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ANALYTICAL LOW-RANK COMPRESSION VIA PROXY POINT
SELECTION*

XIN YEf, JIANLIN XIAT, AND LEXING YINGH#

Abstract. It has been known in potential theory that, for some kernels matrices corresponding
to well-separated point sets, fast analytical low-rank approximation can be achieved via the use of
proxy points. This proxy point method gives a surprisingly convenient way of explicitly writing out
approximate basis matrices for a kernel matrix. However, this elegant strategy is rarely known or
used in the numerical linear algebra community. It still needs clear algebraic understanding of the
theoretical background. Moreover, rigorous quantifications of the approximation errors and reliable
criteria for the selection of the proxy points are still missing. In this work, we use contour integration
to clearly justify the idea in terms of a class of important kernels. We further provide comprehensive
accuracy analysis for the analytical compression and show how to choose nearly optimal proxy points.
The analytical compression is then combined with fast rank-revealing factorizations to get compact
low-rank approximations and also to select certain representative points. We provide the error bounds
for the resulting overall low-rank approximation. This work thus gives a fast and reliable strategy
for compressing those kernel matrices. Furthermore, it provides an intuitive way of understanding
the proxy point method and bridges the gap between this useful analytical strategy and practical
low-rank approximations. Some numerical examples help to further illustrate the ideas.

Key words. kernel matrix, proxy point method, low-rank approximation, approximation error
analysis, hybrid compression, strong rank-revealing factorization
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1. Introduction. In this paper, we focus on the low-rank approximation of some
kernel matrices: those generated by a smooth kernel function (z,y) evaluated at two
well-separated sets of points X = {z;}7, and Y = {y;}7_,. We suppose x(z,y) is
analytic and a degenerate approximation as follows exists:

(1.1) K(r,y) = Zajwj(ij(y),

where 1);’s and ¢;’s are appropriate basis functions and «a;’s are coefficients indepen-
dent of z and y. X and Y are well separated in the sense that the distance between
them is comparable to their diameters so that r in (1.1) is small. In this case, the
corresponding discretized kernel matrix as follows is numerically low rank:

(1.2) K = (k(2,y)rex yev)-

This type of problems frequently arises in a wide range of computations such as
numerical solutions of PDEs and integral equations, Gaussian processes, regression
with massive data, machine learning, and N-body problems. The low-rank approxi-
mation to K XY) enables fast matrix-vector multiplications in methods such as the
fast multipole method (FMM) [15]. It can also be used to quickly compute matrix
factorization and inversion based on rank structures such as H [19], H? [2, 20], and
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2 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

HSS [5, 48] forms. In fact, relevant low-rank approximations play a key role in rank-
structured methods. The success of the so-called fast rank-structured direct solvers
relies heavily on the quality and efficiency of low-rank approximations.

According to the Eckhart-Young Theorem [9], the best 2-norm low-rank approxi-
mation is given by the truncated SVD, which is usually expensive to compute directly.
More practical algebraic compression methods include rank-revealing factorizations
(especially strong rank-revealing QR [18] and strong rank-revealing LU factorizations
[37]), mosaic-skeleton approximations [44], interpolative decomposition [7], CUR de-
compositions [29], etc. Some of these algebraic methods have a useful feature of
structure preservation for K(XY): relevant resulting basis matrices can be subma-
trices of the original matrix and are still discretizations of k(z,y) at some subsets.
This is a very useful feature that can greatly accelerate some hierarchical rank struc-
tured direct solvers [49, 27, 47]. However, these algebraic compression methods have
O(rmn) complexity and are very costly for large-scale applications. The efficiency
may be improved by randomized SVDs [21, 16, 31], which still cost O(rmn) flops.

Unlike fully algebraic compression, there are also various analytical compression
methods that take advantage of degenerate approximations like in (1.1) to compute
low-rank approximations. The degenerate approximations may be obtained by Taylor
expansions, multipole expansions [15], spherical harmonic basis functions [42], Fourier
transforms with Poisson’s formula [1, 30], Laplace transforms with the Cauchy inte-
gral formula [28], Chebyshev interpolations [10], etc. Various other polynomial basis
functions may also be used [38].

These analytical approaches can quickly yield low-rank approximations to K (X-Y)
by explicitly producing approximate basis matrices. On the other hand, the resulting
low-rank approximations are usually not structure preserving in the sense that the
basis matrices are not directly related to K(X-¥). This is because the basis functions
{%;} and {p,} are generally different from x(z,y).

As a particular analytical compression method, the prozy point method has at-
tracted a lot of interests in recent years. It is tailored for kernel matrices and is very
attractive for different geometries of points [10, 32, 50, 52, 53]. While the methods
vary from one to another, they all share the same basic idea and can be summarized
in the surprisingly simple Algorithm 1.1, where the details are omitted and will be
discussed later in later sections. Note that an explicit degenerate form (1.1) is not
needed and the algorithm directly produces the matrix K% = (k(z, Y)eeX,ycz) as
an approximate column basis matrix in Step 2. This feature enables the extension of
the ideas of the classical fast multipole method (FMM) [15] to more general situations,
and examples include the recursive skeletonization [22, 32, 36] and kernel independent
FMM [33, 52, 53]. The convenient extraction of an approximate column basis matrix
is similar to some methods used for data analysis such as the Nystréom method and
the pseudo-input approximation [8, 13, 26, 40, 46]. (More discussions on this will be
given in section 5.)

Algorithm 1.1 Basic proxy point method for low-rank approximation
Input: k(z,y), X,Y
Output: Low-rank approximation K (XY) ~ AB > Details in sections 2 and 3

1: Pick a proxy surface I' and a set of prozy points Z C T’
2: A+ K(X’Z)
3. B+ ®%Y) for a matrix ®%Y) such that K(XY) ~ K(X2)$(%Y)

This manuscript is for review purposes only.
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X. YE, J. XIA, AND L. YING 3

Notice that |Z| is generally much smaller than |Y]| so that K(X*%) has a much
smaller column size than K(X-Y)_ It is then practical to apply reliable rank-revealing
factorizations to K(X-%) to extract a compact approximate column basis matrix for
K&Y) | This is a hybrid (analytical/algebraic) compression scheme, and the proxy
point method helps to significantly reduce the compression cost.

The significance of the proxy point method can also be seen from another view-
point: the selection of representative points. When a strong rank-revealing QR (SR-
RQR) factorization or interpolative decomposition is applied to K (XY) " an approx-
imate row basis matrix can be constructed from selected rows of KX:Y) . Suppose
those rows correspond to the points X C X. Then X can be considered as a subset
of representative points. The analytical selection of X is not a trivial task. However,
with the use of the proxy points Z, we can essentially quickly find X based on K(X:2),
(See section 4 for more details.) That is, the set of proxy points Z can serve as a set of
auxiliary points based on which the representative points can be quickly identified. In
another word, when considering the interaction KX¥) between X and Y, we can use
the interaction K (X:%) between X and the proxy points Z to extract the contribution
X from X.

