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Abstract
Maximum likelihood estimation of multilevel structural equation model (MLSEM) parameters is a
preferred approach to probe theories involving latent variables in multilevel settings. Although
maximum likelihood has many desirable properties, a major limitation is that it often fails to con-
verge and can incur significant bias when implemented in studies with a small to moderate multilevel
sample (e.g., fewer than 100 organizations with 10 or less individuals/organization). To address
similar limitations in single-level SEM, literature has developed Croon’s bias-corrected factor score
path analysis estimator that converges more regularly than maximum likelihood and delivers less
biased parameter estimates with small to moderate sample sizes. We derive extensions to this
framework for MLSEMs and probe the degree to which the estimator retains these advantages with
small to moderate multilevel samples. The estimator emerges as a useful alternative or complement
to maximum likelihood because it often outperforms maximum likelihood in small to moderate
multilevel samples in terms of convergence, bias, error variance, and power. The proposed esti-
mator is implemented as a function in R using lavaan and is illustrated using a multilevel mediation
example.
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Organizational research often involves multilevel theories that probe complex systems of latent

variables using observable but fallible indicators subject to measurement error. A common approach

to operationalize such multilevel structures and address the measurement error associated with

fallible indicators is to construct and connect multiple indicator factor models using multilevel

structural equation models (MLSEMs; e.g., Li & Beretvas, 2013). Full information methods such

as maximum likelihood (ML) estimation of all parameters has been shown to be an effective strategy

to address the deleterious effects of measurement error (e.g., bias, inaccurate inferences, erroneous

estimates of power) in large sample settings (e.g., Cheung & Lau, 2008, 2017; Cole & Preacher,

2014; Ledgerwood & Shrout, 2011; Li & Beretvas, 2013).

MLSEMs are however often heavily parameterized and, as a result, ML estimation typically

requires large sample sizes at each level to dependably deliver stable and admissible solutions that

provide unbiased estimates of the parameters and their standard errors (Li & Beretvas, 2013;

McNeish, 2017). For instance, research on mediation with MLSEM has demonstrated that ML

frequently encounters convergence or estimation errors and produces biased parameter estimates

and standard errors even in simple models with samples of 40 organizations and 20 individuals per

organization (e.g., Li & Beretvas, 2013). This research has established that a minimum of 80 to 100

organizations are required to ensure model convergence with simple multilevel models and sug-

gested even larger samples are needed for ML to dependably deliver nearly unbiased parameter

estimates and standard errors across common conditions (Gagne & Hancock, 2006; Hox & Maas,

2001; Li & Beretvas, 2013; McNeish, 2017).

Yet, substantive literature has emphasized that the benefits of studying theories, interventions,

and intermediate processes are not limited to large-scale studies—small- to moderate-scale studies

offer critical contributions to theory and social issues when they are well executed (e.g., Bodner &

Bliese, 2018; Walton, 2014). In many areas of research, samples of fewer than 80 organizations are

typical and samples greater than 80 may be considered prohibitively large (e.g., Schochet, 2011;

Spybrook, Shi, & Kelcey, 2016). Perhaps because of the mismatch between the scale of many

multilevel studies and the large-scale requirements of ML estimation in MLSEM, literature reviews

have reported a widespread absence in the appropriate adjustment for measurement error (e.g.,

Aguinis, Edwards, & Bradley, 2017). This lack of treatment of measurement error may be in part

attributable to the lack of suitable methods available for small- to moderate-scale studies rather than

researcher oversight.

A historical alternative to ML estimation of MLSEM parameters is a type of limited information

factor score path analysis. This approach reduces MLSEMs to the more parsimonious multilevel

path models by using single equation ML to estimate each of the factor models and then substitutes

the resulting factor scores in place of the measurement models to estimate the structural model

parameters (Cheung & Lau, 2017; Devlieger, Mayer, & Rosseel, 2016; Devlieger & Rosseel, 2017;

Hoshino & Bentler, 2013; Li & Beretvas, 2013; Lu, Kwan, Thomas, & Cedzynski, 2011; McNeish,

2017). This type of multilevel path analysis with factor scores has been shown to outperform ML in

MLSEM in terms of power and in the stability and convergence of estimates but is well known to

produce biased estimates of path coefficients and sampling variance when measurement error is

present (Li & Beretvas, 2013).

Contemporary advances in single-level designs have, however, shown that the nature of this bias

can be tracked and corrected by taking into account the results of the measurement model error

associated with each latent construct (Croon, 2002). One recent development in this framework is

Croon’s bias-corrected version of factor score path analysis (Devlieger et al., 2016; Devlieger &

Rosseel, 2017).

Croon’s bias-corrected factor score path analysis can be implemented through four general steps:

(a) separately estimate factor models and scores for each latent variable (e.g., for covariates, med-

iator, outcome) using ML; (b) estimate the variance-covariance matrix of the factor scores (e.g.,
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covariates, mediator, outcome) and any observed variables (e.g., treatment status); (c) use the results

of the measurement models in (a) to construct a method of moments type correction and use it to

adjust the variance-covariance matrix; and (d) estimate the path model using the corrected variance-

covariance matrix.

This approach parallels the conventional but suboptimal factor score path analysis method.

However, it differs in one key way—the conventional path analysis approach uses the factor score

variance-covariance matrix to estimate structural relationships whereas Croon’s approach intro-

duces a method of moments adjustment based on the measurement model—in step (c) above—to

correct the factor score variance-covariance matrix and obtain a consistent estimate of the variance-

covariance matrix.

Recent developments have provided a theoretical and empirical basis for the application of

Croon’s bias-corrected estimator to a broad range of settings and have identified the estimator as

an important small to moderate sample estimation alternative for SEMs (Devlieger et al., 2016;

Devlieger & Rosseel, 2017; Loncke et al., 2018). For instance, past literature with single-level

structural equation models has shown that Croon’s estimator outperforms ML in a wide variety

of settings including small to moderate samples, missing data, measurement misspecifications,

structural misspecifications, and correlated error terms (Devlieger et al., 2016; Devlieger & Rosseel,

2017; Hayes & Usami, 2019; Kelcey, 2019; Loncke et al., 2018; Lu et al., 2011). Given the potential

analytic advantages of Croon’s limited information estimator in buttressing evidence from small- to

moderate-scale studies, an open set of questions is if and how these methods can be extended to

multilevel settings where governing sample sizes (i.e., the number of organizations) tend to be small

to moderate and model complexity tends to be high.

In this study, we extend the scope of Croon’s bias-corrected estimator by deriving its corrections

for multilevel studies. We detail the estimation of relationships within a multilevel system. We then

take up a case study of multilevel mediation to anchor and apply the developments and provide an R

function to implement Croon’s method using the lavaan package. Finally we assess of the absolute

and relative performance of the estimator with multilevel mediation models using a Monte Carlo

simulation and conclude with a discussion of the results, implications and limitations.

