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Abstract. It has been known in potential theory that, for some kernels matrices corresponding4
to well-separated point sets, fast analytical low-rank approximation can be achieved via the use of5
proxy points. This proxy point method gives a surprisingly convenient way of explicitly writing out6
approximate basis matrices for a kernel matrix. However, this elegant strategy is rarely known or7
used in the numerical linear algebra community. It still needs clear algebraic understanding of the8
theoretical background. Moreover, rigorous quantifications of the approximation errors and reliable9
criteria for the selection of the proxy points are still missing. In this work, we use contour integration10
to clearly justify the idea in terms of a class of important kernels. We further provide comprehensive11
accuracy analysis for the analytical compression and show how to choose nearly optimal proxy points.12
The analytical compression is then combined with fast rank-revealing factorizations to get compact13
low-rank approximations and also to select certain representative points. We provide the error bounds14
for the resulting overall low-rank approximation. This work thus gives a fast and reliable strategy15
for compressing those kernel matrices. Furthermore, it provides an intuitive way of understanding16
the proxy point method and bridges the gap between this useful analytical strategy and practical17
low-rank approximations. Some numerical examples help to further illustrate the ideas.18
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1. Introduction. In this paper, we focus on the low-rank approximation of some22

kernel matrices: those generated by a smooth kernel function κ(x, y) evaluated at two23

well-separated sets of points X = {xj}mj=1 and Y = {yj}nj=1. We suppose κ(x, y) is24

analytic and a degenerate approximation as follows exists:25

(1.1) κ(x, y) ≈
r
∑

j=1

αjψj(x)φj(y),26

where ψj ’s and φj ’s are appropriate basis functions and αj ’s are coefficients indepen-27

dent of x and y. X and Y are well separated in the sense that the distance between28

them is comparable to their diameters so that r in (1.1) is small. In this case, the29

corresponding discretized kernel matrix as follows is numerically low rank:30

(1.2) K(X,Y ) ≡ (κ(x, y)x∈X,y∈Y ).31

This type of problems frequently arises in a wide range of computations such as32

numerical solutions of PDEs and integral equations, Gaussian processes, regression33

with massive data, machine learning, and N -body problems. The low-rank approxi-34

mation to K(X,Y ) enables fast matrix-vector multiplications in methods such as the35

fast multipole method (FMM) [15]. It can also be used to quickly compute matrix36

factorization and inversion based on rank structures such as H [19], H2 [2, 20], and37
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2 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

HSS [5, 48] forms. In fact, relevant low-rank approximations play a key role in rank-38

structured methods. The success of the so-called fast rank-structured direct solvers39

relies heavily on the quality and efficiency of low-rank approximations.40

According to the Eckhart-Young Theorem [9], the best 2-norm low-rank approxi-41

mation is given by the truncated SVD, which is usually expensive to compute directly.42

More practical algebraic compression methods include rank-revealing factorizations43

(especially strong rank-revealing QR [18] and strong rank-revealing LU factorizations44

[37]), mosaic-skeleton approximations [44], interpolative decomposition [7], CUR de-45

compositions [29], etc. Some of these algebraic methods have a useful feature of46

structure preservation for K(X,Y ): relevant resulting basis matrices can be subma-47

trices of the original matrix and are still discretizations of κ(x, y) at some subsets.48

This is a very useful feature that can greatly accelerate some hierarchical rank struc-49

tured direct solvers [49, 27, 47]. However, these algebraic compression methods have50

O(rmn) complexity and are very costly for large-scale applications. The efficiency51

may be improved by randomized SVDs [21, 16, 31], which still cost O(rmn) flops.52

Unlike fully algebraic compression, there are also various analytical compression53

methods that take advantage of degenerate approximations like in (1.1) to compute54

low-rank approximations. The degenerate approximations may be obtained by Taylor55

expansions, multipole expansions [15], spherical harmonic basis functions [42], Fourier56

transforms with Poisson’s formula [1, 30], Laplace transforms with the Cauchy inte-57

gral formula [28], Chebyshev interpolations [10], etc. Various other polynomial basis58

functions may also be used [38].59

These analytical approaches can quickly yield low-rank approximations to K(X,Y )60

by explicitly producing approximate basis matrices. On the other hand, the resulting61

low-rank approximations are usually not structure preserving in the sense that the62

basis matrices are not directly related to K(X,Y ). This is because the basis functions63

{ψj} and {φj} are generally different from κ(x, y).64

As a particular analytical compression method, the proxy point method has at-65

tracted a lot of interests in recent years. It is tailored for kernel matrices and is very66

attractive for different geometries of points [10, 32, 50, 52, 53]. While the methods67

vary from one to another, they all share the same basic idea and can be summarized68

in the surprisingly simple Algorithm 1.1, where the details are omitted and will be69

discussed later in later sections. Note that an explicit degenerate form (1.1) is not70

needed and the algorithm directly produces the matrix K(X,Z) ≡ (κ(x, y)x∈X,y∈Z) as71

an approximate column basis matrix in Step 2. This feature enables the extension of72

the ideas of the classical fast multipole method (FMM) [15] to more general situations,73

and examples include the recursive skeletonization [22, 32, 36] and kernel independent74

FMM [33, 52, 53]. The convenient extraction of an approximate column basis matrix75

is similar to some methods used for data analysis such as the Nyström method and76

the pseudo-input approximation [8, 13, 26, 40, 46]. (More discussions on this will be77

given in section 5.)78

Algorithm 1.1 Basic proxy point method for low-rank approximation

Input: κ(x, y), X, Y
Output: Low-rank approximation K(X,Y ) ≈ AB ▷ Details in sections 2 and 3

1: Pick a proxy surface Γ and a set of proxy points Z ⊂ Γ
2: A← K(X,Z)

3: B ← Φ(Z,Y ) for a matrix Φ(Z,Y ) such that K(X,Y ) ≈ K(X,Z)Φ(Z,Y )
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X. YE, J. XIA, AND L. YING 3

Notice that |Z| is generally much smaller than |Y | so that K(X,Z) has a much79

smaller column size than K(X,Y ). It is then practical to apply reliable rank-revealing80

factorizations to K(X,Z) to extract a compact approximate column basis matrix for81

K(X,Y ). This is a hybrid (analytical/algebraic) compression scheme, and the proxy82

point method helps to significantly reduce the compression cost.83

The significance of the proxy point method can also be seen from another view-84

point: the selection of representative points. When a strong rank-revealing QR (SR-85

RQR) factorization or interpolative decomposition is applied to K(X,Y ), an approx-86

imate row basis matrix can be constructed from selected rows of K(X,Y ). Suppose87

those rows correspond to the points X̂ ⊂ X. Then X̂ can be considered as a subset88

of representative points. The analytical selection of X̂ is not a trivial task. However,89

with the use of the proxy points Z, we can essentially quickly find X̂ based on K(X,Z).90

(See section 4 for more details.) That is, the set of proxy points Z can serve as a set of91

auxiliary points based on which the representative points can be quickly identified. In92

another word, when considering the interaction K(X,Y ) between X and Y , we can use93

the interaction K(X,Z) between X and the proxy points Z to extract the contribution94

X̂ from X.95

Thus, the proxy point method is a very convenient and useful tool for researchers96

working on kernel matrices. However, this elegant method is much less known in the97

numerical linear algebra community. Indeed, even the compression of some special98

Cauchy matrices (corresponding to a simple kernel) takes quite some efforts in matrix99

computations [34, 39, 49]. In a recent literature survey [24] that lists many low-rank100

approximation methods (including a method for kernel matrices), the proxy point101

method is not mentioned at all. One reason that the proxy point method is not102

widely known by researchers in matrix computation is the lack of intuitive algebraic103

understanding of the background.104

Moreover, in contrast with the success of the proxy point method in various105

practical applications, its theoretical justifications are still lacking in the literature.106

Potential theory [25, Chapter 6] can be used to explain the choice of proxy surface107

Γ in Step 1 of Algorithm 1.1 when dealing with some PDE kernels (when κ(x, y) is108

the fundamental solution of a PDE). However, there is no clear justification of the109

accuracy of the resulting low-rank approximation. Specifically, a clear explanation110

of such a simple procedure in terms of both the approximation error and the proxy111

point selection desired, especially from the linear algebra point of view.112

Thus, we intend to seek a convenient way to understand the proxy point method113

and its accuracy based on some kernels. The following types of errors will be consid-114

ered (the notation will be made more precise later):115

• The error ε for the approximation of kernel functions κ(x, y) with the aid of116

proxy points.117

• The error E for the low-rank approximation of kernel matrices K(X,Y ) via the118

proxy point method.119

• The error R for practical hybrid low-rank approximations of K(X,Y ) based120

on the proxy point method.121

Our main objectives are as follows.122

1. Provide an intuitive explanation of the proxy point method using contour123

integration so as to make this elegant method more accessible to the numerical124

linear algebra community.125

2. Give systematic analysis of the approximation errors of the proxy point126

method as well as the hybrid compression. We show how the kernel function127

approximation error ε and the low-rank compression error E decay exponen-128
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4 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

tially with respect to the number of proxy points. We also show how our129

bounds for the error E are nearly independent of the geometries and sizes of130

X and Y and why a bound for the error R may be independent of one set131

(say, Y ).132

3. Use the error analysis to choose a nearly optimal set of proxy points in the133

low-rank kernel matrix compression. Our error bounds give a clear guideline134

to control the errors and to choose the locations of the proxy points so as135

to find nearly minimum errors. We also give a practical method to quickly136

estimate the optimal locations.137

We conduct such studies based on kernels of the form138

(1.3) κ(x, y) =
1

(x− y)d , x, y ∈ C, x ̸= y,139

where d is a positive integer. Such kernels and their variants are very useful in140

