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ABSTRACT

With online social networks being extended to geographical space,

location context plays a key role in many applications such as local

event detection and location recommendation. Geotagged tweets in

Twi�er serve as an invaluable source to understand people’s activi-

ties in urban space. Analyzing geotagged tweets to identify implicit

contexts among location, time and text is an interesting problem.

In this paper, we present LeGo-CM, a methodology for Leearning

embeddings of Geotagged tweets for Cross-Modal search such as

locations, time units (hour-of-day and day-of-week) and textual

words in tweets. �e resulting compact vector representations of

these entities make it easy to perform searches like “�nd which

locations are mostly related to the given topics“. In LeGo-CM, we

�rst build a graph of entities extracted from tweets in which each

edge carries the weight of co-occurrences between two entities.

�e embeddings of graph nodes are then learned in the same la-

tent space under the guidance of approximating stationary residing

probabilities between nodes which are computed using personal-

ized random walk procedures. We evaluate LeGo-CM on datasets

of New York City and Los Angeles, showing that the proposed

method generally outperforms competitive baseline approaches.
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1 INTRODUCTION
Accessing news tweets by location is of great interest (e.g.,see [1,

2] which are based on the NewsStand system [3–5]). Geotagged

tweets are particularly interesting in the sense that they provide

the complement information about the places of interest [6–13],

e.g., where the activities occur. Such location information is crucial
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when pro�ling human activities by completing the three pieces of

information regarding where, when and what.

In this paper, we aim to uncover the correlation between loca-

tions, time and topics in human’s urban activities hidden in geo-

tagged tweets. It is, however, challenging to extract location, time

and topic context from geotagged tweets. First, although geotagged

tweets provide GPS coordinates indicating where people participate

in activities, these coordinates o�en impose certain disagreement

even for the same event at the same place, due to the �exibility

of people’s movement and sometimes the noise of GPS satellite

signals. Second, it is hard to e�ectively and e�ciently capture the

cross-modal correlations between the spatial, temporal and textual

aspects of people’s daily-life activities. For example, the techniques

of document-term matrix, TF-IDF and Single Value Decomposition

(SVD) are o�en applied to analyze the co-occurrence relationship

between locations and words. Such methods, however, can not

be easily modi�ed to cope with data of three or more dimensions.

Tensor rank decomposition is more promising in modeling high-

dimension data but less applicable for large-scale dataset due to its

high computational complexity.

�is paper aims to learn to represent the spatial, temporal and

textual entities in the geotagged tweets by means of embedding

vectors in the same semantic space. We propose LeGo-CM to ac-

complish this learning task. �e general idea of LeGo-CM works

as follows. First, LeGo-CM extracts essential spatial, temporal and

textual entities from the geotagged tweets. Spatial entities refer

to locations of interest which witness the aggregation of people.

�ey are usually identi�ed using a clustering algorithm [14, 15]

and are in the form of groups of tweet locations. For the publish

time of tweets, LeGo-CM uses the features like hour-of-day and

day-of-week as temporal entities.As for textual entities in tweets,

we address the extracted keywords and phrases a�er removing stop-

words. Second, LeGo-CM systematically constructs a co-occurrence

graph that spans spatial, temporal and textual entities in tweets.

In particular, the nodes represent the entities, and the edges are

weighted by the number of times that two nodes co-occur in tweets.

�ird, LeGo-CM exploits a graph learning algorithm that approxi-

mates the stationary residing probabilities between nodes which

result from performing personalized random walk procedures.

�e contributions of this paper are summarized as follows.

• First, we comprehensively pro�le people’s activities in Twi�er

from 4 aspects: location, words, hour-of-day and day-of-week.

• Second, for cross-modal search, we construct a co-occurrence

graph to calculate stationary residing probabilities between

nodes, which subsequently guides the learning process in the

graph embedding algorithm.
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variant as the p(vmi → v
n
j ):

p(vmi → v
n
j ) =

rvnj∑
vk ∈V n

rvk
(3)

where V n denotes the set of vertices from the modal n.

3.3.2 From the Perspective of Vectorized Embeddings. Remember

that our goal is to approach the possibility of generating the entity

v
n
j from the entityvmi which is from a di�erent modal. Suppose that

we have the vectorized embeddings of the entities, it is relatively

easy to model the objective probability using the embeddings com-

pared to co-occurrence graph. For example, we may use p(vnj |v
m
i )

as the objective probability, which is de�ned as:

p(vnj |v
m
i ) =

e
v
m
i ·vnj

∑
vk ∈V n

ev
m
i ·vk

(4)

where v is the vectorized embedding of entity v and V n similarly

denotes the set of entities from the modal n.