Working Example

We detail the development of the multilevel extension of Croon’s estimator through its implemen-

tation in a multilevel mediation application that is graphically depicted in the top-left frame of

Figure 1 (notation and models subsequently detailed). We note that although we describe the

estimator within the context of a common multilevel mediation model, the framework can accom-

modate a much wider range of mediation models and MLSEMs. In general, the estimator and

method we develop can be applied to a broad range of standard MLSEMs, including, for example,

sequential mediation models, multiple mediator models, models with multiple outcomes, models

with multiple interventions, and models with combinations of these and other features. We outline

some of the limitations and future work of the framework in the discussion section.

Our working example draws on multilevel mediation as it represents one prevalent type of

MLSEM in organizational research and in research across almost every area of the social sciences

(e.g., Aarons & Sawitzky, 2006; Allen, Herst, Bruck, & Sutton, 2000; Brough & O’Driscoll, 2005;

Brough, O’Driscoll, Kalliath, Cooper, & Poelmans, 2009; Brown et al., 2014; Eby, Casper, Lock-

wood, Bordeaux, & Brinley, 2005; Kelcey, Hill, & Chin, 2019; Ketelaars, 2017; Sampson, Rauden-

bush, & Earls, 1997; Song, Tsui, & Law, 2009). There are of course many other types of MLSEMs

that are common in the organizational sciences and for which the proposed estimator is suitable.

However, we focus on multilevel mediation because it provides a clear introduction to the
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corrections in multilevel settings and it allows us to provide a specific and targeted initial simulation

assessment of the performance of the estimator.

Suppose we would like to assess the mediation effect of an organizational policy promoting a

family-friendly workplace culture (organization-level intervention) on employee self-reported orga-

nizational commitment (individual-level outcome) as it operates through employee self-reported

work-life balance (individual-level mediator; e.g., Brough et al., 2009; Eby et al., 2005). Let us

consider an experiment that randomly assigns the family-friendly policy to organizations and is

designed to assess the extent to which the policy improves organizational commitment by improving

work-life balance—both of which are assessed with error using individual-level indicators.

Although random assignment of the policy directly addresses the potential for confounding

variables regarding the main effect of the policy on employee organizational commitment, it does

not address the potential for variables that confound the relationship between the mediator and the

outcome (i.e., sequential ignorability; e.g., VanderWeele, 2010). Omission of variables that con-

found the mediator-outcome relationship can bias path coefficients and this bias can be further

amplified when ignoring measurement error (Fritz, Kenny, & MacKinnon, 2016). In order to

plausibly identify the mediation effect, we must adjust for measurement error and for variables that

confound the relationship between the mediator and outcome. For this reason, our example addi-

tionally includes latent covariates at both levels—an organization-level covariate assessed with error

Figure 1. Conceptual representation of a 2-1-1 MLSEM mediation model when the mediator, outcome, and
covariate are subject to measurement error (top panel) and the steps to implementing this model using the
bias-corrected estimator; panels (a), (b), (c), and (d) capture the respective measurement models for each
latent trait in the system, while panel (e) captures the corrected path analysis.
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using organization-level indicators (W) and an individual-level covariate measured with error using

individual-level indicators (X). Figure 1 provides an illustration that corresponds to this working

example. Our subsequent analysis makes the assumption that conditioning on these covariates

resolves confounding bias and further correctly identifies the mediation effect. However, we note

that this assumption requires careful consideration in practice, and we probe the extent to which our

results are sensitive to this assumption in the simulation.

Model

We draw on a MLSEM formulation that uses multilevel and single-level common factor models

(e.g., Preacher, Zyphur, & Zhang, 2010). We use the single-level common factor model (described

below) for the organization-level latent covariate (ZW ) and the multilevel factor model (described

below) for the individual-level outcome (decomposed into ZL2
Y and ZL1

Y ), mediator (decomposed into

ZL2
M and ZL1

M ), and covariate (decomposed into ZL2
X and ZL1

X ). The structural model then organizes the

variables such that the mediator path model is

ZL1
Mij
¼ z0 þ z1Z

L1
Xij
þ eM

ij eM
ij *Nð0;s2

Mj
Þ

ZL2
Mj
¼ p0 þ aTj þ p1ZWj

þ p2ZL2
Xj
þ uM

j uY
j *Nð0; t2

Mj
Þ

ð1Þ

For variation among organizations (ZL2
Mj

), Tj is a treatment indicator for organization j, a is the

path coefficient capturing the impact of the policy on the mediator, p1 and p2 are the path coeffi-

cients for the latent organization-level covariate (ZWj
) and the organization-level component of the

individual-level covariate (ZL2
Xj

), p0 is the intercept, and uM
j is the organization-specific random effect

on the mediator. Similarly, for variation among individuals within organizations (ZL1
Mij

),z1 is the path

coefficient for the individual-level component of the individual-level covariate (ZL1
Xij

),z0 is the inter-

cept, and eM
ij is the individual-specific error for the mediator. Similarly, the outcome path model is

ZL1
Yij
¼ b0 þ b1ZL1

Mij
þ b1Z

L1
Xij
þ eY

ij eY
ij*Nð0;s2

Yj
Þ

ZL2
Yj
¼ g00 þ bZL2

Mj
þ c

0
Tj þ g1ZWj

þ g2Z
L2
Xj
þ uY

j uY
j *Nð0; t2

Yj
Þ

ð2Þ

We use b as the path coefficient for the organization-level component of the latent mediator (ZL2
Mj

), c0

as the path coefficient for the direct effect of the policy on the outcome,g1 and g2 as path coefficients for

the organization-level latent covariate (ZWj
) and the organization-level component of the individual-

level covariate (ZL2
Xj

),g00 is the intercept, and uY
j as the organization-specific random effect. For variation

among individuals in the latent outcome (ZL1
Yij

),b0 is the intercept, b1 is the path coefficient for the

individual-level component of the latent mediator (ZL1
Mij

), b1 is the path coefficient for the individual-

level component of the individual-level latent covariate (ZL1
Xij

), and eY
ij as the individual-level error.

