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ABSTRACT: We developed a simple methodology for the
preparation of stable meso-(nitrile oxide)-substituted BODI-
PYs, which were characterized by spectroscopic methods and
X-ray crystallography. These compounds were used for the
preparation of isoxazoline− or isoxazolyl−BODIPYs by 1,3-
dipolar cycloaddition reaction with dipolarophiles. Several
BODIPYs possess molecular rotor behavior, including
viscosity-dependent fluorescence. Transient absorption spec-
troscopy and time-resolved fluorescence are indicative of a 3 orders of magnitude difference in the excited-state lifetime for
dichloromethane and glycerol solutions.

Dyes derived from the boron dipyrromethene (4,4-
difluoro-4-bora-3a,4a-diaza-s-indacene, BODIPY) at-

tracted considerable attention over the past decades because
of their excellent thermal, chemical, and photochemical
stability as well as prominent and tunable optical absorption
and fluorescence properties, general insensitivity to both
solvent polarity and pH, large two-photon cross sections for
multiphoton excitation, lack of ionic charge, and good
solubility.1 Because properties of this chromophore can be
tuned via functionalization of the α-, β-, or meso-positions of
the BODIPY core, it is not surprising to see an extensive array
of well-developed synthetic procedures reported on chemical
modification of these dyes.2 Recently, we have developed a
convenient synthetic methodology to the preparation of meso-
nitromethyl-substituted BODIPYs that is based on the addition
of nitromethane to the meso-unsubstituted boron dipyrrome-
thene in the presence of base followed by the further oxidation
of the corresponding intermediate.3 The meso-nitromethyl
group in these BODIPYs was then used for further
modification of the chromophore core via reduction or
condensation reactions. In particular, sterically nonhindered
BODIPY (1) can be easily benzoylated using anizoyl chloride
in the presence of DIPEA to form BODIPY 2. In the case of
1,7-diphenyl-substituted BODIPY derivatives, a similar reac-
tion leads only to the degradation of the BODIPY core. To our
surprise, however, in the case of less sterically crowded 1,7-
dimethyl-substituted BODIPYs 3a and 3b, a similar reaction
resulted in the formation of the stable BODIPY nitrile oxides
4a and 4b (Scheme 1 and Figure 1).

We might speculate that in the case of sterically nonhindered
BODIPY 1, the benzoylation reaction involves the accessible
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Scheme 1. Preparation of Stable BODIPY Nitrile Oxides 4a
and 4b
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carbon atom of the meso-nitromethyl fragment, whereas in the
case of more sterically hindered BODIPYs 3a and 3b, the less
sterically crowded oxygen atom of the meso-nitromethyl group
participates in the reaction. In the latter case, such a reaction
mechanism leads to the formation of nitrile oxide BODIPYs 4a
and 4b.
Nitrile oxides are known to be among the most reactive

species in organic chemistry and can undergo regioselective
and stereospecific cycloaddition with 1,3-dipolarophiles
(alkenes or alkynes) yielding isoxazoline or isoxazolyl
derivatives.4 The cycloaddition between nitrile oxides and
alkynes represents a metal-free ligation reaction that has been
employed for polymer end-group modifications.5 Nitrile oxides
usually are prepared from oxime precursors by either
dehydrohalogenation of hydroximoyl halides (Huisgen’s
reaction)6 or by oxidation with sodium hypochlorite or N-
bromosuccinimide.7 Because of their rapid dimerization to
1,2,5-oxadiazole 2-oxides (furoxans), they are usually prepared
in situ, which often limits their use in organic synthesis. The
spontaneous dimerization to furoxans can be prevented by
steric shielding of the nitrile oxide fragment facilitated by the
nearby substituents, in particular, by methyl groups.8

In comparison, preparation of the nitrile oxides by
dehydration of activated primary nitroalkanes (Mukaiyama
reaction) is less common. An aryl isocyanate in the presence of
a base is typically used for this purpose.9 In our case, BODIPYs
4a and 4b can also be formed using phenyl isocyanate as the
dehydration reagent. However, the use of benzoyl chloride is
preferential, as no substantial byproducts are formed
(Supporting Information). The presence of a 1,7-dimethyl
substitution pattern is key for the formation and stability of
BODIPYs 4a and 4b. Indeed, both compounds are stable for a
prolonged time in a solid state, can be purified by the
conventional chromatography methods, and are recrystallized
using a variety of organic solvents. Because of their excellent
stability, we were able to obtain a single crystal structure of 4a
and 4b (Figure 1). The BODIPY core in 4a and 4b was found
to be planar. In the case of 4b, the two ester groups were
almost coplanar with the plane of the BODIPY core. The bond
distances in the nitrile oxide fragments in 4a and 4b (Cmeso−
CNO = 1.4214(18)−1.427(2), C≡N = 1.1403(18)−1.150(2),
and N−O = 1.2156(19)−1.2232(16) Å) are close to those
reported for the very limited number of known nitrile oxides.10

The nitrile oxide is linear in 4a (C−C≡N = 177.82(14)−
179.13(16)° and C≡N−O = 179.15(15)−179.57(17)°) and
slightly bent in 4b (C2−C1≡N3 = 169.06(18)° and C1≡N3−
O5 = 179.5(2)°). In both molecules, nitrile oxide is nearly
coplanar with the BODIPY core. The nitrile oxide in 4a and 4b
is also well-shielded by steric interactions with the neighboring

methyl groups with the closest contacts observed at ∼2.273
(ONC−HCH3) and ∼2.576 (N−HCH3) Å.
To explore the synthetic potential of the BODIPY nitrile

oxide synthons, we focused on the chemistry of BODIPY 4a as
a more readily available compound (Scheme 2).