3.3.3 Learning Embeddings. Given the probability of p(vmi →

v
n
j ) from the co-occurrence graph and the probability of p(vnj |v

m
i )

from the initial embeddings, the goal of learning embeddings is to

iteratively update values in embeddings so that p(vnj |v
m
i ) becomes

closer and closer to p(vmi → v
n
j ). In doing so, eventually the com-

puted vectorized embeddings will be able to preserve the structure

information of the co-occurrence graph. We use the Kullback-

Leibler divergence KL(·) to measure the di�erence between two

probability distributions. Subsequently, we de�ne the loss function

between any two modals of entities as:

L(m,n) =
∑

v
m
i ∈Vm

KL(p(vmi → ·)‖p(·|vmi ))

+
∑

v
n
j ∈V

n

KL(p(vnj → ·)‖p(·|vnj ))
(5)

Such a loss function basically means to minimize both of the

distribution di�erences to generate one modal of entities from enti-

ties in another modal and conversely to generate another modal of

entities from entities in this modal. At last, the total loss function is

the sum of di�erent L(m,n) with respect to all di�erent edges types

in Figure 2. Note that the computation of such loss functions can

be solved e�ciently using stochastic gradient descent and negative

sampling [18, 23].

4 EVALUATION

4.1 Experimental Settings

4.1.1 Datasets. �e evaluation is performed on two sets of geo-

tagged tweets collected from 2014-08-01 to 2014-11-30 in two cor-

responding cities: New York City (NYC) and Los Angeles, CA

(LA) [24]. �e total number of tweets, is about 1.5 million in NYC

and 1.2 million in LA, respectively. We randomly take 10, 000 tweets

for testing and the rest for learning the embeddings of location,

words, hours-of-day and days-of-week.

4.1.2 Baseline Approaches. We comparewith the following base-

line approaches: TF-IDF, SVD, Doc2Vec [31], ReAct [24], and

CrossMap [23].

By default, TF-IDF, SVD and Doc2Vec handle data of only two

dimensions. We perform the following preprocessing in these meth-

ods in order to incorporate all the entities of location, words, hours-

of-day and days-of-week. We treat each location as a document

and its sentences comprise the tweets falling inside the location.

�e hour-of-day and day-of-week values extracted from posting

time of each tweet are parsed as special words and appended to

that tweet’s bag of words.

4.1.3 Parameter Se�ings. �e major parameters in LeGo-CM

are set as follows. For embedding dimension length, we set Ndim =

200. For time in tweets, we extract its natural integral hours-of-day

and days-of-week, i.e., hour = {0, 1, 2, · · · , 21, 22, 23} and wday =

{Mon,Tue,Wed,Thu, Fri, Sat , Sun}, in order to re�ect pa�erns of

people’s daily life in urban areas. We set the bandwidth b of mean

shi�2 for clustering tweet locations to 160m, which yields around

18, 000 location clusters in NYC and 17, 000 location clusters in LA.

As for the random walk procedure to calculate stationary residing

probabilities between vertices in the co-occurrence graph, we use a

default damping factor h = 0.8 and run 20 iterations in all cases. In

the embedding learning process, we set the number of epochs for

training Nepoch = 256 and the learning rate αlearn = 0.02.

For comparison, all methods are tested using the same Ndim

except for TF-IDF. Also note that TF-IDF, SVD and Doc2Vec use the

same representations of location and time as LeGo-CM. Although

ReAct is also fed with the same form of locations, it uses natural

integral hours and time hotspots for time representations as in their

implementation, respectively.

4.2 �antitative Analysis

4.2.1 E�ectiveness. We evaluate the e�ectiveness of di�erent

embedding methods by performing the tasks of ranking tweets with

negative a�ributes. To quantify the ranking orders of testing tweets,

we adopt the metric of Mean Reciprocal Rank (MRR) [23, 24], which

is de�ned as:

MRR =

∑
d ∈DT est

1
Rd

|DT est |
(6)

where DT est represents the testing dataset of tweets. It is easy to

see that higher-quality embeddings will yield larger MRR values.

In our se�ings, we set |DT est |= 10, 000 and then compute such an

MRR for each of the a�ributes in 〈locd ,hourd ,wdayd ,wordd 〉.

Table 1: Comparison results using Mean Reciprocal Rank.