Thus, the proxy point method is a very convenient and useful tool for researchers
working on kernel matrices. However, this elegant method is much less known in the
numerical linear algebra community. Indeed, even the compression of some special
Cauchy matrices (corresponding to a simple kernel) takes quite some efforts in matrix
computations [34, 39, 49]. In a recent literature survey [24] that lists many low-rank
approximation methods (including a method for kernel matrices), the proxy point
method is not mentioned at all. One reason that the proxy point method is not
widely known by researchers in matrix computation is the lack of intuitive algebraic
understanding of the background.

Moreover, in contrast with the success of the proxy point method in various
practical applications, its theoretical justifications are still lacking in the literature.
Potential theory [25, Chapter 6] can be used to explain the choice of proxy surface
I in Step 1 of Algorithm 1.1 when dealing with some PDE kernels (when x(z,y) is
the fundamental solution of a PDE). However, there is no clear justification of the
accuracy of the resulting low-rank approximation. Specifically, a clear explanation
of such a simple procedure in terms of both the approximation error and the proxy
point selection desired, especially from the linear algebra point of view.

Thus, we intend to seek a convenient way to understand the proxy point method
and its accuracy based on some kernels. The following types of errors will be consid-
ered (the notation will be made more precise later):

e The error ¢ for the approximation of kernel functions k(z,y) with the aid of
proxy points.

e The error £ for the low-rank approximation of kernel matrices K
proxy point method.

e The error R for practical hybrid low-rank approximations of KX-¥) based
on the proxy point method.

Our main objectives are as follows.

1. Provide an intuitive explanation of the proxy point method using contour
integration so as to make this elegant method more accessible to the numerical
linear algebra community.

2. Give systematic analysis of the approximation errors of the proxy point
method as well as the hybrid compression. We show how the kernel function
approximation error € and the low-rank compression error £ decay exponen-

(X.Y) via the
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4 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

tially with respect to the number of proxy points. We also show how our
bounds for the error £ are nearly independent of the geometries and sizes of
X and Y and why a bound for the error R may be independent of one set
(say, Y).

3. Use the error analysis to choose a nearly optimal set of proxy points in the
low-rank kernel matrix compression. Our error bounds give a clear guideline
to control the errors and to choose the locations of the proxy points so as
to find nearly minimum errors. We also give a practical method to quickly
estimate the optimal locations.

We conduct such studies based on kernels of the form

(1.3) n(w,y)zﬁ, z,yeC, z#uy,

where d is a positive integer. Such kernels and their variants are very useful in
PDE and integral equation solutions, structured ODE solutions [4], Cauchy matrix
computations [39], Toeplitz matrix direct solutions [6, 34, 49], structured divide-and-
conquer Hermitian eigenvalue solutions [17, 45], etc. Our derivations and analysis
may also be useful for studying other kernels and higher dimensions. This will be
considered in future work. (Note that the issue of what kernels the proxy point
method can apply to is not the focus here.)

We would like to point out that several of our results like the error analyses in
sections 3 and 4 can be easily extended to more general kernels and/or with other ap-
proximation methods, as long as a relative approximation error for the kernel function
approximation is available. Thus, our studies are useful for more general situations.

Our theoretical studies are also accompanied by various intuitive numerical tests
which show that the error bounds nicely capture the error behaviors and also predict
the location of the minimum errors.

In the remaining discussions, section 2 is devoted to an intuitive derivation of the
proxy point method via contour integration and the analysis of the accuracy (&) for the
approximation of the kernel functions. The analytical low-rank compression accuracy
(€) and the nearly optimal proxy point selection are given in section 3. The study is
further extended to the analysis of the hybrid low-rank approximation accuracy (R)
with representative point selection in section 4. In section 5, the connection between
the proxy point method and the Nystrom method is discussed. Some notation we use
frequently in the paper is listed below.

e The sets under consideration are X = {z;}72; and Y = {y;}7_;. Z = {z;}
is the set of proxy points.

e C(a;7), D(a;v), and D(a;7) denote respectively the circle, open disk, and
closed disk with center a € C and radius v > 0.

o A(a;v1,72) ={#: 71 < |z —a|] <72} with 0 < 71 < 72 is an open annulus
region.

o KXY is the m x n kernel matrix (k(2;, Y;)u,cx,y;ev) With s(z,y) in (1.3).
Notation such as K (¥:%) and KX%) will also be used and can be understood
similarly.

N
=1

2. The proxy point method for kernel function approximation and its
accuracy. In this section, we show one intuitive derivation of the proxy point method
for the analytical approximation of the kernel functions, followed by detailed approx-
imation error analysis.

Note that the kernel function (1.3) is translation invariant, i.e., k(z — 2,y — z) =

This manuscript is for review purposes only.



X. YE, J. XIA, AND L. YING 5

176 k(z,y) for any x # y and z € C. Thus, the points X can be moved to be clustered
177 around the origin. Without loss of generality, we always assume X C D(0;v1) and Y C
178 A(0;v2,73), where the radii satisfy 0 < ;3 < 72 < 3. See Figure 2.1. This condition
179 is used to characterize the separation of the sets X and Y so as to theoretically
180 guarantee the numerical low-rankness, as often used in applications of the FMM and
181 rank structured matrix methods. In these methods, the points are hierarchically
182 partitioned into subsets, and the interaction between one subset and those points
183 that are a certain distance away is considered to be numerically low rank. See [15]
184 for some illustrative figures. More discussions on this will be given in section 5

Fic. 2.1. Jllustration of v, 71, v2, v3, X, and Y.

185 2.1. Deriva he Ii’roxy point method via contour integration.

186 Consider any \two -p'g;ih X/ € X and y € Y. Draw a Jordan curve (a simple closed

187 curve) T that e ses LW 'le excludlng y, and let p > 0 be large enough so that the
circle C(0; p) encloses both Lapd y. See Figure 2.2a.

///——‘\\Q) I' and C(0; p) used in cont.erufl’ﬁt?g‘raﬁiQn (b) Approximation of k(z,y)
N -7 \

s
Fia. 2\2 Apprommatm/g the interaction k(z,y) b\y\m(x y) in (2.3) using proxy points.

)the\ domaniﬂ Q, to be Do ( 1)on en51de C(0;p) and outside T'. Tts
= C(O p) (=T whete --F Hemotes the curve I' in its negatlve
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6 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

holomorphic) on €2,. By the Cauchy integral formula [41],

@1) sy =) = o [ 1 as = L/C ’Wdz_l,/rwdz,

2mi Joq, 2 —y 271 Jeoyp) 2 Y 27i z—y

where 1 = v/—1. Note that
1 21p

k(z, 2) s
/C(O;p) z—y ¢ (x—z)d(z—y)’ : (p—lz))*(p = lyl)’

where the right-hand side goes to zero when p — oco. Thus,

<27mp- max
z€C(05p)

lim
P Je(op) Y
Take the limit on (2.1) for p — oo, and the first term on the right-hand side vanishes.
We get

(2.2) k(z,y) = L/ Mdz.

