entries in u1.
To calculate the various quadratic coefficients described in

Section 2, we take the combinations of wavevectors appropriate
for each coefficient. For Qzh, we write

u1 =
(
z1(t)eik1·x

+ z2(t)eik2·x
+ z3(t)eik3·x) v1 + c.c., (30)

where k1 = k2 + k3 as in the top left panel of Fig. 2, v1 is the
eigenvector as in (21) and c.c. stands for the complex conjugate.
In this case, we have

U2
1 =

(
z1eik1·x

+ z2eik2·x
+ z3eik3·x

+ c.c.
)2

×

(
v
(1)
1

)2
,

=
(
· · · + 2z2z3eik1·x

+ · · ·
)
×

(
v
(1)
1

)2
,

U1V1 =
(
z1eik1·x

+ z2eik2·x
+ z3eik3·x

+ c.c.
)2

×

(
v
(1)
1 v

(2)
1

)
,

=
(
· · · + 2z2z3eik1·x

+ · · ·
)
×

(
v
(1)
1 v

(2)
1

)
,

(31)

where we have highlighted the eik1·x term, and v
(1)
1 and v

(2)
1 are the

first and second entries in the vector v1 in (21). There are similar
expressions for U2

2 and U2V2, involving v
(3)
1 and v

(4)
1 . The inner

product with eik1·xv
†
1 in the first line of the solvability condition

in (28) picks out the eik1·x component of NLT2(u1), so we are left
with(

v
†
1 · v1

)
ż1

= linear term + v
†
1 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 × 2
(
v
(1)
1

)2
+ 6 × 2v(1)

1 v
(2)
1

−3 × 2
(
v
(1)
1

)2
− 6 × 2v(1)

1 v
(2)
1

3 × 2
(
v
(3)
1

)2
+ 6 × 2v(3)

1 v
(4)
1

−3 × 2
(
v
(3)
1

)2
− 6 × 2v(3)

1 v
(4)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
z2z3.

(32)

We have used the fact that v
†
1 is real. Dividing by v

†
1 · v1 and

matching to (4) results in an expression for Qzh. For the example
set of parameters, Qzh = −0.7018. With r1 defined to be the
growth rate (on the slow time scale) of the wavenumber |k| = 1
modes, the linear term above is r1

(
v
†
1 · v1

)
z1.

Similar calculations but for different choices of wavevectors
yield Qwh, Qzw and Qzz , and Qwz and Qww . We illustrate with the
calculation for Qzz and Qzw , and write

u1 =
(
z6(t)eik6·x

+ z7(t)eik7·x) v1 +
(
w1(t)eiq1·x) vq + c.c., (33)

Fig. 6. Weakly nonlinear theory for the two-layer Brusselator model (9), up to
quadratic order. We take β = 1 in (9) and q = 0.5176 in (1). The six quadratic
coefficients are Qzh (green), Qwh (black), Qzz (red), Qzw (magenta), Qwz (cyan),
Qww (blue). In this case, the coefficients Qzw and Qzz have opposite sign for
2.33 < α < 5.00, and Qwz and Qww have opposite sign for 4.76 < α < 6.87.
The values of diffusion coefficients are as in Fig. 4. The data for this figure is
available in full at [40], with selected values in Table 2. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

where q1 = k6 + k7 as in the middle row centre panel of Fig. 2.
In this case, we need the eiq1·x and eik6·x components of U2

1 and
U1V1:

U2
1 =

(
2z6z7eiq1·x

+ · · ·
)
×

(
v
(1)
1

)2
+(

2w1z̄7eik6·x
+ · · ·

)
×

(
v
(1)
1 v(1)

q

)
,

U1V1 =
(
2z6z7eiq1·x

+ · · ·
)
×

(
v
(1)
1 v

(2)
1

)
+(

w1z̄7eik6·x
+ · · ·

)
×

(
v
(1)
1 v(2)

q + v
(2)
1 v(1)

q

)
,

(34)

again with similar expressions for U2
2 and U2V2. The inner product

with eik6·xv
†
1 in the first line of the solvability condition in (28)

picks out the Qzw z̄7w1 term, while the inner product with eiq1·xv
†
q

in the second line of the solvability condition picks out the Qzzz6z7
term. These result in equations for the two quadratic coefficients:

(
v
†
1 · v1

)
Qzw = v

†
1 ·

⎛⎜⎜⎜⎜⎜⎜⎝
3 × 2v(1)

1 v
(1)
q + 6 ×

(
v
(1)
1 v

(2)
q + v

(2)
1 v

(1)
q

)
−3 × 2v(1)

1 v
(1)
q − 6 ×

(
v
(1)
1 v

(2)
q + v

(2)
1 v

(1)
q

)
3 × 2v(3)

1 v
(3)
q + 6 ×

(
v
(3)
1 v

(4)
q + v

(4)
1 v

(3)
q

)
−3 × 2v(3)

1 v
(3)
q − 6 ×

(
v
(3)
1 v

(4)
q + v

(4)
1 v

(3)
q

)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(
v†
q · vq

)
Qzz = v†

q ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 × 2
(
v
(1)
1

)2
+ 6 × 2v(1)

1 v
(2)
1

−3 × 2
(
v
(1)
1

)2
− 6 × 2v(1)

1 v
(2)
1

3 × 2
(
v
(3)
1

)2
+ 6 × 2v(3)

1 v
(4)
1

−3 × 2
(
v
(3)
1

)2
− 6 × 2v(3)

1 v
(4)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(35)

For the example set of parameters, Qzw = −0.8974 and Qzz =

−0.1997. Similar calculations yield Qwh = −0.5610, and Qwz =

−0.2623 and Qww = −0.9263 (only available since q > 1
2 ).

Examples of the six quadratic coefficients as functions of α are
shown in Fig. 6, for q =

√
2 −

√
3 = 0.5176, and for β = 1, with
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Table 2
Sample values of the diffusion coefficients in (9) and the resulting quadratic
coefficients in (4), with A = 3, B = 9, β = 1, r1 = 0 and rq = 0, for different
choices of q and α. The data are illustrated in Figs. 4 and 6. A fuller version of
this table (for 0.25 ≤ q ≤ 0.66) is available in full in [40].
q α DU1 DV1 DU2 DV2 Qzh Qwh Qzz Qzw Qwz Qww

1 1.75 5.2 16.4 44.0 −0.59 −0.52 −0.07 −0.85 – –
2 1.76 8.1 21.2 53.9 0.02 −0.57 0.04 −0.79 – –
3 1.59 11.2 25.2 57.9 0.57 −0.62 0.31 −0.60 – –

0.3780 4 1.34 15.0 29.5 60.4 1.12 −0.64 0.64 −0.36 – –
5 1.05 20.0 34.7 62.3 1.71 −0.62 1.05 −0.07 – –
6 0.73 28.0 42.3 64.1 2.41 −0.55 1.59 0.33 – –
7 0.38 45.2 57.5 65.9 3.36 −0.29 2.41 1.05 – –

1 1.60 4.7 9.9 25.4 −0.70 −0.56 −0.20 −0.90 −0.26 −0.93
2 1.55 6.8 13.7 32.0 −0.23 −0.65 −0.08 −0.78 −0.37 −1.07
3 1.38 9.1 16.8 34.8 0.21 −0.66 0.18 −0.56 −0.29 −1.01

0.5176 4 1.16 11.9 20.1 36.6 0.66 −0.62 0.50 −0.31 −0.15 −0.90
5 0.90 15.6 24.1 37.9 1.17 −0.53 0.89 0.00 0.06 −0.74
6 0.63 21.5 29.7 39.2 1.81 −0.35 1.42 0.44 0.38 −0.48
7 0.33 34.0 40.8 40.5 2.77 0.10 2.25 1.24 1.02 0.11

1 1.48 4.2 7.7 19.3 −0.77 −0.61 −0.33 −0.92 −0.41 −0.98
2 1.40 6.0 11.0 24.7 −0.38 −0.69 −0.20 −0.76 −0.46 −1.01
3 1.24 8.0 13.7 26.9 −0.00 −0.65 0.05 −0.54 −0.34 −0.90

