
An Interaction Design for Machine Teaching to Develop AI
Tutors

Daniel Weitekamp III
Carnegie Mellon University

Pittsburgh, USA
weitekamp@cmu.edu

Erik Harpstead
Carnegie Mellon University

Pittsburgh, USA
harpstead@cmu.edu

Kenneth R. Koedinger
Carnegie Mellon University

Pittsburgh, USA
koedinger@cmu.edu

ABSTRACT
Intelligent tutoring systems (ITSs) have consistently been
shown to improve the educational outcomes of students when
used alone or combined with traditional instruction. How-
ever, building an ITS is a time-consuming process which re-
quires specialized knowledge of existing tools. Extant author-
ing methods, including the Cognitive Tutor Authoring Tools’
(CTAT) example-tracing method and SimStudent’s Author-
ing by Tutoring, use programming-by-demonstration to allow
authors to build ITSs more quickly than they could by hand
programming with model-tracing. Yet these methods still suf-
fer from long authoring times or difficulty creating complete
models. In this study, we demonstrate that Simulated Learn-
ers built with the Apprentice Learner (AL) Framework can
be combined with a novel interaction design that emphasizes
model transparency, input flexibility, and problem solving con-
trol to enable authors to achieve greater model completeness
in less time than existing authoring methods.

Author Keywords
Simulated Learners; Interaction Design;
Programming-by-Demonstration; Machine Teaching;
Intelligent Tutoring Systems

CCS Concepts
•Human-centered computing → Graphical user inter-
faces; User studies; •Software and its engineering → Pro-
gramming by example;

INTRODUCTION
Intelligent tutoring systems (ITSs) are a type of computer-
ized educational technology which tutor students through scaf-
folded practice problems and provide correctness feedback,
next-step hints, and adaptive feedback messages [27]. ITSs
also typically track student knowledge at a granular level to
intelligently pick practice problems that will help students
learn new skills [5]. In several studies ITSs have been shown
to benefit learners when used alone or in combination with
traditional instruction [7, 24, 25, 12].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
©2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6708-0/20/04
https://doi.org/10.1145/3313831.3376226

ITSs are, however, notoriously difficult and time consuming
to build [22]. For example, consider the case of an author
creating and ITS to teach multi-column addition. To build
a model-tracing version of this ITS, a type of ITS built by
programming production rules that encode a space of correct
student solution paths, a programmer would need to write
production rules for adding numbers, carrying 1’s digits and
putting their answers into appropriate interface fields. Typi-
cally this process takes 200-300 hours of developer time per
hour of instruction time. The Cognitive Tutor Authoring Tools
(CTAT) introduced example-tracing as an alternative method
of ITS authoring, which does not require programming and
reduces authoring time down to 50-100 hours per hour of
instruction [2]. ITS authors who use example-tracing can
program the behavior of an ITS by simply demonstrating all
of the correct action(s) that can be taken at each step of a
problem. For example, an instructional designer could make a
single multi-column arithmetic problem with example-tracing
by simply setting up and solving a problem every possible way
in order to generate a behavior graph, a directed graph speci-
fying all possible solution paths. However, example-tracing is
often not the best tool when it comes to problems with com-
plex behavior or highly variable solution spaces, such as in
a complex algebra problem [16]. Additionally, with CTAT
example-tracing scaling from a single problem to several prob-
lems (termed mass production) is still often a time consuming
process which requires programming Excel spreadsheets [1].

CTAT exhibits a very simple form of programming-by-
demonstration (PBD), a broad class of machine learning tech-
niques which compose programs capable of replicating user
demonstrations [6, 23]. Traditionally, PBD is used to help
users automate repetitive tasks. The simplest PBD systems,
like CTAT example-tracing, reapply the exact actions demon-
strated by users. More complex systems contain a learning
agent capable of inducing generalized programs from user
demonstrations. These induced programs can then be reap-
plied in new situations at the user’s command [10, 11]. Other
PBD systems additionally learn the conditions under which
each of several induced programs should be applied, allowing
for the creation of complex interactive applications [19].

Some systems use a broader set of interactions beyond demon-
stration to learn from users [9, 14]. In this work, we refer to
these approaches as machine teaching. In machine teaching
systems the user may reinforce or correct an agent’s actions by
providing clarifying demonstrations or correctness feedback
[14]. For example, in the Gamut system users could build

whole games by demonstrating and correcting the movements
of various objects [19]. Another system which operates by
machine teaching is SimStudent, a computational model of
human learning which learns to solve problems in an ITS [18].
For the purposes of ITS authoring SimStudent could be used
to interactively author ITS behavior in conjunction with CTAT
using an interaction design called Authoring by Tutoring [17].
One of the goals of Authoring by Tutoring was to further re-
duce ITS authoring times beyond the reduction achieved by
CTAT example-tracing, while at the same time reintroducing
some of the generality of model-tracing tutors.

In general, AI agents which mimic the inductive learning pro-
cess undergone by students are known as Simulated Learners.
Following the work of SimStudent, the Apprentice Learner
(AL) Framework was created to build Simulated Learners
similar to SimStudent, but modularized by their several inter-
working learning mechanisms [15]. Collectively these learning
mechanisms generate skills in the form of production rules.
Through user demonstrations and correctness feedback these
learning mechanisms inductively refine the rules specifying
the conditions that will cause a skill to fire and the way in
which it will fire. Each learning mechanism in the AL frame-
work can be changed in and out to create unique agents primed
to serve particular purposes. For example, the desired efficacy
with which an agent learns might differ by use case. For the
purposes of ITS authoring one would want an AL agent to
learn as much as possible from each interaction to limit the
tedium of the authoring process. By contrast for the purposes
of student modeling agents would be taught without a human
in the loop against an existing tutoring system, and the ideal
agent would learn at the same, relatively slow, rate per oppor-
tunity evident in the logs of human students working in the
same tutoring system.

Simulated Learners like SimStudent and AL agents can be
evaluated differently depending on their intended purposes [8].
For example, for the goal of producing accurate models of
human learning one might assess whether a Simulated Learner
is able to reach mastery from similar activities as human learn-
ers. SimStudent and AL agents have both been demonstrated
to reach mastery performance at solving problems in ITSs
[15]. However, for the purpose of acting as an ITS author-
ing tool, mastery performance is not a sufficient condition
for success. An ITS must be able to check the correctness of
any possible student input, not only produce a correct input.
Instead, a Simulated Learner used to drive an ITS should ex-
hibit model-tracing completeness, defined as recognizing all
intended correct actions as correct, and no incorrect action as
correct for all possible states in a problem’s intended solution
space. If a Simulated Learner achieves mastery performance
in an ITS, then it can at least recognize a particular correct
solution path through a problem. However, only a Simulated
Learner exhibiting the stronger condition of model-tracing
completeness can recognize all incorrect actions as incorrect,
and support every solution path intended by the ITS author.