2mi Jr y— =
Note that this result is different from the Cauchy integral formula in that the point y
under consideration is outside the contour I' in the integral.

To numerically approximate the contour integral (2.2), pick an N-point quadra-
ture rule with quadrature points {zj}é\':l C I' and the corresponding quadrature
weights {w; };-V:l. Denoted by k(x,y) the approximation induced by such a quadra-
ture integration:

(2.3)
K(x, z; N w;

Rz, y) 27nz i K@, 25) E;nxzj ¢;(z,y), with ¢j(z7y):m.

Yy—2z4

Clearly, #(z,y) in (2.3) is a degenerate approximation to x(z,y) like (1.1). More-
over, it has one additional property of structure preservation: the function ¢;(x) in
this case is k(x, z;), which is exactly the original kernel x(x,y) with z; in the role of
y. This gives a simple and intuitive explanation of the use of proxy points: the inter-
action between x and y can essentially be approximated by the interaction between z
and some proxy points Z (and later we will further see that Z can be independent of
the number of x and y points). These two interactions are made equivalent (in terms
of computing potential) through the use of the function ¢;. In another word, equiv-
alent charges can be placed on the proxy surface. A pictorial illustration is shown in
Figure 2.2b.

2.2. Approximation error analysis. Although the approximation (2.3) holds
for any proxy surface I' satisfying the given conditions and for any quadrature rule,
we still need to make specific choices in order to obtain a more practical error bound.
Firstly, we assume the proxy surface to be a circle: I' = C(0;+), which is on of the
most popular choices in related work and is also consistent with our assumptions at
the beginning of section 2. For now, the proxy surface I' is only assumed to be between
X and Y, ie., 71 <7y < 72 as in Figure 2.1, and we will come back to discuss more
on this later. Secondly, the quadrature rule is chosen to be the composite trapezoidal
rule with

9in 9
(2.4) zj'yexp(‘;:fn>, wj:%lzj, j=1,2,...,N.

This manuscript is for review purposes only.



X. YE, J. XIA, AND L. YING 7

230 This choice can be justified by noting that the trapezoidal rule converges exponen-
231 tially fast if applied to a periodic integrand [43]. Our results later also align with
232 this. Moreover, if no specific direction is more important that others, the trapezoidal
233 rule performs uniformly well on all directions of the complex plane C. Some related
234 discussions of this issue can be found in [23, 51].

235 As a result of the above assumptions, the function ¢;(z,y) in (2.3) becomes the
236 following form:

1 =z

237 ¢(Z,y):Ny_Zv

Y # 2,

238 where we dropped the subscript j since j does not explicitly appear on the right-hand
239 side. Also, we define

1
240 = — 1.
9(2) = —7, 27
241 The following lemma will be used in the analysis of the approximation error for
242 k(x,y).
243 LEMMA 2.1. Let {zj}é-vzl be the points defined in (2.4). Then the following result

244 holds for all z € C\{z;}}_;:

245 (2.5) izijzj :Ng((Z)N).

v

246 Proof. For any integer p, we have

N
247 (2.6) sz = {

248 If |z] <, then |z/z;| < 1for j =1,2,...,N and

NAP, if p is a multiple of N,
0

, otherwise.

N . N 1 N oo 2 k o) N
o i _ 2\ k —k
i Y e =YY (5) = ()
j=1 J j=1 J j=1k=0 N7 k=0 j=1
250 =— 2NN~ (with (2.6), only k = IN terms left
Y y
1=0
N 2\ N
251 =——F~~=N (*) ) :
252 1— 2N /4N g( Y
253 If |z| >, then |z;/z| < 1for j =1,2,...,N and
N, N ; N N 1
254 I = —-1)=-N =-N
S Y=t M C=- R RO W= R SO W s
j=1 7= j=1 J j=1 7
N oo 2ok 00 N
255 :_NJFZZ(J) :—N+Z(2_kZ«Z§“)
=1k=0  ~ k=0 j=1
256 =—-N+ Zz INNAIN - (with (2.6), only k = IN terms left)
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8 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

Finally, since both sides of (2.5) are analytic functions on C\{z;};_, and they
agree on z with |z| # 7, by continuity, they must also agree on z When lz2| =7, 2 ¢
{z;}}L1. This completes the proof. O

In the following theorem, we derive an analytical expression for the accuracy of
approximating «(x,y) by &(x,y). Without loss of generality, assume x # 0.

THEOREM 2.2. Suppose k(x,y) in (1.3) is approximated by &(x,y) in (2.3) which
is obtained from the composite trapezoidal rule with (2.4). Assume x # 0. Then

(2.7) Rz,y) = k(z,y) (1 +e(z,y)),

where e(x,y) is the relative approzimation error

- v it S O R
(2.8) g(x’y)::W:g((z)N>+j2_:0@‘ﬂ)(ijg(<l)N>.

Proof. We prove this theorem by induction on d. For d = 1, substituting (2.4)
into (2.3) yields

I
=
—
]
| |
S
|
=2
||
k71\2
N——

Il
—_
| —
<)
/N
~
2=
N—
P
——
+
<)
/\
2
28

r—=y
Thus, (2.7) holds for d = 1.

Now suppose (2.7) holds for d = k with k a positive integer. Equating (2.3) and
(2.7) (with d = k) and plugging in x(x,y) to get
TN
' dzJ ((:c) >

N
Z(x,z,)k T (—y)F l+g
j=1 J Yy j=0

The derivatives of the left and right-hand sides with respect to x are, respectively,
_kz ¢J (25,9) and

=1 (w—z;)*T1

k— 1
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@ —1y)k (y(k—_x)lk;ll (f—;g ((Z)N> (all terms cancel except for j =k — 1)
_ k y—ax) &’
- (w—yk;k+1 1+9<( ) )+gz_:0 4! diﬂ <(;)N)
Thus,
N ‘ k y— )
; (3;/5_( ,;;)yk)—o—l - (z —;)k+1 1+g (( ) ) +]§: i diﬂ <(Z)N>

That is, (2.7) holds for d = k 4+ 1. By induction, (2.7)—(2.8) are true for any positive

integer d. a
With the analytical expression (2.8) we can give a rigorous upper bound for the
approximation error.

