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ABSTRACT

Geotagged tweet streams contain invaluable information about
the real-world local events like sports games, protests and traffic
accidents. Timely detecting and extracting such events may have
various applications but yet unsolved challenges. In this paper,
we present DELLE, a methodology for automatically DEtecting
Latest Local Events from geotagged tweets. With the help of novel
spatiotemporal tweet count prediction models, DELLE first finds
unusual locations which have aggregated unexpected number of
tweets in the latest time period and thereby imply potential local
events. Next, DELLE calculates, for each such unusual location, a
ranking score to identify the ones most likely having ongoing local
events by addressing the temporal burstiness, spatial burstiness and
topical coherence. Furthermore, DELLE infers an event candidate’s
spatiotemporal range by tracking its event-focus point, which es-
sentially reflects the most recent representative occurrence site.
Finally, DELLE chooses the most influential tweets to summarize
local events and thereby presents succinct but yet representative
descriptions. We evaluate DELLE on the city of Seattle, WA as well
as a larger city of New York. The results show that the proposed
method generally outperforms competitive baseline approaches.
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1 INTRODUCTION

With people posting what is happening outside in the real world,
tweets in Twitter encapsulate invaluable information on real-world
events as they break. Accessing news tweets by location is of great
interest (e.g.,see [1, 2] which are based on the NewsStand system [3-
5]). Geotagged tweets are particularly interesting in the sense
that they provide the complement information about the place of
interest [6-14], e.g., where the events occur. In this paper, we aim
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Figure 1: Examples of geotagged tweets about the soccer game of
“Seattle Sounders” vs “D.C. United” at the stadium of “CenturyLink
Field” at 7:30 PM, 2017-07-19. All the tweets were located at the sta-
dium of “CenturyLink Field”, i.e., the red grid cell in Figure 2a.
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to detect the latest local events from live geotagged tweet streams.
A local event is defined as an unusual activity that appears at
some specific time and place and also shows topical coherence. For
instance, Figure 1 presents some exampling geotagged tweets about
a soccer game held in the city of Seattle, WA. Timely discovering
such local events has a wide range of applications. For example,
people can acquire the latest information about such local activities
in their living town, and thereby enhance their daily lives. In such
cases, after learning what is happening, the commuters can actively
make a decision to bypass the congested road segments or avoid
the accident sites .

It is, however, challenging to detect local events from live geo-
tagged tweet streams. First, detecting local events by capturing
unusualness requires considering not only temporal historical pat-
terns but also spatial circumstances. Some studies [15-18] measure
the burstiness, intensity of increment in the number of tweets at
a place over a short time period, as signals of local events. But
burstiness does not always imply the occurrence of a local event.
For example, the burstiness of tweets at a shopping mall or a fa-
mous coffee bar in the morning is often expected and not unusual.
Some work improves this measure to capture temporally routine
patterns by gathering time-aware statistics [19]. However, without
geographical consideration, occasional nation-wide events may
also accumulate a temporally unusual number of tweets at local
places. For example, on presidential election nights, one may ob-
serve suddenly more tweets all over the places. Second, a local
event, as it develops, may receive follow-up updates on its content
and may also migrate geographically. For example, when a crime
happens at a place, people expect to receive updates as investiga-
tion progresses. Another example is that a demonstration protest
may follow a route moving from one place to another. Therefore,
it is desirable to dynamically and timely monitor and track the
development of an ongoing event, and report its latest updates.
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In this paper, we propose DELLE to discover, track and describe
local events from live geotagged tweets. The contribution of DELLE
lies in its four modules: seeker, ranker, expander and summarizer.

