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ABSTRACT KEYWORDS

When well-implemented, mediation analyses play a critical role in probing Indirect effects; mediation;
theories of action because their results help lay the ground work for the multilevel models; optimal
critical development of a treatment and the iterative advancement of theo- ~ design; power; sample-size
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ries that are foundational to a discipline. Despite strong interest in designs

that incorporate mediation, few studies have developed effective and effi-

cient strategies to plan experiments examining multilevel mediation. We

probe several design strategies for cluster-randomized designs and derive

sampling plans that maximize power under cost constraints. The results

suggest that among the more durable design strategies for mediation is

covariance adjustment on variables predictive of the outcome and optimal

sample allocation. The statistical power and optimal sample allocation

results are implemented in the R package PowerUpR.

STUDIES THAT INVESTIGATE the mechanisms or intermediate actions through which the
influence of a treatment operates on an outcome provide evidence as to how and why a treat-
ment comes to prove (in)effective. The type of evidence supplied by mediation analyses often
lays the groundwork for critical development of a specific treatment but also for the iterative
development and scientific advancement of theories that are foundational to a discipline (e.g.,
Krull & MacKinnon, 1999). For example, (multilevel) mediation studies have been employed
to investigate mental health (Kozlowski & Klein, 2000), steroid use (Krull & MacKinnon,
1999), implementation of evidence-based practice (Aarons, Hurlburt, & Horwitz, 2011),
teachers’ practice (Kersting, Givvin, Thompson, Santagata, & Stigler, 2012), teacher knowledge
and instruction (Kelcey, Hill, & Chin, in press), and academic achievement (Curenton, Dong,
& Shen, 2015). Within the context of education and many other social disciplines, mediation
analyses often take on a multilevel composition because of the multilevel social structure
inherent in many settings (e.g., Krull & MacKinnon, 1999; Kelcey, Dong, Spybrook &
Shen, 2017).

Despite widespread interest and development in designs that facilitate mediation analysis, there
has been minimal literature outlining the effective and efficient a priori design of studies to detect
mediation effects in cluster-randomized designs (Institute of Education Sciences [IES], 2013).
A major gap in the literature in terms of planning multilevel mediation studies has been the lack
of formulas and statistical approaches to identify designs and strategies that are judicious in their
use of resources yet well positioned to generate decisive evidence concerning the theoretical
mechanisms of a treatment. For instance, a key component to ensuring that multilevel mediation
studies are well designed is identifying sampling schemes—the total sample size and the optimal
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allocation of that total sample across levels—that carefully use resources to achieve a sufficient
level of power to detect the sequence of relationships used to trace the causal pathways from the
treatment through the mediator to the outcome.

In this study, we probe the statistical power formulas to gain conceptual insight into the
functional relationships they have with key governing parameters for cluster-randomized trials
under three tests. We then derive sample-allocation formulas that optimize the power of each
test to detect mediation effects. The structure of our report is divided into four primary sec-
tions followed by a discussion. In the first section we introduce a working example and outline
the path models used to estimate multilevel mediation effects and provide a summary of the
primary assumptions that support inferences. In the second section, we establish statistical
power and optimal design formulas for the overall mediation effect for each test. In the third
and fourth sections, we extend the results to consider the lower- and upper-level subcompo-
nents of the overall mediation effects when researchers wish to adopt additional assumptions
and conceptually decompose the overall mediation effect. We finish with an example
and discussion.

Framework

Before outlining the statistical models, we ground our work in a substantive example. We
consider the design of a multilevel mediation study that assesses the potential pathways through
which participation in a school-based program (treatment) intended to improve student achieve-
ment (outcome) operates by improving student behavior (mediator). For an example found in
the literature, consider the Raising Healthy Children (RHC) program (Fleming, Harachi,
Catalano, Haggerty, & Abbott, 2001). One key component of this program is services that pro-
actively “address developmentally salient risk and protective factors that are precursors to prob-
lem behavior” (Fleming et al, 2001, p. 657). More generally, one component of the theory of
action underlying the program is that the scaffolded development of prosocial behavior through
education and support services reduces problem behavior, develops a sense of belonging, and cre-
ates a more productive academic environment. Let us consider a school-randomized design that
nests students within schools and assigns schools at random to participate in the RHC program
or a control condition. In turn, consider a series of explanatory questions that seek to examine
the degree to which the impact of participation in the RHC program (school-level treatment)
on student achievement (individual-level outcome) operates through student behavior (individual-
level mediator).

In this example, student behavior represents an individual-level mediator because it describes
differences among students. However, the collection of behaviors adopted by students within a
school can serve to further differentiate schools by faciliating peer effects. For example, prior
research has demonstrated that schools that collectively maintain more-positive behavioral envi-
ronments promote more effective schooling (Wagner & Ruch, 2015). More generally, many theo-
ries underlying programs in education specifically draw on and leverage positive environments to
affect student outcomes (e.g., Kozlowski & Klein, 2000).

The prevailing approach in characterizing the collective student behavior at a school is to sum-
marize student behaviors using the school average (e.g., Raudenbush & Bryk, 2002). For instance,
in our multilevel mediation example, we might consider how participation in the RHC program
influences student achievement by examining how participation produces changes in individual
student behaviors and how participation modifies the larger school context generated by the col-
lective changes in student behavior. For this reason, many studies considering individual-level
mediators assess how school-level treatments affect student-level outcomes by operating through
both changes in individual student attitudes and the collection of attitudes at a school
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(e.g., Nagengast & Marsh, 2012; Kunst, Fischer, Sidanius, & Thomsen, 2017; Saarento, Boulton, &
Salmivalli, 2015; Stabler, Dumont, Becker, & Baumert, 2017).

Models

We describe the models associated with multilevel mediation using our RHC program example.
We begin with a multilevel formulation that employs a system of linear mixed models (Pituch &
Stapleton, 2012; Raudenbush & Bryk, 2002; VanderWeele, 2010; Zhang, Zyphur, & Preacher,
2009). Our initial model draws on centering student-level variables within school (or group-mean
centering) because this is the most common approach in the literature and is useful for disentan-
gling mediation effects across levels (e.g., Zhang, Zyphur, & Preacher, 2009; Pituch & Stapleton,
2012). However, as we subsequently outline, using raw values or centering on the grand mean
across schools yields equal parameter estimates under these formulations (Kreft, de Leeuw, &
Aiken, 1995). In the context of a student-level mediator, the mediator model is

M, =y +m, (XU—XJ.) + Vi + el ggﬂwN(o, afm). o
o = Loo +aT; + Con W, + (o X + gy uf)‘wa(O, 112\,”).

M;; represents the mediator value for student i in school j, X is a student-level covariate that
potentially varies across students and schools (with 7, as its path coefficient), Vj; is a student-level
covariate that varies only across students (i.e., no school-level variation) with coefficient 7,, and
X j is the school-level variable or mean aggregate of the student-level variable (with {y, as its path
coefficient), T; as the treatment assignment coded as +!/, with associated path coefficient a, W;
as a school-level covariate with {y; as its path coefficient, 82-/[ as the error term, and ug;-f as the
school-specific random effects. Applied to our running example, a maps out how participation
in the RHC program produces changes in student behavior.
The outcome model parallels the previous model such that,

Y= By + b, (M,.ijj) + B (Xijf)_(]) BVl el ~N(o, azy‘).