THEOREM 2.3. Suppose 0 < |z| < m1 < v < |y|. With all the assumptions
in Theorem 2.2, there exists a positive integer Ny such that for any N > Np, the
approximation error (2.8) is bounded by

(29) el =g (|2") +eo(12]7).

where c =1 if d =1, and otherwise,

(2.10) 6,2”2 Iy/x|+1;' 17 (2d)i—*

Proof. For any positive integer NV,

‘g(@)N)‘ - I(y/v)lN—ll : Iy/WI}V—1 ”(W)'

Thus, we only need to prove the following bound:

e SO (0 oo 2],

Jj=0

When d = 1, it’s easy to verify that the above inequality holds for ¢ = 1 and any
positive integer N. We now consider the case when d > 2.
It can be verified that, for any positive integer 1,

e A (@) =N (@) e ().

where ¢° denotes function ¢ raised to power i. Hence, the derivatives appearing in
(2.11) all have the following form:

213) we (D))= 5;(ﬁ2<(>N>’
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10 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

where a(]) (1<i<j+1,0<j<d-1) are constants.
We claim that, when N > d and for any 0 < j < d — 1, there exit constants )
dependent on d so that

0P| < BUNI, 1<i<j+l.

This claim can be proved by induction on j. It is obviously true when 7 = 0, and
B =1 in this case. When j = 1, (2.12) means that the claim is true with agl) =
af? = N and B = 1. Suppose the claim holds for j = k with 1 < k < d — 2 (where
we also assume d > 2, since otherwise the claim is already proved). Then

()-8 (z ()
- () E S i () o ()]
(by (2.12))

— e |V k>a§’“>g((x)N)+’§f(<zN Bal+ NG - nal,) o' ((2)")

ettt ()]

Thus, the coefficients satisfy the following recurrence relation

(N —k)al?, i=1,
oY = LN — k)l + NI - 1), 2<i<k+,
N(k+ 1)), i=k+2.

Therefore, when N > d, we can pick (conservatively)
(2.14) B = 9q3k)

so that |041(.k+1)\ < B+ Nk+1 That is, the claim holds for j = k+1 and this finishes
the induction.
Now, we go back to prove (2.11). By (2.13),

(2.15)
d=1 N i d—1 _ gy i i
S ()5 | e ()]
S [ S () <35 [P oo S ()]
i=1 j=0
Set
(2.16) N; = max{d, [log 3/ log |y1/z|]}.
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Then for N > Ny, [v/z[Y > |vi/z|Y > 3 and g (|v/=|") < 1/2. Thus, for 1 < j <
d—1,

Continuing on (2.15), for N > Ny, we get

(2.17)

S w-a) &Y AR S (/zl + 07 ) s
=iy (G (T PR, JUEEL Y
= 7 dxt T T = 7!

Note that with the way $U) is picked as in (2.14), 1) satisfies
BY = (2d)’ 1MW = (2a)7, j=1,2,...,d 1.

Then ¢ in (2.17) becomes (2.10). Thus, (2.11) holds with ¢ in (2.10). |

The upper bound (2.9) in Theorem 2.3 has two implications.
e Since g(|y/v|") and g(|y/x|") decay almost exponentially with N and c is
just a polynomial in N, d, and |y/z| with degrees up to d — 1, the bound in
(2.9) decays roughly exponentially as N increases.
e The bound can help us identify a nearly optimal radius 7y of the proxy surface
I" so as to minimize the error. This is given in the following theorem.
THEOREM 2.4. Suppose 0 < |z| < y1 < |y| and k(x,y) in (1.3) is approzimated
by i&(x,y) in (2.3) with (2.4). If the upper bound in (2.9) is viewed as a real function
in vy on the interval (||, |y|), then there exists a positive integer No independent of v,
such that for N > N,
1. this upper bound has a unique minimizer v* € (|z|, ly|);
2. the minimum of this upper bound decays asymptotically as O (|y/x|’N/2).

Proof. To find the minimizer, we just need to consider the real function

_ 1 " c
Cbft—1 tla—1'

h(t) t € (a,b),

where a = |z|V, b = |y|V, and c is either equal to 1 (for d = 1) or defined in (2.10)
(for d > 2). The derivative of the function is

_ p(t) . o 2
W (t) = (= with  p(t) = (b — ac)t* + 2ab(c — 1)t + ab(a — bc).
Consider p(t), which is a quadratic polynomial in ¢ with the following properties.
e The coefficient of the second order term is
b—ac=|z|Y (|y/m|N - c) .

Since c is either equal to 1 (for d = 1) or a polynomial in N, d, and |y/x| with
degrees up to d—1 (for d > 2), there exists No larger than N in Theorem 2.3
such that |y/z|V > ¢ for any N > Na. Thus, b — ac > 0 for N > Ns.

e The discriminant is 4abc(a — b)? > 0.

e When evaluated at t = @ and t = b, the function p(t) gives respectively

p(a) = —ac(a —b)? <0, p(b) =bla—0b)?>0.

This - 1script 15 f cVleW PUTPOSE: 1.
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12 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

All the properties above combined indicate that p(t) has one root ty € (a,b) and
R (t) < 0 on (a,to) and A'(t) > 0 on (to,b). Thus, ty is the only zero of p(t) in [a,b]
and v* = /%o is the unique minimizer of the upper bound in (2.9). The requirements
for picking Ny are No > N; and |y/z|V? > c. Hence, N is independent of .

To prove the second part of the theorem, we explicitly compute the root ¢y of
p(t) =0 in (a,b) and substitute it into h(t) to get

2\/cbja+ (c+1)  2/cly/z|N?+ (c+1) y |~ N/2
hito) = _ ~0 H 7
b/a—1 ly/x|V —1 x
The details involve tedious algebra and are omitted here. ]

In the proof, we can actually find the minimizer but are not explicitly writing it
out. The reason is that the minimizer depends on x and y and it makes more sense
to write a minimizer later when we consider the low-rank approximation of the kernel
matrix. See the next section.

3. Low-rank approximation accuracy and proxy point selection in the
proxy point method for kernel matrices. With the kernel x(x,y) in (1.3) ap-
proximated by &(z,y) in (2.3), a low-rank approximation to K (X:¥) in (1.2) as follows
is obtained:

(3.1) KO = KO o= (R(x, y)sex yey) = KDY,

where ®(ZY) = (0(2,9)z2ez,yev). The analysis in subsection 2.2 provides entrywise
approximation errors for (3.1) (with implicit dependence on z). Now, we consider
normwise approximation errors for K (X-¥) and obtain relative error bounds indepen-
dent of the specific z and y points. The error analysis will be further used to estimate
the optimal choice of the radius ~ for the proxy surface in the low-rank approximation.
We look at the cases d =1 and d > 2 separately.

3.1. The case d = 1. In this case, the proof of Theorem 2.2 for d = 1 gives an
explicit expression for the entrywise approximation error

(3.2) e(z,y) =g ((z)N> +g ((z)N> :

We then have the following result on the low-rank approximation error in Frobenius
norm.