Seeker finds unusual locations which exhibit spatiotemporal un-
usualness with respect to the number of tweets and therefore poten-
tially correspond to local events. For this purpose, seeker employs
a novel prediction-based anomaly detection strategy. In particular,
seeker first exploits convolutional LSTMs (ConvLSTM [20]) to pre-
dict the expected number of tweets in the future, which accounts for
not only historical patterns but also neighboring locations. Next,
seeker compares the predicted value with the actual number of
tweets to determine the existence of unusualness. Unlike previous
studies [16, 21] which claim anomalies only based on the local time
series data of a location, we also consider the horizontal situation in
other places simultaneously to mitigate the effects of global events.

Ranker suppresses the possibly noisy candidates of local events.
In practice, not all spatiotemporal burstinesses necessarily corre-
spond to an actual local event. We therefore bring order to the candi-
dates with a ranking procedure by considering temporal burstiness,
spatial burstines and topical coherence, and thereby select the top
ones likely to be corresponding to the occurrence of local events.

Expander tracks and updates the movement of an ongoing local
event in both space and time using event-focus and content simi-
larity. An event focus records its most important site of occurrence
at certain time. While the content similarity between the tweets in
two nearby locations is used as a measurement to check whether
an ongoing local event moves to nearby locations or keeps bub-
bling up at the same place. In so doing, this module is dynamically
monitoring the impact range of a local event.

Summarizer generates an abstract for a detected local event by
selecting its most influential tweets. For human consumption, an
event should be presented in a succinct description [21] but yet
with up-to-date and key information. It is therefore important
to choose representative tweets to summarize the detected local
events. This module builds tweet authority graphs based on their
textual similarities and subsequently runs random walk procedures
to select the most influential tweets for events.

2 RELATED WORK
There has been a plural of works on detecting local events using
tweets in Twitter. Atefeh [22] and Abdelhaq [23] provide two excel-
lent surveys. In general, existing methods focusing on geotagged
tweets can be classified into two strategies: model dimension exten-
sion and geographical space tessellation. Model dimension extension
treats location as additional variables to existing models. For exam-
ple, some studies treat location as latent variables in their generative
topic model [24-27]. Location distance between tweets can also be
incorporated to measure similarities [28-31] during clustering.
Geographical space tessellation divides space into small and dis-
joint cells for aggregating geotagged tweets. The motivation is that
a local event usually has a limited spatial impact and would fall in
the same or nearby cell(s). The grid is the simplest yet most com-
monly used way of tessellation. although other structures have also
been explored including hierarchical triangular meshes [21], pyra-
mid structures [32, 33], Voronoi tessellations [34] and k-d tree [35].
After aggregating tweets to tessellation cells, a simple way for
event detection is to examine whether the number of the aggregated

tweets or the arriving rate exceeds a certain threshold [15, 19]. This,
however, is easily plagued by tweet distribution heterogeneity both
temporally and spatially. Thus, various anomaly detection methods
have been explored. The core idea is to use previous history of
data to build a baseline (or make a prediction) and then compare
with the actual value to check for significant discrepancies [16,
17, 21]. For example, TwitInfo [36] uses the weighted average
of historical tweet counts to compute the expected frequency of
tweets. But sole historical data often neglect the effects exerted by
nearby geographical regions. Krumm and Horvitz [21] therefore
include features like tweet counts from adjacent regions in their
anomaly detection method. Our method is different from the above
methods in two senses: 1) our prediction model captures both
spatial dependencies and temporal patterns [10]; 2) when claiming
an anomaly, we account for not only the history of a location itself
but also the situation at other places in the meantime to mitigate
the effect of unexpected global events.

The most related work to our task are EVENTWEET [16] , Eyewit-
ness [21], GEOBURsST [28] and TRIOVECEVENT [24]. EVENTWEET de-
tect events by identifying and clustering temporal bursty keywords.
However, using words instead of tweets as clustering elements,
this method may group semantically irrelevant words together and
in the meantime not sit well with event summarization. Eyewit-
ness [21] discretizes space and time and finds tweet volume spikes
as potential local events by comparing the predicted value with the
observed value. However, it needs to perform an exhaustive sweep
through different space and time pieces and thereby is not easy
to modify for online processing. GEOBURsT [28] generates candi-
date events by identifying pivot tweets based on geographical and
semantic similarities and ranks them using spatiotemporal bursti-
ness to filter out noisy ones. TRIOVECEVENT learns multimodal
embeddings of tweets to address the information on location, time
and text during clustering and is reported to achieve much better
accuracy than its baseline approaches. However, neither of these
two methods actively performs event detection on a given tweet
stream unless a query time window is specified.