Boj = oo+ BM; + Ty + 90, W + 700X+ “gJ‘NN(O’ TZYI)'

()

We use Yj; as the outcome for student i in school j, Mij_M ; as the school-centered student-
level mediator with coefficient b;, M; as the mean of the mediator in school j with path coeffi-
cient B, ¢’ as the treatment-outcome conditional path coefficient, and ugj and 8}; as the Level 2
and Level 1 error terms. Returning to our example, the B path describes how changes in student
behavior are (conditionally) correlated with students’ achievement (see below for add-
itional discussion).

Assumptions

Literature probing the interpretation of indirect effects resulting from the aforementioned models
as evidence for mediation has been careful to detail key assumptions required to draw inferences
regarding indirect effects. In addition to the usual model-based assumptions (e.g., correct specifi-
cation, linearity, homogeneity), we outline three primary assumptions below and refer to litera-
ture for more detailed descriptions (e.g., VanderWeele, 2010).

A first core assumption supporting interpretation is sequential ignorability. Although random
assignment of the treatment balances (un)observed confounding variables between groups for the
treatment-mediator and treatment-outcome paths, it does not directly balance those variables that
may confound the mediator-outcome path. Inferences concerning mediation depend on the
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validity of the sequential ignorability assumption that outlines the conditional independence of
the potential mediator and outcome responses given observed variables (VanderWeele, 2010). Put
differently, the sequential ignorability requirement suggests that once we have controlled for the
observed confounding (e.g., from X), there are no unobserved variables that further confound the
paths. Returning to our example, if we had randomly assigned schools to treatment conditions
but our theory suggested that the type of school (e.g., public vs. private) influences student behav-
ior and student achievement, then sequential ignorability (and unbiased estimates of mediation
effects) would be obtainable only if we conditioned on school type in our model.

A second important assumption in this setting is the stable unit treatment value assumption
(SUTVA). There are two core components in this assumption. The first is that there exists only
one version of the treatment. In our example, this assumption suggests that there is minimal
variation in the delivery and content of the RHC program across schools.

The second component of SUTVA is that a student’s potential outcome and mediator values
are not contingent upon the treatment condition and mediator values of other students
(VanderWeele, 2010). Specifically, the consideration of a student-level mediator requires the
adoption of an individual-level version of SUTVA because mediator values vary within schools
(VanderWeele, 2010). Identification of mediation effects in the 2-1-1 mediation case is ostensibly
predicated on a student’s potential outcomes not being contingent on schoolmates’ mediator
values or the treatment assignment of students at other schools (i.e., no interference).

To examine this limitation, literature has considered the pathways through which the mediator
values of schoolmates are likely to sway the potential outcomes of students (e.g., Hong &
Raudenbush, 2006; VanderWeele, 2010). A simplification arises when we can theoretically limit
student’s influence to only their schoolmates (those at the same school). Such a scenario arises
when, for example, schools operate with a reasonable level of independence or a minimal level
of interaction with other schools. When this assumption holds, a student’s potential outcomes
(e.g., achievement) depend only on the mediator values of schoolmates.

A second simplification arises when we can reasonably identify a scalar function through
which the sway of schoolmates on a student is likely to operate. The most common operationali-
zation of this influence is through a school-level mean of the student mediator values in a school
(Raudenbush & Bryk, 2002; Pituch & Stapleton, 2012; VanderWeele, 2010). Applied to our
example, this might suggest that the influence of schoolmates’ behaviors on a student’s achieve-
ment arises primarily through the collective or average behavior at that school.

For instance, schoolmates’ behavior may positively influence a student’s achievement. Such
an example might suggest that exposing a school to the program changes individual student
behaviors and the collective behaviors of students and that, subsequently, those individual
and collective changes in behavior contribute to a student’s achievement level. If those changes in
the environment can be adequately captured by the average student behavior, this assumption
is satisfied. Alternatively, if the changes in environment were influenced by, for example,
the variability of behavior in a school in addition to the average student behavior, then this
assumption would be satisfied only if our models included the school average behavior and the
dispersion of that behavior within a school.

A third assumption is that there is no mediator-by-treatment interaction. Contemporary
mediation analysis has been careful to consider the possibility that the treatment impacts the
magnitude of the mediator-outcome relationship (e.g., magnitude of the B path) in addition
to the mediator. In our applied example, for instance, this type of moderation would exist if
participation in the RHC program intensified the link between student behavior (mediator) and
achievement (outcome) as well as improving behavior. This assumption is relaxed by introducing
a treatment-by-mediator interaction in the outcome model. In our subsequent analyses, we sim-
plify the presentation by omitting the interaction term; however, including it is a simple extension
(e.g., Kelcey, Dong, Spybrook, & Cox, 2017; Kelcey, Dong, Spybrook, & Shen, 2017).



THE JOURNAL OF EXPERIMENTAL EDUCATION @ 5

Mediation effect

In the literature, there are two prevailing perspectives on expressing the movement of effects
from a treatment to an outcome as they operate via an intermediate individual-level variable
when using cluster-level assignment. In a first perspective, mediational analyses with a mediator
measured at the individual-level consider how a treatment operates through both the original
individual-level mediator and its cluster-level aggregate (e.g., Pituch & Stapleton, 2012;
VanderWeele, 2010; Krull & MacKinnon, 2001; Talloen et al., 2016; Kelcey, Dong, & Spybrook,
2018). More specifically, this perspective examines how a treatment generates changes in an out-
come by working through the individual-level mediator values (i.e., differences among students
within a school) and in the school-level aggregate of the mediator (i.e., differences among
schools). Consequently, this perspective studies the prospect that the treatment works differently
at the student level and the school level (e.g., differing degrees or directions). Such a perspective
considers the possibility that the (overall) mediation effect can be at least conceptually separated
into a component resulting from the collective changes in the mediator for all students in
a school and a component resulting from changes in the mediator values of specific students.

In a second perspective, researchers consider only the overlapping covariances at the school
level because a school-level treatment can covary only with the school-level variation in the
mediator (e.g., Zhang, Zyphur, & Preacher, 2009; Kelcey, Dong, Spybrook, & Cox, 2017). The
result is that the treatment-mediator covariance can covary only with the school-level outcome
variance. That is, because students in the same school are assigned identical treatment conditions,
decomposing the degree to which the treatment operates through the student level versus school
level is not identified and opposes the statistical theory underlying such mediation.

Ostensibly these perspectives are at odds with each other because the former privileges
a substantive perspective whereas the latter privileges a statistical perspective (Kelcey, Dong, &
Spybrook, 2018). From a substantive standpoint, prior literature considers it natural and useful
to descriptively partition such relationships (e.g., Pituch & Stapleton, 2012). From a statistical
standpoint, literature has suggested that the decomposition incurs additional assumptions and is
statistically incoherent (e.g., Zhang, Zyphur, & Preacher, 2009).