0.6180 4 1.04 10.3 16.5 28.4 0.39 −0.57 0.35 −0.28 −0.17 −0.76
5 0.81 13.4 19.8 29.5 0.85 −0.43 0.72 0.03 0.07 −0.56
6 0.56 18.3 24.6 30.5 1.45 −0.18 1.23 0.49 0.43 −0.24
7 0.29 28.7 33.9 31.6 2.40 0.38 2.07 1.31 1.14 0.44

Table 3
Values of the length scale ratio q used in our survey. The angles θz and θw are
defined in Fig. 2 and Eq. (3).
q θz θw Comment

0.2500 165.6◦ –
0.3300 161.0◦ –
0.3780 158.2◦ – q = 1/

√
7: superlattice patterns

0.4400 154.6◦ –
0.5176 150.0◦ 30.0◦ q =

√
2 −

√
3: twelve-fold quasipatterns

0.5500 148.1◦ 49.2◦

0.5774 146.4◦ 60.0◦ q = 1/
√
3: hexagons

0.6180 144.0◦ 72.0◦ q =
1
2 (−1 +

√
5): ten-fold quasipatterns

0.6600 141.5◦ 81.5◦

numerical values for this and other choices of q given in Table 2
and in [40].

With this choice of parameters, the coefficients Qzw and Qzz
have opposite sign for 2.33 < α < 5.00, and Qwz and Qww have
opposite sign for 4.76 < α < 6.87. The behaviour of the quadratic
coefficients for other values of q in the range 0.25 ≤ q ≤ 0.66 is
similar: there is a range of α for which QzwQzz < 0, and (provided
q > 1

2 ) there is a range of α for which QwzQww < 0, where the
ordering is the same throughout. The two ranges overlap over a
limited range of α, centred on α ≈ 4.8 for all q.

7. Numerical results

Based on the linear and weakly nonlinear calculations in the
previous sections, we have carried out a series of numerical
simulations of the PDEs in (9). Our main goal is to explore the
effect of varying the ratio of length scales, q, in regimes where
we can control the signs of the quadratic coefficients. Our choice
is to fix the diffusive coupling coefficient β = 1 and vary α with
1 ≤ α ≤ 7 (in steps of 1). With different choices of α, the two
pairs of quadratic coefficients can have the same or opposite signs
(see Fig. 6), though the range where both pairs had opposite sign
was very limited. We chose some special values of q, some less
than and some greater than 1

2 : q = 1/
√
7 = 0.3780, to encourage

superlattice patterns [44]; q =

√
2 −

√
3 = 0.5176, to encourage

twelve-fold quasipatterns [38,39]; q = 1/
√
3 = 0.5774, to allow

quadratic interactions between six modes on each circle; and q =
1
2 (−1 +

√
5) = 0.6180, to encourage ten-fold quasipatterns [45].

We also chose more ‘‘generic’’ values of q: 0.25, 0.33, 0.44, 0.55
and 0.66. The values of q and the corresponding angles θz and θw

are listed in Table 3. All chemical properties are frozen with the
choice of A = 3 and B = 9 as in [10].

The values of the diffusion coefficients at the codimension-
two point r1 = rq = 0 are given in Fig. 4 and in [40]. For
each selected case of q and α, we vary the diffusion coefficients
to explore small positive and negative values of the two growth
rates r1 and rq. Specifically, setting (r1, rq) = (r cos θ, r sin θ ), we
choose r = 0.01 (apart from data in Fig. 11), with θ varying from
5◦ to 355◦ in steps of 10◦. For smaller q and α, these choices
lead to growth rates σ (k) that are sharply peaked at k = q and
k = 1, with a relatively deep negative minimum in between
(see Fig. 5). However, for larger q and α, the minimum between
the two maxima is quite shallow, which means that, even with
a small value of r = 0.01, there can be wide bands of unstable
wavenumbers.

We start all simulations from small-amplitude random initial
conditions in 16π × 16π (8 × 8 of the shorter wavelengths)
domains, except in the case when q =

√
2 −

√
3 where we

also start simulations from a small-amplitude quasipattern initial
condition. For parameter choices that do not result in a simple
pattern, we explore the effect of a larger domain by re-running
calculations in 60π × 60π (30 × 30 wavelengths) domains. Both
8 × 8 and 30 × 30 domains are appropriate for twelve-fold
quasipatterns [46]. Time simulations are for at least 10000 time
units: this is 100 growth times (for r = 0.01) and approximately
three diffusion times for the larger domain when considering the
smallest values of the diffusion coefficients.