Due to the sparsity of geotagged tweets (1%), some methods
try to acquire more local tweets by tracking local people [9, 37].
The location information in these methods, however, are usually
in a very coarse resolution (e.g., city-level) and rarely used when
grouping tweets together. Some methods try to first detect an event
and then estimate its location afterwards, e.g., TwitterStand [2].
These methods are different from our focus as we instead try to
extract local events from geotagged tweet streams.

3 PRELIMINARIES

3.1 Problem

Given a geotagged tweet stream, our goal is to identify the latest lo-
cal events. Formally, suppose that ¢ is the current (latest) time point
and At is a short time interval, we define D; to be the geotagged
tweet stream up to t, and D;_p;—,+ be the geotagged tweet stream
from ¢t — At to t. In other words, D;_a;—; essentially represents
the latest geotagged tweets with respect to At. For simplicity, a
geotagged tweet d can be seen as a tuple (timeg, locg, txty, userq)
in which time is the publication time, loc, is the geographical lo-
cation (i.e., a pair of lat/long coordinates), txt; refers to the textual
content and usery is the user posting this tweet. The latest local
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Figure 2: The soccer game in Figure 1 brings about an anomalous
amount of tweets both spatially and temporally. (a) Spatial distri-
bution of the tweets around the stadium at 7:30 PM - 8:00 PM. The
stadium lies in the red square. Each red dot is a tweet, and the
number in a grid cell refers to its number of tweets while an empty
cell means no tweets. (b) Temporal distribution of the tweets at the
game stadium. The tweets are aggregated every 30 minutes.

event detection problem is then to extract from D;_a;_,; all pos-
sible local events, where each event is a cluster of geographically,
temporally and semantically close tweets.

Typically, the occurrence of a local event often brings about an
unusually considerable amount of relevant tweets at the happening
location for a certain time period. For example, a soccer game
started at 7:30 PM at the stadium “CenturyLink Field” near the
center of Seattle, yielding many tweets with keywords “Sounders”,
“soundersfc” and “CenturyLink Field” etc (Figure 1) at that location
during the game. Figure 2 shows that an unusual amount of such
tweets were observed both geographically and temporally.

Motivated by the above observation, we propose a prediction-
based method for detecting the latest local events, called DELLE.
The key idea of DELLE is to first detect spatiotemporal unusualness
as possible candidates of local events and then select the ones that
most likely corresponding to local events.

3.2 System Overview

Figure 3 demonstrates DELLE’s overall design. DELLE can work in
two modes: batch mode and online mode. The major difference is
that the batch mode exploits a disjoint discretization in the time
dimension while the online mode utilizes a continuous sliding time
window and correspondingly a set of updating modifications for
online processing. We will detail these modifications in Section 5.

Batch Mode
isjoint time intervals))
Tessellation
[ Seeker H Ranker ]—-[ Expander ]—-[Summarize

| Influential Tweets
Figure 3: System Overview

We utilize a uniform grid to tessellate the spatial region into
squares of size Al X Al , where Al is the side length of the square.
Although more complex tessellation structures [21, 33, 38] have
been explored, grid tessellation is the simplest yet most commonly
used way of subdividing geographical space [16, 39-42]. More
importantly, it enables us to exploit state-of-the-art spatiotemporal
tweet count prediction model [10] by treating each grid cell as a
pixel and therefore the whole grid as image-like data. Inreality, local
events may not fall neatly on the grid cell boundaries. Therefore,

we propose a module of expander to connect nearby cells which
share similar content to alleviate that issue.