From a pragmatic perspective, the practical difference between the methods reduces, whether
one wishes to draw on additional assumptions, to separate out the (overall) mediation effect into
contextual and individual components or not. We provide additional discussion regarding these
disparities below; however, from a practical viewpoint, both perspectives privilege, consider, and
evaluate the overall mediation effect but the decomposition perspective additionally delineates the
overall mediation effect into a unique school-level component (contextual) and a unique student-
level component. Our investigation in this study focuses primarily on the overall mediation
effect but also presents derivations (but limited discussion) for the separated effects. The net
implications for our analysis are minimal because the underlying derivations for statistical power
and optimal sampling are identical for the two perspectives: If a researcher adopts the overall
mediation-only approach, she or he can use the results developed below regarding the overall
mediation effect and ignore the auxiliary results. If instead a researcher is interested in designing
a study to specifically track the lower- or upper-level mediation routes, the researcher can draw
on the results below that are specific to each path.

Overall mediation effect
Mediation effect

Under the assumption that students influence only their own schoolmates and do so through the
collective mean and the other aforementioned assumptions, we can consider the three types of
mediation that researchers might examine when an individual-level mediator is of interest. The
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first category we focus on is the cumulative or overall mediation effect that is composed of
the unique contextual (upper-level) and individual (lower-level) mediation effects (described
below). We use the overall mediation effect to describe, for example, how changes in behaviors
(individual or collective or both) brought about by a school’s participation in the RHC program
manifest as changes in student achievement.

Under the centering-within-school approach (as in expression (2)), the coefficient attached to
the school mediator mean (B) represents the sum of the mediator’s student-level relationship
with the outcome (b;) and the mediator’s unique contextual relationship with the outcome
(by see below; Kreft, de Leeuw, & Aiken, 1995). That is, the B coefficient captures the total
(individual plus contextual) influence of the mediator on the outcome as it operates through the
student-level mediator values and the mean scalar function of the school mediator values.

As a result, the product of the a and B coefficients can be used to capture the overall
mediation effect of the treatment on the outcome as it operates through the student mediator
and the school mean of the mediator values (Zhang, Zyphur, & Preacher, 2009; Pituch &
Stapleton, 2012). Given the centering-within-schools parameterization, prior literature
(VanderWeele, 2010, VanderWeele & Vansteelandt, 2009; Pituch & Stapleton, 2012) has shown
that we can obtain an estimate of the overall mediation effect (OME) as

OME = a(b, + b,) = aB. (3)

In our example, this overall mediation effect quantifies the improvement in student achievement
that accrues as a result of program-induced changes in both student and schoolmate behavior.

Having outlined the models and concepts, we next apply this framework to the effective and
efficient design of multilevel mediation studies. Below, we outline three test statistics to draw
inferences regarding mediation under maximum likelihood estimation (Kelcey, Dong, Spybrook,
& Cox, 2017). We describe the power with which each test can detect effects, probe the relationships
between power and key parameters, and derive the sampling plans that optimize the power of
each test.

Sobel test

The Sobel test contrasts the ratio of the estimated mediation effect (aB) and its standard error to
an asymptotic standard normal distribution (Sobel, 1982). For the overall mediation effect, the
Sobel test statistic can be formed using

zZy = aB/\/ o2 (4)

where 6% is the error variance associated with the overall mediation effect. This error variance
can be estimated using

(5)

2 2 5 5
2 2 (TY‘ + GY/m)) + B? (TMI + GM/m> )

nz(rfm —1—0]2\4‘/}11 P(1—P)n,

where n; is the number of students per school, 7, is the number of schools sampled, P is the
proportion of schools assigned to the treatment; the remaining terms have been defined
previously (Kelcey, Dong, Spybrook, & Cox, 2017). If we normalize the outcome and mediator to
have unconditional means of zero and variances of one (i.e., ©3, + a3, = p,, + (1—p,,) = 1 and
5 + 0% = py + (1—py) = 1), the school-level mediator and outcome variances serve as the
respective intraschool correlation coefficients (p5; and py).

We can further reframe the error variance as a function of the governing parameters. To
do so, we replace the conditional variance terms composing the error variance of the overall
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mediation effect as functions of the parameters (Kelcey, Dong, Spybrook, & Cox, 2017). The
conditional school-level outcome variance can be expressed as

2
T = PY(lfR%%_x)*P(lfp)(aB +d)- {BZPM(1*R12\4€5_X> + B (1—pp) (1*R§4§(}V)/”1*0232P(1*P) :

(6)

2 and R}, are the proportions of variance explained in the mediator by the
X,V

where R,
MW.X

covariates. The conditional student-level outcome variance can be estimated using

1—
oy = (1=py) (1—1@&_ ((7%) v (I—Riwv)> : (7)

(1—=py)
For the conditional mediator variances we have
T = PM(l—(P(l—P)az)/PM_waf;X) and a3y = (1-py) (I_R%{V)- (8ab)

The power to detect an overall mediation effect using the Sobel test is assessed using

Sobel Sobel Sobel
P(Zu% <> Zcritical) = l_m(zcritical_za% ¢ ) +0 <_Zcritical_za% ¢ ) . 9)

Relationships between power and parameters

To assess the functional relationships between each of the parameters and power we can study,
for example, rates and monotonicity of the relationships using additional algebra. Such algebraic
manipulations, however, still do not provide a clear conceptual sense of the relationships because
they result in equally complex expressions. For this reason, we outline the nature of relationships
between power and key parameters using a prototypical example that characterizes the complexity
of each relationship. However, we are careful to note that in many instances, noted below, the
nature of these relationships can be sensitive to the specific set of parameter values.

Let us anchor our probe in the working example established above regarding the discovery of
the overall mediation effect when targeting a student-level mediator is of interest. Consider the
design of a multilevel mediation study that probes the degree to which the RHC program impacts
student achievement by improving student behavior (mediator). In this example, we focus on the
total or overall mediation effect that captures the extent to which participation in the program
generates changes in student achievement by changing student individual behavior and/or their
schoolmates’ behavior.

Presume that we have collected empirical estimates of the parameter values based on prior
literature such that we anticipate that the unconditional school-level variances for the outcome
and mediator are both 0.20 (i.e., 73, = 13 = 0.20) and the unconditional student-level variances
are 0.80 (ie, 03, =03 =0.80). Assume that of this unconditional variance, about 10% is
explained by covariates at each level for each response (i.e.R3. =R}, =R%, =R}, =0.10,
with z indicating the appropriate covariates for a response based on the models above).
Regarding the effect expectations, consider a study designed to detect a treatment-mediator path
coefficient as small as a =0.45, an overall mediator-outcome association of B=0.35 with 0.15 due
to the student-level association (b; =0.15), and a direct effect of the treatment on the outcome of
¢’=0.05. Further assume that half of the schools will receive the RHC program (P =0.50).

In probing the relationships, we sequentially freed one key parameter while fixing the remain-
ing parameters to the values noted above. In turn, we plot how statistical power changes as
a function of each key parameter. We outline the relationships for the following parameters:
(a) the a path coefficient, (b) the B (and b;) path coefficient, (c) the unconditional outcome
school-level variance (73), (d) the unconditional school-level mediator variance (t3,), (e) the
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Figure 1. Power under the Sobel test (black) and joint test (gray dashed) as a function of the (a) treatment-mediator path
coefficient (a), (b) total mediator-outcome path coefficient (B), (c) student-level mediator-outcome path coefficient (b,),
(d) unconditional mediator variance at the school level (rfﬂ), (e) mediator variance explained at the school level by covariates

(Ri,u), (f) unconditional outcome variance at the school level (-c%), and (g) outcome variance explained at the school level by

covariates (R?,,).
Z

outcome variance explained by covariates at the school level (R%,,,z), (f) the mediator variance
explained by covariates at the school level (Rzzwzlz)’ and (g) the number of students per school (n;).
The relationships are outlined in Figure 1 for the Sobel test (and other tests subsequently
covered) with a brief summary below.