To date, no Simulated Learner has been well suited to the
task of achieving model-tracing completeness. As we will
demonstrate in this work, this failure is not due to technical

limitations of existing Simulated Learners, but to the interac-
tion techniques used to train them [14]. At the heart of the
issue is the fact that current interaction techniques including
SimStudent’s Authoring by Tutoring treat the ITS author like
they are an ITS and treat the Simulated Learner like a real
human student using that ITS. However, there is no inherent
requirement that a Simulated Learner must learn like a human
[26], and framing interactions this way limits the sort of feed-
back that users can give in training the system. For example,
if the ITS author is required to act like an ITS to the Simulated
Learner than when any correct action is proposed they can only
mark that action as correct. Such an interactions design would
not afford, for example, the opportunity to demonstrate alter-
nate solution paths, or query for and correct other actions the
Simulated Learner believes can lead to a solution. Ultimately,
this perspective prevents authors from demonstrating full so-
lution spaces for different types of problems and checking
them for completeness. In order to address this issue we have
created a novel authoring interface for AL agents designed to
be more transparent and flexible than previous interfaces.

In this study we test the new interaction design of our AL
authoring interface with 10 instructional design students with
varying backgrounds. The objective of our study is to assess
the degree to which our interaction design supports more effi-
cient authoring of model-tracing complete ITSs compared to
CTAT example-tracing. The contributions of this work are:

1. A novel interaction design for authoring Intelligent Tutoring
Systems using Simulated Learners that emphasizes model
transparency, input flexibility, and problem solving control.

2. A user study demonstrating the efficacy of this interac-
tion design toward training Simulated Learners that exhibit
model-tracing completeness.

3. Design recommendations for future Simulated Learner
based ITSs authoring tools.

THE APPRENTICE LEARNER FRAMEWORK
Apprentice Learner agents are Simulated Learners comprised
of sets of modular interconnected learning mechanisms [15].
Each learning mechanism serves a particular role in skill
induction or refinement. A skill is a collection of learning
mechanism instances and a production rule induced by those
learning mechanism instances. A production rule consist of
a left-hand side which specifies the conditions sufficient for
it to fire, and a right-hand side which specifies what occurs
when it fires [3]. The left-hand side of each skill is learned by
the where-learning and when-learning mechanisms. Similarly,
the right-hand side is induced and refined, by the how-learning
mechanism. There is also a which-learning mechanism which
is a conflict resolution strategy for choosing which skill to fire
should multiple skills have their where and when conditions
satisfied at a particular step in problem solving.

A single AL agent uses different machine learning algorithms
for each of its various learning mechanisms. For example, the
where-learning mechanisms learns the conditions for match-
ing interface elements pertaining to the application of a skill by
inductive logic programming [21]. These conditions that the

Figure 1: Screenshots of our AL authoring interface when skill applications are proposed (left) and after a user demon-
stration (right). 1a) The skill window with several proposed skill applications. 1b) The skill window with 6 and 4 buttons
toggled. 2a) The selected skill and its formula. 2b) The selected/staged skill application. 3) The tutor interface with where
match highlighted. 4a) The Yes and No button dialog. 4b) The Yes and No buttons are replaced with a Submit button
which when clicked will send the 6 and 4 button feedback encoded in 1b. 5) Debug information describing the state of
the selected skill’s learning mechanisms. Not intended for users. 6) The state of the tutoring system after a user has made
a demonstration (blue 5) and selected foci-of-attention (purple glow). 7) Yes and No buttons replaced with Next button.

where-learning mechanism learns match to both the interface
element where a skill will be applied and the interface ele-
ments from which the value of that skill application is derived.
In this study we use a variation of the version space algorithm
for the where-learning mechanism [20]. The when-learning
mechanism determines the conditions when a skill should be
applied. When-learning mechanisms can be implemented us-
ing any form of binary-classification algorithm. For example,
in this study we use the decision tree algorithm [4]. The how-
learning mechanism induces and refines the behavior that is
applied when a skill fires. The agents in this study use a search-
based planner to form one or more formulas that explain each
user provided demonstration. This planner searches over a
number of numerical functions such as addition and division
by ten which the agent is provided as prior knowledge.

An important feature of the AL agents used in this study is that
their where-learning and when-learning mechanisms support
skills that are not tied to particular interface elements. Skills
can be applied between steps in an interface and even between
interfaces. Skills are applied when a particular set of interface
elements match learned where and when patterns.

AL agents support two primary functions, request, which re-
turns a set of actions that an agent thinks it can take given a
tutoring interface state, and train, which engages the agent’s
learning mechanisms from a state-action pair and reward. In
this study we also support a train_explicit function which uses
a skill application instead of an action for fitting. A skill appli-

cation is associated with a particular instance of a skill firing
while an action is not. For example, two skill applications
from two different skills might apply the same action. Train
differs from train_explicit in that train gives feedback to all
skills that could have produced an action. Readers may find
additional details in the following prior publications [15] [13].

Prior to this study AL agents learned interactively from the
user via the same interaction design used in SimStudent’s Au-
thoring by Tutoring. In Authoring by Tutoring when an agent
produces an action in the interface it requests for correctness
feedback from the user, and if the agent cannot produce an
action it asks for a demonstration of correct behavior. When
users provide demonstrations they also specify the interface
elements from which that action was computed to make skill
induction less ambiguous.

INTERACTION DESIGN
Most PBD systems, including those that use the broader set
of machine teaching interactions [14] like SimStudent, put
the user in the perspective of teaching an agent as it takes
steps along a path through a problem, to ensure that the agent
produces correct actions. We refer to this perspective as the
performance-model perspective, as its aim is to ensure that an
agent performs correctly along some path to a goal.