The reaction between nitrile oxide 4a and monosubstituted
alkenes is fast and results in the stereoselective formation of
BODIPYs 5−7 (Scheme 2). Indeed, BODIPYs 5−7 can be
formed in high yields from the equimolar amounts of reagents
just in 15 min in boiling toluene. New BODIPY−isoxazolines
can be purified using conventional chromatographic methods.
During purification steps for BODIPYs 5−7, we found only
negligible amounts of colored (i.e., BODIPY-containing) side
products. BODIPY 4a also reacts similarly with electron-rich
alkynes to form BODIPY-isoxazoles 8−11. The reaction is very
clean in the case of BODIPYs 10 and 11. Because the alkyne
precursors for BODIPYs 10 and 11 are liquids with low boiling
points, room temperature and a prolonged reaction time were
used for the formation of these compounds in high yields.
Finally, BODIPY 12 was formed by the elimination of the
−Si(CH3)3 group from 11 by treatment with a catalytic
amount of K2CO3 in methanol.
The analogous reaction between 4a and electron-deficient

alkynes was found to be less stereoselective. When BODIPY 4a
reacts with propargylic acid or its methyl ester, both possible
C4- and C5-substituted isoxazolyl stereoisomers (13a/14a and
13b/14b) were observed to form. The C4-substituted
isoxazolyl isomer (14a or 14b) is highly fluorescent, whereas
the C5-substituted isomer (13a or 13b) is nonfluorescent
when judged by the naked eye. Stereoisomers 13a and 14a can
be easily separated, as the BODIPY 14a has very low solubility
in toluene, while remaining in solution, 13a can be purified by
the conventional chromatographic methods. The ratio between
analytically pure isomers 13a and 14a is close to 4:1. In

Figure 1. ORTEP of the X-ray structures of 4a (left; one out of two
crystallographically independent molecules is shown) and 4b (right)
at 50% ellipsoid probabilities. See Supporting Information for further
details.

Scheme 2. Utilization of 4a in 1,3-Dipolar Cycloaddition
Reactions
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contrast with BODIPYs 13a and 14a, compounds 13b and 14b
have similar solubility and Rf values, which makes their
separation more challenging. Again, based on the 1H NMR
spectrum of the reaction mixture, the ratio between two
isomers is close to 2:1 (13b/14b) (Scheme 2).
Recently, in situ generated BODIPY nitrile oxide located at

the para-position of the BODIPY’s meso-phenyl substituent
was used for the formation of BODIPY−C60 fullerene dyad.

11

Thus, we tested nitrile oxide 4a in a similar 1,3-dipolar
cycloaddition reaction with C60 fullerene. The reaction
between equimolar amounts of 4a and C60 in boiling toluene
under an inert atmosphere resulted in the formation of new
chromophore 16 (Scheme 2). BODIPY 16 was purified by
flash column chromatography and has a λmax (538 nm)
between those of nitrile oxides 4a and 4b (∼560 nm) and
BODIPYs 5−15 (∼520 nm). In addition, the UV−vis
spectrum of BODIPY 16 has clear spectroscopic signatures
of fullerene in the UV region (Figure 2). Fluorescence from

the BODIPY chromophore in 16 is quenched; however, we
were able to observe weak fluorescence associated with the
fullerene chromophore (Figure S63). High-resolution mass
spectra of BODIPY 16 confirm its molecular composition. It is
interesting that under negative atmospheric-pressure chemical
ionization (APCI) mode, apart from the molecular ion of 16,
the ions of the retro-cycloaddition reaction products 4a and
C60 can be observed in the spectrum. At the same time, it
appeared to be more stable under positive mode ionization
(Figures S46 and S47). The BODIPY 16 has the shortest C60−
BODIPY donor−acceptor distance among all known BODI-
PY−fullerene dyads, and its exciting photophysical properties
will be reported later along with the other similar systems.
The UV−vis spectra of all new BODIPYs resemble those

observed for the reported earlier meso-aryl-substituted systems
and are dominated by the strong BODIPY-type absorption
between 515 and 540 nm (Figure 2). On the other hand, it is
possible to observe, even with the naked eye, that the
fluorescence of C4-substituted isoxazolyl BODIPYs 14a, 14b,
and 15 (in all of these systems, C4-substituents prevent the
rotation of the isoxazole unit) is significantly stronger when
compared to that in all other BODIPYs reported here. Indeed,
the fluorescence quantum yields measured in DCM for 14a,
14b, and 15 were found to be between 0.09 and 0.27, whereas
those for the other BODIPYs vary between 0.014 and 0.05 in
the same solvent (Table 1). Such behavior is characteristic of
BODIPY-based molecular rotors (including those with five-
membered nonconjugated heterocycles located at the meso-
position reported earlier),12 in which twisted intramolecular
charge transfer (TICT) plays a dominant role in suppressing of
fluorescence. BODIPY-based molecular rotors gained a lot of
attention, as they turn on their fluorescence in response to the