Treatment-mediator path. The first parameter we examined was the a path coefficient (Figure 1a).
For the Sobel test, our example suggests that power is a nonmonotonic function of the a path coeffi-
cient. In our example, holding other parameters fixed, the power to detect the overall mediation effect
increased when a increased from zero to about 0.5 but then began to decrease after that. This result
aligns with past literature on single-level mediation that notes that although increases in the a path
produce larger mediation effects, such effect increases are coupled with additional collinearity that
inflates the uncertainty of the mediation effect (e.g., Beasley, 2014). In contrast, increases in the mag-
nitude of the mediator-outcome path coefficient produced monotonic gains in power (Figure 1b).

Unconditional mediation variance. We next probed the influence of the unconditional medi-
ator variance at the school level (Figure 1d). The relationship between power and the uncondi-
tional mediator variance at the school level in our example was nonmonotonic and was heavily
dependent on the values of other parameters. In our example, increases in 13, were associated
with increases in power from about zero to about 0.4 (i.e., an intraclass correlation coefficient of
about 0.3) with subsequent increases being associated with decreasing power.

Variance explained in the mediator. Similarly, increases in the variance explained in the
mediator at the school level by covariates (Rzzvrgz) were negatively associated with power (Figure
le). The nature of these relationships is not immediately intuitive. The complexity arises because
the contribution of the unexplained mediator variance to the error variance of the mediation
effect is twofold—for the a path, increasing the mediator variance explained decreases 112\4‘ and
thus serves to reduce the uncertainty of the mediation effect because it enters into the numerator
of the error variance (see Equation 5). In contrast, for the B path, explaining mediator variance
with covariates potentially serves to inflate the uncertainty because it enters into the denominator
(see Equation 5); however, the impact here depends on how the variance explained in the out-
come also changes as a function of those covariates. That is, decreases in ¢? attributable to
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covariates (Rﬁ/ﬂz) can be offset by corresponding increases in 5. However, if increases in Ri/[LZ are
paired with increases in R} ., the relationship can be almost completely eliminated; increases in
Rzzwgz (and thus R%,Z,,z) would yield virtually no change in power. Overall, the influence of parame-
ters linked to the explained mediator variance varies widely and is heavily dependent on the spe-
cific values of other parameters and the ratios of these parameters.

More generally, analysis of the mediator variance explained by covariates suggests that design
strategies predicated on covariate selection or “optimizing” this parameter will typically be
dubious and highly unlikely to improve inferences for at least two reasons. First and foremost,
the sequential ignorability assumption necessitates adjustment for all covariates that confound the
mediation relationships. Removing a covariate that confounds the mediation relationships because
it may weaken power will simply yield more-precise but biased estimates of the relationships.
Second, the results suggest that any potential gains in power obtained by identifying an optimal
level of variance explained in the mediator by covariates are highly sensitive to the presumed val-
ues of other parameters. As a result, most theoretical gains in efficiency will be quickly subjugated
by any misspecification of the remaining parameter values.

Outcome variance. The relationship between power and the unconditional (and conditional) out-
come variance was much simpler. With similar constraints, we saw that power was a steadily decreas-
ing function of the unconditional outcome variance at the school level (Figure 1f): The higher the
degree of correlation among students in the same school, the lower the power. Similarly, increases in
the outcome variance explained at the school level by covariates (R%_z) tend to produce more-power-
ful designs (Figure 1g). That is, we can partially reduce the impact of clustering in the outcome by
introducing covariates that explain school-level variation. Similar to designs for main effects, the
results suggest that one simple design strategy for improving mediation power is to incorporate cova-
riates that explain variation in the outcome (e.g., Kelcey, Phelps, Spybrook, Jones & Zhang, 2017).

Mediator-outcome path. Last, we observed similarly simple and positive relationships between power
and the mediator-outcome path coefficients. Increases in the B (and b;) path coefficient yield greater
power (Figure 1b and 1c). These relationships arise primarily because increases in the mediator-outcome
relationship enlarge the mediation effect and reduce uncertainty in that effect (see Equation 5).

Optimal sampling. We next investigated the role of the number of students sampled per school
(n;). A key consideration in the design of studies is the efficient use of resources. In most studies,
many of the parameters governing the power of a design to detect effects are not malleable (e.g.,
Kelcey & Phelps, 2013a). For instance, the correlation among students within the same school on
the mediator and outcome are structural features of schooling that are difficult to manipulate
in addition to implementing a program (e.g., Kelcey & Phelps, 2013b). In experimental design,
researchers often can manipulate sample sizes at each level subject to cost constraints
(Raudenbush, 1997; Cox & Kelcey, in press). Increasing the number of schools sampled will
typically be associated with larger increases in power when compared to increases in the number
of students sampled per school. Adding schools, however, typically incurs larger costs.

One strategy detailed in prior literature is to identify the student and school sampling balance that
produces the most power within prespecified budgetary constraints. We draw on prior optimal design
frameworks and consider a linear cost formulation (Raudenbush, 1997; Konstantopoulos, 2009; Cox &
Kelcey, in press):

C =GNy + c1many. (10)

Here, we allow ¢ to be the total funds available to conduct a study with ¢; as the cost of sampling
each student and ¢, as the cost of sampling each school. Under this cost structure, we can represent
the school sample size as a function of the student sample size and the cost ratio:

HZZC/(C2+61H1) (11)
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Having defined the school-level sample size as a function of the student-level sample size and
cost structure, we can indirectly maximize statistical power under the Sobel test by minimizing
the error variance with respect to n;. We derive the optimal sample allocation under the assump-
tion that the number of clusters is equal across treatment conditions (i.e., P=0.5). However,
relaxing this assumption is straightforward. To identify the optimal number of students per
school, we can take the first-order derivative of the error variance in terms of n; and set it equal
to zero. The derivative yields

2
1
99 _Lgiziw-z10) (12)
on, c

with
(4a2 (R@, _1)a,zw<clnl o) (zch'nl_z;BZ((ng _1) o2+ (Rfml—l) f;wm) —ap? (wa. _1)0,@, + %+ AR, 0% + 4R i _4a2,_4fzynl))
2
(m(m (@ +4(Ro1) ) +4(Roa1) k) )
4a*(cymy + c2>(32 (R;,;. -1)0@ + b (Rf/,i. -1)a§4_R2Y5,aZY + aly)
B n (nl (az + 4(waz — l)rﬁ,) + 4(R§m, - 1)(7%/,)
(azcl (2ch’n174Bz((R‘Zw? 71)03 + (R‘Zw?fl) r,zwnl) —4p? (Rf/lf. 4)0@, +m + 4R, 0% + 4R§,£212Yn174a§74r2yn1))
(nl (a2 + 4(R§/,,1 - 1)ffw) + 4(R§,,,,\ - 1)53”)
. Bzcl(nl(az + (4R]ZV[1LZ—4)T§,[) + (4R§/[}' —4)0%,[)

n

4B? (Rlzwﬁl)afv,(clnl +0)
0= Z

Q=

[

Y=

2
ny

Although a simple closed-form solution identifying the optimal n; is not available, we can
identify the optimal number of students by setting this derivative equal to zero and solving it
numerically. We implement this derivative and its solution in the R package PowerUpR.