When specifying the behavior of an ITS one must define be-
havior that can respond to the whole space of possible student
solutions. Teaching an agent to understand this entire space is

a more complex machine teaching task than teaching an agent
to perform correctly through just a single solution path per
problem. When using Simulated Learners for ITS authoring
we would prefer for them to achieve model-tracing complete-
ness, defined as the ability to identify all intended correct next
actions as correct, and all other actions as incorrect for all
possible problem states. Importantly, the condition of model-
tracing completeness can be applied to any tutoring system
given an intended set of behaviors regardless of the underlying
implementation of the tutoring system (example-tracing or
model tracing). Model-tracing completeness is an evaluation
of the behavior of the tutoring system thus all systems which
operate as intended are equally model-tracing complete. An
ITS author can evaluate the local model-tracing completeness
of each step of a problem, by simply considering whether or
not the set of actions currently allowed by the tutoring system
at that step agree with their understanding of how the tutoring
system should work.

Our novel interaction design seeks to support users in taking a
model-tracing completeness perspective where users evaluate
agents on the set of all skill applications an agent produces
at each step instead of on a single sufficient action that the
agent chooses at each step. To support this perspective our
new interaction design makes skill applications transparent to
the user, is flexible to a wide range of user interactions, and
gives the user more control over the problem solving process.

Model Transparency
From the performance-model perspective a user only needs to
ensure that an agent produces a correct action at each step in a
problem. However, for a user to confidently train a Simulated
Learner to manifest model-tracing completeness they must be
able to see whether or not the agent can produce all intended
correct actions at each step. In order to give the user access
to this information we created a skill window (Figure 1.1a),
which lists all of the skills that an agent believes can be applied
on the current step.

This skill window provides users with considerably more in-
formation than they would see in a typical performance-model
perspective interaction design. Instead of a single action the
user sees all skill applications that the agent considers correct
for a given step (Figure 1.1a). This allows them to assess not
just whether the agent would have taken a correct action at that
step, but whether the agent exhibits complete model-tracing
behavior for that step. In seeing skill applications, the user is
made aware of information concerning how the agent’s associ-
ated actions came about. This includes the formula induced by
the agent on the first application of each skill (Figure 1.2a) and
the particular interface elements matched by the conditions
learned by the where-learning mechanism for each proposed
application of the skill (Figure 1.2b). The where match in-
cludes the interface element that the action would be taken
on and the elements used as arguments for the formula from
which the value of that action was derived. For example, in
Figure 1.1a, a skill application is selected with formula: "(E0
+ E1 + E2) % 10" (i.e., take the modulus 10 of the sum of ele-
ments E0-E2) and a where match consisting of the arguments
inpA2, inpB2, carry1 and the selection element out2. The

user can also see that the formula evaluated on these interface
elements yields 5.

It is important to note that the skill applications displayed
in the skill window are not representations of the underlying
AL agent’s AI or its derived production rules. The displayed
skill applications are simply the firing of the AL agent’s de-
rived skills and are comprised only of an action, highlights
indicating the values from which that action was computed
and a mathematical formula. Thus, the information presented
to the user requires no additional expertise to understand be-
yond knowledge of the particular domain being covered by
the tutoring system. No checking of the underlying program
or knowledge of AI is required by the user. The skill window
adds transparency beyond extant interaction designs for Sim-
ulated Learners in that it provides an interactive display of
all possible next actions that a Simulated Learner currently
believes are correct.

By clicking each proposed skill in the skill window users can
select each skill application as the staged skill application.
When a skill application is staged (Figure 1.2b) its where
match elements are highlighted in various colors (Figure 1.3).
The state change caused by the action is prominently high-
lighted in purple, and the argument elements are highlighted
less prominently in several other unique colors.

Input Flexibility
When a proposed skill application is staged the user can give
it positive or negative feedback by pressing the Yes or No
buttons respectively (Figure 1.4a). When Yes is pressed the
action is applied putting the tutoring system in a new state,
then a new set of skill applications are proposed by the agent
and displayed in the skill window. Authoring by Tutoring had
equivalent positive and negative feedback buttons, however our
interaction design lets users give feedback to any of the skill
applications proposed by the agent by staging them from the
skill window. Additionally, our interaction design allows users
to directly give feedback to all proposed skill applications at
once by toggling the 6 and 4 buttons associated with each
item in the skill window (Figure 1.1b). When any of these
toggle buttons are selected the Yes and No buttons are replaced
with a Submit button which, when pressed, sends all of the
positive and negative feedback encoded in these toggle buttons
to the agent (Figure 1.4b). Since the next state that the user
wants to enter into may be ambiguous (e.g., there are multiple
skill applications that have been marked as correct), pressing
the submit button does not apply any of the associated actions
to change the state of the tutoring system.

These new interactions give users the ability to provide a
Simulated Learner with the feedback necessary to construct
a complete model-tracing model. At each step the user can
give feedback on all proposed skill applications instead of on
only the skill application which the agent would choose to
execute. By seeing and responding to all proposed actions
the user can be more confident that a particular step exhibits
complete model-tracing behavior.

Problem Solving Control
By choosing which skill applications to give feedback on, the
user can also choose what states the tutoring system enters
into. If Simulated Learners were to always choose a single
skill application for a user to give feedback on then it would
also be choosing the state the tutoring system would go into
for the next round of feedback. When this is the case, the paths
through problems that the user can test and give feedback on
are heavily dependant on the Simulated Learner’s conflict res-
olution strategy (i.e. which-learning mechanism). By default
AL agents prioritize skills which have received the greatest
proportion of positive feedback, meaning the first applicable
skill is often the same for similar states. SimStudent’s default
behavior by contrast was to choose a single skill randomly
among applicable skills [18]. Our interaction design reduces
the role that an agent’s conflict resolution plays in training.
A user is allowed to override a Simulated Learner’s default
action by staging any skill application they choose. Conse-
quently, users can make informed decisions about where to
give the Simulated Learner feedback.

In addition to being able to give correctness feedback to the
skill applications proposed by a Simulated Learner, our system
allows users to demonstrate actions at any point in authoring
regardless of whether or not the Simulated Learner has sug-
gested an action (Figure 1.6). When demonstrating, users
directly take actions in the interface. Giving the user this
freedom means that they can set about building a complete so-
lution space for a problem domain without being constrained
to choosing among the Simulated Learner’s induced skills at
each step. Combined with the transparency to see all appli-
cable skills at each step this flexibility orients the interaction
design toward supporting a model-tracing completeness per-
spective as opposed to a performance-model perspective.