After discretizing space, the tweets are subsequently fed into a
pipeline of four modules: seeker, ranker, expander and summarizer.
Seeker finds spatiotemporal unusualness in the number of tweets
as potential candidates of local events. Ranker selects which set of
unusualness found by the seeker are most likely to be local events.
Afterwards, the expander tries to infer a local event’s span in both
time and space under the metric of semantical similarity. At last,
the summarizer generates an abstract for a detected local event by
selecting the latest top influential tweets.

4 THE BATCH MODE

In this section, we present the workflow of DELLE in its batch mode.
In order to detect the local events from D;_p;—,;, we discretizes the
geotagged tweet stream into a set of disjoint intervals, i.e..{- - [t —
2At,t — At), [t — At, t)}. In the following, we explain how to do
tweet count prediction, unusualness detection, event expansion,
and summarization for this time series of tweets.

4.1 Seeker

After tessellating the space into an M X N grid and time into periods
of At, the task of seeker is to identify grid cells that show an unusual
aggregation of tweets in latest geotagged tweet stream D;_p;—;
or D1 where T denotes the last time interval of length At.

4.1.1 Tweet Count Prediction. The goal of tweet count pre-
diction is to use previously historical tweet count data in a local
region to forecast on the number of tweets to appear in the next
time step [10]. On an M X N grid map, the tweet count values in
the grid cells at time step 7 can be written in a tensor X, € RM*N
where X, (m, n) is the tweet count in the grid cell (m, n) at time step
7. Therefore, the prediction problem is formulated as follows:

Definition 4.1. 'The tweet count prediction problem P is to gen-
erate a prediction Y7, which is an estimation of Xr, given a list of
historical observations {X;|r = 0,---,T — 1}.

Making high-quality predictions of tweet count in a region is
challenging due to complex spatial and temporal dependencies.
Additionally, there are studies pointing out that spatiotemporal
data also has a certain periodic pattern [21, 43], which indicates
that we should also capture the periodic time-varying changes in
tweet volume. For instance, if there are consistent bursty tweets
at a coffee shop (e.g., Starbucks) in the morning, it should not be
mistakenly reported as unusual. The advances in deep learning have
motivated a few recent studies to introduce deep neural networks
into modeling spatiotemporal data for better capturing spatial and
temporal dependences [43, 44]. In this paper, we utilize a residual
Convolutional LSTM (ConvLSTM [20]) based prediction model [10],
which is reported to have state-of-the-art accuracy.

We now give a brief introduction to this tweet count prediction
model [10]. Figure 4 illustrates the structure of the neural network
model. Zhang et al. [43, 44] pointed out that making predictions on
spatiotemporal data relies on not only the observations of recent
time but also those in near history and distant history, and model
these temporal dependencies as temporal closeness, period and trend.
A similar observation on tweet count data is also found [10]. In-
spired by this, the model consists of three main branches: closeness,
period and trend, to incorporate temporal pattern information at
different scale in tweet data, together with a meta-data branch to
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Table 1: List of main notations in Section 4
Al | the side length of a grid cell
t, At | current time, length of time interval
7, T | time step, the latest time step
Dy, Dr | tweet stream up to ¢, tweet stream during T
Xz, Yr | tweet count at 7, prediction of tweet count at 7
(m,n) | a grid cell in an M X N grid map
¢, p, q | closeness, period, trend
Er, &7 | prediction error, a list of prediction errors up to T
kg, | unusualness threshold
Yr(m,n) | alist of historical predictions on (m, n)
‘Wr(m, n) | the set of keywords in (m,n) at T
SDDY/(m, n) | spatial density distribution of word w in (m, n) at T
TS(d' d’’) | topical similarity between tweet d’ and d”’
TBt(m,n) | temporal burstiness of cell (m,n) at T
SBt(m, n) | spatial burstiness of cell (m, n) at T
TCr(m,n) | topical coherence of cell (m,n) at T
TECt(m, n) | the set of Temporal Expansion Cells of cell (m, n)
SECt(m, n) | the set of Spatial Expansion Cells of cell (m, n)
k the number of tweets for event summarization as
well as in calculating topical coherence

capture features such as time-of-day (e.g., in minutes), day-of-week.