As with optimal-design considerations for main effects, the optimal sampling scheme for the
overall mediation effect under the Sobel test does not depend on the total funds available (c).
In line with prior parameters though, the resulting optimal #; is a much more complex function
of the remaining parameters. To probe the functional relationships between the optimal sampling
plan and the parameters noted above, let us return to our working example and assume that half
of the sampled schools will be assigned to the RHC program (P=0.50) and our total budget
is ¢=500,000 with each additional student costing c; =100 and each additional school adding
¢, = 10,000.

We plot how the optimal sampling plan changes as a function of each key parameter
in Figure 2. For the Sobel test, our example suggests that the optimal student sample size is
a steadily decreasing function of the a path coefficient (Figure 2a). That is, larger a coefficients
will typically suggest sampling more schools in exchange for fewer students per school.
For instance, holding other parameters fixed, the optimal number of students per school is nearly
n; = 20 when a=0.10 and decreases to n; = 5 when a=0.60.

For the B coefficient and the cost ratio, the results suggested that the optimal number of
students per school was a monotonically increasing function. The optimal number of students
per school increased at a rate similar to but opposite of that of the treatment-mediator relationship.
For example, holding other parameters fixed, the optimal number of students per school is nearly
n; =3 when B=0.10 but increases to about 7#; = 13 when B =0.50.

For the cost ratio, the results also indicated that there was a positive relationship between
increasing school costs and the optimal number of students per school. When the cost of
sampling a school relative to a student increased, optimal sampling favored more students per
school over more schools. However, the slope of this relationship diminishes quickly once the
cost ratio exceeds about 50 or so (Figure 2c).
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Figure 2. Optimal number of students per school for the overall mediation effect under the Sobel test (black) and joint test
(gray dashed) as a function of the (a) treatment-mediator path coefficient (a), (b) total mediator-outcome path coefficient (B),
(c) cost ratio (c,/c;), (d) unconditional mediator variance (rﬁﬂ), (e) mediator variance explained by covariates at the school level
(R%,,), (f) unconditional outcome variance (r,z,), and (g) outcome variance explained by covariates at the school level (Riu).

M2

Last we assessed the influence of the mediator and outcome unconditional and conditional
varjances. For the outcome, the optimal number of students per school was a monotonically
decreasing function of the unconditional outcome school-level variance; when there was
substantial clustering within a school, it is more efficient to sample additional schools rather than
additional students per school (Figure 2d). Similarly, there was a positive relationship between
the optimal number of students per school and the proportion of the outcome variance at the
school level explained by covariates. That is, if you can explain the majority of the outcome
clustering using covariates (R3,,), then it is more efficient to give up additional schools to sample
additional students in each school (Figure 2g).

Similar to power, the relationship between optimal sampling and mediator variance was more
complex (Figure 2ef). From an unconditional school-level mediator variance of zero to about 0.4,
an increase in this variance was paired with larger values for the optimal number of students
per school. However, subsequent increases in the unconditional mediator variance were coupled
with decreases in the optimal number of students per school. Again, although our example
characterizes the generally complex nature of this relationship, we note that the specific behavior
and inflection points of this relationship are highly dependent on the specific parameter values
one considers.

Joint test

Although the asymptotic distribution of the maximum likelihood estimates of the mediation
effect is normal, this approximation can be problematic under small sample sizes or with large
disparities in the magnitudes of the a and b path coefficients (e.g., MacKinnon, et al., 2004). The
net effect of such imprecision is that the Sobel test often incurs Type 1 error rates below the
nominal level and produces underpowered tests.

The joint test circumvents the nonnormality that arises with the Sobel test statistic in finite
samples and disparate path magnitudes by conducting path-specific subtests (MacKinnon et al.,
2004). The joint test assesses mediation by evaluating the simultaneous significance of the
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treatment-mediator and mediator-outcome paths. Past literature has widely supported the efficacy
of the joint test because it has consistently turned in performances that are comparable to the
most sensitive resampling-based tests (e.g., bootstrap methods; Hayes & Scharkow, 2013).

The joint test can be implemented through two simultaneous subtests that compare the ratio
of the respective path and its standard error to a normal distribution (Raudenbush & Bryk, 2002;
Kenny & Judd, 2014). The test statistics are

z, = a/\/;g and z = B/\/0%. (13ab)

with ¢2 and o3 as the error variances. The error variances for the a and B paths are

2 2 2 2
ol = (TAI;I—F—JM'M) and o3 = TY2|+—GY‘2/nl. (14ab)
(1—P)n, nz(er —l—aM‘/nl)
These error variances can also be expressed as direct operations of the path coefficients and the
variance explained by covariates (see above and Kelcey, Dong, Spybrook, & Cox, 2017).
Inferences under the joint test are drawn on the basis of both test statistics rejecting their null
hypotheses that their respective paths are zero. To derive the power associated with a two-sided
joint test (i.e., both paths concurrently nonzero), we consider the product of the power to detect
the treatment-mediator path and the power to detect the mediator-outcome path. The resulting
power approximation for the overall mediation effects is then calculated as

P(|Zu| > Zcritical&|ZB| > Zcritical) = (I_Z(Zcriticul_zu) + Z(_Zm‘tical_za)) * (I_Z(Zcritiml_zg) + Z(_Zcritital_ZB))-
(15)

with z as the respective cumulative standard normal density function and z.ii.a as the
corresponding critical value (e.g., 1.96).

As with the Sobel test, we studied the relationships between each of the parameters and power
under the joint test. Using the same prototype and values, the relationships are overlain
with those of the Sobel test in Figure 1. Overall, the examples suggested that the joint test was
consistently more powerful than the Sobel test. However, the results suggested that the functional
relationships between power and each of the parameters under the joint test were very similar to
those under the Sobel test.

Optimal sampling

The joint test does not directly draw on or specify the error variance of the mediation effect and
as a result we cannot identify the sampling plan that maximizes power by simply minimizing the
error variance as we did with the Sobel test. Furthermore, even identifying the sampling plan that
maximizes the product of the test statistics (i.e., z,zp) is insufficient to identify the maximum
power because changes in power as a function of sample size are nonlinear. As a result, in con-
trast to steps taken with the Sobel test, we must identify the optimal sampling plan under the
joint test by directly maximizing the power function (Expression 15). The derivative of the power
function for the joint test is in the appendix. As with the Sobel test, though there is no closed-
form solution, we can quickly identify the optimal number of students by solving the derivative
numerically. We implement these optimizations in the R package PowerUpR.