METHODS
In order to test whether our interaction design supports users in
making model-tracing complete ITSs we had 10 participants
author three-digit multi-column addition problems using our
new AL authoring interface, and CTAT example-tracing inter-
face. All participants were masters or PhD students studying
educational technology. Users were paid $30 per hour for a
total of an hour and a half to two hours. 8 participants were
familiar with the CTAT authoring tools and 2 were not. 4
participants did CTAT first, and the rest used the AL interface
first.

Participants were given the same ready made HTML interface
(Figure 2) to use with both authoring modes. Each participant
was asked to author each problem in a set of 11 specially
selected multi-column addition problems (e.g., 543 + 678 =
1221). At each step in a multi-column addition problem, all
of the numbers in a column may or may not add to more than
10, requiring the ten’s digit to be carried to the next column.
Our 11 problems were selected such that the solutions for the
first 8 problems exhibited each of the 8 carry patterns possible
in three-digit addition problems. The last three problems
captured situations where the carry pattern would be incorrect
if a student had forgotten to add the carry from the previous
column (Figure 2b). We used our first two participants to

Figure 2: The multi-column addition tutor interface com-
pleted on two problems with different carry patterns. a)
The middle carry is not present. b) All carries are present.
Two columns exhibit a special case where they add to
10 only if the carry derived from the previous column is
added.

estimate the appropriate amount of time to give each user.
These two participants primarily used one authoring type, and
spent little or no time with the other type. The remaining eight
users spent at most 45 minutes authoring with each of the two
tools. For all participants, one of the authors was available
to provide guidance and answer questions on both authoring
interfaces.

When using CTAT example-tracing, participants were asked
to first make a behavior graph (Figure 3) to handle each of
the eight carry patterns, and then for each one proceed as if
they were going to use CTAT’s mass production feature to
make dozens of practice problems of each type. For novice
users, we explained each of the steps involved, and demon-
strated steps where necessary. The steps for mass producing a
CTAT example-tracing tutor include demonstrating multiple
solution paths to create a behavior graph, replacing the val-
ues for each edge in the demonstrated behavior graph with
variables, and creating a problem table complete with Excel
spreadsheet equations. In practice, a user might then use this
spreadsheet to mass produce a large number of problems of
a particular form. We only asked users to replicate the given
problem and another of their own creation manifesting the
same carry pattern. Participants were encouraged to test their
mass produced problems to make sure that their formulas and
choice of problems were correct and consistent with the carry
pattern for the provided problem.

When using the AL authoring interface users were first given
a brief demo of the interface. Then the agent was reset and the
participants started again from scratch. Participants entered
each of the provided problems into the interface one at a time,
and then demonstrated steps and provided correctness feed-
back to train an AL agent. After going once through the pro-
vided problems participants continued redoing problems from
those provided or of their own choosing until they felt that the
agent had achieved full model-tracing completeness. At the
point when the participants decided that they were finished or
at the 45 minute mark we used a grading script to assess the

Figure 3: CTAT example-tracing. An intermediate solu-
tion state (left), and part of a behavior graph (right) spec-
ifying legal actions at each step. The graph branches so
that adding and placing carries can be done in either or-
der.

model-tracing completeness of the user’s trained Simulated
Learner. The grading script measured the proportion of model-
tracing complete steps in the 11 given problems, in addition
to 12 problems from a holdout set with a diversity of carry
patterns. As participants worked, a researcher occasionally
intervened to remind them of the criteria for reaching 100%
completeness. There was no formal condition for intervening;
however, we typically intervened whenever the participant had
questions, finished going through all the problems for the first
time, and at any point where they seemed uncertain about the
behavior the ITS was intended to exhibit. For example, we
often reminded participants that if a carry was absent then the
box should be left blank (instead of for example inserting a
zero). Our intention in choosing to intervene was to be able
to get a qualitative sense of how having varying degrees of
mastery with the interface might change a user’s interaction
with the software. By partially scaffolding the participants’ ex-
perience in this way we could see them progress from novice
to expert users.

RESULTS
Our goal was to test whether our novel interaction design
would enable users to train a Simulated Learner exhibiting
full model-tracing completeness with three-digit multi-column
arithmetic problems in much less time than it would take them
to directly author the eight mass produced behavior graphs
necessary to completely build problems in this domain with
CTAT example-tracing.

Quantitative
The results of our user study are summarized in Table 1. For
the AL authoring interface, our grading script measured com-
pleteness as the proportion of legally enterable states in which
a tutor’s behavior is model-tracing complete (i.e. only marks

User First AL
Complete

AL
Time

CTAT
Complete

CTAT
Time

1 CTAT 30% 15min 11% 45min
2 AL 85% 55min N/A* N/A*
3 AL 98% 45min 13% 45min
4 CTAT 83% 30min 7% 45min
5 CTAT 92% 42min 50% 45min
6 AL 91% 25min 27% 45min
7 CTAT 92% 35min 11% 45min
8 AL 98% 41min 23% 45min
9 AL 85% 41min 13% 30min**
10 AL 99% 45min 23% 45min

Average 85% 37min 20% 43min
Median 92% 41min 13% 45min

Table 1: Performance of AL agents for each user by pro-
portion of grader problems where the agent’s skill applica-
tions were model-tracing complete (AL Complete). In ad-
dition, completeness progress in CTAT (CTAT Complete)
and total times for both authoring types. *User 2 had to
leave before they had the opportunity to start with CTAT.
**User 9 did not enjoy using CTAT and elected to leave
early.

the intended correct next actions as correct). The states graded
by our script included all of the unique steps along each of
the legal solution paths in the 11 given problems and in the 12
problems in the holdout set. Completeness for the CTAT au-
thoring mode is measured, more leniently, as the total progress
the user made in producing the eight mass production ready
behavior graphs. Each complete behavior graph and set of
mass production formulas counted toward 1/16th of total com-
pleteness, and partially completed graphs, and Excel formulas
received partial credit. For example, in the course of 45 min-
utes, users 1 and 7 completed an example tracing graph for
one of the carry patterns and made it half way through writing
mass production formulas for it in Excel, yielding a total of
11%, just short of the 13% (rounding up from 12.5%) which
they would have earned had they fully completed one of the
eight carry patterns. Although model-tracing completeness is
measured differently between conditions, 100% model-tracing
completeness means the same thing for both model-tracing and
example-tracing tutors—that the tutor exhibits the intended
correct behavior along all solution paths for all problem types.