PDE and integral equation solutions, structured ODE solutions [4], Cauchy matrix141

computations [39], Toeplitz matrix direct solutions [6, 34, 49], structured divide-and-142

conquer Hermitian eigenvalue solutions [17, 45], etc. Our derivations and analysis143

may also be useful for studying other kernels and higher dimensions. This will be144

considered in future work. (Note that the issue of what kernels the proxy point145

method can apply to is not the focus here.)146

We would like to point out that several of our results like the error analyses in147

sections 3 and 4 can be easily extended to more general kernels and/or with other ap-148

proximation methods, as long as a relative approximation error for the kernel function149

approximation is available. Thus, our studies are useful for more general situations.150

Our theoretical studies are also accompanied by various intuitive numerical tests151

which show that the error bounds nicely capture the error behaviors and also predict152

the location of the minimum errors.153

In the remaining discussions, section 2 is devoted to an intuitive derivation of the154

proxy point method via contour integration and the analysis of the accuracy (ε) for the155

approximation of the kernel functions. The analytical low-rank compression accuracy156

(E) and the nearly optimal proxy point selection are given in section 3. The study is157

further extended to the analysis of the hybrid low-rank approximation accuracy (R)158

with representative point selection in section 4. In section 5, the connection between159

the proxy point method and the Nyström method is discussed. Some notation we use160

frequently in the paper is listed below.161

• The sets under consideration areX = {xj}mj=1 and Y = {yj}nj=1. Z = {zj}Nj=1162

is the set of proxy points.163

• C(a; γ), D(a; γ), and D̄(a; γ) denote respectively the circle, open disk, and164

closed disk with center a ∈ C and radius γ > 0.165

• A(a; γ1, γ2) = {z : γ1 < |z − a| < γ2} with 0 < γ1 < γ2 is an open annulus166

region.167

• K(X,Y ) is the m× n kernel matrix (κ(xi, yj)xi∈X,yj∈Y ) with κ(x, y) in (1.3).168

Notation such as K(X,Z) and K(X̂,Z) will also be used and can be understood169

similarly.170

2. The proxy point method for kernel function approximation and its171

accuracy. In this section, we show one intuitive derivation of the proxy point method172

for the analytical approximation of the kernel functions, followed by detailed approx-173

imation error analysis.174

Note that the kernel function (1.3) is translation invariant, i.e., κ(x− z, y − z) =175
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κ(x, y) for any x ̸= y and z ∈ C. Thus, the points X can be moved to be clustered176

around the origin. Without loss of generality, we always assumeX ⊂ D(0; γ1) and Y ⊂177

A(0; γ2, γ3), where the radii satisfy 0 < γ1 < γ2 < γ3. See Figure 2.1. This condition178

is used to characterize the separation of the sets X and Y so as to theoretically179

guarantee the numerical low-rankness, as often used in applications of the FMM and180

rank structured matrix methods. In these methods, the points are hierarchically181

partitioned into subsets, and the interaction between one subset and those points182

that are a certain distance away is considered to be numerically low rank. See [15]183

for some illustrative figures. More discussions on this will be given in section 5.184

Y

X

Fig. 2.1. Illustration of γ, γ1, γ2, γ3, X, and Y .

2.1. Derivation of the proxy point method via contour integration.185

Consider any two points x ∈ X and y ∈ Y . Draw a Jordan curve (a simple closed186

curve) Γ that encloses x while excluding y, and let ρ > 0 be large enough so that the187

circle C(0; ρ) encloses both Γ and y. See Figure 2.2a.

y
x

(a) Γ and C(0; ρ) used in contour integration

y
x

zj

(b) Approximation of κ(x, y)

Fig. 2.2. Approximating the interaction κ(x, y) by κ̃(x, y) in (2.3) using proxy points.

188
Define the domain Ωρ to be the open region inside C(0; ρ) and outside Γ. Its189

boundary is ∂Ωρ := C(0; ρ) ∪ (−Γ), where −Γ denotes the curve Γ in its negative190

direction. Now consider the function f(z) := κ(x, z) on the closed domain Ω̄ρ :=191

Ωρ ∪ ∂Ωρ. The only singularity of f(z) is at z = x /∈ Ω̄ρ. Thus, f(z) is analytic (or192
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6 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

holomorphic) on Ω̄ρ. By the Cauchy integral formula [41],193

(2.1) κ(x, y) = f(y) =
1

2πi

∫

∂Ωρ

f(z)

z − ydz =
1

2πi

∫

C(0;ρ)

κ(x, z)

z − y dz− 1

2πi

∫

Γ

κ(x, z)

z − y dz,194

where i =
√
−1. Note that195

∣

∣

∣

∣

∣

∫

C(0;ρ)

κ(x, z)

z − y dz

∣

∣

∣

∣

∣

≤ 2πρ · max
z∈C(0;ρ)

∣

∣

∣

∣

1

(x− z)d(z − y)

∣

∣

∣

∣

≤ 2πρ

(ρ− |x|)d(ρ− |y|) ,196

197

where the right-hand side goes to zero when ρ→∞. Thus,198

lim
ρ→∞

∫

C(0;ρ)

κ(x, z)

z − y dz = 0.199

Take the limit on (2.1) for ρ→∞, and the first term on the right-hand side vanishes.200

We get201

(2.2) κ(x, y) =
1

2πi

∫

Γ

κ(x, z)

y − z dz.202

Note that this result is different from the Cauchy integral formula in that the point y203

under consideration is outside the contour Γ in the integral.204

To numerically approximate the contour integral (2.2), pick an N -point quadra-205

ture rule with quadrature points {zj}Nj=1 ⊂ Γ and the corresponding quadrature206

weights {ωj}Nj=1. Denoted by κ̃(x, y) the approximation induced by such a quadra-207

ture integration:208

(2.3)

κ̃(x, y) =
1

2πi

N
∑

j=1

ωj
κ(x, zj)

y − zj
≡

N
∑

j=1

κ(x, zj)ϕj(zj , y), with ϕj(z, y) =
ωj

2πi(y − z) .209

Clearly, κ̃(x, y) in (2.3) is a degenerate approximation to κ(x, y) like (1.1). More-210

over, it has one additional property of structure preservation: the function φj(x) in211

this case is κ(x, zj), which is exactly the original kernel κ(x, y) with zj in the role of212

y. This gives a simple and intuitive explanation of the use of proxy points: the inter-213

action between x and y can essentially be approximated by the interaction between x214

and some proxy points Z (and later we will further see that Z can be independent of215

the number of x and y points). These two interactions are made equivalent (in terms216

of computing potential) through the use of the function ϕj . In another word, equiv-217

alent charges can be placed on the proxy surface. A pictorial illustration is shown in218

Figure 2.2b.219

2.2. Approximation error analysis. Although the approximation (2.3) holds220

for any proxy surface Γ satisfying the given conditions and for any quadrature rule,221

we still need to make specific choices in order to obtain a more practical error bound.222

Firstly, we assume the proxy surface to be a circle: Γ = C(0; γ), which is on of the223

most popular choices in related work and is also consistent with our assumptions at224

the beginning of section 2. For now, the proxy surface Γ is only assumed to be between225

X and Y , i.e., γ1 < γ < γ2 as in Figure 2.1, and we will come back to discuss more226

on this later. Secondly, the quadrature rule is chosen to be the composite trapezoidal227

rule with228

(2.4) zj = γ exp

(

2jπi

N

)

, ωj =
2πi

N
zj , j = 1, 2, . . . , N.229
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This choice can be justified by noting that the trapezoidal rule converges exponen-230

tially fast if applied to a periodic integrand [43]. Our results later also align with231

this. Moreover, if no specific direction is more important that others, the trapezoidal232

rule performs uniformly well on all directions of the complex plane C. Some related233

discussions of this issue can be found in [23, 51].234

As a result of the above assumptions, the function ϕj(z, y) in (2.3) becomes the235

following form:236

ϕ(z, y) =
1

N

z

y − z , y ̸= z,237

where we dropped the subscript j since j does not explicitly appear on the right-hand238

side. Also, we define239

g(z) =
1

z − 1
, z ̸= 1.240

The following lemma will be used in the analysis of the approximation error for241

κ(x, y).242

Lemma 2.1. Let {zj}Nj=1 be the points defined in (2.4). Then the following result243

holds for all z ∈ C\{zj}Nj=1:244

(2.5)