Within this framework, we use the a path coefficient from the mediator model to quantify the

changes in work-life balance brought about by a new family-friendly workplace policy and the b

coefficient to quantify how changes in work-life balance and the new organizational culture are

conditionally associated with improved organizational commitment. In our example, we assess the

mediation effect (ME) that quantifies the shared organization-level covariance among the organiza-

tional policy, work-life balance (mediator) and organizational commitment (outcome) at the

organization-level. The effect is typically estimated using the product of the organization-level path

coefficients for the intervention-mediator path (a) and mediator-outcome (b) paths: ME ¼ ab.
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Croon’s Bias-Corrected Estimator

We next provide a step by step outline of our developments along with an example analysis using the

lavaan package (Rosseel, 2012). We first describe the measurement models and factor scores, and

considerations for extending Croon’s estimator to a multilevel framework—steps (a) and (b) above.

We then detail the resulting multilevel corrections—step (c) above. Last, we discuss the path

analysis with the bias-corrected estimator—step (d) above—and end with inferential considerations.

Measurement Models

We begin by delineating step (a)—we detail how to fit separate factor models to each latent variable

using ML and then follow with the prediction of the respective factor scores (or the covariance

matrix of the factor scores; see a-d in Figure 1). Within the context of multilevel structures, we

describe two primary types of measurement models that arise—single-level and multilevel factor

models. In our two-level setting, single-level factor models are primarily used when we draw on

organization-level indicators (i.e., constant within an organization) to measure a latent variable that

varies only among organizations whereas multilevel factor models are employed when we draw on

individual-level indicators that vary within and across organizations in order to track a latent

variable that potentially varies both within and across organizations. We outline these models below

and the considerations that help us to subsequently operationalize the bias-corrected estimator in

multilevel settings.

Organization-level variables. We start by considering a single-level common factor model for

organization-level latent variables that draws on observed indicators (w). For instance, our measure-

ment model for the latent covariate (ZW ) in the 2-1-1 example depicted in panel (a) of Figure 1 is

wj ¼ μW þ ΛWZWj
þ εW

j ð3Þ
We use j to index organizations, wj as the observed indicators for the latent covariate ZW, LW as

the factor loadings, μW as the indicator intercepts, εW
j as the error terms, and we set the scale by

fixing the variance of ZWj
to one (or alternatively fixing the loading of the first indicator to one).

Having fit a factor model for the organization-level latent variable using ML, we then follow with

the prediction of the factor scores using, for example, the regression predictor method.

Individual-level variables. Now consider an individual-level latent variable such as the outcome (ZY )

depicted in panel (d) of Figure 1. Our multilevel measurement model is

yij ¼ μYj
þ ΛL2

Y ZL2
Yj
þ ΛL1

Y ZL1
Yij
þ εY L2

j þ εY L1

ij ð4Þ
We use yij as the indicators of individual i in organization j for the latent variable, ZL2

Yj
and ZL1

Yij
as

the organization- and individual-level components of the latent variable, ΛL2
Y and ΛL1

Y as the orga-

nization- and individual-level factor loadings, μYj
as intercepts that vary across organizations, and

εY L2

j and εY L1

ij as the organization- and individual-level error terms. We set the scale by assigning unit

variances to the organization- and individual-level factors (or by fixing the loading of the first

indicator at each level to one). We can estimate similar measurement models for the mediator and

the individual-level covariate (X).

To operationalize the proposed bias-corrected estimator in multilevel settings, we need to esti-

mate the covariances of the factor scores at the organization- and individual-level for pairs of

constructs. For variables that capture variation solely among organizations (e.g., the organization-
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level covariate W), we can use single-level factor scoring methods. However, for variables that vary

among and within organizations, we must take into account the organizational or clustered nature of

its observed indicators. Conceptually, the organization-level factor scores for a latent variable (e.g.,

outcome) that varies both within an organization and among organizations can be expressed as

~Y
L2

j ¼ AL2
Y1

yL2
1j þ AL2

Y2
yL2

2j þ AL2
Y3

yL2
3j ð5Þ

Here we use ~Y
L2

j as the predicted factor score for organization j, yL2
:j as the organization-level

components or random intercepts of the indicators and AL2
Y : as the organization-level factor score

matrix weights. When the variance of the factor is set to one, the AL2
Y : regression weights are

AL2
Y : ¼ C�1

yL2 ΛL2
Y ð6Þ

with C�1
yL2 as the inverse of the organization-level covariance matrix of the outcome indicators and

ΛL2
Y as the organization-level factor loadings from the multilevel measurement model in Equation 4.

When predicting organization-level factor scores for the organization-level component ( ~Y
L2

j ) of a

latent variable such as the outcome, C�1
yL2 and ΛL2

Y are directly available from the multilevel factor model.

However, the organization-level components of the individual-level indicators (yL2) are also required

but are themselves latent variables. As a result, the method requires suitable predictions of yL2 to

operationalize the estimator. That is, in single-level studies the values of the indicators are observed

and can be directly used to construct factor scores; with multilevel latent variables, however, the values

of the indicators at the organization level (e.g., yL2) are not directly observed and must also be predicted.

There are multiple univariate and multivariate approaches one could adopt to predict the

organization-level values of indicators. Multivariate approaches that simultaneously decompose all

of a factor’s indicators potentially strengthen predictions because they leverage the interrelations of

the indicators. However, such approaches are potentially susceptible (perhaps to a lesser degree) to

the same types of convergence and estimation errors associated with ML because of their complexity

relative to sample size. Below we outline univariate approaches that accept issues of factor score

indeterminacy and uncertainty in exchange for less complexity and potentially fewer convergence

issues. However, the function also allows for multivariate approaches.

We considered two univariate predictors of the organization-level components of indicators—orga-

nizational means and empirical Bayes means. Organizational means simply estimate the cluster-level

components of the indicators with the observed organization-specific means (denoted �y:j). This

approach picks up both the organization-level variation (yL2) and a piece of the individual-level variation

(yL1) that is proportional to the number of individuals sampled per organization (Muthén, 1991).

An alternative approach is to predict the organization components of the indicators using an

empirical Bayes estimator. Empirical Bayes prediction forms precision weighted means on the basis

of the reliability of organizational means (e.g., Raudenbush & Bryk, 2002). For instance, for the first

indicator, an empirical Bayes prediction (yL2EB

1:j ) can be obtained as

y
L2EB

1:j ¼
t2

yL2
1

t2
yL2

1

þ s2
yL1

1

=n1j

 !
�y1:j þ 1�

t2
yL2

1

t2
yL2

1

þ s2
yL1

1

=n1j

 !
�y1:: ¼ Ry1j

�y1:j þ ð1� Ry1j
Þ�y1: ð7Þ

where �y1:: is the overall mean for the indicator, t2
yL2

1

and s2
yL1

1

are its variances at the organization and

individual levels, and Ry1j
is the reliability of the organization-level scores for the first indicator for

organization j (note that Ry1j
¼ Ry1

when the number of individuals per organization are equal

n1j ¼ n1). The empirical Bayes approach provides consistent estimates but still incurs finite sample
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bias that is proportional to the intraclass correlation coefficient and the number of individual

sampled per organization.