The average model-tracing completeness achieved by users
with AL across conditions was 85%. Excluding user 1, who
had to leave after working for just 15 minutes, the average
completeness was 91%. By contrast users achieved an aver-
age of 20% completeness with CTAT which corresponds to
demonstrating, variablizing, and mass producing one behavior
graph, then demonstrating and variablizing a second graph
but not beginning the Excel spreadsheet to mass produce it.
There was no appreciable difference in performance on our
interface between users who were and were not familiar with
CTAT. Additionally, there was no appreciable difference be-
tween users who used CTAT first or the AL interface first.
Estimating completeness progress to be linear with respect to

time, participants achieved an average of 2.2% completeness
per minute with AL and .5% completeness per minute with
CTAT example-tracing. This constitutes slightly more than
a 4-fold speedup in authoring time for equivalent levels of
completeness. No participants reached 100% model-tracing
completeness in either interface; however, three participants
achieved completeness scores within 2% of full completion.

These results show us that although users can achieve greater
levels of completeness using AL agents with our interaction
design than with CTAT example-tracing, they fall short of
building fully complete model-tracing behavior. The major-
ity of users believed that they had reached full model-tracing
completeness before their 45 minutes were up. Our own in-
ternal tests among ourselves show it is possible to achieve
100% model-tracing completeness in the course of about 20
minutes. Even though our users did not reach 100%, we found
that they were supported in approaching full model-tracing
completeness. Had users been constrained to authoring from
a performance-model perspective, like in SimStudent’s Au-
thoring by Tutoring, they could have achieved at most 55%
model-tracing completeness since 45% of the states in the
holdout set can only be reached by supporting alternate paths.
However, all users that authored for 45 minutes or up to the
point that they believed they had achieved model-tracing com-
pleteness reached at least 83% model-tracing completeness.

Qualitative
In addition to the quantitative measures we also informally
observed some trends among participants. When using CTAT,
several users encountered a few common interaction difficul-
ties. Many users had a hard time telling the difference between
edges (denoting actions) and nodes (denoting problem states)
in behavior graphs (In Figure 3 edges are shown in green text
while nodes are in black). They would click an edge hoping to
navigate to a state, but nothing would happen. A few partici-
pants who were more familiar with CTAT became sidetracked
by trying to use features which they had once used successfully
but no longer remembered how to use. These features included
CTAT’s formula function language (an alternative approach
to using Excel equations), and creating unordered groups of
steps. One user reported that it was difficult to fix errors with
CTAT because the process of mass production required using
two different applications (Excel and CTAT). Although the
majority of our users were familiar with how to use CTAT, we
often had to intervene to remind them of how to do certain
steps.

Likewise, when working with the AL authoring interface users
generally needed guidance in order to help them recognize
model-tracing completeness at each step, and provide feed-
back and demonstrations when it had not been achieved. Al-
though our initial demo covered these points, participants’
initial behavior often indicated that they did not fully grasp
the completeness objective. For example, some participants
fell into a pattern of only giving feedback on the first skill
application proposed by the AL agent. Other participants
forgot to demonstrate steps if not all of the intended correct
actions were proposed. These behaviors are indicative of
the performance-model perspective. When participants con-

sistently showed one of these behaviors, we helped them to
understand how to use the interface to reach completeness
through the model-tracing-completeness perspective. The fact
that we consistently needed to intervene means that our inter-
action design could use some improvements to better induce
this perspective in first time users. We discuss this further in
the future work section.

There were a few patterns that we observed among partici-
pants. Most participants began interacting with the interface
by only responding Yes or No to the first proposed skill ap-
plication. However, after we reminded participants that they
needed to give negative feedback to erroneous proposed skill
applications, they tended to interact in one of two ways. Either
participants would stage skills and press Yes or No, or they
would primarily use the 6 and 4 buttons. When primarily
using the Yes and No buttons users would sometimes give
positive feedback before responding with negative feedback
causing them to change the problem state without achieving
model-tracing completeness on the step they were in. When
participants predominantly used the 6 and 4 buttons they
tended to give feedback to all of the proposed skill applica-
tions even if they were both correct. However, since only
the Yes button could be used to navigate forward through a
problem this meant they usually gave redundant feedback. In
both these cases the fact that the Yes button was used for both
navigation and feedback was associated with user errors or
inefficiencies.

Generally, participants reported that they enjoyed working
with the AL agent more than CTAT example-tracing. Some
participants even thought training the AL agent was fun. A few
participants reported that although the initial authoring steps
were difficult it was rewarding to see the AL agent learning
from their feedback to the point that they usually just had to
click Yes at each step. Participants felt more confident that
the progress that they had made with CTAT was complete
and found that although it was relatively quick to train an AL
agent it was hard to be certain of when the agent had reached
completeness.

DISCUSSION
The fact that our interaction design supported users in reaching
model-tracing completeness is a promising result. Although
there were some limitations to our study, we believe these re-
sults have important implications for PBD and ITS authoring.

Limitations
In this study we only tested our interaction design on a sin-
gle type of arithmetic problem. Multi-column addition was
chosen because it is a type of problem with multiple solution
paths which can be authored with both CTAT example-tracing
and a Simulated Learner. We would, however, would like
to see if these results extend to other types of problems. In
practice Simulated Learners can induce a wider range of be-
haviors than are easily achievable with example-tracing [13].
We did not flex this functionality. Additionally we did not test
our AL agents’ abilities to generalize to problems of differ-
ent sizes. For example, if an agent achieves model-tracing
completeness on three-digit problems it should in principle

be model-tracing complete on two-digit, four-digit, and larger
addition problems.

Our users were restricted to current educational technology
students whereas in future work we would like to work with a
greater diversity of users, including teachers and professional
instructional designers. We would have also liked to test our
users’ progress toward model-tracing completeness at every
step rather than only at the end. This would have helped us
measure places where their progress slowed. Additionally, it
would be interesting to see how users fare with our interac-
tion design with considerably less scaffolding—no predefined
problem sequence, and no interventions.

Implications For ITS Authoring
Efficient, easy-to-use ITS authoring tools backed by Simu-
lated Learners have the potential to have a large impact on
making ITSs widely available inside and out of the classroom.
Although our participants were relatively skilled with the tech-
nologies involved, we believe that the significant speedup we
observed in authoring times relative to CTAT example-tracing
bodes well for future studies of both teachers and instructional
designers. Unlike CTAT which requires some light program-
ming in Excel for its mass production step, our interaction
design requires neither prior programming knowledge nor an
understanding of our tool’s underlying AI. Ultimately, we see
this study as a step toward using Simulated Learners to make
ITS authoring easy enough that teachers could author tutoring
systems without any special training, and fast enough that
instructional designers could build the core functionality of
tutoring systems in as little time as it takes to write a worksheet
and grade a few students’ work.