N
∑

j=1

zj
z − zj

= Ng

(

( z

γ

)N
)

.245

Proof. For any integer p, we have246

(2.6)

N
∑

j=1

zpj =

{

Nγp, if p is a multiple of N,

0, otherwise.
247

If |z| < γ, then |z/zj | < 1 for j = 1, 2, . . . , N and248

N
∑

j=1

zj
z − zj

= −
N
∑

j=1

1

1− z/zj
= −

N
∑

j=1

∞
∑

k=0

(

z

zj

)k

= −
∞
∑

k=0

(

zk
N
∑

j=1

z−k
j

)

249

= −
∞
∑

l=0

zlNNγ−lN (with (2.6), only k = lN terms left)250

= − N

1− zN/γN = Ng

(

( z

γ

)N
)

.251
252

If |z| > γ, then |zj/z| < 1 for j = 1, 2, . . . , N and253

N
∑

j=1

zj
z − zj

=

N
∑

j=1

(

z

z − zj
− 1

)

= −N +

N
∑

j=1

z

z − zj
= −N +

N
∑

j=1

1

1− zj/z
254

= −N +

N
∑

j=1

∞
∑

k=0

(zj
z

)k

= −N +

∞
∑

k=0

(

z−k
N
∑

j=1

zkj

)

255

= −N +

∞
∑

l=0

z−lNNγlN (with (2.6), only k = lN terms left)256

= −N +
N

1− γN/zN =
N

zN/γN − 1
= Ng

(

( z

γ

)N
)

.257
258

This manuscript is for review purposes only.



8 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

Finally, since both sides of (2.5) are analytic functions on C\{zj}Nj=1 and they259

agree on z with |z| ̸= γ, by continuity, they must also agree on z when |z| = γ, z /∈260

{zj}Nj=1. This completes the proof.261

In the following theorem, we derive an analytical expression for the accuracy of262

approximating κ(x, y) by κ̃(x, y). Without loss of generality, assume x ̸= 0.263

Theorem 2.2. Suppose κ(x, y) in (1.3) is approximated by κ̃(x, y) in (2.3) which264

is obtained from the composite trapezoidal rule with (2.4). Assume x ̸= 0. Then265

(2.7) κ̃(x, y) = κ(x, y) (1 + ε(x, y)) ,266

where ε(x, y) is the relative approximation error267

(2.8) ε(x, y) :=
κ̃(x, y)− κ(x, y)

κ(x, y)
= g

(

(y

γ

)N
)

+

d−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)

.268

Proof. We prove this theorem by induction on d. For d = 1, substituting (2.4)269

into (2.3) yields270

κ̃(x, y) =
1

N

N
∑

j=1

zj
(x− zj)(y − zj)

=
1

N(x− y)

N
∑

j=1

(x− zj)− (y − zj)
(x− zj)(y − zj)

zj271

=
1

N(x− y)





N
∑

j=1

zj
y − zj

−
N
∑

j=1

zj
x− zj



272

=
1

N(x− y)

(

Ng

(

(y

γ

)N
)

−Ng
(

(x

γ

)N
))

(Lemma 2.1)273

=
1

x− y

[

1 + g

(

(y

γ

)N
)

+ g

(

(γ

x

)N
)]

.274
275

Thus, (2.7) holds for d = 1.276

Now suppose (2.7) holds for d = k with k a positive integer. Equating (2.3) and277

(2.7) (with d = k) and plugging in κ(x, y) to get278

N
∑

j=1

ϕj(zj , y)

(x− zj)k
=

1

(x− y)k



1 + g

(

(y

γ

)N
)

+
k−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)



 .279

The derivatives of the left and right-hand sides with respect to x are, respectively,280

−k
∑N

j=1
φj(zj ,y)

(x−zj)k+1 and281

−k
(x− y)k+1



1 + g

(

(y

γ

)N
)

+

k−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)



282

+
1

(x− y)k





k−1
∑

j=0

(y − x)j
j!

dj+1

dxj+1
g

(

(γ

x

)N
)

−
k−1
∑

j=1

(y − x)j−1

(j − 1)!

dj

dxj
g

(

(γ

x

)N
)



283

=
−k

(x− y)k+1



1 + g

(

(y

γ

)N
)

+

k−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)



284
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+
1

(x− y)k
(y − x)k−1

(k − 1)!

dk

dxk
g

(

(γ

x

)N
)

(all terms cancel except for j = k − 1)285

=
−k

(x− y)k+1



1 + g

(

(y

γ

)N
)

+

k
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)



 .286

287

Thus,288

N
∑

j=1

ϕ(zj , y)

(x− zj)k+1
=

1

(x− y)k+1



1 + g

(

(y

γ

)N
)

+

k
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)



 .289

That is, (2.7) holds for d = k + 1. By induction, (2.7)–(2.8) are true for any positive290

integer d.291

With the analytical expression (2.8) we can give a rigorous upper bound for the292

approximation error.293

Theorem 2.3. Suppose 0 < |x| < γ1 < γ < |y|. With all the assumptions294

in Theorem 2.2, there exists a positive integer N1 such that for any N > N1, the295

approximation error (2.8) is bounded by296

(2.9) |ε(x, y)| ≤ g
(

∣

∣

∣

y

γ

∣

∣

∣

N
)

+ c g

(

∣

∣

∣

γ

x

∣

∣

∣

N
)

,297

where c = 1 if d = 1, and otherwise,298

(2.10) c = 2 + 2

d−1
∑

j=1

[(|y/x|+ 1)N ]j(2d)j−1

j!
.299

Proof. For any positive integer N ,300

∣

∣

∣

∣

g

(

(y

γ

)N
)∣

∣

∣

∣

=
1

|(y/γ)N − 1| ≤
1

|y/γ|N − 1
= g

(

∣

∣

∣

y

γ

∣

∣

∣

N
)

.301

Thus, we only need to prove the following bound:302

(2.11)

∣

∣

∣

∣

∣

∣

d−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)

∣

∣

∣

∣

∣

∣

≤ c g
(

∣

∣

∣

γ

x

∣

∣

∣

N
)

.303

When d = 1, it’s easy to verify that the above inequality holds for c = 1 and any304

positive integer N . We now consider the case when d ≥ 2.305

It can be verified that, for any positive integer i,306

(2.12)
d

dx
gi
(

(γ

x

)N
)

=
iN

x

[

gi
(

(γ

x

)N
)

+ gi+1

(

(γ

x

)N
)]

,307

where gi denotes function g raised to power i. Hence, the derivatives appearing in308

(2.11) all have the following form:309

(2.13)
dj

dxj
g

(

(γ

x

)N
)

=
1

xj

j+1
∑

i=1

α
(j)
i gi

(

(γ

x

)N
)

,310
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where α
(j)
i (1 ≤ i ≤ j + 1, 0 ≤ j ≤ d− 1) are constants.311

We claim that, when N > d and for any 0 ≤ j ≤ d− 1, there exit constants β(j)312

dependent on d so that313

|α(j)
i | ≤ β(j)N j , 1 ≤ i ≤ j + 1.314

This claim can be proved by induction on j. It is obviously true when j = 0, and315

β(0) = 1 in this case. When j = 1, (2.12) means that the claim is true with α
(1)
1 =316

α
(1)
2 = N and β(1) = 1. Suppose the claim holds for j = k with 1 ≤ k ≤ d− 2 (where317

we also assume d > 2, since otherwise the claim is already proved). Then318

dk+1

dxk+1
g

(

(γ

x

)N
)

=
d

dx

(

1

xk

k+1
∑

i=1

α
(k)
i gi

(

(γ

x

)N
)

)

319

= − k

xk+1

k+1
∑

i=1

α
(k)
i gi

(

(γ

x

)N
)

+
1

xk

k+1
∑

i=1

α
(k)
i

iN

x

[

gi
(

(γ

x

)N
)

+ gi+1

(

(γ

x

)N
)]

320

(by (2.12))321

=
1

xk+1

[

(N − k)α(k)
1 g

(

(γ

x

)N
)

+

k+1
∑

i=2

(

(iN − k)α(k)
i +N(i− 1)α

(k)
j−1

)

gi
(

(γ

x

)N
)

322

+N(k + 1)α
(k)
k+1g

k+2

(

(γ

x

)N
)]

.323
324

Thus, the coefficients satisfy the following recurrence relation325

α
(k+1)
i =











(N − k)α(k)
1 , i = 1,

(iN − k)α(k)
i +N(i− 1)α

(k)
i−1, 2 ≤ i ≤ k + 1,

N(k + 1)α
(k)
k+1, i = k + 2.

326

Therefore, when N > d, we can pick (conservatively)327

(2.14) β(k+1) = 2dβ(k),328

so that |α(k+1)
i | ≤ β(k+1)Nk+1. That is, the claim holds for j = k+1 and this finishes329

the induction.330

Now, we go back to prove (2.11). By (2.13),331

∣

∣

∣

∣

∣

∣

d−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

d−1
∑

j=0

[

(y − x)j
j!