As with the Sobel test with regard to optimal sampling, we explored the influence of the
parameters under the same parameter values to get a better sense of what drives optimal sam-
pling under the joint test (Figure 2). Varying the a path coefficient produced more-complex
results than in the Sobel test. The optimal number of students per school increased when the
magnitude of the a path strengthened from zero to about 0.25 and then decreased with subse-
quent gains (Figure 2a). For the B path coefficient we also saw a departure from past behavior
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under the Sobel test. Under the joint test there was a nonmonotonic relationship between the B
path coefficient and the optimal number of students per school: from about zero to 0.25 the func-
tion was decreasing; whereas above 0.25 the function increased.

The remaining parameters behaved directionally similar to those under the Sobel test.
However, the functional form or magnitude of the influence of each parameter often differed
compared to that under the Sobel test. For example, although the optimal number of students
per school increased under the Sobel and joint tests when the cost ratio grew, the increases were
much more pronounced under the joint test for a cost range between 1 and 300 (Figure 2c).

Monte Carlo interval test

An alternative to the Wald-like mediation tests is the resampling-based Monte Carlo interval test
(MacKinnon et al., 2004; Preacher & Selig, 2012). The Monte Carlo interval test employs the pri-
mary path coefficient estimates and their error variances to simulate draws from the posterior
distribution of the mediation effect. With a sufficient number of draws, we can estimate the sam-
pling distribution of the estimated mediation effect and can implement the Monte Carlo interval
test assessing whether desired confidence intervals include a null mediation effect. This approach
has proven valuable in the literature because it accommodates the asymmetries in the distribution
of the estimated mediation effect that arise from, for example, small sample sizes or disparate
path magnitudes, while returning a robust performance relative to bootstrapping and other meth-
ods. A key advantage of the Monte Carlo interval test is that it can be employed without access
to full data or, as in our case, during the design phase when no data are available.

Using the normality of the individual maximum likelihood estimates, we apply the Monte
Carlo confidence interval test using a multivariate normal distribution for the estimated path
coefficients. Path means are set to their estimated values, error variances are set to the aforemen-
tioned path-specific error variances, and covariances are set to zero (Preacher & Selig, 2012). We

can then simulate data using
* ~ ~2
a a 6; O
() [(5) (5 2)] "

The sampling distribution can then be estimated by multiplying a* and B* and power is the
proportion of asymmetric confidence intervals (e.g., 95%) that exclude no effect.

We again probed the functional relationships between each of the parameters and power under
the Monte Carlo interval test with the same values (Figure 1). Overall, the relationships between
power and each of the parameters were very similar to those of the previous tests.

Optimal sampling
The Monte Carlo interval test does directly draw on the error variance of the mediation effect
but rather indirectly uses the error variances of the individual path coefficients to approximate
the posterior distribution for the mediation effect. In addition, similar to the joint test, maximiz-
ing the power for each individual test does not necessarily maximize the power of the Monte
Carlo interval test. As a result, closed-form expressions that identify the sampling plan that opti-
mizes power under this test are not readily available. Despite this limitation, we can develop two
simple approaches for approximating the optimal sampling scheme. In a first approach, we can
use brute force to estimate the power under a grid of alternative sampling schemes. This
approach is computationally expensive but straightforward.

In a second approach, we can leverage the similarities between the Monte Carlo interval test
and the Sobel and joint tests to approximate the optimal sampling scheme. More specifically,
although the sampling distribution of the mediation effect is often poorly approximated under
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small sample sizes, the Sobel-based asymptotic approximation of the error variance of the medi-
ation effect converges to the true error variance quickly. Similarly, prior research has consistently
shown that the power curves for the joint and Monte Carlo interval tests are similar (e.g., Kelcey,
Dong, Spybrook, & Cox, 2017). In these ways, the optimal sample allocation under the Sobel
and/or joint tests potentially serve as good approximations of the optimal sample allocation
for the Monte Carlo interval test.

We probed the efficacy of the Sobel- and joint-based approximations approach by comparing
the relationships between the parameters and the optimal sampling plans identified by the brute
force approach with those of the Sobel and joint tests. The results are plotted on top of those of
the Sobel and joint tests in Figure 2. Overall the results suggested that the functional relationship
between the parameters and the optimal number of students per school under the Monte Carlo
interval test is a mixture of the forms presented by the Sobel and joint tests. For the outcome
and mediator variance (Figure 2d and 2f), all three tests had very similar forms and implied
optimal sample sizes. For the cost ratio and the a path coefficient, the Monte Carlo interval test
most closely aligned with the joint test in terms of its functional form, though there was still
minor variation in their optimal sampling plans. However, the relationship between the optimal
sampling plan under the Monte Carlo interval test and the B path coefficient was fairly muted
compared to the relationships for the joint and Sobel tests; the optimal sampling plan under the
Monte Carlo interval test appeared to be a compromise between that of the Sobel and the joint
plans (Figure 2b).

Lower-level mediation effects

When effects are constant across students and schools, we can conceptualize the overall
mediation effect as a combination of components that flow through the student or school level.
The second type of mediation effect we thus consider is the unique individual or lower-level
mediation effect. A lower-level mediation effect probes the degree to which the effects of
a school-level treatment on a student-level outcome are transmitted through the student-level
component of the mediator (e.g., Pituch & Stapleton, 2012). When mediation is constant across
students, the lower-level mediation effect (LME) can be described as

LME = ab,. (17)

For instance, the lower-level mediation effect describes the growth in student achievement that
accumulates as a result of changes in an individual student’s behavior generated by participation
in the RHC program when holding constant schoolmates’ behavior.

Sobel test

The Sobel test statistic for the lower-level mediation effect is

Sobely;, 2
Zy = aby/ o, (18)

where aibl is the lower-level mediation effect error variance such that

o? 2 +a2 /m
o2, = a | | 4 B <7M M. (19)
(l’lz?’ll — l’lz)O’M‘ P(l — P)I’lz

Like the overall mediation effect, we can further unpack the error variance as a function
of common summary statistics. The resulting power to detect a lower-level mediation effect
is then
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Sobel bel bel
P( azle > Zcrltzcal) = 1_(D<Zcriticul azle> + (D(_Zcritical azle). (20)

Optimal sampling
Similar to the overall mediation effect, we can derive the sampling allocation that specifically
optimizes the power to detect the lower-level mediation effect. The first-order derivative of the
error variance of the lower-level mediation effect in terms of n; is

da?,

—‘:l(tb—F+H). (21)
dn; c

with

b =

az(cl+62 ( ( ML 1) YL10'y+Uy>
(RIZMLl — )alzw(nl—l)z

r_4b cl(n1(025a +( 2= )r ) (Mu 1)(;12”).

4b2 (RMLZ )U%,[(clnl +02)
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ny

H=

Again, there is no closed-form solution but we can easily obtain the optimal number of students by
solving this derivative numerically. This routine is implemented in the R package in PowerUpR.