Implications For Programming-by-Demonstration (PBD)
Generally, PBD systems support a performance-model per-
spective, where the goal is to train an agent to correctly per-
form tasks. The field of PBD may benefit from adopting inter-
action designs which support the model-tracing-completeness
perspective as well. Consider a case where an agent taught
via PBD must choose among several possible actions. For
example, one might train an agent to treat possible instances
of cancer. The agent could be responsible for diagnosing and
prescribing treatment via the same iterative process that an
oncologist might go through—ordering several rounds of di-
agnostic tests, checking the progress of treatments, and chang-
ing strategies when appropriate. A well trained agent would
choose an action at each interaction in alignment with the
positive feedback of its human teacher. Usually, this teaching
would result in the agent learning a single course of action or
single strategy. However, it may be the case that unforeseen
circumstances make this strategy impossible or undesirable.
For example, the appropriate course of action may be to pre-
scribe a particular drug, but the drug has run out. In this case,
the agent will need a plan-B. If the agent has only been trained
from a performance-model perspective then its second choice
of action may be erroneous or even catastrophic to the user.
For example, the agent may instead prescribe a dangerous and
unnecessary surgery. However, if the agent was trained using
an interface which encouraged a model-tracing-completeness

perspective then the oncologist training the agent could demon-
strate alternate solution strategies for various situations and
cull out any misconceptions the agent may temporarily acquire
about those strategies. In this way, the agent would accurately
learn alternative diagnosis and treatment strategies to more
flexibly deal with unforeseen circumstances.

FUTURE WORK

Visual Features
The results of our user study revealed several considerations
for future revisions to our current design. One unanticipated
issue was that some users reported having trouble switching
focus between the skill window and the tutoring interface.
Although these participants understood that their objective
was to ensure model-tracing completeness at each step, their
focus was often directed only on the current staged skill. In
cases when the staged skill was correct, participants often
simply pressed the Yes button to navigate to the next step
without considering any other proposed skill applications. One
solution to this issue would be to have the authoring tools
show all of the applicable skills directly on the tutoring system
interface. For example, the staged skill could be highlighted in
color, and the others in gray. This would allow users to quickly
assess the model-tracing completeness of a particular step
without requiring them to switch their focus to the skill window
and manually toggle between the proposed skill applications.
An alternate solution would be to remove the Yes and No
buttons entirely to slow the user down and force them to use
the skill window to consider all proposed skill applications.

A related aspect of the AL authoring interface that users re-
ported having difficulty with was understanding the descrip-
tion of skills in the skill window. The content of the skill
window is organized into a nested list with skills as major
items and applications of those skills as minor item. Skills are
written out as mathematical formulas with variables. Skill ap-
plications contain both the identifiers for the interface elements
which bind to those variables (the where parts), in addition to
the input value derived from evaluating the skill formula on
those interface elements. Since interface element identifiers
are sometimes named arbitrarily, for example ’div64’, users
did not find this format particularly useful for identifying skills.
Users often opted to click through the skill window manually,
staging items, to see the action of each skill application vi-
sually on the tutoring interface. To improve the readability
of the skill window it may be helpful to make use of letter
or symbol identifiers in the description of skill applications.
These identifiers could have counterparts displayed on the tu-
toring interface to help users associate the content of the skill
window with the content of the tutoring interface.

Recovering From Mistakes
A core usability issue which we anticipated among our users
was the lack of means to recover from mistakes. In our current
design, mistakes of providing erroneous positive or negative
feedback can be remedied by outweighing these errors with
several instances of correct feedback. However, some errors
cannot be easily recovered from. For example, some forms of
erroneous demonstration can cause the where-learning mecha-
nism to considerably overgeneralize and propose a very large

number of mostly incorrect skill applications. In our current
system, recovering from this sort of mistake would require
tediously giving negative feedback to all of these skill applica-
tions across the whole problem space.

We have identified a few design strategies that might help users
recover from errors. A simple undo button is a common means
for recovering from mistakes, and we hope to include this in
future work. However, we found that our users were usually
unaware of their mistakes, so an undo button would only have
solved a small part of the problem. We found that a few issues
with our where-learning and when-learning mechanisms made
it hard for users to recover from mistakes easily and made our
system vulnerable to unrecoverable failure.

For example if a user incorrectly gave positive feedback to an
incorrect action and then tried to correct this error later, our
current when-learning mechanism would weight the correction
equally to the erroneous feedback, meaning users would need
to repeatedly reinforce the good behavior to overcome the
error. As a general design recommendation we suggest that
new user demonstrations should override old ones should a
conflict arise. This way feedback mistakes, including ones
that users have repeatedly reinforced can be remedied without
having to repeatedly specify correct behavior.

Additionally, we found that the current where-learning mecha-
nism in our AL agents would sometimes cause catastrophic
overgeneralization errors, where an erroneous demonstration
would lead to the when conditions binding to many more sets
of interface elements than the user intended. As a general
design recommendation, we think user demonstrations should
cause conservative changes in case they need to be undone.
An improved version of our where-learning mechanism would
be cognizant of the number of new sets of interface elements
it would bind to by generalizing its matching rules. This alter-
nate mechanism might hold off on performing generalizations
that result in large changes to the matching behavior until the
generalization can be substantiated by subsequent examples.
A when-learning mechanism like this could give the user the
opportunity to correct erroneous demonstrations well after
they were produced.

Prior Knowledge and Skill Induction
One aspect of authoring which we have overlooked for the
purposes of this study is prior knowledge specification. The
search-based planner that induces skill formulas requires a set
of functions that it can chain together to explain demonstra-
tions. In our study, we preloaded a few functions sufficient
for multi-column addition. In a full authoring suite however, a
very large number of functions could be available. Savvy users
may even be inclined to author their own functions. Thus, we
still must determine how users might select a subset of these
functions for the purposes of authoring in a particular domain.
This could be done with a simple menu with toggle buttons
displayed at the beginning of authoring. However, it may be
possible to skip this step altogether by having a Simulated
Learner induce skills from all (or at least a large subset) of the
available functions, and then have the user narrow down the
set of explanations for a demonstration by searching for their
intended formula. This process could be assisted by including

a search bar where users could type keywords associated with
their intended formula, or input these keywords multi-modally
with speech-to-text.