1

xj

j+1
∑

i=1

α
(j)
i gi

(

(γ

x

)N
)

]

∣

∣

∣

∣

∣

∣

(2.15)

332

≤
d−1
∑

j=0

[

(|y/x|+ 1)j

j!

j+1
∑

i=1

|α(j)
i | gi

(

∣

∣

∣

γ

x

∣

∣

∣

N
)

]

≤
d−1
∑

j=0

[

(|y/x|+ 1)j

j!
β(j)N j

j+1
∑

i=1

gi
(

∣

∣

∣

γ

x

∣

∣

∣

N
)

]

.333

334

Set335

(2.16) N1 = max{d, ⌈log 3/ log |γ1/x|⌉}.336
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Then for N > N1, |γ/x|N > |γ1/x|N > 3 and g
(

|γ/x|N
)

< 1/2. Thus, for 1 ≤ j ≤337

d− 1,338

j+1
∑

i=1

gi
(

∣

∣

∣

γ

x

∣

∣

∣

N
)

≤ 2g

(

∣

∣

∣

γ

x

∣

∣

∣

N
)

.339

Continuing on (2.15), for N > N1, we get340

(2.17)
∣

∣

∣

∣

∣

∣

d−1
∑

j=0

(y − x)j
j!

dj

dxj
g

(

(γ

x

)N
)

∣

∣

∣

∣

∣

∣

≤ cg
(

∣

∣

∣

γ

x

∣

∣

∣

N
)

, with c = 2

d−1
∑

j=0

(|y/x|+ 1)j

j!
β(j)N j .341

Note that with the way β(j) is picked as in (2.14), β(j) satisfies342

β(j) = (2d)j−1β(1) = (2d)j−1, j = 1, 2, . . . , d− 1.343

Then c in (2.17) becomes (2.10). Thus, (2.11) holds with c in (2.10).344

The upper bound (2.9) in Theorem 2.3 has two implications.345

• Since g(|y/γ|N ) and g(|γ/x|N ) decay almost exponentially with N and c is346

just a polynomial in N , d, and |y/x| with degrees up to d− 1, the bound in347

(2.9) decays roughly exponentially as N increases.348

• The bound can help us identify a nearly optimal radius γ of the proxy surface349

Γ so as to minimize the error. This is given in the following theorem.350

Theorem 2.4. Suppose 0 < |x| < γ1 < |y| and κ(x, y) in (1.3) is approximated351

by κ̃(x, y) in (2.3) with (2.4). If the upper bound in (2.9) is viewed as a real function352

in γ on the interval (|x|, |y|), then there exists a positive integer N2 independent of γ,353

such that for N > N2,354

1. this upper bound has a unique minimizer γ∗ ∈ (|x|, |y|);355

2. the minimum of this upper bound decays asymptotically as O
(

|y/x|−N/2
)

.356

Proof. To find the minimizer, we just need to consider the real function357

h(t) =
1

b/t− 1
+

c

t/a− 1
, t ∈ (a, b),358

where a = |x|N , b = |y|N , and c is either equal to 1 (for d = 1) or defined in (2.10)359

(for d ≥ 2). The derivative of the function is360

h′(t) =
p(t)

(t− a)2(t− b)2 , with p(t) = (b− ac)t2 + 2ab(c− 1)t+ ab(a− bc).361

Consider p(t), which is a quadratic polynomial in t with the following properties.362

• The coefficient of the second order term is363

b− ac = |x|N
(

|y/x|N − c
)

.364

Since c is either equal to 1 (for d = 1) or a polynomial in N , d, and |y/x| with365

degrees up to d−1 (for d ≥ 2), there exists N2 larger than N1 in Theorem 2.3366

such that |y/x|N > c for any N > N2. Thus, b− ac > 0 for N > N2.367

• The discriminant is 4abc(a− b)2 > 0.368

• When evaluated at t = a and t = b, the function p(t) gives respectively369

p(a) = −ac(a− b)2 < 0, p(b) = b(a− b)2 > 0.370
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12 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

All the properties above combined indicate that p(t) has one root t0 ∈ (a, b) and371

h′(t) < 0 on (a, t0) and h
′(t) > 0 on (t0, b). Thus, t0 is the only zero of p(t) in [a, b]372

and γ∗ =
N√
t0 is the unique minimizer of the upper bound in (2.9). The requirements373

for picking N2 are N2 > N1 and |y/x|N2 > c. Hence, N2 is independent of γ.374

To prove the second part of the theorem, we explicitly compute the root t0 of375

p(t) = 0 in (a, b) and substitute it into h(t) to get376

h(t0) =
2
√

cb/a+ (c+ 1)

b/a− 1
=

2
√
c|y/x|N/2 + (c+ 1)

|y/x|N − 1
∼ O

(

∣

∣

∣

y

x

∣

∣

∣

−N/2
)

,377

The details involve tedious algebra and are omitted here.378

In the proof, we can actually find the minimizer but are not explicitly writing it379

out. The reason is that the minimizer depends on x and y and it makes more sense380

to write a minimizer later when we consider the low-rank approximation of the kernel381

matrix. See the next section.382

3. Low-rank approximation accuracy and proxy point selection in the383

proxy point method for kernel matrices. With the kernel κ(x, y) in (1.3) ap-384

proximated by κ̃(x, y) in (2.3), a low-rank approximation to K(X,Y ) in (1.2) as follows385

is obtained:386

(3.1) K(X,Y ) ≈ K̃(X,Y ) := (κ̃(x, y)x∈X,y∈Y ) = K(X,Z)Φ(Z,Y ),387

where Φ(Z,Y ) = (ϕ(z, y)z∈Z,y∈Y ). The analysis in subsection 2.2 provides entrywise388

approximation errors for (3.1) (with implicit dependence on x). Now, we consider389

normwise approximation errors for K(X,Y ) and obtain relative error bounds indepen-390

dent of the specific x and y points. The error analysis will be further used to estimate391

the optimal choice of the radius γ for the proxy surface in the low-rank approximation.392

We look at the cases d = 1 and d ≥ 2 separately.393

3.1. The case d = 1. In this case, the proof of Theorem 2.2 for d = 1 gives an394

explicit expression for the entrywise approximation error395

(3.2) ε(x, y) = g

(

(γ

x

)N
)

+ g

(

(y

γ

)N
)

.396

We then have the following result on the low-rank approximation error in Frobenius397

norm.398

Proposition 3.1. Suppose d = 1 and κ(x, y) in (1.3) is approximated by κ̃(x, y)399

in (2.3) with (2.4). If 0 < |x| < γ1 < γ < γ2 < |y| for all x ∈ X, y ∈ Y , then for any400

N > 0,401

(3.3)
∥K̃(X,Y ) −K(X,Y )∥F

∥K(X,Y )∥F
≤ g

(

( γ

γ1

)N
)

+ g

(

(γ2
γ

)N
)

.402

Moreover, if the upper bound on the right-hand side is viewed as a function in γ, it has403

a unique minimizer γ∗ =
√
γ1γ2 and the minimum is 2g

(

(γ2/γ1)
N/2
)

which decays404

asymptotically as O
(

|γ2/γ1|−N/2
)

.405

Proof. The approximation error bound (3.3) is a direct application of the entry-406

wise error in (3.2) together with the fact that g(t) monotonically decreases for t > 1.407
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To find the minimizer of the right-hand side of (3.3), we can either follow the408

proof in Theorem 2.4 or simply use the following explicit expression:409

g
(

(γ/γ1)
N
)

+ g
(

(γ2/γ)
N
)

=
1

(γ/γ1)N − 1
+

1

(γ2/γ)N − 1
410

= −1 + (γ2/γ1)
N − 1

(γ2/γ1)N + 1− ((γ/γ1)N + (γ2/γ)N )
.411

412

We just need to minimize (γ/γ1)
N + (γ2/γ)

N , which reaches its minimum at γ∗ =413 √
γ1γ2.414

Remark 3.2. Although it is not easy to choose γ to minimize the approximation415

error directly, the minimizer γ∗ for the bound in (3.3) can serve as a reasonable416

estimate of the minimizer for the error. These can be seen from an intuitive numerical417

example below. In addition, the minimum 2g
(

(γ2/γ1)
N/2
)

of the bound in (3.3)418

decays nearly exponentially as N increases. Thus, to reach a relative approximation419

accuracy τ , we can conveniently decide the number of proxy points:420

N = O
(

log(1/τ)

log(γ2/γ1)

)

.421

Clearly, N does not depend on the number of points or the geometries of X,Y . It422

only depends on τ and γ2/γ1 which indicates the separation of X and Y . This is423

consistent with the conclusions in the FMM context [42].424

Example 1. We use an example to illustrate the results in Proposition 3.1 for425

d = 1. The points in X and Y are uniformly chosen from their corresponding regions426

and are plotted in Figure 3.1a, where m = |X| = 200, n = |Y | = 300, γ1 = 0.5,427