Joint test

We can adapt the joint test to lower-level mediation effect by substituting the test for the overall
association between the mediator and outcome (B) with that of its student-level complement (b;).
The tests for lower-level mediation effect are then

z,=a/\/o2 and z, =bi/\/0}. (22)

The error variance for the a path is unchanged from the overall mediation effect while the
error variance for the b; path can be estimated using
2
o
Y
o= (23)
(nany — nz)aM‘

The power of the joint test to detect lower-level mediation is then determined with

P(|Za| > ZCritical&|Zb1| > Zcritical) = (1_Z(zcritica1_za) + Z(_Zcriticul_za))
(24)
* (l_z(zcritical_zbl) + Z(_Zcritical_zbl ))

Optimal sampling

As with the Sobel test, we can further identify the sampling plan under the joint test that
maximizes the power to specifically detect the lower-level mediation effect. The derivative of the
power function for the lower-level joint test yields
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where erfc is the complementary error function and
D= . o5 and E= 05
( (cln1+cz)<n1 <a2+4<R;éz—1> r@) +4(RL£1—1>U§W)> (erm+cz) ( ( ) azy+azy>
_ cny (R ) 2 (m—1)
(26ab)

The derivative is again somewhat verbose and without a simple closed-form solution.
However, we can use this result to quickly identify the optimal number of students by solving the
derivative numerically as implemented in the R package PowerUpR.

Monte Carlo interval test

The Monte Carlo interval test of lower-level mediation can also be extended in an analogous
manner. We can draw samples from the posterior distribution using

* A ~2
()] (2):(% )]

The sampling distribution can then be estimated by multiplying a* and b} with power
as the proportion of asymmetric confidence intervals (e.g., 95%) that exclude no effect.

Optimal sampling

As with the overall mediation effect, we can use the optimal sampling plan for the lower-level
mediation effect under the Sobel test to approximate the optimal sampling scheme for the Monte
Carlo interval test. We further outline the utility of this approach in our illustration section
below.

Upper-level mediation effects

The final type of mediation effect we exam is the upper-level mediation effect (UME).
The upper-level mediation effect outlines the contextual or environmental effect and examines
the association of the school-means with achievement beyond the association linking individual
student behavior and achievement (as captured by b;). For instance, the contextual or upper-level
mediation effect describes the improvement in student achievement that accrues as a result of
changes in schoolmates’ behaviors when holding constant individual student behavior.

Our current school-mean-centered models do not directly parameterize the upper-level
mediation effect because the school-mean parameterization produces a student-level coefficient
(b;) that delineates the student-level-mediator-outcome association and a school-level coefficient
(B) that lumps together the student-level and the school-level mediator-outcome association.
The unique school-level associations can be obtained by changing the outcome model (2) such
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that the student-level mediator values reflect the absolute standing (e.g., grand-mean centered) or
the original mediator values of students within schools rather than the school-mean-centered val-
ues (Raudenbush & Bryk, 2002; Pituch & Stapleton, 2012). The uncentered outcome model is

Yy = oy + b1 M;; + By (Xij*Xj) + ey Sng(O7 “iw)
) ) . (28)
Boy = Too + by M, + T, + 90, W, + 70,X; + uly uOYjNN<o, rzy‘)

In this parameterization, the school-level coefficient attached to the school-level mean mediator
(b,) now represents the specific contextual or unique school-level conditional association between
the mediator and outcome.

Alternatively, we can retain the school-mean-centered parameterization originally presented
(Equation 2) and obtain an estimate of the contextual or upper-level mediation effect by taking
the difference of the overall and lower-level mediation effects. For the upper-level mediation
effect (UME) this yields:

UME = ab, = a(B—b,). (29)

where b, could be estimated as the school-level coefficient using the uncentered model (28) or
from the school-mean-centered model in Expression (3).

Sobel test

To track statistical power, we can draw on similar tests for the upper-level mediation effect.
The Sobel test statistic can be extended to

Zap, = b2/ [0, (30)

where aibz is the error variance of the upper-level mediation. This error variance can be traced
by considering the relationships of the b, path with the B and b, paths. Specifically, the error
variance of the upper-level mediation effect can be estimated as

2 2
2 4+ 0% /n 2 2 2
< Y| Y\/ 1> Oy 2 T O'M\/”l

+ (B—by) .
1y (rfm + 0'12\/”/}11) (n2my — nz)O']Zw P(1 —P)n,

oﬁbz =4 (02 + O'il) + (B—bl)zaﬁ =a?

(31)

Like the previous effects, we can reduce this expression by substituting in functions of key
summary statistics for the conditional variances. Power under the Sobel test for upper-level
mediation can then be estimated as

Sobel Sobel Sobel
P(Zazze > Zcritical) = 1_q)(zcritical_zazze> + (D(_Zcritical_zazze>- (32)

Optimal sampling

Like previous developments, we can identify the sampling allocation that specifically optimizes
the power to detect the upper-level mediation effect. The first-order derivative of the error
variance of the upper-level mediation effect in terms of n; yields:

da? 1
Dby _ 2 (2(-T+ Y—K + A—0+ o)) (33)
dny c

with
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The optimal number of students is identified by finding a numerical solution that causes the
derivative to be equal to zero. We implement this optimization in PowerUpR.

Joint test

Extending the joint test to the upper-level mediation effect, we can formulate the corresponding

test statistics as
z,=a/\/o2 and z, =by/\/0} . (34ab)

The error variance for the b, path can be estimated using:

(Ti\ + 0%/\/”1) a3
e - (35)
n, (‘CM‘ + O'M‘/I/ll) (mamy — ”2)‘7M\

The power of the joint test to detect upper-level mediation is the calculated as
P(|Za| > Zcritical&|zb2| > Zcritical) = (I_Z(zcritical_za) +Z(_Zcritical_zu))

(36)
* (1 TZ(Zeritical =2y, ) + Z(~Zeritical =2y, )) :

Optimal sampling

Once again, we can ascertain the sampling allocation that specifically optimizes the power to detect
the upper-level mediation effect under the joint test. The first-order derivative of the error variance of
the upper-level mediation effect in terms of n; is given in the appendix. As with the previous results,
the optimal number of students is identified by finding a numerical solution that causes the derivative
to be equal to zero. We implement this optimization in the R package PowerUpR.

Monte Carlo interval test

The Monte Carlo interval test for upper-level mediation can be extended in an analogous man-
ner. We can simply use the mediator-outcome path and error variance that corresponds with
contextual effect.

Illustration

Let us again consider the design of a multilevel mediation study that probes the degree to which
the RHC program impacts student achievement by improving student behavior (mediator) as
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Figure 3. Power for the Sobel (black), joint (gray dashed), and Monte Carlo interval (gray line) tests for the (a) overall, (b) lower-
level, and (c) upper-level mediation effect as a function of the number of students per school under specific cost constraints.

detailed through an overall mediation effect. We continue with the parameter values previously
used. Specifically, we assign the unconditional school-level variances for the outcome and medi-
ator to 0.20 (i.e, 75, = 1% = 0.20) and the unconditional student-level variances to 0.80 (i.e.,
o3, = 6% = 0.80); 10% of the variance is explained by covariates at each level for each response
(e, Ry, = Ri = Ry = R3u = 0.10 with z indicating the appropriate covariates for a response
based on the models above); a treatment-mediator path coefficient of a=0.45; an overall
mediator-outcome association of B=0.35 with 0.15 due to the student-level association
(b; =0.15); a direct effect of the treatment on the outcome of ¢’=0.05; and half of the schools
will receive the RHC program (P =0.50). We can consider two complementary design questions
that we can address with the results of our study: What is the sampling plan that yields the most
powerful design in terms of detecting the overall mediation effect (aB=0.1575) and under this
budget what is the maximum amount of power under that sampling plan? Similarly, we ask,
What are the most powerful sampling plans for the lower-level (ab;=0.0675) and upper-level
(a(B-b;) = ab,=0.09) mediation effects and how do these plans compare to that of the overall
mediation effect?