Multivariate versions of this approach can also be used. For example, for a given set of

indicators (e.g., y1, y2, and y3), we can estimate the organization-level covariance matrix (T) and

the individual-level covariance matrix (V). We then can then construct a multivariate reliability

matrix (Ωyj
) as

Ωyj
¼ TðTþ V=n1jÞ�1 ð8Þ

with empirical Bayes multivariate predictions (yL2EB

j ) as

yL2EB

j ¼ Ωyj
�yj þ ðI�Ωyj

Þ�y ð9Þ

Corrections

We next detail the core machinery of the proposed estimator—the covariance-based corrections. The

factor score-based covariance matrices developed above will be biased because they neglect the

uncertainty introduced by representing the latent constructs and indicators with factor scores (e.g.,

Bollen, 1989). We derive a Croon (2002) type method of moments correction that adjusts the

covariances for the unaccounted measurement error to produce consistent estimates of the covar-

iance matrices at each level.

The proposed estimator is similar in character to two-stage ML approaches (e.g., Savalei & Bentler,

2009), stepwise estimators developed for latent class models (e.g., Bakk & Vermunt, 2015), or the

(improved) regression calibration approaches (e.g., Skrondal & Kuha, 2012) because it introduces a

correction factor that accounts for the attenuating effects of the uncertainty in the factor scores

stemming from both the measurement and the multilevel components. More conceptually, the correc-

tions detailed below parallel classical test theory disattenuation formulas for the correlation between

two unreliably measured constructs—principally the corrections we derive leverage the unreliabilities

of the latent variables to adjust for the impact of measurement error on a covariance (Spearman, 1904).

For example, the classical test theory adjustment disattenuates the correlation between two measure-

ment error prone variables by dividing it by the square root of the product of the variable reliabilities.

In MLSEM these reliabilities (and their uncertainties) are unknown and must be estimated through

complex functions of the parameters in the measurement models. The corrections we propose in this

study conceptually extend the classical test theory style adjustments because they first identify the

expected relationship among the covariance of latent variables, the covariance of their factor scores,

and the unreliabilities of the factors, and second develop empirical estimates of those unreliabilities

using the estimated factor models. In turn, the proposed estimator blends the estimation stability of

factor score path analysis with the measurement error-corrections typically associated with ML.

Below we outline the nature of these corrections (see Supplemental Material Part 2 for details) as

classified by the levels of pairs of variables. We outline the corrections for (a) the covariance

between two organization-level variables, (b) the covariance between an organization- and

individual-level variable, (c) the organization-level covariance between two individual-level vari-

ables, and (d) the individual-level covariance between two individual-level variables.

Organization-level variables. The first case we consider is the correction associated with the covariance

between two organization-level latent variables. Consider the covariance between two organization-

level latent variables (e.g., ZA and ZB) as a function of the covariance between their organization-level

covariate factor scores ( ~A and ~B) under the regression predictor method. Once we have the covariance
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between the factor scores (covð ~A; ~BÞ) based on the aforementioned single-level factor models, a

corrected estimate of the covariance between the latent constructs (covðZA;ZBÞ) can be obtained as

covðZA;ZBÞ ¼
covð ~A; ~BÞ

AAΛAΛ0
BA

0
B

ð10Þ

where A is a factor score matrix and Λ is a factor loading matrix. In essence and form, the correction

replicates the adjustment necessary for single-level structural equation modeling (Devlieger et al.,

2016). Equation 10 indicates that a corrected estimate of the covariance between two organization-

level latent variables can be obtained by dividing the covariance of their factor scores by the matrix

product of their factor score and loading matrices. More conceptually, the core intuition here is that

the product of the factor score and loading matrices for each latent variable (e.g., AAΛA) provides a

type of model-based estimate of the latent variable’s reliability. In turn, a disattenuated estimate of

the covariance between two organization-level latent variables can be obtained by dividing the

covariance of the factor scores by the product of the empirical reliabilities (AAΛAΛ
0
BA

0
B).

In our working 2-1-1 mediation example (Figure 1), consider the covariance between the

organization-level latent covariate (ZW ) and the manifest treatment variable (T). For manifest

variables, adjustments to covariances are based solely on the factor model of the covarying latent

variable. In our example, the correction for the covariance is reduced to adjusting only for the factor

score and loading matrices of the latent covariate such that

covðZL2
W ; TÞ ¼

covð ~W ; TÞ
AW ΛW Λ0

T A
0
T

¼ covð ~W ; TÞ
AW ΛW

ð11Þ

Organization- with individual-level variables. Next, we detail the corrections for cross-level covar-

iances—that is, the covariance between an organization- and individual-level latent variable. In our

working 2-1-1 mediation example (Figure 1), consider the covariance between the organization

component of outcome latent variable (ZL2
Y ) and the organization-level covariate (ZW ) as a function

of the covariance their factor scores (covð ~Y
L2

EB;
~WÞ) under the aforementioned univariate empirical

Bayes approach for the indicators. For such cross-level relationships, the correction is (see Supple-

mental Material Part 2.1).

covðZL2
Y ;ZW Þ ¼

covð ~Y
L2

EB;
~W Þ

AL2
Y RyΛL2

Y Λ0
W A

0
W

ð12Þ

Here covðZL2
Y ;ZW Þ is the covariance between the organization-level component of an individual-

level latent variable and an organization-level latent variable, covð ~Y
L2

EB;
~W Þ is the covariance of the

estimated factor scores when using empirical Bayes estimates of the organization-level components

of the indicators, A is a factor score matrix, and Λ is a factor loading matrix. Further, Ry (or Ωyj
if

multivariate) is a vector (or matrix) of the average outcome indicator reliabilities. For example,

under the univariate approach the average outcome indicator reliability for the first indicator of the

outcome is

Ry1
¼ 1

n2

Xn2

j¼1

t2
yL2

1

t2
yL2

1

þ s2
yL1

1

=n1j

 !
¼ 1

n2

Xn2

j¼1

Ry1j
ð13Þ

Conceptually, the results simply indicate that in addition to adjusting for the unreliability of the

factors (as in the case for single-level or with two organization-level variables), we must further
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correct for the unreliability of the indicators (e.g., using Ry or Ωy). Similar derivations regarding the

covariance between an organization- and an individual-level latent variable under the organizational

means approach shows that its correction parallels that of the Empirical Bayes approach but does not

require additional adjustment for the indicator unreliability—only the corrections in Equation 10 are

necessary (see Supplemental Material Part 2.1).