γ2 = 2, and γ3 = 5.428

First, we fix the number of proxy points N = 20 and let γ vary. We plot the429

actual error EN (γ) := ∥K̃(X,Y ) −K(X,Y )∥F /∥K(X,Y )∥F and the error bound in (3.3).430

See Figure 3.1b. We can see that both plots are V-shape lines and the error bound431

is a close estimate of the actual error. Moreover, the bound nicely captures the error432

behavior, and the actual error reaches its minimum almost at the same location where433

the error bound is minimized: γ∗ =
√
γ1γ2 = 1. Thus, γ∗ is a nice choice to minimize434

the error. The proxy points Z with radius γ∗ are plotted in Figure 3.1a.435

Then in Figure 3.1c, we fix γ = γ∗ and let N vary. Again, the error bound436

provides a nice estimate for the error. Furthermore, both the error and the bound437

decay exponentially like O
(

|γ2/γ1|−N/2
)

= O(2−N ).438

3.2. The case d > 2. In this case, there is no simple explicit formula for ε(x, y)439

like in (3.2). The results in Theorems 2.3 and 2.4 cannot be trivially extended to440

study the normwise error either since no lower bound is imposed on |x| in |y/x|.441

Nevertheless, we can derive a bound as follows.442

Proposition 3.3. Suppose d ≥ 2 and κ(x, y) in (1.3) is approximated by κ̃(x, y)443

in (2.3) with (2.4). If 0 < |x| < γ1 < γ < γ2 < |y| < γ3 for all x ∈ X, y ∈ Y , then444

there exists a positive integer N3 independent of γ such that for N > N3,445

(3.4)
∥K̃(X,Y ) −K(X,Y )∥F

∥K(X,Y )∥F
≤ g

(

(γ2
γ

)N
)

+ ĉ g

(

( γ

γ1

)N
)

.446
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-5 0 5
-5

0

5

(a) Sets X and Y with γ1 = 0.5, γ2 = 2, γ3 = 5 and
proxy points Z selected with radius γ∗ = 1

0.5 1 1.5 2
10

-8
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10
-4

10
-2

10
0

exact rel err

rel err bound

(b) Varying proxy surface radius γ

5 10 15 20 25 30

N

10
-10

10
-5

10
0

exact rel err

rel err bound

(c) Varying number of proxy points N

Fig. 3.1. Example 1: For d = 1, the selection of the proxy points and the actual relative error
EN (γ) compared with its upper bound in Proposition 3.1 for different γ and N .

where447

(3.5) ĉ = 2 + 2

d−1
∑

j=1

[(|γ3/γ1|+ 1)N ]j(2d)j−1

j!
.448

Moreover, if the upper bound in (3.4) is viewed as a real function in γ on the interval449

(γ1, γ2), then450

1. this upper bound has a unique minimizer451

(3.6) γ∗ =

(

(γN2 − γN1 )
√

(γ1γ2)N ĉ− (γ1γ2)
N (ĉ− 1)

γN2 − γN1 ĉ

)1/N

∈ (γ1, γ2);452

2. the minimum of this upper bound decays asymptotically as O
(

|γ2/γ1|−N/2
)

.453

Proof. Following the proof of Theorem 2.4, we can set N3 to be the maximum of454

N2 in Theorem 2.4 for all x ∈ X. Based on the entrywise error bound in (2.9), we455

can just show the following inequalities for N > N3 and any x ∈ X, y ∈ Y :456

g

(

∣

∣

∣

y

γ

∣

∣

∣

N
)

< g

(

(γ2
γ

)N
)

, cg

(

∣

∣

∣

γ

x

∣

∣

∣

N
)

< ĉ g

(

( γ

γ1

)N
)

.457
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The first inequality is obvious. We then focus on the second one. Just for the purpose458

of this proof, we write c in (2.10) as c(|x|, |y|) to indicate its dependency on |x| and459

|y|. c(|x|, |y|) can be viewed as a degree-(d − 1) polynomial in 1/|x| and |y| with all460

positive coefficients.461

Write462

c(|x|, |y|) g
(

∣

∣

∣

γ

x

∣

∣

∣

N
)

=
[

c(|x|, |y|)|x|d−1
]

[

g

(

∣

∣

∣

γ

x

∣

∣

∣

N
)

|x|1−d

]

.463

The first term c(|x|, |y|)|x|d−1 is a polynomial in |x| with all positive coefficients and464

increases with |x|. The second term is465

g

(

∣

∣

∣

γ

x

∣

∣

∣

N
)

|x|1−d =
|x|N−d+1

γN − |x|N .466

With N > N3, it can be shown that this term is also strictly increasing in |x| for467

0 < |x| < γ1 < γ.468

Thus for any x ∈ X, y ∈ Y ,469

c(|x|, |y|) g
(

∣

∣

∣

γ

x

∣

∣

∣

N
)

< c(γ1, |y|) g
(

∣

∣

∣

γ

γ1

∣

∣

∣

N
)

< c(γ1, γ3) g

(

∣

∣

∣

γ

γ1

∣

∣

∣

N
)

= ĉ g

(

∣

∣

∣

γ

γ1

∣

∣

∣

N
)

,470

where the constant ĉ is defined in (3.5) which is c in (2.10) with |y/x| replaced by471

γ3/γ1.472

The minimizer γ∗ in (3.6) for the upper bound is the root of a quadratic polyno-473

mial in (γ1, γ2) and can be obtained following the proof of Theorem 2.4.474

Based on this corollary, we can draw conclusions similar to those in Remark 3.2.475

In addition, although γ3 is needed so that Y is on a bounded domain in order to476

derive the error bound (3.4), we believe such an limitation is not needed in practice.477

In fact, the analytical compression tends to be more accurate when the points y are478

farther away from the set X. Also, if γ3 is too large, then we may slightly shift the x479

points to make sure |x| is larger than a positive number γ0 so as to similarly derive480

an error bound using γ0 instead of γ3.481

3.3. A practical method to estimate the optimal radius γ. In Proposi-482

tions 3.1 and 3.3, the upper bounds are used to estimate the optimal choice of γ for483

the radius of the proxy surface. In practice, it is possible that the upper bound may484

be conservative, especially when d > 1. Thus, we also propose the following method485

to quickly obtain a numerical estimate of the optimal choice.486

In Propositions 3.1 and 3.3, the optimal γ∗ is independent of the number of points487

in X and Y and their distribution. This feature motivates the idea to pick subsets488

X0 ⊂ D(0; γ1) and Y0 ⊂ A(0; γ2, γ3) and use them to estimate the actual error. That489

is, we would expect the following two quantities to have similar behaviors when γ490

varies in (γ1, γ2):491

(3.7) E0N (γ) :=
∥K(X0,Y0) − K̃(X0,Y0)∥F

∥K(X0,Y0)∥F
, EN (γ) :=

∥K(X,Y ) − K̃(X,Y )∥F
∥K(X,Y )∥F

.492

E0N (γ) can be used as an estimator of the actual approximation error EN (γ). Note493

that K(X0,Y0) and K̃(X0,Y0) are computable through (1.3) and (2.3), respectively, so494

E0N (γ) can be computed explicitly, and the cost is extremely small if |X0| ≪ |X| and495

|Y0| ≪ |Y |.496
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Note that in rank-structured matrix computations, often an admissible condition497

or separation parameter is prespecified for the compression of multiple off-diagonal498

blocks. In the case of kernel matrices, it means that the process of estimating the499

optimal γ needs to be run only once and can then be used in multiple compression500

steps.501

Example 2. We use an example to demonstrate the numerical selection of the502

optimal γ. Consider d = 2, 3 and the two sets X and Y in Example 1 with the same503

values γ1, γ2, γ3 (see Figure 3.1a). Fix N = 30.504

For the sets X0 and Y0 we choose, we set l = |X0| = |Y0| to be 1, 2, or 3. We505

make sure x = γ1 and y = γ2 as points of C are always in X0 and Y0, respectively.506

Thus, E0N (γ) is more likely to capture the behavior of EN (γ). Any additional points507

in X0 are uniformly distributed in the circle C(0; γ1) and any additional points in Y0508

are uniformly distributed in C(0; γ2).
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Fig. 3.2. Example 2: For d = 2 and 3, how the estimator E0

N
(γ) with l = 1, 2, 3 compare with

the actual error EN (γ).