Another approach would be to allow skill formulas to be re-
fined through the training process instead of forcing users to
zero in on a skill’s formula at its first demonstration. Currently,
when multiple explanations are available for a demonstration
an AL agent will instantiate a skill with a formula taken from
the most parsimonious of the conflicting explanations. If this
formula proves to be incorrect in a later situation a new one
may be induced. SimStudent has demonstrated a potential
solution to this problem in its ability to revise skill formulas.
For example, a demonstration of 2 and 2 makes 4 might in-
duce a skill with formula Add(x,y); however, if later there
is a demonstration in a similar situation of 3 and 3 makes 9,
then the formula may be revised to Multiply(x,y) since this
generalizes to both 3*3=9 and 2*2=4. An advantage of this
approach is that the user never actually needs to inspect the
formulas induced from demonstrations. A challenge to this
approach is that determining when a skill formula should be
changed and when a new skill should be induced is not always
clear. In SimStudent users explicitly express the connection
between each demonstration and the skill it should refine or
induce. While this helps to address generalization problems,
it would introduce an additional step to the authoring process.

Supporting Model-tracing Completeness
It was not always easy for our users to identify whether or not
they had trained an AL agent to the point of model-tracing
completeness. In CTAT, users can visually see the demon-
strated structure of a problem’s solution space through its
behavior graph. By contrast, it is not always clear where a
Simulated Learner needs additional demonstrations or cor-
rectness feedback without explicitly going through problems,
perhaps several times.

One way of making a user’s progress toward model-tracing
completeness more transparent would be to display an induced
behavior graph for each problem. This behavior graph could
be constructed by proceeding from the start state to the done
state in a breadth first fashion by adding edges for each action
suggested by a Simulated Learner at each state. Immediate
candidates for user feedback would be actions which result
in states with no path to the done state. However, after these
cases have been eliminated there will be extraneous paths
which lead to the done state but are incorrect. However, the
interface could support the user in identifying these paths.

In our study, users had difficulty keeping track of all the sit-
uations where they had provided feedback or not. For prob-
lems with exponentially larger solution spaces reaching model-
tracing completeness with our current interaction design may
prove elusive. However, we believe it would be possible to
support users in these sorts of cases. For example, to aide users
in finding paths which could use explicit feedback, a Simu-
lated Learner could keep track of which paths it had implicitly
constructed and which were specified explicitly by a user. In
principle, an AL agent could even construct a continuous sense
of its confidence in a particular skill application by gauging
how similar the situation is to states and skill applications

which have been provided explicit feedback. This information
could be visualized on the problem level by annotating each
edge in an induced behavior graph with these confidences.
Similarly, at the step level this information could be used to
create a skill application conflict resolution strategy which
places low confidence skill applications higher in the skill
window, with the least confident, and thus most likely to be
incorrect, skill application staged by default. Employing this
strategy would make likely incorrect skill applications more
salient to the user. A secondary confidence heuristic could
even be aware of low skill application confidences downstream
from the current state, leading the user to give feedback along
paths which they have not already traversed. In principle, users
do not need to give explicit feedback in every conceivable sit-
uation since AL agents generalize across situations. Thus a
well crafted confidence heuristic could significantly cut down
on the number of situations that a user needs to check to reach
model-tracing completeness.

Making Smarter Agents
One of our users referred to the agent as ’dumb’ because after
many demonstrations it was still making mistakes. There are
a few ways that an agent could more quickly converge to the
behavior a user intended for it to learn. SimStudent included
a feature in its when-learning mechanism that made positive
feedback to one skill count as implicit negative feedback to
all other skills. Implicit negatives were overridden by explicit
positive feedback to avoid interference between skills. This
implicit negative feedback caused skills to be applied much
more conservatively. For the purposes of achieving model-
tracing completeness, implementing implicit negatives in AL
agents could reduce the amount of time users spend searching
for erroneous skill applications. A drawback of this approach
is that it would require the users to make a larger number of ex-
plicit demonstrations, which are slightly more time consuming
and prone to error than providing correctness feedback.

Another concern with when-learning mechanisms in extant
machine teaching systems is that they tend to commit to a
single set of conditions that separate negative examples from
positive ones. In reality, there is often a large space of condi-
tion sets which could separate all of the positive and negative
examples produced so far by the user. Consequently, some-
times the set of conditions that a when-learning mechanism
picks in this large space results in false negatives where the
agent does not produce an intended skill application, or a false
positives where the agent produces an incorrect skill applica-
tion. The Gamut system’s strategy for reducing the size of
this space was to prompt the user to select interface elements
on which the actions produced by the system depended [19].
Similarly, AL uses foci-of-attention to make skill induction
easier, but a similar interaction could be implemented to aide
the when-learning mechanism specifically. Alternatively, an
AL agent’s when-learning mechanism could use spatial and
temporal heuristics to pick conditions sets which are more
likely to be consistent with future demonstrations. These
heuristics would encode the fact that steps in procedural tasks
tend to be done roughly in some order and roughly spatially
close together (e.g., problems may generally be solved from
left-to-right and down).

CONCLUSION
In this paper, we presented a novel interaction design for creat-
ing intelligent tutoring systems by training Simulated Learners.
We demonstrated that our novel interaction design supported
users in creating nearly model-tracing complete ITSs in less
than a quarter of the time it would take to author the same
ITSs with CTAT example-tracing. Finally, we provided several
design recommendations for future work in Simulated Learner
based authoring tools.

ACKNOWLEDGEMENTS
The research reported here was supported in part by a training
grant from the Institute of Education Sciences (R305B150008).
Opinions expressed do not represent the views of the U.S.
Department of Education. Big thanks to Google for providing
us with a 2018 Google Faculty Research Award supporting
this work.

REFERENCES
[1] Vincent Aleven, Bruce M McLaren, Jonathan Sewall,

and Kenneth R Koedinger. 2006. The Cognitive Tutor
Authoring Tools (CTAT): Preliminary Evaluation of
Efficiency Gains. In International Conference on
Intelligent Tutoring Systems. Springer, 61–70.