Organization-level component of individual-level variables. We next consider the organization-level cov-

ariance between two latent variables measured at the individual level. When considering the covar-

iance of the organization-level components of an outcome and mediator assessed at the individual

level (denoted as covðZL2
Y ;Z

L2
M Þ) using the empirical Bayes estimates of the indicators, the resulting

correction is (see Supplemental Material Part 2.2)

cov ZL2
Y ;Z

L2
M

� � ¼ cov ~Y
L2

EB;
~M

L2

EB

� �
AL2

Y RyΛL2
Y ΛL2

M RmAL2
M

ð14Þ

Here covðZL2
Y ;Z

L2
M Þ is the covariance between the organization-level components of an outcome

and mediator assessed with individual-level indicators, cov ~Y
L2

EB;
~M

L2

EB

� �
is the covariance of the

estimated factor scores when using a univariate empirical Bayes estimates, AL2 and ΛL2 are the

factor score matrix and loading matrix at the organization level, and R: are the respective vectors of

indicator reliabilities (replaced by Ωyj
in the multivariate approach). Once again, the results suggest

that Croon’s bias-corrected estimator can be adapted by adjusting for the unreliability of the indi-

cators in both the outcome (Ry) and mediator (Rm).

Individual-level component of individual-level variables. In complement to previous type of organization-

level covariance, we can consider the individual-level covariance between two latent variables

measured at the individual level. This covariance arises when, for example, we are interested in

assessing the within organization relationship between the latent mediator and outcome (labeled b1).

The correction for the covariance of the individual-level components of an outcome and mediator

assessed at the individual level (covðZL1
Y ;Z

L1
M Þ) is the same as that in the single level case (i.e.,

Equation (10)).

Having corrected the covariances, we can then adjust the variance of each latent variable. When

setting the scale of a latent variable by fixing its variance to unity, we can replace the variance of the

factor scores for a given latent variable with this scaling (i.e., set factor variances to one). When

fixing the loading of the first indicator to unity, we replace the variance of the factor scores with the

latent variance estimate obtained in the factor model (e.g., for the outcome, we use the estimated

level two variance from model (4)).

Bias-Corrected Path Analysis

Having formed corrected covariance matrices, we can then separately estimate the organization- and

individual-level structural models described in Equation 1 using separate conventional single-level

path analyses or a combined multilevel path analysis on the corrected covariance matrices.

Inference

In order to draw statistical inferences regarding parameter values, we need to track their error

variance. Standard model-based approaches that use the information matrix to estimate the error

variance fail in the current context because they do not account for the additional uncertainty that
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arises from measurement error and its corrections. To address this limitation, we can use bootstrap-

based methods (e.g., Efron & Tibshirani, 1993). There are several potentially applicable implemen-

tations of the bootstrap in the current context, but one simple approach is a parametric bootstrap

based on the estimates obtained in the original analysis.

The flow of this resampling approach is as follows: (a) sample new values of the latent variables

based on multivariate normality with covariances taken from the corrected covariance matrix, (b)

sample new values of the latent variable indicators using the estimated measurement model para-

meters, (c) reestimate the MLSEM using Croon’s method, and (d) replicate (a) to (c) a sufficient

number of times to establish stable parameter distributions. We then draw on percentile-based

confidence intervals to test hypotheses or form confidence intervals.

Illustration

Continuing with our working example, suppose we would like to assess the indirect effect of an

organizational policy promoting a family-friendly workplace culture (organization-level interven-

tion) on employee self-reported organizational commitment (individual-level outcome) as it oper-

ates through employee self-reported work-life balance (individual-level mediator; e.g., Brough

et al., 2009; Eby et al., 2005). Let us consider data that draws on a sample of 30 organizations with

5 employees per organization (150 total individuals).

To begin our example analysis in R, we download call the bcfspa function and download the data

(see Supplemental Material) and read it into R using

d <- read.table(file¼"211 example.dat", h¼TRUE)

We then specify the model depicted in Figure 1 using lavaan syntax. We identify the

scales of the latent variables by fixing the loading of the first indictor to one yielding a

specification of

sem1model<- 0

level: 1
fyL1 ¼* y1þy2þy3
fmL1 ¼* m1þm2þm3
fxL1 ¼* x1þx2þx3
fyL1 * fmL1þfxL1

level: 2
fxL2 ¼* x1þx2þx3
fyL2 ¼* y1þy2þy3
fmL2 ¼* m1þm2þm3
fw ¼* w1þw2þw3
fyL2 * fmL2þTþfxL2þfw
fmL2 * TþfxL2þfw0

Alternatively, we could free the loading of the first indicator for each factor at both levels and

constrain the variance for each factor at both levels to be one. Having specified the model, we can

then estimate the parameters using ML with

semML <- sem(sem1model, data ¼ d, cluster¼"id")
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To implement the multilevel version of Croon’s estimator detailed in this study, we can call the

bcfspa()function. The model and argument specification of the bcfspa()parallels that of the

sem()function in the lavaan package

croon1 <- bcfspa(sem1model, data ¼ d, cluster ¼ "id")

A summary of the organization-level coefficients can be obtained using, for example,

croon1$ ' Level 2 Empirical Bayes corrected ' [[1]]$ ' Coefficients
Table ' [[1]]

The first argument in the bcfspa function (sem1model) specifies the model, the data
argument indicates the data frame, cluster defines the level two membership or grouping

variable.

In addition, a method argument selects either the default empirical Bayes ("eb") or the

organizational means ("means") approach for tracking the decompositions of the indicators and

a univariate argument indicates whether these indicator decompositions should be done in a

univariate manner (default) or a multivariate approach, a levels argument indicates which level

(i.e., “2” or “1”) should be output (defaults to both levels), and the uncorrected.cov and

corrected.cov arguments are logical indications of whether the (un)corrected covariance

matrix and path coefficients should be returned. For instance, we can also obtain the uncorrected

factor score path analysis estimates using

croon2<- bcfspa(sem1model, data ¼ d, cluster ¼ "id", uncorrected.
cov ¼ T)

croon2$ ' Level 2 Empirical Bayes Uncorrected ' [[1]]$ ' Coefficients
Table ' [[1]]

A different specification draws on metric invariance across levels by constraining indicator

loadings to be equal across levels. In this context, indicators are equally good at discriminating

among organizations and individuals on the latent variables. We can extend the syntax using the

standard lavaan code that introducing labels such that

sem2model<- 0

level: 1
fyL1¼* Ly1*y1þLy2*y2þLy3*y3
fmL1¼* Lm1*m1þLm2*m2þLm3*m3
fxL1¼* Lx1*x1þLx2*x2þLx3*x3
fyL1 * fmL1þfxL1

level: 2
fxL2¼* Lx1*x1þLx2*x2þLx3*x3
fyL2¼* Ly1*y1þLy2*y2þLy3*y3
fmL2¼* Lm1*m1þLm2*m2þLm3*m3
fw ¼* w1þw2þw3
fyL2 * fmL2þTþfxL2þfw
fmL2 * TþfxL2þfw0