Method
NYC LA

Loc Word Hour WDay Loc Word Hour WDay

TF-IDF 0.275 0.274 0.279 0.280 0.277 0.279 0.283 0.286
SVD 0.402 0.321 0.321 0.321 0.350 0.317 0.341 0.342
Doc2Vec 0.448 0.491 0.342 0.345 0.469 0.523 0.338 0.336
ReAct 0.470 0.459 0.167 N/A 0.560 0.561 0.167 N/A
CrossMap 0.516 0.619 N/A N/A 0.514 0.642 N/A N/A

LeGo-CM 0.589 0.598 0.348 0.348 0.616 0.612 0.339 0.339

�e results of LeGo-CM for cross-modal search are listed in

Table 1, and the MRR value in our method is bold if it is the high-

est value in the comparison results. It shows that LeGo-CM out-

performs almost all baseline approaches including TF-IDF, SVD

2h�ps://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShi�.html
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and Doc2Vec and achieves be�er results than the state-of-the-art

methods in most cases. In particular, a signi�cant improvement is

observed over ReAct with respect to the MRR values of locations.

Note that the MRR values with respect to day-of-week are not re-

ported for ReAct because this method does not use this feature.

Similarly, CrossMap uses the hotspots in the temporal dimension

to represent time and thus does not report the MRR values for the

integral features of hour-of-day and day-of-week. In general, TF-

IDF has the worst performance in most cases due to its direct use

of sparse row/column vectors extracted from the document-term

matrix. SVD improves over TF-IDF by performing dimentionality

reduction and thereby only preserves the most essential informa-

tion in the compacted row/column vectors in the document-term

matrix. In comparison, Doc2Vec gets much be�er results on loca-

tion and word by encoding them in the same latent space. ReAct is

not as good as we expected. �is is probably resulted from its online

learning process which only addresses the most recent information

happening at a location and chooses to forget the past information

in an exponential time-decay manner. �is also explains its low

MRR values of hour-of-day. Although CrossMap achieves slightly

be�er MRR values than our method LeGo-CMwith respect to word,

it has signi�cant lower MRR values with respect to location.

4.2.2 E�iciency. To fairly investigate the e�ciency of learning

process, we omit all the data preparation operations and only ad-

dress the step of model training. �e experiments are conducted

on an AWS EC2 instance with 240GB memory and an Intel Xeon

CPU (E5-2686 2.30GHz). In each method, we record the time spent

in processing the training tweets. �e results are reported on the

NYC dataset as it contains relatively more tweets.

Figure 3: Model training time consumption.
Figure 3 presents the training time of di�erent methods in sec-

onds. It shows that TF-IDF runs the fastest because of its simplicity.

Our method LeGo-CM achieves moderate e�ciency comparing

to CrossMap considering that we address 4 types of nodes in the

graph while ReAct addresses 3 types of nodes. �e method Re-

Act runs the slowest because of its small batch size which leads to

frequent weight updating in its online training procedure.

5 CONCLUSIONS
In this paper, we presented LeGo-CM for learning embeddings of

spatial, textual and temporal entities in geotagged tweets. Prior to

the learning process, amean shi�-based spatial clustering procedure

is performed to detect locations of interest. For the time dimension,

we extract hour-of-day and day-of-week as temporal entities which

are consistent with people’s daily-life habits and pa�erns. We

then utilize the co-occurrence between locations, words, hours-

of-day and days-of-week to build graphs for LeGo-CM. LeGo-CM

learns the embeddings of graph nodes by approximating the stable

residing probabilities between nodes. �e evaluation results on

two selected cities show that LeGo-CM outperforms competitive

baselines in most cases, thereby showing the e�ectiveness of the

proposed method. For future work, we plan to extending the co-

occurrence graph by adding edges between locations to re�ect their

spatial proximity and topical closeness and thus conduct location

similarity searches.

6 ACKNOWLEDGEMENT
�isworkwas supported in part by the National Science Foundation

under grant IIS-1816889.

REFERENCES
[1] N. Gramsky and H. Samet. Seeder Finder: Identifying Additional Needles in the

Twi�er Haystack. LBSN ’13.
[2] J. Sankaranarayanan, H. Samet, B. E. Teitler, et al. Twi�erStand: News in Tweets.

SIGSPATIAL ’09.
[3] H. Samet, J. Sankaranarayanan, M. D. Lieberman, et al. Reading News with Maps

by Exploiting Spatial Synonyms. Commun. ACM, 2014.
[4] H. Samet, M. D. Adel�o, B. C. Fruin, et al. Porting a Web-based Mapping

Application to a Smartphone App. SIGSPATIAL ’11.
[5] H. Samet, B. E. Teitler, M. D. Adel�o, et al. Adapting a Map �ery Interface for

a Gesturing Touch Screen Interface. WWW ’11.
[6] M. D. Lieberman, H. Samet, and J. Sankaranayananan. Geotagging: Using

Proximity, Sibling, and Prominence Clues to Understand Comma Groups. GIR
’10.