PROPOSITION 3.1. Suppose d =1 and k(x,y) in (1.3) is approximated by k(z,y)
in (2.3) with (2.4). If0 < |z| <y <y <y <l|y| forallxzec X,y €Y, then for any
N >0,

| EECGY) — K&EY)||p FA\N Ao\ N
3.3 < — — .
(3:3) KGO =7 (71) 9 (’y)

Moreover, if the upper bound on the right-hand side is viewed as a function in -y, it has
a unique minimizer v* = /y172 and the minimum is 2g ((72/')/1)]\'/2) which decays
asymptotically as O (\’yg/’yl|_N/2).

Proof. The approximation error bound (3.3) is a direct application of the entry-
wise error in (3.2) together with the fact that g(¢) monotonically decreases for ¢ > 1.

This manuscript is for review purposes only.
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X. YE, J. XIA, AND L. YING 13

To find the minimizer of the right-hand side of (3.3), we can either follow the
proof in Theorem 2.4 or simply use the following explicit expression:

N o1 1
9 (/™) + 9 (/) = CrSv 1+ v o1
_ (2/m)N —1

(v2/ )N + 1= ((v/ )N + (v2/ N

We just need to minimize (v/v1)Y + (72/7)", which reaches its minimum at v* =
V2. O

Remark 3.2. Although it is not easy to choose v to minimize the approximation
error directly, the minimizer v* for the bound in (3.3) can serve as a reasonable
estimate of the minimizer for the error. These can be seen from an intuitive numerical
example below. In addition, the minimum 2g ((72/71)"/?) of the bound in (3.3)
decays nearly exponentially as N increases. Thus, to reach a relative approximation
accuracy 7, we can conveniently decide the number of proxy points:

%0 (i)

Clearly, N does not depend on the number of points or the geometries of X, Y. It
only depends on 7 and 7,/ which indicates the separation of X and Y. This is
consistent with the conclusions in the FMM context [42].

ExaMPLE 1. We use an example to illustrate the results in Proposition 3.1 for
d = 1. The points in X and Y are uniformly chosen from their corresponding regions
and are plotted in Figure 3.1a, where m = |X| = 200, n = |Y| = 300, v1 = 0.5,
Y2 = 2, and y3 = 5.

First, we fix the number of proxy points N = 20 and let v vary. We plot the
actual error Ey(7) == ||[KXY) — K || p /| KXY)|| g and the error bound in (3.3).
See Figure 3.1b. We can see that both plots are V-shape lines and the error bound
is a close estimate of the actual error. Moreover, the bound nicely captures the error
behavior, and the actual error reaches its minimum almost at the same location where
the error bound is minimized: v* = /9172 = 1. Thus, 7" is a nice choice to minimize
the error. The proxy points Z with radius v* are plotted in Figure 3.1a.

Then in Figure 3.1c, we fix v = 4* and let N vary. Again, the error bound
provides a nice estimate for the error. Furthermore, both the error and the bound
decay exponentially like O (|y2/v1|~V/?) = O(27V).

3.2. The case d > 2. In this case, there is no simple explicit formula for £(z, y)
like in (3.2). The results in Theorems 2.3 and 2.4 cannot be trivially extended to
study the normwise error either since no lower bound is imposed on |z| in |y/z|.
Nevertheless, we can derive a bound as follows.

PROPOSITION 3.3. Suppose d > 2 and x(x,y) in (1.3) is approzimated by k(z,y)
in (2.3) with (2.4). If0<|z| <y <y<72 < |yl <73 foralze X,y €Y, then
there exists a positive integer N3 independent of v such that for N > Ng,

||K(X,Y),K(X,Y)HF 2\ N . Y\N
(3-4) K5 =9 (7) teg (%) '
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Fic. 3.1. Exzample 1: For d = 1, the selection of the proxy points and the actual relative error
ENn () compared with its upper bound in Proposition 3.1 for different v and N.

147 where

s (3.5) é:2+2d§ (s /7l + NP 2d) "

4!

149 Moreover, if the upper bound in (3.4) is viewed as a real function in vy on the interval

450 (717’)/2)7 then
451 1. this upper bound has a unique minimizer
1/N
N N N N(a
— 172 Cc— 2 c—1

. (36) o = (2 =)V z) NA(’YW )Y (e—-1) € (71.72);

Y2 —M ¢
453 2. the minimum of this upper bound decays asymptotically as O (|72/71|*N/2),
454 Proof. Following the proof of Theorem 2.4, we can set N3 to be the maximum of

5
155 Ny in Theorem 2.4 for all x € X. Based on the entrywise error bound in (2.9), we
56 can just show the following inequalities for N > N3 and any x € X,y € Y:

c ) (E) s <G
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X. YE, J. XIA, AND L. YING 15

The first inequality is obvious. We then focus on the second one. Just for the purpose
of this proof, we write ¢ in (2.10) as ¢(|z],|y|) to indicate its dependency on |z| and
lyl. c(|z|,|y|) can be viewed as a degree-(d — 1) polynomial in 1/|z| and |y| with all
positive coefficients.

e(lal.ly)) (\ | ) c(lal. ly))ll*"] [g(\z\N) |x|1_d].

The first term ¢(|z|, |y|)|z|9! is a polynomial in |z| with all positive coefficients and
increases with |z|. The second term is

DR —
v A T
With N > Njs, it can be shown that this term is also strictly increasing in |z| for

0<|z|<m <7.
Thus for any z € X,y € Y,

el |2[") < ctnta(| 2] ") < ctmoma(|2]") =ea(|2]7).

where the constant ¢ is defined in (3.5) which is ¢ in (2.10) with |y/z| replaced by

Y3/71-
The minimizer * in (3.6) for the upper bound is the root of a quadratic polyno-
mial in (y1,72) and can be obtained following the proof of Theorem 2.4. 0

Based on this corollary, we can draw conclusions similar to those in Remark 3.2.
In addition, although 3 is needed so that Y is on a bounded domain in order to
derive the error bound (3.4), we believe such an limitation is not needed in practice.
In fact, the analytical compression tends to be more accurate when the points y are
farther away from the set X. Also, if 3 is too large, then we may slightly shift the
points to make sure |z| is larger than a positive number -y so as to similarly derive
an error bound using g instead of ~3.

3.3. A practical method to estimate the optimal radius ~. In Proposi-
tions 3.1 and 3.3, the upper bounds are used to estimate the optimal choice of  for
the radius of the proxy surface. In practice, it is possible that the upper bound may
be conservative, especially when d > 1. Thus, we also propose the following method
to quickly obtain a numerical estimate of the optimal choice.

In Propositions 3.1 and 3.3, the optimal v* is independent of the number of points
in X and Y and their distribution. This feature motivates the idea to pick subsets
Xo C D(0;1) and Yy C A(0;v2,73) and use them to estimate the actual error. That
is, we would expect the following two quantities to have similar behaviors when ~
varies in (y1,72):

H}(CXOQ%) _,}(CXOJ%)HF ”}((X;Yj _’I?(X}Y)HF
3.7 & : =
( ) N( ) HK(XO’YO)HF ) N(PY ||K(X’Y)||F

ES () can be used as an estimator of the actual approximation error Ey(7). Note
that K(X0-Y0) and K(X0-Y0) are computable through (1.3) and (2.3), respectively, so
EY () can be computed explicitly, and the cost is extremely small if | Xo| < | X| and
Yol < Y.