changes in viscosity and offer a high sensitivity tool to map the
viscosity within biomolecules and lipid membranes.13 The
fluorescence quantum yields of BODIPYs 5−12 and 13a and
13b increase dramatically in glycerol compared to in DCM
(Figure 3 and Table 1). Our DFT calculations agree well with

the experimental fluorescence data. The DFT-predicted
rotational barrier for well-known meso-phenyl BODIPY 17
(Figure 4), which has no TICT properties14 and has more or
less solvent-independent fluorescence quantum yields, was
found to be prohibitively high compared to that in BODIPYs 7
and 13a. To prove the TICT nature of the fluorescence
quantum yields in new molecular rotors, we subsequently
investigated the photophysics of BODIPY 7 in a MeOH/
glycerol mixture using steady-state fluorescence as well as
transient absorption spectroscopy for DCM and glycerol
solutions (Figure 3).

Figure 2. Selected UV−vis (DCM) and fluorescence (DCM and
glycerol/MeOH (9:1 v/v)) spectra of new BODIPYs.

Table 1. Spectroscopic Properties of Novel BODIPY Dyes

dye λabs (ε × 10−3, M−1 cm−1)a λem (Φf)
a λem (Φf)

b

4a 560 (60) 570 (0.70) -
4b 560 (72) 572 (0.48) -
5 515 (85.4) 524 (0.014) 524 (0.13)
6 516 (83.2) 527 (0.024) 525 (0.15)
7 516 (80.8) 525 (0.027) 525 (0.10)
8 514 (85.3) 522 (0.026) 523 (0.21)
9 514 (81.5) 523 (0.024) 523 (0.39)
10 513 (79) 523 (0.050) 523 (0.43)
11 512 (81.2) 521 (0.036) 521 (0.34)
12 514 (86) 522 (0.042) 522 (0.27)
13a 516 (80.1) 523 (0.024) 523 (0.38)
14a 517 (76.7) 525 (0.27) 525 (0.76)
13b 518 (83) 525 (0.027) 525 (0.26)
14b 518 (80.2) 529 (0.27) 527 (0.72)
15 520 (85.8) 528 (0.085) 528 (0.37)
16 538 (43.1) - -

324 (38.8)
aDCM as a solvent. bGlycerol/MeOH (90:10 v/v) as a solvent.

Figure 3. (a) Selected steady-state fluorescence, (b) linear depend-
ency of the fluorescence versus viscosity, (c) transient pump−probe
in DCM following excitation at 515 nm. The dash−dot line is the
inverted absorption spectrum scaled for comparison. (d) Time-
correlated single photon counting (TCSPC) measured at 560 nm
following excitation at 465 nm in DCM (green) and glycerol
(maroon). The instrument response is shown in blue.
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In the case of steady-state experiments, the integrated
fluorescence intensity increased linearly with solvent viscosity.
Transient pump−probe spectra were a combination of a
ground-state bleach and stimulated emission. There was no
evidence of absorption from any additional intermediates, and
the signals exponentially returned to the ground state,
indicating first-order decay of the initially excited state directly
back to the ground state. The lifetime of the excited state was
quantified using time-correlated single photon counting
(TCSPC). The data was well-fitted with a single exponential
decay convoluted with the instrument response function. The
excited-state lifetime was 59 ± 3 ps in DCM and 3745 ± 7 ps
in glycerol. The solvent dependence of the emission quantum
yields and excited-state lifetimes are consistent with the TICT
molecular rotors, and the BODIPY dyes reported here
represent a new type of fluorogenic viscosity-driven responsive
probes.
In conclusion, we report here a simple, scalable method for

the preparation of stable meso-(nitrile oxide)-substituted
BODIPYs. The critical requirement for this methodology’s
success was the presence of moderately bulky methyl groups at
positions 1 and 7 of the BODIPY core: these not only facilitate
the formation of nitrile oxides but also stabilize these resulting
molecules in solution and the solid-state. New nitrile oxide 4a
can be introduced in a variety of cycloaddition reactions with
1,3-dipolarophiles (alkenes, alkynes, and C60 fullerene), which
leads to the formation of BODIPY−isoxazoline and BODIPY−
isoxazolyl derivatives in mild conditions and excellent yields.
The majority of new BODIPYs possess prominent molecular
rotor properties, with high sensitivity to the solvent viscosity.
The excited-state lifetime was increased by three-orders of
magnitude when going from a DCM solution to a glycerol
solution. The new BODIPY−C60 system 16 with the fullerene
acceptor directly linked to the meso-position of BODIPY
represent a new class of donor−acceptor dyads with potentially
interesting electron-transfer properties.
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