We use 128 × 128 Fourier modes (using FFTW [47], the
fastest Fourier transform in the West) in each direction for the
8 × 8 domains, and 512 × 512 Fourier modes for the larger
30 × 30 domains. We use the second-order exponential time
differencing (ETD2) [48] scheme for timestepping, with a fixed
timestep of 0.01. For this matrix exponential method, we split the
linear part of the PDE (9) into diagonal and off-diagonal parts, and
we treat the off-diagonal parts as nonlinear terms.

In all, we carried out over 4000 simulations, and the results
we present below are an overview of the range of patterns we
find. For α ≤ 3, we find a wide range of different patterns, but
for α ≥ 4 we find simple patterns (hexagons) almost exclusively.
Therefore, we focus on the cases with α = 1, 2 and 3. When
α = 1, all quadratic coefficients are negative for all q (see Fig. 6,
Table 2 and [40]). Therefore, from Table 1, we expect to find
only steady patterns. For α = 2, Qzw and Qzz are of opposite
sign for q ∈ {0.2500, 0.3300, 0.3780} and are of the same sign
for q ∈ {0.4400, 0.5176, 0.5774, 0.6180, 0.6600}, although Qzz is
very close to zero for q = 0.4400. For α = 3, Qzw and Qzz are
of opposite sign for all q apart from q = 0.6600. For 1 ≤ α ≤ 3,
Qwz and Qww are both negative. We connect some of the observed
steady patterns in this section to the three cases of nonlinear
wave-vector interactions described in Fig. 3 and relate these to
our expectations in Table 1.

7.1. Steady patterns with varying q: α = 1

First, we explore steady patterns with α = 1 at fixed r =

0.01 and θ = 45◦, so r1 = rq = 0.00707, but for varying q
(see Fig. 7). For q < 1

2 , we see strong hexagonal motifs on a
scale set by the smaller wavenumber q, inset with stripes on a
scale of wavenumber 1, resembling patterns found by [10]. For
q = 0.3780 the pattern is exactly hexagonal, with six equally
spaced modes on the inner circle and twelve unequally spaced
on the outer, as in Fig. 3(a) — this is the simplest example of a



10 J.K. Castelino, D.J. Ratliff, A.M. Rucklidge et al. / Physica D 409 (2020) 132475

Fig. 7. Examples of patterns, all in 30 × 30 domains for α = 1 and r = 0.01, θ = 45◦ , with q running from 0.25 to 0.66. Each image has a grey scale representing U1(x)
(the scaling is different in each case) and a power spectrum with circles k = 1 and k = q indicated.

superlattice pattern. As q increases beyond 0.5176, the patterns
continue as essentially hexagonal on the scale of the smaller
wavenumber, but defects and grain boundaries become more
common for larger q.

7.2. Quasipatterns

We take q =

√
2 −

√
3 = 0.5176 and start with small

amplitudes for twelve Fourier modes on the circle k = 1 as initial
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Fig. 7. (continued).

condition to encourage twelve-fold quasipatterns, finding stable
examples as in Fig. 8(a). This is a periodic approximant to a true
quasipattern, but the approximation is particularly accurate in the
30 × 30 domain [46]. There are twelve peaks on the inner and
outer circles, interleaved as in Fig. 3(b). This kind of quasipattern

has been seen in many similar kinds of calculations going back
to [38,39].

We also obtain an eight-fold quasipattern, in Fig. 8(b). This is
surprising since neither θz nor θw is a multiple of 45◦ (Table 3).
In addition, in our 30 × 30 domain, the approximation to a true
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Fig. 8. Examples of quasipatterns. (a) A twelve-fold quasipattern with α = 1, q = 0.5176, θ = 315◦ . (b) An eight-fold approximate quasipattern with α = 2,
q = 0.2500, θ = 165◦ .

eight-fold quasipattern is not particularly accurate. Nonetheless,
there are eight reasonably clear peaks on the inner circle, with
sixteen diffuse peaks on the outer and an additional eight peaks
just outside the outer circle, giving the impression of a regular
octagon. It may be significant that θz = 165.6◦ (see Table 3),
which is close to 15◦ less than 180◦, as the twenty-four peaks
on and just off the outer circle are spaced roughly 15◦ apart.