This manuscript is for review purposes only.



16 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

Note that in rank-structured matrix computations, often an admissible condition
or separation parameter is prespecified for the compression of multiple off-diagonal
blocks. In the case of kernel matrices, it means that the process of estimating the
optimal v needs to be run only once and can then be used in multiple compression
steps.

ExaMpPLE 2. We use an example to demonstrate the numerical selection of the
optimal . Consider d = 2,3 and the two sets X and Y in Example 1 with the same
values 71, 7v2,7s (see Figure 3.1a). Fix N = 30.

For the sets Xy and Yy we choose, we set | = |Xo| = |Yp] to be 1, 2, or 3. We
make sure z = 7; and y = 7, as points of C are always in Xy and Yj, respectively.
Thus, %(v) is more likely to capture the behavior of Ex(7). Any additional points
in X, are uniformly distributed in the circle C(0;1) and any additional points in Yj
are uniformly distributed in C(0;2).

10°
\ 4 100 \
102 \ g N -
104 . N S
\ // \\ //
106 \\\ /’/ 108 \\\ ;
) o Fae) - e
10 ——-&(),l=1 ——-&(),l=1
05 1 15 2 05 1 15 2
v 7
(a)d=2 (b)yd=3
107 1076
—&x(7) —&n()
&)l =1 —Ey(y),l=1
S - ()l =2 & (), =2
,:»:kth\ EL(),l=3 T E%(v),l =3}
108} 107 T
1.04 1.06 1.08 11 112 11 112 114 116 118 12
v v

(¢) d =2, zoomed in around the critical point  (d) d = 3, zoomed in around the critical point

Fic. 3.2. Example 2: For d = 2 and 3, how the estimator 59\,(’y) with | = 1,2,3 compare with
the actual error En (7).

With | = 1, both Ex(7) and EY(7) are plotted. See Figures 3.2a and 3.2b for
d = 2 and 3, respectively. We can see that £ () already gives a good estimate of
the behavior of Ex(y) for both cases. Then in Figures 3.2c and 3.2d we plot E%(7)
for [ = 1,2,3 and zoom in at around the minimum since they almost coincide with
each other away from the minimum. The minimums of the three cases are very close
to each other.
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516 4. Low-rank approximation accuracy in hybrid compression and rep-
517 resentative point selection. The analytical compression in section 3 can serve as
518 a preliminary low-rank approximation, which is typically followed by an algebraic
519 compression step to get a more compact low-rank approximation. In this section,

520 we analyze the approximation error of such hybrid (analytical/algebraic) compression
521 method applied to KXY),

522 Suppose m = |X| and n = |Y| are sufficiently large and N = |Z] is fixed. With
523 the preliminary low-rank approximation in (3.1), since K (X:2) has a much smaller
524 column size than KXY) it becomes practical to apply an SRRQR factorization to
525 K(X2) to obtain the following approximation:

526 (4.1) K& x UKKD | with U = P( é )

527 where P is a permutation matrix so that & (X.2) 4 submatrix of K (X:2) corresponding
528 to a subset X C X. X can be referred to as a set of representative points of X. (4.1)
520 is an interpolative decomposition of K(X:%) Tt is also called structure-preserving
530 rank-revealing (SPRR) factorization in [49] since K (X%) is a submatrix of K(X:%).
531 Although U generally does not have orthonormal columns, the SRRQR. factor-
532 ization keeps its norm under control in the sense that entries of F have magnitudes
533 bounded by a constant e (e.g., e = 2 or v/N). See [18] for details.

534 We then have

535 (4.2a) KXY)  gXOY) = g(X2)g(24Y) (by (2.3) and (3.1))
536 (4.2b) ~ UK 2)p(2Y) (by (4.1))
537 (4.2¢) = UK&EY) (by (2.3) and similar to (3.1))
535 (4.2d) ~ UK, (by &(z,y) ~ K(z,y))
510 which is an SPRR factorization of K (X:Y). R

541 Similarly, an SRRQR factorization can further be applied to K(*-¥) to produce
- XY) o KENDYT i —of L

542 (4.3) K ~K Vo, with V=@ E

543  where @ is a permutation matrix and Y C Y. The approximation (4.2) together with
544 (4.3) essentially enables us to quickly to select representative points from both X and
545 Y. In another word, we have a skeleton factorization of K (X:¥) ag

546 (4.4) K&XY) o Uk E )T

547 Note that computing an SPRR or skeleton factorization for K(X:Y) directly (or to
518 find a submatrix KXY with the largest “volume” [14, 44]) is typically prohibitively
549 expensive for large m and n. Here, the proxy point method substantially reduces the
550 cost. In fact, (4.2a) and (4.2c¢) are done analytically with no computation cost. Only
the SRRQR factorizations of skinny matrices (K(¥:%) and/or K(X’Y)) are needed.

551

552 The total compression cost is O(mNr) for (4.2) or O(mNr + nr?) for (4.4) instead
555 of O(mnr) in the case of direct compression, where r = |X| > |Y|. As we have
554  discussed before, N is only a constant independent of m and n. Thus, this procedure
555 is significantly more efficient than applying SRRQR factorizations directly to the
556

original kernel matrix.

This manuscript is for review purposes only.



~J

wroot
ot O
0

H O O Ut
5 R & ©

D O
B~ W

[SLNG, TG BNG: BNG; S B |
[\

(=)
t

18 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

The next theorem concerns the approximation error of the hybrid compression
via either (4.2) or (4.4).

THEOREM 4.1. Suppose 0 < |z| <11 <y <y <|y| <~ foranyx € X,y €Y
and the N proxy points in Z are located on the proxy surface with radius v*. Let r =
|X| and let the relative tolerance in the kernel approzimation be 1y (i.e., |e(z,y)| < 71
for e(z,y) in (2.7)) and the relative approzimation tolerance (in Frobenius norm) in
the SRRQR factorizations (4.1) and (4.3) be 17o. Assume the entries of E in (4.1)
and F in (4.3) have magnitudes bounded by e. Then the approzimation of K&Y) by
(4.2) satisfies

| — UK

(4.5) K| < 5171 + 8272,
b
where
s1= 14 /7 + (m—r)re?y /1 — (m —r)(y2 = 1)* 59 = 7 (1 + 73)*
m(y +73)2¢ (v2 =) —n)?

The approzimation of KXY) by (4.4) satisfies

| K — UKV

4.6
(4.6) T

< 8171 + 5272,

where 59 = 89 + s1 — 1.