Here, labels such as Ly1 are used to premultiply the indicators and by using the same label on

both levels for an indicator the loadings are constrained to be equal. The equal loading model can be

estimated using the bcfspa() function without any additional changes

croon3 <- bcfspa(sem2model, data ¼ d, cluster ¼ "id")
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Results

The resulting organization-level estimates under the first specification (croon1) based on ML,

Croon’s, and uncorrected factor score path analysis as well as the true coefficient values are dis-

played in Table 1. In this analysis, we notice few differences among the loading coefficients

produced by the different estimators and each is quite close to its true value. In contrast, the path

coefficient estimates are highly variable across estimators. Each approach takes on bias, however,

Croon’s approach returns estimates with the smallest amount of bias across all coefficients. In terms

of the mediation effect, for instance, while the true mediation effect was ab ¼ 0.93(0.50) ¼ 0.47,

Croon’s returned an estimate of 0.81(0.47) ¼ 0.38 whereas ML returned 0.76(–0.13) ¼ –0.10, and

the uncorrected method returned 0.67(0.38) ¼ 0.25.

Although the methods differentially incurred bias across structural coefficients, Croon’s method

had the lowest average absolute bias at 0.10 (relative bias of 21%). In contrast, ML took on nearly

four times that with an average absolute bias of 0.35 (relative bias of 71%) while the uncorrected

approach took on an average absolute bias of 0.22 (relative bias of 44%). Although this example was

purposefully chosen to illustrate the differences among the approaches, these observed discrepan-

cies align well with the subsequent simulation results. More generally, the theoretical and subse-

quent simulation results of our study and other studies suggest that such discrepancies are common

in small to moderate samples.

Table 1. Organization-Level Measurement and Structural Model Results for 2-1-1 Illustrative Example.

Coefficient True Croon-EB FS-EB ML

Measurement
Model lL2

W1
1 1 1 1

lL2
W2

1 0.99 0.99 1.00

lL2
W3

1 0.88 0.88 0.89

lL2
X1

1 1 1 1

lL2
X2

1 1.28 1.28 1.10

lL2
X3

1 0.83 0.83 0.76

lL2
Y1

1 1 1 1

lL2
Y2

1 0.95 0.95 0.95

lL2
Y3

1 0.91 0.91 0.92

lL2
M1

1 1 1 1

lL2
M2

1 0.99 0.99 0.98

lL2
M3

1 1.05 1.05 1.09

Ave abs bias — 0.07 0.07 0.06
Structural
Model a 0.93 0.81 0.68 0.76

b 0.50 0.47 0.38 -0.13
c’ 0.18 0.56 0.72 0.96
g1 0.11 0.20 0.37 0.50
g2 0.68 0.66 0.55 0.95
p1 0.68 0.69 0.58 0.54
p2 0.40 0.32 0.26 0.49

Ave abs bias — 0.10 0.22 0.35

Note: ML is concurrent estimation of all parameters using maximum likelihood. FS-EB is factor score path analysis using
empirical Bayes. Croon-EB is Croon’s bias-corrected method using empirical Bayes.
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Simulation

To provide an initial assessment of the value and precision of the methods developed, we conducted

Monte Carlo simulations that outline performance along several criteria. We generated data under

the 2-1-1 mediation model described in Equations 1 and 2 and their respective multilevel and single-

level measurement models. We first considered an organization-level sample size of 30, an

individual-level sample size of 5 per organization, unit error variances for indicators with an

intraclass correlation coefficients of 0.20 for multilevel factors, factor loadings of 0.50, 3 indicators

per latent variable, and the following standardized path coefficients: a¼ 0.20, b¼ 0.28, c0 ¼ 0.14, g1

¼ 0.27, g2 ¼ 0.27, p1 ¼ 0.40, and p2 ¼ 0.40, and z1 ¼ 0.50, b1 ¼ 0.50, and b1 ¼ 0.50. We then held

constant these parameter values and examined the influence of variation in the organization-level

sample size (ranging from 20 to 100), individual-level sample size (ranging from 5 to 100), intraclass

correlation coefficients for the indicator error terms (ranging from 0.10 to 0.70), factor loadings

(ranging from 0.3 to 0.7), and the number of indicators per latent variable (3 and 5). We assessed the

accuracy of the estimators (Croon’s, ML, and uncorrected factor score path analysis) under a

standardized approach across 1,000 samples in terms of bias, error variance, power, and sensitivity

to misspecifications.

The results of our analyses are outlined in Figures 2 to 5 and in the Supplemental Material Part 1

Tables S1 and S2. Our analyses suggested that under many common conditions the properties of the

estimators were similar with larger samples. Convergence and bias were similar for ML and Croon’s

once the sample sizes reach about 50 organizations or the number of individuals per organization

exceeded 20 with at least 30 organizations; however, Croon’s approach had lower root mean square

error and higher power until samples exceeded 100 organizations with at least 20 individuals per

organization. Similarly, differences among the estimators in terms of individual-level coefficients

were typically quite small across samples. For these reasons, we outline the results with larger

samples in the Supplemental Material (Part 1) and probe the results for organization-level coeffi-

cients with small to moderate samples (i.e., 30 to 100 organizations with 5 to 100 individuals per

organization) below.

Convergence

Figure 2 outlines the proportion of samples that converged (gray) for each condition by estimator.

For instance, the gray markers in Figure 2 panel (a) identify the convergence rates for each estimator

for samples of 20, 30, 40, 50, 60, 80, and 100 organizations (that are separated by vertical dashed

lines) holding constant the other parameter values. Likewise, the gray markers in Figure 2 panel (b)

identify the convergence rates for each estimator for individual-level sample sizes of 5, 10, 20, 50,

and 100 organizations.

The results replicate prior literature and underscore a key advantage of Croon’s method—it

routinely converges in small to moderate samples when ML fails to converge. For example, ML

converged in just 36% of the drawn samples when using 30 organizations and 5 individuals whereas

Croon’s method converged in 70% of these samples (Figure 2). The differences in convergence rates

receded as a function of sample size; however, even when we double the number of organizations to

60, Croon’s method (90% convergence) still notably outperformed ML (77% convergence).