The results of our analyses indicate that the optimal sampling plan for the overall mediation
effect was to sample between n; =8 and n; =9 students per school with about n, = 46 schools
yielding a power to detect the overall mediation effect of between 0.48 (Sobel) and 0.59 (joint/
Monte Carlo; Figure 3). As a point of reference, the optimal sampling scheme for a main or total
effect (aB + ¢ =0.2075) was about n; =19 students per school with 42 schools yielding a power
level of 0.27. That is, in this particular example, under the respective optimal sampling plans, the
power to detect the overall mediation exceeds the power for the main effect. If we adopted the
optimal sampling plan for the overall mediation effect (n; =8 and n;=9), the power for the
main effect would only decrease about 10%, to 0.25. If instead we adopted the sampling plan that
was optimal for the main effect (n; =19), the power for the overall mediation effect would drop
by about 5%, to about 0.54, for the joint and Monte Carlo interval tests.

In terms of the lower-level mediation effect, the optimal sampling allocation according to the
Sobel test was about n; =48 students per school and n, =34 schools; whereas, optimal for the
Monte Carlo and joint tests is n; =28 students per school with 7, =39 schools. When compared
to the sample allocations that are optimal for the overall mediation effect (n?MF =8-9), designs
focusing on the lower-level mediation call for a larger number of students per school and yield
much higher power (>0.8). Such a result is expected because holding constant the a path, the
dominant sample size driving uncertainty for the overall mediation effect is the number schools;
whereas, the dominant sample size driving uncertainty for the lower-level mediation effects is the
number of students.

Now consider the degree to which improvements in achievement generated by participation in the
RHC program is owing to, specifically, contextual improvements in the school (ie., schoolwide
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improvements in student behavior). The resulting optimal sampling allocation specific to detect-
ing upper-level mediation ranges between n; =9 students per school (Sobel) and about #n; =14
students per school (Monte Carlo) with the joint test splitting the differences. Similar to the opti-
mal design for the overall mediation effect, the resulting school sample size is about n,=44 to
n, =46 but the power for the upper-level mediation effect is much lower (0.2).

Discussion

Planning studies with the faculty to assess a more comprehensive set of effects—such as main
and mediation effects—has become a core objective of education research. For example, the
request for applications for Goal 3 Efficacy Studies from the Institute of Education Sciences
strongly encourages applicants to include a clearly articulated theory of action, measures of the
identified mediators, and mediation analyses (IES, 2017). A primary consideration in the effective
and efficient planning of cluster-randomized studies is to identify the optimal allocation of
resources across levels of the hierarchy and sample sizes that provide sufficiently powerful designs
regarding targeted effects (e.g., Spybrook, Shi, & Kelcey, 2016).

In this study, we delineated three complementary types of mediation effects that trace the
potential routes through which a treatment operates on an outcome. The mediation effects of
interest in a given study depend on the target of the inference (Pituch & Stapleton, 2012). In
many practical implementations, researchers will opt to plan studies using the overall mediation
effect because it requires fewer assumptions, is statistically more defensible, and encompasses the
mediation effects produced at either level when exposed to a treatment (i.e., the increments in
the outcome produced by changes in either the student- or school-level mediators). For this rea-
son, our analyses largely focused on the overall mediation effect and its behavior.

According to a broad assessment, our findings suggest that the power to detect the overall
mediation effect was a complex function of multiple parameters. For some parameters, the nature
of the relationships with power paralleled that of main effects whereas for other parameters the
relationship broke down. For example, just as in the main effects analysis, the intraclass correl-
ation coefficient of the outcome was negatively associated with power and adding covariates that
accounted for that clustering improved power. In contrast, for instance, increases in the magni-
tude of the mediation effect (aB) were not necessarily associated with increases in power, as they
are for increases in the main effect. Rather, the decomposition of the mediation effect (i.e., rela-
tive size of the a to B path) determines power and optimal sampling.

The results present several considerations to guide the design of multilevel mediation studies.
Some of these guidelines parallel those of main effects—for example, adding covariates that
explain outcome variance (regardless of their relation to the mediator) improves power; other
results raise new design considerations. And even within these new considerations, some results
suggest straightforward guidelines whereas others are much more complex. One simple consider-
ation, for instance, is using the specific test of a mediation effect; prior literature would suggest
identifying and using the most powerful test for a given setting.

A more complex consideration, however, arises when we examine, for instance, the implica-
tions of mediator variance. At first glance, a plausible strategy for improving power appears to
be reducing the mediator variance explained by covariates at the school level because mediator
variance has a negative relationship with power (Figure le). As noted earlier, further scrutiny
suggests this is not a viable approach. Omitting covariates correlated with the mediator can
improve power but doing so potentially undermines the viability of the sequential ignorability
assumption. That is, because studies of mediation typically do not randomize mediator values,
controlling for covariates in the outcome model is not optional but required to obtain an
unbiased estimate of the mediation effect. Thus R12v1;2 is not truly a malleable parameter under
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most designs. The result of omitting covariates correlated with the mediator to gain power would
often result in a high level of power to detect a biased effect.

Another complex consideration is how we might balance the power and optimal sampling
strategy for the main effect with that of a mediation effect. The results suggested that power
for the overall mediation effect can be less than or greater than the power for main effects; it
depends heavily on the specific parameter values. Our analysis also suggested that the optimal
number of students per school for the overall mediation effect will usually be lower than that
of the main effect and typically lower than about 25. In selecting between the resulting optimal
sample allocations, researchers must establish study goals and priorities with these considerations
in mind, potentially, privileging one effect, balancing both effects, or combining these considera-
tions with other practical sampling constraints that arise in a given study. Future research may
also look to derive formulas that identify a global optimal sampling plan—a sampling strategy
that jointly optimizes the power to detect the main and mediation effects.

Similarly, our analyses constrained the behavior of a number of parameters that might
be relaxed in future research. For example, our implementation assumed that the mediator and
outcome variances and costs were similar across treatment groups (Shen & Kelcey, in review).
What’s more, our investigation assumed that researchers had a reasonably accurate a priori
expectation as to parameter values (e.g., intraclass correlation coefficient). Future research may
extend the current framework to relax such assumptions and probe the extent to which power
and optimal sample allocation are sensitive to such assumptions (e.g., Manju, Candel, & Berger,
2014; Cox & Kelcey, in review).

In conclusion, our study provides expressions to trace the optimal sample allocation for
and the power of multilevel mediation designs that can be easily implemented even before data
collection. The resulting power and optimal sampling plan can be quickly approximated using
the anticipated magnitudes of the path coefficients and common summary statistics. These results
are intended to aid in effective and efficient design while identifying new considerations that are
likely to arise in the design of multilevel mediation studies.

Note

1. Causal interpretation of indirect effects requires additional assumptions such as no downstream confounding
variables. See for example, VanderWeele (2010) for details.
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