509
With l = 1, both EN (γ) and E0N (γ) are plotted. See Figures 3.2a and 3.2b for510

d = 2 and 3, respectively. We can see that E0N (γ) already gives a good estimate of511

the behavior of EN (γ) for both cases. Then in Figures 3.2c and 3.2d we plot E0N (γ)512

for l = 1, 2, 3 and zoom in at around the minimum since they almost coincide with513

each other away from the minimum. The minimums of the three cases are very close514

to each other.515
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4. Low-rank approximation accuracy in hybrid compression and rep-516

resentative point selection. The analytical compression in section 3 can serve as517

a preliminary low-rank approximation, which is typically followed by an algebraic518

compression step to get a more compact low-rank approximation. In this section,519

we analyze the approximation error of such hybrid (analytical/algebraic) compression520

method applied to K(X,Y ).521

Suppose m = |X| and n = |Y | are sufficiently large and N = |Z| is fixed. With522

the preliminary low-rank approximation in (3.1), since K(X,Z) has a much smaller523

column size than K(X,Y ), it becomes practical to apply an SRRQR factorization to524

K(X,Z) to obtain the following approximation:525

(4.1) K(X,Z) ≈ UK(X̂,Z), with U = P

(

I
E

)

,526

where P is a permutation matrix so that K(X̂,Z) a submatrix of K(X,Z) corresponding527

to a subset X̂ ⊂ X. X̂ can be referred to as a set of representative points of X. (4.1)528

is an interpolative decomposition of K(X,Z). It is also called structure-preserving529

rank-revealing (SPRR) factorization in [49] since K(X̂,Z) is a submatrix of K(X,Z).530

Although U generally does not have orthonormal columns, the SRRQR factor-531

ization keeps its norm under control in the sense that entries of E have magnitudes532

bounded by a constant e (e.g., e = 2 or
√
N). See [18] for details.533

We then have534

K(X,Y ) ≈ K̃(X,Y ) = K(X,Z)Φ(Z,Y ) (by (2.3) and (3.1))(4.2a)535

≈ UK(X̂,Z)Φ(Z,Y ) (by (4.1))(4.2b)536

= UK̃(X̂,Y ) (by (2.3) and similar to (3.1))(4.2c)537

≈ UK(X̂,Y ), (by κ̃(x, y) ≈ κ(x, y))(4.2d)538539

which is an SPRR factorization of K(X,Y ).540

Similarly, an SRRQR factorization can further be applied to K(X̂,Y ) to produce541

(4.3) K(X̂,Y ) ≈ K(X̂,Ŷ )V T , with V = Q

(

I
F

)

,542

where Q is a permutation matrix and Ŷ ⊂ Y . The approximation (4.2) together with543

(4.3) essentially enables us to quickly to select representative points from both X and544

Y . In another word, we have a skeleton factorization of K(X,Y ) as545

(4.4) K(X,Y ) ≈ UK(X̂,Ŷ )V T .546

Note that computing an SPRR or skeleton factorization for K(X,Y ) directly (or to547

find a submatrix K(X̂,Ŷ ) with the largest “volume” [14, 44]) is typically prohibitively548

expensive for large m and n. Here, the proxy point method substantially reduces the549

cost. In fact, (4.2a) and (4.2c) are done analytically with no computation cost. Only550

the SRRQR factorizations of skinny matrices (K(X,Z) and/or K(X̂,Y )) are needed.551

The total compression cost is O(mNr) for (4.2) or O(mNr + nr2) for (4.4) instead552

of O(mnr) in the case of direct compression, where r = |X̂| ≥ |Ŷ |. As we have553

discussed before, N is only a constant independent of m and n. Thus, this procedure554

is significantly more efficient than applying SRRQR factorizations directly to the555

original kernel matrix.556
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18 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

The next theorem concerns the approximation error of the hybrid compression557

via either (4.2) or (4.4).558

Theorem 4.1. Suppose 0 < |x| < γ1 < γ < γ2 < |y| < γ3 for any x ∈ X, y ∈ Y559

and the N proxy points in Z are located on the proxy surface with radius γ∗. Let r =560

|X̂| and let the relative tolerance in the kernel approximation be τ1 (i.e., |ε(x, y)| < τ1561

for ε(x, y) in (2.7)) and the relative approximation tolerance (in Frobenius norm) in562

the SRRQR factorizations (4.1) and (4.3) be τ2. Assume the entries of E in (4.1)563

and F in (4.3) have magnitudes bounded by e. Then the approximation of K(X,Y ) by564

(4.2) satisfies565

(4.5)
∥K(X,Y ) − UK(X̂,Y )∥F

∥K(X,Y )∥F
< s1τ1 + s2τ2,566

where567

s1 = 1 +
√

r + (m− r)re2
√

1− (m− r)(γ2 − γ1)2d
m(γ1 + γ3)2d

, s2 =
γ∗(γ1 + γ3)

d

(γ2 − γ∗)(γ∗ − γ1)d
.568

569

The approximation of K(X,Y ) by (4.4) satisfies570

(4.6)
∥K(X,Y ) − UK(X̂,Ŷ )V T ∥F

∥K(X,Y )∥F
< s1τ1 + s̃2τ2,571

where s̃2 = s2 + s1 − 1.572

Proof. The following inequalities for x ∈ X, y ∈ Y, z ∈ Z will be useful in the573

proof:574

|ϕ(z, y)| < γ∗

N(γ2 − γ∗)
,(4.7)575

|κ(x, z)| < 1

(γ∗ − γ1)d
,(4.8)576

1

(γ1 + γ3)d
< |κ(x, y)| < 1

(γ2 − γ1)d
.(4.9)577

578

Note that579

∥K(X,Y ) − UK(X̂,Y )∥F(4.10)580

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K̃(X,Y ) − UK(X̂,Y )∥F581

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K̃(X,Y ) − UK̃(X̂,Y )∥F + ∥UK̃(X̂,Y ) − UK(X̂,Y )∥F582

= ∥K(X,Y ) − K̃(X,Y )∥F + ∥K(X,Z)Φ(Z,Y ) − UK(X̂,Z)Φ(Z,Y )∥F583

+ ∥UK̃(X̂,Y ) − UK(X̂,Y )∥F (by (4.2a)–(4.2c))584

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K(X,Z) − UK(X̂,Z)∥F ∥Φ(Z,Y )∥F585

+ ∥U∥F ∥K(X̂,Y ) − K̃(X̂,Y )∥F .586587

Now, we derive upper bounds separately for the three terms in the last step above.588

(i) The first term is the approximation error for the original kernel matrix from589

the proxy point method. Then590

(4.11) ∥K(X,Y ) − K̃(X,Y )∥F ≤ τ1∥K(X,Y )∥F .591
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(ii) Next, from the SPRR factorization of K(X,Z),592

∥K(X,Z) − UK(X̂,Z)∥F ∥Φ(Z,Y )∥F ≤ τ2∥K(X,Z)∥F ∥Φ(Z,Y )∥F .593

Since Φ(Z,Y ) is N × n, (4.7) means594

∥Φ(Z,Y )∥F <
√
Nn

γ∗

N(γ2 − γ∗)
=

√

n

N

γ∗

γ2 − γ∗
.595

Similarly, (4.8) and (4.9) mean596

∥K(X,Z)∥2F
∥K(X,Y )∥2F

<
mN/(γ∗ − γ1)2d
mn/(γ1 + γ3)2d

=
N

n

(γ1 + γ3)
2d

(γ∗ − γ1)2d
.597

Then598

∥K(X,Z) − UK(X̂,Z)∥F ∥Φ(Z,Y )∥F < τ2

√

n

N

γ∗

γ2 − γ∗
∥K(X,Z)∥F

(4.12)

599

< τ2
γ∗(γ1 + γ3)

d

(γ2 − γ∗)(γ∗ − γ1)d
∥K(X,Y )∥F .600

601

(iii) Thirdly,602

∥U∥F =

∥

∥

∥

∥

P

(

I
E

)∥

∥

∥

∥

F

=

∥

∥

∥

∥

(

I
E

)∥

∥

∥

∥

F

≤
√

r + (m− r)re2,603

∥K(X̂,Y ) − K̃(X̂,Y )∥F ≤ τ1∥K(X̂,Y )∥F .604605

According to (4.9),606

∥K(X̂,Y )∥2F
∥K(X,Y )∥2F

= 1− ∥K
(X\X̂,Y )∥2F
∥K(X,Y )∥2F

607

≤ 1− (m−r)n/(γ1+γ3)2d
mn/(γ2 − γ1)2d

= 1− (m−r)(γ2−γ1)2d
m(γ1 + γ3)2d

.608
609

Then610

∥U∥F ∥K(X̂,Y ) − K̃(X̂,Y )∥F(4.13)611

≤ τ1
√

r + (m− r)re2
√

1− (m− r)(γ2 − γ1)2d
m(γ1 + γ3)2d

∥K(X,Y )∥F .612

613

Combining the results (4.11)–(4.13) from the three steps above yields (4.5). To614

show (4.6), we use the following inequality:615

∥K(X,Y ) − UK(X̂,Ŷ )V T ∥F616

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K(X,Z)Φ(Z,Y ) − UK(X̂,Z)Φ(Z,Y )∥F617

+ ∥UK̃(X̂,Y ) − UK(X̂,Y )∥F + ∥UK(X̂,Y ) − UK(X̂,Ŷ )V T ∥F .618619

Then the proof can proceed similarly.620
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If e in SRRQR factorizations is a constant, with fixed N , the two constants in621

(4.5) scale roughly as s1 = O(√m) and s2 = O(1). Moreover, once the annulus region622