Proof. The following inequalities for x € X,y € Y,z € Z will be useful in the
proof:

*

(4.7) 90| <y =y
(4.8) @.2)| < =
(4.9) ! 7 <Ir(z, )] < :

(71 4+ 73) (v2 —m)¢
Note that

(4.10) |EXY) — gKE)|p
< EE - RO 4 K - UK
< KO = RO KO YR 4 UK — UKD
— ||K(XyY) _ f((X7Y)||F + ||K(X7Z)<I>(Z,Y) _ UK(X,Z)q)(Z,Y)HF

+|UREY) gk &), (by (4.2a)~(4.2c))
< K~ KOO | KA — TR 25

U Rl EEY) = KE

Now, we derive upper bounds separately for the three terms in the last step above.
(i) The first term is the approximation error for the original kernel matrix from
the proxy point method. Then

(4.11) 1Y) — K <y | K g

uscript is f
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(ii) Next, from the SPRR factorization of K(X:%),
KD UKD 82 | < KD @)

Since ®%Y) is N x n, (4.7) means

[ < VN s =\ [

N(v2 —~*) Yo — %

*

Similarly, (4.8) and (4.9) mean

KNG mN/(" =m)* N (1 +73)*

KT~ mn/(y+93)2 0 (v =)
Then
(4.12)

~ n *
|EC? — UREA| |8 p < 7y | o T [KX)
Ny —vy

(v2 =) (v* —m)e
(iii) Thirdly,

< Ty
<Ar+4(m—r)re?,

101l = HP (&) . ‘ (£) r

K — RED||p < K

According to (4.9),

IKE 3 RS
| KXY)||%, [ KXY
op m=rn/(n+y)*t L (m=r)(e—m)*
B mn/(ya — y1)?? m(y1 + 73)2
Then
(4.13) [U|p | K = RED|
_ _ 2d
< /r T (m—ryre?, 1 — (m — 1) (72 Z;) K |,
m(y1 +73)

Combining the results (4.11)—(4.13) from the three steps above yields (4.

show (4.6), we use the following inequality:

| —UREV T
< ”K(x,y) _ R(X,Y)”F + ”K(x,z)q)(z,y) _ UK(X,Z)q)(z,Y)”F
+ | UKEY) —UKEY)| 4 [UKEY) K EDYT

Then the proof can proceed similarly.
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20 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

If e in SRRQR factorizations is a constant, with fixed N, the two constants in
(4.5) scale roughly as s1 = O(y/m) and sa = O(1). Moreover, once the annulus region
A(0;72,7v3) is fixed, the set Y is completely irrelevant to the algorithm for obtaining
the approximation (4.2) and the error bound (4.5). The column basis matrix U and
the set X of representative points can be obtained with only the set X, and the error
analysis in (4.5) applies to any set Y in A(0;72,73).

Remark 4.2. Note that our error analyses in the previous section and this section
are not necessarily restricted to the particular kernel like in (1.3) or the proxy point
selection method. In fact, the error bounds can be easily modified for more general
kernels and/or with other approximation methods as long as a relative error bound
for the kernel function approximation is available. This bound is 77 in Theorem 4.1.

We then use a comprehensive example to show the accuracies of the analytical
compression and the hybrid compression, as well as the selections of the proxy points
and the representative points.

EXAMPLE 3. We generate a triangular finite element mesh on a rectangle domain
[0,2] x [0, 1] based on the package MESHPART [11]. The two sets of points X and Y
are the mesh points as shown in Figure 4.1, where | X| = 821, |Y| = 4125, 11 = 0.3,
and v = 0.45. We compute the low-rank approximation in (4.2) and report the rela-
tive errors in the analytical compression step and the hybrid low-rank approximation
respectively:

Enlr) = | KXY) — KO i) = KXY — g REY)||,
|K&Y)| @ ’ KXY R

Fic. 4.1
MESHPART

image is based on the package

In the fii is chosen to reach a rela-
tive tolerance 7 = 10eyacn in the proxy point method, where e,,cn is the machine
precision. (Note that 71 is the tolerance for approximating x(z,y), and the actual
computed Frobenius-norm matrix approximation error Ey(7y) may be slightly larger
due to floating point errors.)

We vary the radius v for the proxy surface between v, and v2. For d = 1,2, 3,4,
En(v) and Ry (y) are shown in Figure 4.2. In practice, we can use the method
in subsection 3.3 to obtain an approximate optimal radius ¥*. To show that ~*
is very close to the actual optimal radius, we can look at Figure 4.2a for d = 1.
Here, N = 169 and * = 0.3675 which is very close to the actual optimal radius
0.3678. In addition, the error bound in Proposition 3.1 can be used to provide another
estimate /7172 = 0.3674. Both estimates are very close to the actual minimizer,
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which indicates the effectiveness of the error analysis and the minimizer estimations.
When v = 4*, we have Ex(y) = 3.2106F — 16 and Ry(y) = 1.1008F — 15, and
the numerical rank resulting from the hybrid compression is 78. The numerical rank
produced by SVD under a similar relative error is 68.

S - Analytical compression. - Analytical compression
107 — Hybrid compression ] 105+ — Hybrid compression
S S
5] o
_g é’ 1010}
© «©
[} [0}
o [an
10 -15 | ‘ ‘
0.3 0.35 0.4 0.45
v
(b) d =2
S - Analytical compression - Analytical compression
10 -5 —— Hybrid compression ] 10 51 ——Hybrid compression
S S
5] o
[ )
_510-10 _510-10,
< <
[} o)
o o
10718 ‘ T 1075} ‘ ‘
0.3 0.35 0.4 0.45 0.3 0.35 0.4 0.45
v Y
(c)d=3 (d)d=4

Fic. 4.2. Ezample 3: En(v) in the analytical compression step and Ry (y) in the hybrid
low-rank approzimation with varying radius -y.

Similar results are obtained for d = 2,3,4. See Figure 4.2 and Table 4.1. We
notice that Ex () is sometimes larger than R (), especially when + is closer to X or
Y. This is likely due to the different amount of evaluations of the kernel function in
the error computations. The kernel function evaluations may have higher numerical
errors when 7 gets closer to 71 or 2. When + is not too close to 1 or v2, R ()
is smaller than Ey(v), which is consistent with the theoretical estimates. Here, no
stabilization is integrated into the proxy point method (which may be fixed based on
a technique in [3]), while SRRQR factorizations have full stability measurements and
produce column basis matrices with controlled norms. On the other hand, this also
reflects that hybrid compression is a practical method.

Also in Figure 4.3 for d = 1,2, we plot the proxy points as well as the represen-
tative points X produced by the hybrid approximation with v = v*.