A closer look at the results further reveals that Croon’s method continued to yield the same

relatively low bias parameter estimates when ML sustained estimation or convergence issues. With

30 organizations, for instance, of the 636 (of 1,000) samples that ML failed to converge in, Croon’s

method converged in 406 of them (64%). That is, in a large majority of the samples where ML

encountered convergence problems, Croon’s estimator was able to avoid such problems. Increased

sample size depreciates this advantage but even with 60 organizations, of the 233 (of 1,000) samples
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ML failed to converge in, Croon’s method converged in 182 of them (78%). The cross-tabulations

for the number of samples the estimators converged in were

n2 ¼ 30 ML n2 ¼ 60 ML

Croon

0 1

0 230 92

1 406 272

Croon

0 1

0 51 49

1 182 718

Similar advantages in convergence rates were also observed for uncorrected factor score path

analysis. With 30 organizations it converged 90% of the time and with 60 organizations it converged

in 100% of the samples. Moreover, the uncorrected approach converged in 90% of the samples ML

failed in with 30 organizations and in 99% with 60 organizations.

Discrepancies in convergence among the estimators were heavily influenced by sample size but

mostly disappeared once the organization-level sample size reached about 50 or the number of

individuals per organization exceeded 20 with at least 30 organizations. However, the intraclass

correlation coefficients of the indicator error terms, factor loadings and the number of indicators also

influenced convergence rates. As the intraclass correlation coefficients of the indicator error terms

approached more extreme values of zero and one, convergence rates dipped. As factor loadings

increased, the convergence rate for each estimator improved but did not impact the relative rank

Figure 2. Convergence rate (gray) and average absolute bias (black) by estimator as a function of (a) orga-
nizations, (b) individual per organization, (c) factor loadings, (d) number of indicators, and (e) intraclass
correlation coefficients of the indicator error terms.
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order of the estimators (Figure 2). In contrast, increasing the number of indicators reduced the

convergence rate for Croon’s but improved the convergence rate for ML (Figure 2).

Bias

Figure 2 further outlines the average absolute bias (black) of the path coefficients by estimator for

small to moderate samples (see Supplemental Material Part 1 Tables S1-S2 for additional results).

For example, the black markers in Figure 2 panel (a) identify the average absolute bias for each

estimator for samples of 20, 30, 40, 50, 60, 80, and 100 organizations (that are separated by vertical

dashed lines) holding constant the other parameter values.

The results extended prior work with Croon’s method in single-level settings in that Croon’s

method often outperformed ML and the uncorrected approach in terms of bias in small to moderate

samples. Croon’s method incurred some bias but regularly maintained the lowest level of bias across

small to moderate samples. The bias of the ML estimator was plagued by convergence issues and

intermittent extreme parameter estimates in small to moderate samples that faded in larger samples.

Uncorrected factor score path analysis often returned estimates that were in a similar neighborhood

as ML and Croon’s but was typically more biased because of its neglect of measurement error.

An important practical consideration is the extent to which Croon’s method can produce nearly

unbiased estimates in samples where ML failed to converge. More specifically, the aforementioned

convergence results suggested that a key utility of Croon’s method is that it frequently circumvents

convergence issues in samples where ML fails to converge. Further probing the intersection of the

convergence and bias results indicated that Croon’s method retained the same relatively low level of

bias in samples where it converged but ML did not.

Returning to our earlier example with 30 organizations—of the 406 samples where ML did not

converge but Croon did, the average absolute bias of Croon’s method was identical to the overall

absolute average bias for all samples (0.09). Similarly, with 60 organizations, of the 182 samples

where ML failed to converge but Croon did, Croon’s average absolute bias was still only 0.04—

again, identical to the overall average absolute bias for all samples. Uncorrected factor score path

analysis also maintained its bias level (e.g., 0.13 for 30 organizations) for the subset of samples in

which ML (and/or Croon’s) failed to converge but these higher convergence rates typically came at

the price of increased bias.

Bias across all estimators was influenced by sample size at both levels but this relationship was

much more pronounced for ML than for the uncorrected and Croon methods. For instance, the

average absolute bias of the path coefficients in samples of 30 organizations and 5 individuals was

0.97 for ML and 0.13 for the uncorrected approach whereas for Croon’s method it was only 0.09

(Figure 2). Croon’s bias advantage declined as a function of sample size—for instance, with 60

organizations the bias associated with Croon’s method was reduced to 0.04 whereas it was reduced

to 0.06 with ML and 0.08 with uncorrected factor score path analysis. Paralleling the convergence

results, once the organization–level sample size reached about 50 or the number of individuals per

organization exceeded 20 with at least 30 organizations, Croon’s and ML approached near zero bias

while the uncorrected method retained bias proportional to the unreliability of the latent variables.

To a lesser extent, differences in bias among the estimators were also influenced by the other

parameters considered but the degree and direction of the influence was not necessarily consistent

across estimators (Figure 2). Regarding the different multilevel factor scoring approaches devel-

oped, the results suggested that the bias of the univariate empirical Bayes and the organization

means approaches were largely indistinguishable. For factor loadings, increases tended to yield

lower bias on average. Changes in the intraclass correlation coefficients of the indicator error terms

and the number of indicators produced less notable and less consistent changes in bias across the

estimators (Figure 2).
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Mean square error

The results also suggested that Croon’s method was more efficient than the ML estimator in samples

up to 100 organizations but that Croon’s was less efficient when compared to the uncorrected

approach. The reduction in bias associated with Croon’s method was bought with an increase in

uncertainty relative to the uncorrected factor score path analysis approach. Because Croon’s method

pairs bias reduction with additional error variance, we describe the bias-variance trade-off using the

root mean square error of the estimators in Figure 3. Like previous plots, the black markers in

Figure 3 panel (a) identify the root mean square error for each estimator for samples of 20, 30, 40, 50,

60, 80, and 100 organizations (that are separated by vertical dashed lines).

Two results emerged. First, Croon’s method outperformed ML in terms of root mean square error.

The distribution of path coefficient estimates under Croon’s method was consistently more con-

centrated around the true values compared to those of ML and with the exception of sample size, the

values of other parameters (e.g., factor loadings) appeared to have little influence. Second, the

uncorrected approach consistently outperformed Croon’s method in terms of root mean square error.

That is, although the uncorrected approach returned biased estimates, its dispersion is significantly

smaller than that of ML or Croon’s. In contrast to the bias results, the root mean square error of the

estimators was not comparable until the number of organizations exceeded 100 and 20 individuals

per organization.