The third common two-dimensional quasipattern has ten-fold
symmetry. We have not found examples of such a quasipattern,
but there are hints of a ten-fold motif in calculations with q =

0.6180 (see Fig. 9(b)).

7.3. Steady complex patterns

We find many examples of hexagonal patterns with defects as
in Fig. 7(e–h). In Fig. 9, we show two examples of steady complex
patterns that are not just straightforward patches of hexagons
(as in Fig. 7(e–h)). In Fig. 9(a), with q = 0.5176, the pattern
has a ‘‘swirly’’ appearance with regions of distorted hexagons
in between patches of more regular hexagons. The patches are
rotated with respect to each other, leading to twelve broad peaks
in the outer circle of the power spectrum. In Fig. 9(b), with q =

0.6180, the complex structure of the pattern is more uniformly
distributed, both in space and around the two circles in the power
spectrum. There are several examples of a ten-fold motif, not
surprising given that q is the inverse of the golden ratio.

Both examples are not steady but continue to evolve on
timescales longer than 10000 time units. The example in Fig. 9(a)
eventually anneals to hexagons. The example in Fig. 9(b) persists

for at least 50000 time units, and is the closest we have found to
an example of a steady complex pattern with the infinite set of
wavevectors implied by Fig. 3(c).

7.4. Spatiotemporal chaos

Finally, we show three examples of spatiotemporal chaos in
Fig. 10(a) and (b), with q = 0.4400 and q = 0.6180 respectively,
and in Fig. 11, with q = 0.3780 but with larger linear parameters
than the others calculations (r = 0.03). The spatiotemporal
chaos examples in Fig. 10 evolve quite slowly: a frame spacing
of 2000 time units is needed to show appreciable differences
between the frames. The frame spacing in Fig. 11 is 100 times
less. Videos of all three examples are available in [40].

In the q < 1
2 example in Fig. 10(a), there are evolving patches

of elongated hexagons, and in some frames, the power spectrum
has twelve peaks on the outer circle. In contrast, the q > 1

2
example in Fig. 10(b) has a much more axisymmetric power spec-
trum and the complexity of the pattern is more uniformly spread
across the domain. In the third example in Fig. 11, the system
alternates between episodes dominated by small hexagons and
episodes dominated by larger structures.

8. Summary and discussion

One main finding is that we only find persistent time depen-
dence (as opposed to slow healing of defects and coarsening of
grain boundaries) when Qzw and Qzz had opposite sign, as in
Figs. 10 and 11. This is consistent with our a priori expectations



J.K. Castelino, D.J. Ratliff, A.M. Rucklidge et al. / Physica D 409 (2020) 132475 13

Fig. 9. Examples of steady (or persistent) complex patterns. (a) Swirly distorted hexagons with α = 2, q = 0.5176, θ = 45◦ . After a transient of about 20000 time
units, these are replaced by hexagons. (b) Hints of ten-fold quasipattern motifs with α = 2, q = 0.6180, θ = 275◦ . This complex pattern persists for at least 50000
time units.

outlined in Table 1. With appropriate initial conditions, we find
twelve-fold quasipatterns only in the case with q =

√
2 −

√
3,

although we find eight-fold and hints of ten-fold quasipatterns
in other cases. We did find examples of steady (or persistent)
complex patterns, as in Fig. 9. It was noticeable that having two
interacting wavelengths encourages patterns with defects.

With quadratic coefficients Qzw and Qzz of opposite sign, the
preliminary 8 × 8 calculations often yield time-dependent pat-
terns, with relatively simple oscillatory, chaotic or heteroclinic
cycle dynamics. When we extend these into 30 × 30 domains,
the simple time dependence is often replaced by spatiotemporal
chaos, supporting the infinite set of wavevectors picture implied
by Fig. 3(c). We suspect that the reason for this is that in 8 × 8
domains, there are relatively few modes available close enough
to each circle to participate in the dynamics. In contrast, with
30 × 30 domains, the density of modes in Fourier space is higher,
and so modes are more likely to be able to participate in multiple
three-wave interactions, as in Fig. 2. Considering a single set
of modes coupled by a three-wave interaction, the modes may
be oscillatory. When two (or more) sets of modes, also coupled
within themselves by three-wave interaction, have modes in
common, the common modes will be torn in different directions
by their partners in the different sets, resulting in spatiotemporal
chaos.