T
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Flgure 4: Tw1tter Count Prediction Model. ResConvLSTM: Resxdual
ConvLSTM block; FCs: Fully-Connected Layers, i.e. Dense layers.
To be specific, the closeness sequence is a list of /. continuous
tweet count values right before the current time step and is denoted
by X¢ = [Xz’—lc Xe—(l.-1) XT—l]. The period sequence
is a Ip-long list of historical tweet count values periodically sam-
pled every pinterval: X = [Xe—pt,  Xe—put,-1) Xe—p1].
Similarly, the trend sequence is a lg-long list of historical tweet
count values periodically sampled but every q interval: X7 =
[Xr—q»lq Xr—g-(14-1) X‘[—1~q]. In practice, p is set to a
duration of one-day to capture daily periodicity and g to one-week
to reveal weekly trend. Each of X¢ Xp and X7 is separately fed into
three designated neural networks which share the same structure
but with different weights, to generate separate predictions Y¢, Yf
and Y7, respectively. At last, a parametric-matrix-based fusion is
applied to combine the 3 prediction results, together with the meta-
feature of time, to generate the final prediction. In the following,
we will briefly explain the key stacking blocks in Figure 4, including
the ConvLSTM layer, the ResConvLSTM block and the FC layer.
(1) ConvLSTM layer. The Convolutional Long Short-Term Memory
(ConvLSTM) was first proposed in [20] and is an extension of
FC-LSTM [45]. ConvLSTM innovatively uses a convolution op-
erator in the state-to-state and input-to-state transitions, and
thereby overcomes the traditional LSTM’s ignorance of spatial
information when the temporal sequence is multi-dimensional.

(2) ResConvLSTM block. By adding skip connections directly from
the output of lower layers to the input of higher layers, resid-
ual networks [46] have proven to be effective to alleviate the
problem of vanishing gradient in deeper networks during the
training process and achieved significantly better performance
in many applications. As shown in Figure 5, the tweet count
prediction model also assemblies a residual block of ResCon-
vLSTM using ConvLSTM layers. This is a key difference from
ST-ResNet [44] which uses a regular convolutional layer.

XT-{ BN [ ReLU |+ CL |+ BN - ReLU |+ CL )—-@»Y

Figure 5: ResConvLSTM block. BN: Batch Normaliza-
tion; ReLU: Rectifier Linear Unit; CL: ConvLSTM
(3) FC layer. To help capture the regular time-varying changes,

meta-data features such as time-of-day, day-of-week are also
hooked in the model by stacking two fully-connected layers.
The first is an embedding layer for features and the second
maps from low to high dimensions to make the output have
the same shape as the target [44].

In Figure 4, ConvLSTM layers usually have 32 hidden states
except for the output which has 1 to reflect the tweet count value.
In addition, the size of the filter in ConvLSTM is set to 3 X 3, because
the spatial correlation of tweet count data is quite local, i.e., the
number of tweets in a grid cell is correlated with the ones in the
nearby grid cells instead of grid cells farther away [10].

4.1.2  From Prediction To Unusualness. We define the pre-
diction error to be E7 = Y —X7, where X7 is the latest tweet count
on a spatial M X N grid and Yr is the prediction of Xt. Er(m, n)
indicates the prediction error of the grid cell (m, n). Intuitively, a
significant negative ET(m, n) indicates a local event as there were
many more tweets than usual. Following [21], we define precision
of our prediction model to be og,., where og,.(m, n) is the standard
deviation of the grid cell (m, n) w.r.t. its history of prediction errors
&r(m,n) = {---Er_1(m, n), ET. To account for the precision of the
prediction model, we re-define the prediction error as:

E'r=Er o oo (1
where @ denotes the element-wise division operation.