A(0; γ2, γ3) is fixed, the set Y is completely irrelevant to the algorithm for obtaining623

the approximation (4.2) and the error bound (4.5). The column basis matrix U and624

the set X̂ of representative points can be obtained with only the set X, and the error625

analysis in (4.5) applies to any set Y in A(0; γ2, γ3).626

Remark 4.2. Note that our error analyses in the previous section and this section627

are not necessarily restricted to the particular kernel like in (1.3) or the proxy point628

selection method. In fact, the error bounds can be easily modified for more general629

kernels and/or with other approximation methods as long as a relative error bound630

for the kernel function approximation is available. This bound is τ1 in Theorem 4.1.631

We then use a comprehensive example to show the accuracies of the analytical632

compression and the hybrid compression, as well as the selections of the proxy points633

and the representative points.634

Example 3. We generate a triangular finite element mesh on a rectangle domain635

[0, 2]× [0, 1] based on the package MESHPART [11]. The two sets of points X and Y636

are the mesh points as shown in Figure 4.1, where |X| = 821, |Y | = 4125, γ1 = 0.3,637

and γ2 = 0.45. We compute the low-rank approximation in (4.2) and report the rela-638

tive errors in the analytical compression step and the hybrid low-rank approximation639

respectively:640

EN (γ) =
∥K(X,Y ) − K̃(X,Y )∥F

∥K(X,Y )∥F
, RN (γ) =

∥K(X,Y ) − UK(X̂,Y )∥F
∥K(X,Y )∥F

.641

Fig. 4.1. Example 3: Sets X and Y in the mesh, where the image is based on the package
MESHPART [11].

In the first set of tests, the number of proxy points N is chosen to reach a rela-642

tive tolerance τ1 = 10εmach in the proxy point method, where εmach is the machine643

precision. (Note that τ1 is the tolerance for approximating κ(x, y), and the actual644

computed Frobenius-norm matrix approximation error EN (γ) may be slightly larger645

due to floating point errors.)646

We vary the radius γ for the proxy surface between γ1 and γ2. For d = 1, 2, 3, 4,647

EN (γ) and RN (γ) are shown in Figure 4.2. In practice, we can use the method648

in subsection 3.3 to obtain an approximate optimal radius γ̃∗. To show that γ̃∗649

is very close to the actual optimal radius, we can look at Figure 4.2a for d = 1.650

Here, N = 169 and γ̃∗ = 0.3675 which is very close to the actual optimal radius651

0.3678. In addition, the error bound in Proposition 3.1 can be used to provide another652

estimate
√
γ1γ2 = 0.3674. Both estimates are very close to the actual minimizer,653
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which indicates the effectiveness of the error analysis and the minimizer estimations.654

When γ = γ̃∗, we have EN (γ) = 3.2106E − 16 and RN (γ) = 1.1008E − 15, and655

the numerical rank resulting from the hybrid compression is 78. The numerical rank656

produced by SVD under a similar relative error is 68.
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Fig. 4.2. Example 3: EN (γ) in the analytical compression step and RN (γ) in the hybrid
low-rank approximation with varying radius γ.

657

Similar results are obtained for d = 2, 3, 4. See Figure 4.2 and Table 4.1. We658

notice that EN (γ) is sometimes larger than RN (γ), especially when γ is closer to X or659

Y . This is likely due to the different amount of evaluations of the kernel function in660

the error computations. The kernel function evaluations may have higher numerical661

errors when γ gets closer to γ1 or γ2. When γ is not too close to γ1 or γ2, RN (γ)662

is smaller than EN (γ), which is consistent with the theoretical estimates. Here, no663

stabilization is integrated into the proxy point method (which may be fixed based on664

a technique in [3]), while SRRQR factorizations have full stability measurements and665

produce column basis matrices with controlled norms. On the other hand, this also666

reflects that hybrid compression is a practical method.667

Also in Figure 4.3 for d = 1, 2, we plot the proxy points as well as the represen-668

tative points X̂ produced by the hybrid approximation with γ = γ̃∗.669

In our next set of tests, we vary the number of proxy points N for the analytical670

compression step and check its effect on the hybrid low-rank approximation error. For671

each N , the radius of the proxy surface γ is set to be γ̃∗. The results are shown in672
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Table 4.1

Example 3: Hybrid compression results, where γ̃∗ is the approximate optimal radius.

d N Optimal γ γ̃∗ Numerical rank EN (γ̃∗) RN (γ̃∗)
1 169 0.3678 0.3675 78 3.2106E − 16 1.1008E − 15
2 179 0.3733 0.3713 88 1.0431E − 15 2.1817E − 15
3 187 0.3774 0.3759 93 2.3565E − 15 2.0537E − 14
4 193 0.3816 0.3792 99 8.9381E − 15 7.5528E − 14

(a) d = 1 (b) d = 2

Fig. 4.3. Example 3: Representative points (+ shapes) and proxy points (× shapes).

Figure 4.4. The approximation error for the analytical compression decays exponen-673

tially as predicted by Propositions 3.1 and 3.3 (until N reaches the values indicated674

in Table 4.1; after that point, it stops to decay due to floating point errors).675

5. Discussions. The proxy point method has some attractive features similar676

to some methods used for data analysis such as the Nyström method and the pseudo-677

input approximation [8, 13, 26, 40, 46]. For kernel matrices, both the proxy point678

method and the Nyström method construct low-rank basis matrices directly based on679

selections of reference points and evaluations of the original kernel function.680

However, there are some key differences between the two methods.681

1. The Nyström method is typically used to seek low-rank approximations for682

square kernel matrices of the form K(X,X), which corresponds to interactions683

within the same set X. K(X,X) is often heuristically considered to be of684

low numerical rank (with modest accuracies) in data science and machine685

learning applications. On the other hand, the proxy point method deals686

with rectangular kernel matrices K(X,Y ) for two different and well-separated687

sets X and Y . If K(X,X) is considered, then FMM or H/H2/HSS matrix688

strategies are first applied to generate well-separated subsets. That is, X is689

first hierarchically partitioned into subsets Xi. Then the proxy point method690

can be applied to K(Xi,Xj) for well-separated Xi and Xj . That is, in the691

matrix form, the proxy point method compresses appropriate off-diagonal692

blocks of K(X,X). Such an off-diagonal compression idea leads to so-called693

rank structured matrices that have been extensively studied in the field of694

fast solvers for some linear systems, PDEs, and integral equations. (The695

Nyström method may also be applied to well-separated sets, but it is hard to696

guarantee high accuracies. See the last point below.)697
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Fig. 4.4. Example 3: Accuracies with γ = γ̃∗ and varying N .

2. Due to the different natures of the applications that the two methods are698

applied to, their accuracy requirements are typically quite different. For699

kernel methods such as the support vector machine (SVM) or Gaussian pro-700

cess regression, the Nyström method produces modest accuracies (such as701

O(10−3) ∼ O(10−1)) which are good enough for making reasonable predic-702

tions in the model. The proxy point method considers interactions between703

well-separated sets instead of the entire set. For some applications, the sep-704

aration of sets can be used to analytically justify the low-rankness with any705

specified accuracy. The proxy point method helps to conveniently compress706

the off-diagonal blocks of K(X,X) so as to quickly obtain accurate rank struc-707

tured matrix approximations to K(X,X) that are suitable for fast and reliable708

direct factorizations, inversions, eigenvalue solutions, etc.709

3. Since the Nyström method often select points based on techniques such as710

sampling and clustering, the accuracy analysis is typically probabilistic [8,711

54, 55]. The proxy point method here uses a deterministic way to select712

proxy points. The proxy point selection and basis matrix computation are713

supported by analytical justifications with guaranteed controllable accuracies.714

The analysis enables us to rigorously quantify the error behaviors and to715

optimize parameters. Of course, this also means that such rigorous analysis716

is typically nontrivial and is feasible for specific kernels on a case-by-case basis717
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(although the method has been successfully applied to many different types of718

kernels in practice). Studies for many other kernels still need to be performed,719

and this paper serves as a starting point for such studies. In addition, as720

mentioned in Remark 4.2, the hybrid error analysis in Theorem 4.1 is not721

restricted to specific kernels or proxy point selection methods.722

4. The Nyström method may be applied to data points in high dimensions, while723

the proxy point method focuses on data points in low-dimensional spaces that724

are often encountered in the solutions of some linear systems, eigenvalue prob-725

lems, PDEs, and integral equations. For example, the proxy point method726

are useful for direct solutions of Cauchy/Cauchy-like/Toeplitz/Vandermonde727

linear systems [34, 39, 49] and FMM accelerations of Hermitian eigenvalue728

problems [17, 45], where the data points under consideration are on some lines729

or curves. For some FMM techniques and PDE/integral equation solutions,730

the points are in one, two, or three dimensional spaces [12, 32, 33, 35, 52, 53].731