All interesting cases of time dependence have Qzw and Qzz of
opposite sign, and time dependence can happen for all values
of q. Having Qwz and Qww of opposite sign (relevant only for
q > 1

2 ) did not lead to persistent time dependence. Having
q > 1

2 did appear to help when seeking steady complex patterns
(Fig. 9(b)): we find no examples of such patterns with q < 1

2 .

This is in contrast to the hypotheses of [27], who argued that
having q > 1

2 and having Qwz and Qww of opposite sign should
encourage complex patterns. In fact, we find that q < 1

2 is more
interesting than anticipated from the results of [27], especially
when Qzw and Qzz have opposite sign: there are many more states
possible, including spatiotemporal chaos, going well beyond the
steady superlattice example associated with q = 1/

√
7 = 0.3780,

in Fig. 7(c). We also had not anticipated finding quasipatterns in
the case q < 1

2 (as in Fig. 8(b)), but recent work [29] suggests this
warrants more exploration.

In summary, our main numerical findings described above
are broadly in line with the a priori expectations in Table 1. In
particular, time dependence, and with it complex spatial struc-
ture, requires Qzw and Qzz to have opposite sign. The other pair
of quadratic coefficients (Qwz and Qww) can also have opposite
sign for α = 5 and 6, but for these values, we mainly find
domains of hexagons. At this point, it is not clear why this
happens, nor whether other systems would behave differently.
We should emphasise that the time-dependence we have found
is not associated with a primary Hopf bifurcation to spiral waves,
common in many Turing systems.

It would be interesting to explore these complex patterns in
more detail, in the context of coupled reaction–diffusion systems,
in the context of amplitude equations, especially in the case q <
1
2 , as initiated in [49], and in the context of simpler model PDEs,
such as the ones proposed by [27,38,39,46] as models for Faraday
waves. A related PDE is known to produce three-dimensional
icosahedral quasipatterns [50] and localised quasipatterns [51],
and such structures may also be possible in Turing systems. We
plan to undertake further investigations in the future.
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Fig. 10. Frames from two examples of spatiotemporal chaos. (a) α = 2, q = 0.4400, θ = 5◦ . (b) α = 3, q = 0.6180, θ = 45◦ . The time interval between frames is
2000 time units. Videos are available in [40].

Of course, one has to ask whether these kinds of patterns can
be found in experiments, and indeed if the mechanisms for
forming them are as outlined in this paper. As explained in [13],
manipulating the strength of the coupling, and indeed the

diffusion constants, as we have done here, is difficult. Nonethe-
less, the spatially complex experimental patterns reported in [13]
(see Fig. 1) resemble, at least qualitatively, the images in Figs. 10
and 11.
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Fig. 10. (continued).

Acknowledgements

We are grateful for conversations with Mary Silber, Gérard
Iooss, Andrew Archer and Tomonari Dotera. We thank Irving
Epstein for permission to reproduce Fig. 1 from [13]. We are
also grateful for financial support from the EPSRC, UK: summer

research bursaries (JKC, DJR) and grants number EP/P015689/1
(DJR) and EP/P015611/1 (AMR). AMR is also grateful for sup-
port from the Leverhulme Trust, UK (RF-2018-449/9), and PS is
grateful for a L’Oréal UK and Ireland Fellowship for Women in
Science. CMT is supported by National Science Foundation, USA
grant DMS-1813752.



16 J.K. Castelino, D.J. Ratliff, A.M. Rucklidge et al. / Physica D 409 (2020) 132475

Fig. 11. Frames from an examples of spatiotemporal chaos: α = 3, q = 0.3780, r = 0.03, θ = 145◦ . This example evolves much more quickly than those of Fig. 10:
the time interval between frames is 20 time units. A video is available in [40].
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