[2] Vincent Aleven, Bruce M McLaren, Jonathan Sewall,
Martin Van Velsen, Octav Popescu, Sandra Demi,
Michael Ringenberg, and Kenneth R Koedinger. 2016.
Example-Tracing Tutors: Intelligent Tutor Development
for Non-Programmers. International Journal of Artificial
Intelligence in Education 26, 1 (2016), 224–269.

[3] John R Anderson. 1996. ACT: A Simple Theory of
Complex Cognition. American Psychologist 51, 4
(1996), 355.

[4] Leo Breiman. 2017. Classification and Regression Trees.
Routledge.

[5] Albert T Corbett, John R Anderson, and Alison T
O’Brien. 1995. Student Modeling in the ACT
Programming Tutor. Cognitively Diagnostic Assessment
(1995), 19–41.

[6] Allen Cypher and Daniel Conrad Halbert. 1993. Watch
What I Do: Programming by Demonstration. MIT press.

[7] Kenneth R Koedinger, John R Anderson, William H
Hadley, and Mary A Mark. 1997. Intelligent Tutoring
Goes To School in the Big City. (1997).

[8] Kenneth R Koedinger, Noboru Matsuda, Christopher J
MacLellan, and Elizabeth A McLaughlin. 2015.
Methods for Evaluating Simulated Learners: Examples
from SimStudent.. In AIED Workshops.

[9] John E Laird, Kevin Gluck, John Anderson, Kenneth D
Forbus, Odest Chadwicke Jenkins, Christian Lebiere,
Dario Salvucci, Matthias Scheutz, Andrea Thomaz,
Greg Trafton, Robert E Wray, Shiwali Mohan, and
James R Kirk. 2017. Interactive Task Learning. IEEE
Intelligent Systems 32, 4 (2017), 6–21. DOI:
http://dx.doi.org/10.1109/MIS.2017.3121552

http://dx.doi.org/10.1109/MIS.2017.3121552

[10] Tessa Lau, Steven A Wolfman, Pedro Domingos, and
Daniel S Weld. 2001. Learning Repetitive Text-editing
Procedures with SMARTedit. In Your Wish is My
Command. Elsevier, 209–XI.

[11] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017.
SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems. ACM, 6038–6049.

[12] Wenting Ma, Olusola O Adesope, John C Nesbit, and
Qing Liu. 2014. Intelligent Tutoring Systems and
Learning Outcomes: A Meta-Analysis. Journal of
Educational Psychology 106, 4 (2014), 901.

[13] Christopher J MacLellan. 2017. Computational Models
of Human Learning: Applications for Tutor
Development, Behavior Prediction, and Theory Testing.
Ph.D. Dissertation. Carnegie Mellon University.

[14] Christopher J MacLellan, Erik Harpstead, Robert P
Marinier III, and Kenneth R Koedinger. 2018. A
Framework for Natural Cognitive System Training
Interactions. Advances in Cognitive Systems 6 (2018),
1–16.

[15] Christopher J Maclellan, Erik Harpstead, Rony Patel,
and Kenneth R Koedinger. 2016. The Apprentice
Learner Architecture: Closing the Loop between
Learning Theory and Educational Data. International
Educational Data Mining Society (2016).

[16] Christopher J MacLellan, Erik Harpstead,
Eliane Stampfer Wiese, Mengfan Zou, Noboru Matsuda,
Vincent Aleven, and Kenneth R Koedinger. 2015.
Authoring Tutors with Complex Solutions: A
Comparative Analysis of Example Tracing and
SimStudent. In The 2nd AIED Workshop on Simulated
Learners. CEUR-WS.org, Madrid, Spain.

[17] Christopher J MacLellan, Kenneth R Koedinger, and
Noboru Matsuda. 2014. Authoring Tutors with
SimStudent: An Evaluation of Efficiency and Model
Quality. In International Conference on Intelligent
Tutoring Systems. Springer, 551–560.

[18] Noboru Matsuda, William W Cohen, and Kenneth R
Koedinger. 2015. Teaching the Teacher: Tutoring
SimStudent Leads to More Effective Cognitive Tutor
Authoring. International Journal of Artificial
Intelligence in Education 25, 1 (2015), 1–34.

[19] Richard G McDaniel and Brad A Myers. 1997. Gamut:
Demonstrating Whole Applications. In Symposium on
User Interface Software and Technology: Proceedings of
the 10 th annual ACM symposium on User interface
software and technology, Vol. 14. 81–82.

[20] Tom M Mitchell. 1982. Generalization as Search.
Artificial Intelligence 18, 2 (1982), 203–226.

[21] Stephen Muggleton. 1991. Inductive Logic
Programming. New Generation Computing 8, 4 (1991),
295–318.

[22] Tom Murray. 2003. An Overview of Intelligent Tutoring
System Authoring Tools: Updated Analysis of the State
of the Art. In Authoring Tools for Advanced Technology
Learning Environments. Springer, 491–544.

[23] Brad A Myers. 1986. Visual Programming,
Programming by Example, and Program Visualization: a
Taxonomy. In ACM SIGCHI Bulletin, Vol. 17. ACM,
59–66.

[24] John F Pane, Beth Ann Griffin, Daniel F McCaffrey, and
Rita Karam. 2014. Effectiveness of Cognitive Tutor
Algebra I at Scale. Educational Evaluation and Policy
Analysis 36, 2 (2014), 127–144.

[25] Steven Ritter, John R Anderson, Kenneth R Koedinger,
and Albert Corbett. 2007. Cognitive Tutor: Applied
Research in Mathematics Education. Psychonomic
Bulletin & Review 14, 2 (2007), 249–255.

[26] Herbert A Simon. 1983. Why Should Machines Learn?
In Machine Learning. Elsevier, 25–37.

[27] Kurt VanLehn. 2006. The Behavior of Tutoring Systems.
International Journal of Artificial Intelligence in
Education 16, 3 (2006), 227–265.

	INTRODUCTION
	THE APPRENTICE LEARNER FRAMEWORK
	INTERACTION DESIGN
	Model Transparency
	Input Flexibility
	Problem Solving Control

	METHODS
	RESULTS
	Quantitative
	Qualitative

	Discussion
	Limitations
	Implications For ITS Authoring
	Implications For Programming-by-Demonstration (PBD)

	FUTURE WORK
	Visual Features
	Recovering From Mistakes
	Prior Knowledge and Skill Induction
	Supporting Model-tracing Completeness
	Making Smarter Agents

	CONCLUSION
	ACKNOWLEDGEMENTS
	References