5. The Nyström method may be extended to well-separated sets X and Y . How-732

ever, there is no guarantee that a specified high accuracy can be reached. For733

example, we may obtain an initial approximate column basis matrix K(X,Ŷ )734

by selecting a subset Ŷ from Y . K(X,Ŷ ) can be used like K(X,Z) in Section 4735

to obtain an approximation just like (4.2d). (We use this scheme so that its736

cost is nearly the same as our method. We may also select points from both737

X and Y in the Nyström method, but the accuracy in the following test is738

even lower.)739

To compare the Nyström scheme in the last item above with the proxy point740

method for well-separated sets, we apply them to the data sets used in Example 3 by741

selecting the same number of points N to obtain hybrid compression. In the Nyström742

method, we try both random sampling with replacement and k-means clustering for743

selecting reference points like in [55]. The relative approximation errors for the cases744

d = 1 and 2 are plotted in Figure 5.1. The approximation accuracy from the Nyström745

method initially improves with increasing N , but the accuracy improvement gets very746

slow and almost stagnates. In comparison, the errors from the proxy point method747

decrease all the way to near the machine precision.748
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Fig. 5.1. Relative approximation errors (in Frobenius norm) of the Nyström method and the
proxy point method, where the Nyström method uses random sampling or k-means clustering for
selecting reference points.
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6. Conclusions. The proxy point method is a very simple and convenient strat-749

egy for computing low-rank approximations for kernel matrices evaluated at well-750

separated sets. In this paper, we present an intuitive way of explaining the method.751

Moreover, we provide rigorous approximation error analysis for the kernel function752

approximation and low-rank kernel matrix approximation in terms of a class of impor-753

tant kernels. Based on the analysis, we show how to choose nearly optimal locations754

of the proxy points. The work can serve as a starting point to study the proxy point755

method for more general kernels. Some possible strategies in future work will be756

based on other kernel expansions or Cauchy FMM ideas [28]. Various results here757

are already applicable to more general kernels and other approximation methods. We758

also hope this work can draw more attentions from researchers in the field of matrix759

computations to study and utilize such an elegant method.760
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[2] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Comput-766
ing, 69 (2002), pp. 1–35.767

[3] D. Cai and J. Xia, Bridging the gap between the fast multipole method and fast stable structured768
factorizations. preprint, 2016.769

[4] R. H. Chan, J. Xia, and X. Ye, Fast direct solvers for linear third-order differential equations,770
preprint, 2016.771

[5] S. Chandrasekaran, M. Gu, and T. Pals, A fast ulv decomposition solver for hierarchically772
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.773

[6] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, A superfast algorithm for Toeplitz774
systems of linear equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1247–1266.775

[7] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the compression of low776
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.777

[8] P. Drineas and M. W. Mahoney, On the Nyström method for approximating a Gram matrix778
for improved kernel-based learning, J. Machine Learning, 6 (2005), pp. 2153–2175.779

[9] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psy-780
chometrika, 1 (1936), pp. 211–218.781

[10] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228 (2009),782
pp. 8712–8725.783

[11] J. R. Gilbert and S.-H. Teng, MESHPART, A Matlab Mesh Partitioning and Graph Sepa-784
rator Toolbox, http://aton.cerfacs.fr/algor/Softs/MESHPART/.785

[12] A. Gillman, P. M. Young, and P. G. Martinsson, A direct solver with O(N) complexity for786
integral equations on one-dimensional domains, Front. Math. China, 7 (2009), pp. 217–247.787

[13] A. Gittens and M. W. Mahoney, Revisiting the Nyström method for improved large-scale788
machine learning, J. Machine Learning, 16 (2016), pp. 1–65.789

[14] S. A. Goreinov and E. E. Tyrtyshnikov, The maximal-volume concept in approximation by790
low-rank matrices, Contemporary Mathematics, vol 280, 2001, pp. 47–52.791

[15] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,792
73 (1987), pp. 325–348.793

[16] M. Gu, Subspace iteration randomization and singular value problems, SIAM J. Sci. Comput.,794
37 (2015), pp. A1139–A1173.795

[17] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal796
eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 79–92.797

[18] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR798
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.799

[19] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to800
H-matrices, Computing, (1999), pp. 89–108.801

[20] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2 matrices, in Lectures on Applied802
Mathematics, Springer, Berlin, Heidelberg, 2000, pp. 9–29.803

This manuscript is for review purposes only.



26 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

[21] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: prob-804
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53805
(2011), pp. 217–288.806

[22] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive807
skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. A2507–A2532.808

[23] J. Kestyn, E. Polizzi, and P. T. P. Tang, FEAST eigensolver for non-Hermitian problems,809
SIAM J. Sci. Comput., 38 (2016), pp. S772–S799.810

[24] N. Kishore Kumar and J. Schneider, Literature survey on low rank approximation of ma-811
trices, Linear Multilinear Algebra, 65 (2017), pp. 2212–2244.812

[25] R. Kress, Linear Integral Equations, Third Edition, Springer, 2014.813
[26] S. Kumar, M. Mohri, and A. Talwalkar, Sampling methods for the Nyström method, J.814

Machine Learning, 13 (2002), pp. 981–1006.815
[27] X. Liu, J. Xia, and M. V. de Hoop, Parallel randomized and matrix-free direct solvers for816

large structured dense linear systems, SIAM J. Sci. Comput., 38 (2016), pp. S508–S538.817
[28] P.-D. Létourneau, C. Cecka, and E. Darve, Cauchy fast multipole method for general818

analytic kernels, SIAM J. Sci. Comput., 36 (2014), pp. A396–A426.819
[29] M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis,820

Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 697–702.821
[30] J. Makino, Yet another fast multipole method without multipoles–pseudoparticle multipole822

method, J. Comput. Phys., 151 (1999), pp. 910–920.823
[31] P.-G. Martinsson, G. Q. Ort́ı, N. Heavner, and R. van de Geijn, Householder QR fac-824

torization with randomization for column pivoting (HQRRP), SIAM J. Sci. Comput., 39825
(2017), pp. C96–C115.826

[32] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in827
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.828

[33] P. G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method829
in one dimension, SIAM J. Sci. Comput., 29 (2007), pp. 1160–1178.830

[34] P. G. Martinsson, V. Rokhlin, and M. Tygert, A fast algorithm for the inversion of general831
Toeplitz matrices, Comput. Math. Appl. 50 (2005), pp. 741–752.832

[35] E. Michielssen and A. Boag, A multilevel matrix decomposition algorithm for analyzing833
scattering from large structures, IEEE Trans. on Antennas and Propagation, 44 (1996),834
pp. 1086–1093.835

[36] V. Minden, K. L. Ho, A. Damle, and L. Ying, A recursive skeletonization factorization based836
on strong admissibility, Multiscale Model. Simul., 15 (2017), pp. 768–796.837

[37] L. Miranian and M. Gu, Strong rank-revealing LU factorizations, Linear Algebra Appl., 367838
(2003), pp. 1–16.839

[38] M. O’Neil and V. Rokhlin, A new class of analysis-based fast transforms. technical report,840
2007.841

[39] V. Y. Pan, Transformations of matrix structures work again, Linear Algebra Appl., 465 (2015),842
pp. 107–138.843

[40] E. Snelson and Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs, NIPS’05:844
Proceedings of the 18th International Conference on Neural Information Processing Sys-845
tems, (2005), pp. 1257–1264.846

[41] E. M. Stein and R. Shakarchi, Complex analysis, Princeton University Press, 2003.847
[42] X. Sun and N. P. Pitsianis, A matrix version of the fast multipole method, SIAM Rev., 43848

(2001), pp. 289–300.849
[43] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule,850

SIAM Rev., 56 (2014), pp. 385–458.851
[44] E. E. Tyrtyshnikov, Mosaic-skeleton approximations, Calcolo, 33 (1996), pp. 47–57.852
[45] J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan, Superfast divide-and-conquer method853

and perturbation analysis for structured eigenvalue solutions, SIAM J. Sci. Comput., 38854
(2016), pp. A1358–A1382.855

[46] C. Williams and M. Seeger, Using the Nyström method to speed up kernel machines, Ad-856
vances in Neural Information Processing Systems 13, (2001), pp. 682–688.857

[47] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.858
[48] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-859

arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.860
[49] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via ran-861

domized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.862
[50] X. Xing and E. Chow, An efficient method for block low-rank approximations for kernel863

matrix systems. preprint, 2018.864
[51] X. Ye, J. Xia, R. H. Chan, S. Cauley, and V. Balakrishnan, A fast contour-integral865

This manuscript is for review purposes only.



X. YE, J. XIA, AND L. YING 27

eigensolver for non-hermitian matrices, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1268–866
1297.867

[52] L. Ying, A kernel independent fast multipole algorithm for radial basis functions, J. Comput.868
Phys., 213 (2006), pp. 451–457.869

[53] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in870
two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.871

[54] K. Zhang and J. T. Kwok, Block-quantized kernel matrix for fast spectral embedding, Pro-872
ceedings of the 23rd international conference on Machine learning, (2006), pp. 1097–1104.873

[55] K. Zhang, I. W. Tsang, and J. T. Kwok, Improved Nyström low-rank approximation and er-874
ror analysis, Proceedings of the 25th international conference on Machine learning, (2008),875
pp. 1232–1239.876

This manuscript is for review purposes only.