[7] M. D. Lieberman and H. Samet. Multifaceted Toponym Recognition for Streaming
News. SIGIR ’11.

[8] M. D. Lieberman and H. Samet. Adaptive Context Features for Toponym Resolu-
tion in Streaming News. SIGIR ’12.

[9] H. Wei, J. Sankaranarayanan, and H. Samet. Finding and Tracking Local Twi�er
Users for News Detection. SIGSPATIAL ’17.

[10] H. Wei, H. Zhou, J. Sankaranarayanan, et al. Residual Convolutional LSTM for
Tweet Count Prediction. WWW ’18 Companion.

[11] H. Wei, H. Zhou, J. Sankaranarayanan, et al. Detecting Latest Local Events from
Geotagged Tweet Streams. SIGSPATIAL ’18.

[12] H. Wei, J. Sankaranarayanan, and H. Samet. Enhancing Local Live Tweet Stream
to Detect News. ACM SIGSPATIAL LENS ’18.

[13] G.�ercini, H. Samet, J. Sankaranarayanan, et al. Determining the Spatial Reader
Scopes of News Sources Using Local Lexicons. GIS ’10.

[14] S. Jenson, M. Reeves, M. Tomasini, et al. Mining Location Information from
Users’ Spatio-temporal Data. SmartWorld ’17.

[15] C. Zhang, G. Zhou, Q. Yuan, et al. GeoBurst: Real-Time Local Event Detection
in Geo-Tagged Tweet Streams. SIGIR ’16.

[16] L. Hong, A. Ahmed, S. Gurumurthy, et al. Discovering Geographical Topics in
the Twi�er Stream. WWW ’12.

[17] W. Wei, K. Joseph, W. Lo, et al. A Bayesian Graphical Model to Discover Latent
Events from Twi�er. ICWSM ’15.

[18] T. Mikolov, I. Sutskever, K. Chen, et al. Distributed Representations of Words
and Phrases and their Compositionality. NIPS ’13.

[19] J. Pang and Y. Zhang. DeepCity: A Feature Learning Framework for Mining
Location Check-ins. ICWSM ’16.

[20] K. Mets. Learning Meaningful Location Embeddings from Unlabeled Visits,
h�ps://www.sentiance.com/2018/01/29/unlabeled-visits/#Location Pro�ling, last
accessed on December 27 2018.

[21] M. Kejriwal and P. Szekely. Neural Embeddings for Populated Geonames Loca-
tions. ISWC ’17.

[22] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online Learning of Social
Representations. KDD ’14.

[23] C. Zhang, K. Zhang, Q. Yuan, et al. Regions, Periods, Activities: Uncovering
Urban Dynamics via Cross-Modal Representation Learning. WWW ’17.

[24] C. Zhang, K. Zhang, Q. Yuan, et al. React: Online Multimodal Embedding for
Recency-Aware Spatiotemporal Activity Modeling. SIGIR ’17.

[25] A. Ri�er, S. Clark, Mausam, et al. Named Entity Recognition in Tweets: An
Experimental Study. EMNLP ’11.

[26] A. Ri�er, Mausam, O. Etzioni, et al. Open Domain Event Extraction from Twi�er.
KDD ’12.

[27] L. Page, S. Brin, R. Motwani, et al. �e PageRank Citation Ranking: Bringing
Order to the Web. WWW ’98.

[28] W. Xing and A. Ghorbani. Weighted PageRank Algorithm. CNSR ’04.
[29] P. Lofgren, S. Banerjee, and A. Goel. Personalized PageRank Estimation and

Search: A Bidirectional Approach. WSDM ’16.
[30] H. Wei, J. Sankaranarayanan, and H. Samet. Measuring Spatial In�uence of

Twi�er Users by Interactions. ACM SIGSPATIAL LENS’17.
[31] Q. Le and T. Mikolov. Distributed Representations of Sentences and Documents.

ICML’14.


	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Spatial, Temporal and Textual Entity Extraction
	3.2 Co-occurrence Graph Construction
	3.3 Cross-Modal Search

	4 Evaluation
	4.1 Experimental Settings
	4.2 Quantitative Analysis

	5 Conclusions
	6 Acknowledgement
	References