In our next set of tests, we vary the number of proxy points IV for the analytical
compression step and check its effect on the hybrid low-rank approximation error. For
each N, the radius of the proxy surface v is set to be 4*. The results are shown in
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TABLE 4.1

Ezample 3: Hybrid compression results, where 4* is the approzimate optimal radius.

d | N Optimal v A* Numerical rank En(¥) Ry (F*)

11169 0.3678 0.3675 78 3.2106F — 16 1.1008FE — 15
2179 0.3733 0.3713 88 1.0431EF — 15 2.1817E — 15
3 | 187 0.3774 0.3759 93 2.3565FE — 15 2.0537F — 14
41193 0.3816 0.3792 99 8.9381F — 15 7.5528F — 14

(a)d=1 (b) d=2

F1G. 4.3. Ezample 3: Representative points (+ shapes) and prozry points (X shapes).

Figure 4.4. The approximation error for the analytical compression decays exponen-
tially as predicted by Propositions 3.1 and 3.3 (until N reaches the values indicated
in Table 4.1; after that point, it stops to decay due to floating point errors).

5. Discussions. The proxy point method has some attractive features similar

to some methods used for data analysis such as the Nystréom method and the pseudo-
input approximation [8, 13, 26, 40, 46]. For kernel matrices, both the proxy point
method and the Nystrom method construct low-rank basis matrices directly based on
selections of reference points and evaluations of the original kernel function.

However, there are some key differences between the two methods.
1. The Nystrém method is typically used to seek low-rank approximations for

square kernel matrices of the form K (XX)_ which corresponds to interactions
within the same set X. KX is often heuristically considered to be of
low numerical rank (with modest accuracies) in data science and machine
learning applications. On the other hand, the proxy point method deals
with rectangular kernel matrices K (XY) for two different and well-separated
sets X and Y. If K(X%) is considered, then FMM or H/H?/HSS matrix
strategies are first applied to generate well-separated subsets. That is, X is
first hierarchically partitioned into subsets X;. Then the proxy point method
can be applied to KX:Xi) for well-separated X; and X;. That is, in the
matrix form, the proxy point method compresses appropriate off-diagonal
blocks of K(X:X) Such an off-diagonal compression idea leads to so-called
rank structured matrices that have been extensively studied in the field of
fast solvers for some linear systems, PDEs, and integral equations. (The
Nystrom method may also be applied to well-separated sets, but it is hard to
guarantee high accuracies. See the last point below.)
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F1G. 4.4. Ezample 3: Accuracies with v = 5* and varying N.

. Due to the different natures of the applications that the two methods are
applied to, their accuracy requirements are typically quite different. For
kernel methods such as the support vector machine (SVM) or Gaussian pro-
cess regression, the Nystrom method produces modest accuracies (such as
O(1073) ~ O(1071)) which are good enough for making reasonable predic-
tions in the model. The proxy point method considers interactions between
well-separated sets instead of the entire set. For some applications, the sep-
aration of sets can be used to analytically justify the low-rankness with any
specified accuracy. The proxy point method helps to conveniently compress
the off-diagonal blocks of K (X:X) 50 as to quickly obtain accurate rank struc-
tured matrix approximations to K X>X) that are suitable for fast and reliable
direct factorizations, inversions, eigenvalue solutions, etc.

. Since the Nystrom method often select points based on techniques such as
sampling and clustering, the accuracy analysis is typically probabilistic [8,
54, 55]. The proxy point method here uses a deterministic way to select
proxy points. The proxy point selection and basis matrix computation are
supported by analytical justifications with guaranteed controllable accuracies.
The analysis enables us to rigorously quantify the error behaviors and to
optimize parameters. Of course, this also means that such rigorous analysis
is typically nontrivial and is feasible for specific kernels on a case-by-case basis
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(although the method has been successfully applied to many different types of
kernels in practice). Studies for many other kernels still need to be performed,
and this paper serves as a starting point for such studies. In addition, as
mentioned in Remark 4.2, the hybrid error analysis in Theorem 4.1 is not
restricted to specific kernels or proxy point selection methods.

. The Nystrom method may be applied to data points in high dimensions, while

the proxy point method focuses on data points in low-dimensional spaces that
are often encountered in the solutions of some linear systems, eigenvalue prob-
lems, PDEs, and integral equations. For example, the proxy point method
are useful for direct solutions of Cauchy/Cauchy-like/Toeplitz/Vandermonde
linear systems [34, 39, 49] and FMM accelerations of Hermitian eigenvalue
problems [17, 45], where the data points under consideration are on some lines
or curves. For some FMM techniques and PDE/integral equation solutions,
the points are in one, two, or three dimensional spaces [12, 32, 33, 35, 52, 53].

. The Nystrom method may be extended to well-separated sets X and Y. How-

ever, there is no guarantee that a specified high accuracy can be reached. For
example, we may obtain an initial approximate column basis matrix K (X.Y)
by selecting a subset Y from Y. KXY) can be used like K(*%) in Section 4
to obtain an approximation just like (4.2d). (We use this scheme so that its
cost is nearly the same as our method. We may also select points from both
X and Y in the Nystrom method, but the accuracy in the following test is

even lower.)

To compare the Nystrom scheme in the last item above with the proxy point
method for well-separated sets, we apply them to the data sets used in Example 3 by
selecting the same number of points IV to obtain hybrid compression. In the Nystrém
method, we try both random sampling with replacement and k-means clustering for
selecting reference points like in [55]. The relative approximation errors for the cases
d =1 and 2 are plotted in Figure 5.1. The approximation accuracy from the Nystrém
method initially improves with increasing N, but the accuracy improvement gets very
slow and almost stagnates. In comparison, the errors from the proxy point method
decrease all the way to near the machine precision.

10»10,

10°
Aok
J v ol 5
) "y A .
i Y 10
10-10 L
—Nystrom (random) —Nystrom (random)
=-=-=Nystrom (k-means) Nystrom (k-means)
S T N Proxy point method
10715 : . L
150 0 50 100 150
N
(b) d=2

Fi1G. 5.1. Relative approzimation errors (in Frobenius norm) of the Nystrom method and the
prozy point method, where the Nystrém method uses random sampling or k-means clustering for
selecting reference points.
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6. Conclusions. The proxy point method is a very simple and convenient strat-
egy for computing low-rank approximations for kernel matrices evaluated at well-
separated sets. In this paper, we present an intuitive way of explaining the method.
Moreover, we provide rigorous approximation error analysis for the kernel function
approximation and low-rank kernel matrix approximation in terms of a class of impor-
tant kernels. Based on the analysis, we show how to choose nearly optimal locations
of the proxy points. The work can serve as a starting point to study the proxy point
method for more general kernels. Some possible strategies in future work will be
based on other kernel expansions or Cauchy FMM ideas [28]. Various results here
are already applicable to more general kernels and other approximation methods. We
also hope this work can draw more attentions from researchers in the field of matrix
computations to study and utilize such an elegant method.

Acknowledgments. The authors would like to thank Steven Bell at Purdue
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