Figure 3. Convergence rate (gray) and root mean square error (black) by estimator as a function of (a)
organizations, (b) individual per organization, (c) factor loadings, (d) number of indicators, and (e) intraclass
correlation coefficients of the indicator error terms.
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Power

We surveyed the power with which each method could detect the presence of a nonzero relationship

for each path (e.g., Kelcey, Dong, Spybrook, & Cox, 2017; Preacher & Selig, 2012). Figure 4

displays power as a function of organization-level sample size for an individual-level sample size

of 5 (gray) and 20 (black). The analyses suggested two findings that parallel the previously outlined

results. First, Croon’s method was typically more powerful than ML in small to moderate samples

but this depended on the path and the sample sizes. However, the uncorrected method was more

powerful than Croon’s and ML. Second, from an absolute perspective, designing well-powered

Figure 4. Power as a function of organization sample size (x-axis) by path (indicated on y-axis along with path
coefficient). Black symbols indicate an individual-level sample size of 20, while gray symbols indicate an
individual-level sample size of 5.
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studies will minimally require moderate sample sizes at both levels (e.g., 60 organizations and 20

individuals per organization) and medium to large effects (e.g., 0.3 to 0.5 on a standardized scale)

Misspecifications

Prior work in single-level SEMs has suggested that Croon’s method can be often less sensitive than

ML to certain types of model misspecifications because of its stepwise nature (e.g., Devlieger &

Rosseel, 2017). We probed two such misspecifications. The first was a misspecification in the

measurement model for covariate X such that the first indicator (e.g., x1) for the covariate Zx was

driven by Zx and Zw (i.e., a type of cross-loading). The results suggested that Croon’s method was no

more or less sensitive to this type of misspecification than ML. An example summarizing the impact

of the misspecification on convergence and bias is presented in Figure 5 for 30 organizations and 20

individuals/organization.

The second scenario we considered was missing variable bias. A key concern in mediation

analyses involving latent variables is the potential for bias due to uncontrolled confounding (Fritz

et al., 2016). We examined the sensitivity of the estimators to violations of the sequential ignor-

ability assumption in the presence of measurement error by excluding the confounding organization-

level latent covariate (lL2
M3

) and its indicators from our estimation. None of the methods were

expected to be robust to missing variable bias, but rather our purpose was to probe the extent to

which the intersection of an omitted variable and measurement error may disproportionality accel-

erate or decelerate the bias of the estimator (Fritz et al., 2016). The results are displayed in Figure 5

for the samples of 30 organizations and 20 individuals/organization. Overall, there was no impact on

the convergence rates, but both Croon’s and ML experienced a similar level of increased bias while

the uncorrected approach did not. The results provide no evidence that Croon’s method is more

susceptible to omitted variable bias in the presence of measurement error than is ML.

Discussion

Recent reviews of the literature have suggested that measurement error rarely receives appropriate

treatment, and we posited that this oversight may often owe to the mismatch between sample

Figure 5. Convergence rate (gray) and average absolute bias (black) by estimator and (a) measurement
misspecification and (b) omitted covariate.
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requirements of extant analytic methods and the complexity and scale of many studies. Yet, liter-

ature has clearly documented the deleterious and widespread effects of measurement error. For this

reason, we developed multilevel extensions to Croon’s bias-corrected factor score-based path anal-

ysis estimator that is suitable for MLSEM.

The results of our study and the results of other studies suggest that Croon’s estimator is a viable

alternative or complementary estimator for small to moderate sample MLSEMs for three primary

reasons. First, initial evidence suggests that Croon’s estimator is likely to provide less biased

estimates of path coefficients relative to ML and the uncorrected method in many common small-

to moderate-scale studies.

Second, Croon’s estimator more frequently converged in small to moderate samples than ML

while also providing the least biased estimates in samples where ML failed to converge. In this way,

Croon’s estimator emerges as a key alternative or complementary estimator for settings in which ML

estimation fails. The results also suggested that the uncorrected approach can play a similar com-

plementary or backstop role—the uncorrected approach had the most reliable convergence rate but

did so at a cost of more bias.

Third, Croon’s estimator had less sampling variability, lower root mean square error, and tended

to be more powerful when compared with ML. This result was somewhat unanticipated because past

research has shown that in many cases ML is still quite efficient in finite sample sizes (e.g., Lüdtke

et al., 2008; Wooldridge, 2002). However, the results of this study and another recent study have

suggested that in finite sample sizes Croon’s estimator can be more efficient (Kelcey, 2019).

Comparisons between Croon’s and the uncorrected approach were more equivocal on this front

because while the uncorrected approach returned biased estimates, it had several desirable properties

including lower root mean square error and higher power.

Despite the promising initial performance of the proposed methods, this work thus far has several

limitations. From an absolute perspective, Croon’s method may often retain slightly more power

than concurrent ML but may still be underpowered with small to moderate sample sizes depending

on the type and size of coefficient targeted and variable reliabilities. Moreover, both of these

methods were clearly less powerful than the uncorrected approach. Future research should probe

sample size limits and guidelines and the conditions that moderate the absolute and relative levels of

power for the estimators.

A second limitation is that the proposed approach needs additional augmentations to generalize to

settings with more complicated measurement models. The form of Croon’s estimator we detailed is

built on a factor-wise implementation—the current approach leverages the ML estimates of the

individual measurement models. However, MLSEM can accommodate much more complicated

measurement models such as those with within indicator multidimensionality or correlated residual

errors (e.g., Hayes & Usami, 2019). Future research is needed to further develop and probe Croon-

like corrections for a broad range of measurement structures to detail the extent to which Croon’s

method represents a versatile strategy.

Similarly, the current implementation of the proposed estimator is limited in the types of structural

models it can serve. For instance, the proposed approach does not immediately accommodate random

slopes (e.g., 1-1 -1 mediation with random slopes). Estimation of several or more random slopes

within the context of MLSEM can be data intensive and will typically require more than the number of

organizations we have considered. Extensions to the proposed bias-corrected estimator that can relax

the large sample requirements of random slope models may be particularly valuable in many settings.

A third limitation is that, like ML, Croon’s estimator is still subject to bias introduced through the

omission of confounding variables. From a relative sense, our simulations suggested that in the

presence of measurement error and an omitted confounding variable, Croon’s incurs the same level

of additional bias as the ML estimator. However, from an absolute sense, Croon’s and ML still

cannot fully correct for confounding variables that have been omitted from the model.
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A final limitation of the proposed approach is that it currently lacks indices to assess the global fit

of the model. More specifically, a key utility in MLSEM is the ability to test the extent to which the

proposed model is plausibly consistent with the data and the degree to which it accounts for the

observed covariances among variables. Recent work has begun to address this gap for single-level

settings but more work is needed to develop a broad range of fit statistics that is comparable to those

of conventional methods (Devlieger, Talloen, & Rosseel, 2019).

Even with these limitations, the results of our study provide important initial support for the

utility of Croon’s estimator in multilevel settings. The results suggest that the estimator potentially

serves as an important alternative or complement to ML in small- to moderate-scale multilevel

models, and more generally they encourage the continued development of this approach.
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