To detect unusual grid cells, we utilize an image restoration
framework called Deep Image Prior [47]. Our intuition is that un-
usualness in E’7 is like spike noise in an image, and Deep Image
Prior can be used to denoise corrupted images without prior knowl-
edge of training data. Suppose that E”’ 7 is the restored image of
E'r,and AE't = E” 1 —E’T, we claim a grid cell (m, n) is unusual if

|AE"7(m, n) = ppgr 12> kakry - 0AR/ 7 (2
where yiag/, and opp, are the mean and standard deviation of
grid cells in AE’T, respectively. ko, is a predefined threshold for
determining the unusualness of a grid cell. Different from [21], our
approach accounts for both history of a grid cell and information
of other cells on the whole region when detecting unusualness in a
location. This is important in differentiating global events which
might cause an unusual number of tweets on a local grid cell.

4.2 Ranker

The seeker module described above outputs a set of unusual grid
cells. In this section, we make a ranking of these unusual locations
to identify the top ones that are most likely corresponding to the oc-
currence of local events, by addressing temporal burstiness, spatial
burstiness and topical coherence.
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4.2.1 Temporal Burstiness. For a grid cell (m, n), suppose that
Yr(m, n) represents a history of estimations on its number of tweets
up to the time step T, and is defined as:

yT(m7 Yl) = { o YT—l(m$ n)’ YT(m! n)} (3)
Then we use z-score to quantify the grid cell (m, n)’s temporal
burstiness [28] at T, denoted as TB(m, n) and defined as:
Xr(m,n) —
1(m,n) HYr(m,n) (@)
Y1 (m,n)
where 1y, (m, n) and 0y, (1m, n) are the mean and standard deviation
of Y1(m, n), respectively. Recall that X1 (m, n) is the actual number
of tweets in grid cell (m, n) at time step T.

TBr(m,n) =

4.2.2 Spatial Burstiness. Given a grid cell (m, n), the spatial
burstiness is measured by the spatial density distribution of key-
words of the tweets in (m, n). The intuition is that a low spatial
density distribution means that the keyword is widely spread over
space and a high distribution means that the keyword occurs only
at a few locations. Therefore, the keywords in local events should
have higher spatial density distribution to be spatially bursty.

Suppose that D7(m, n) is the tweet set in grid cell (m, n) at T, and
Wr(m, n) is the set of keywords (e.g., after removing stop words)
in (m,n), i.e., Wr(m,n) = {w | w € txty andd € D7(m,n)}. Let
SDDY/(m, n) be the spatial density distribution of keyword w in

grid cell (m,n) at T, i.e., # of w in grid cell (m, n)

w
SDDr (m.n) = # of w in grid cell (m’, n’) ©)
(m’,n’)eMXN
We now define the spatial burstiness of grid cell (m, n) as:
SBr(m,n)= > SDD¥(m,n) (6)
weWr(m,n)

4.2.3 Topical Coherence. The topical coherence is to capture
the semantical similarity of tweets in a grid cell. In other words,
the tweets posted on the same event should be discussing similar
content and probably using similar vocabularies. Twee2Vec [48]
learns the vector-space representations of tweets using a character-
based bi-directional recurrent neural network model, and has been
demonstrated to have good performance in the application of clus-
tering semantically similar tweets together [49]. To measure the
topical similarity between tweets, we use Tweet2Vec implementa-
tion! to encode a textual tweet in character sequence to a vector
embedding with a default dimension size of 500.

Let TS(d’,d”’) be the topical similarity between tweets d’ and
d”. To measure the topical coherence of the tweets in cell (m, n),
we construct a graph, called Tweet Influence Graph.

Definition 4.2. (Tweet Influence Graph). The tweet influence
graph on the grid cell (m,n) at T, is an undirected graph Gt =
(Vr, ET) where V7 is the set of all tweets in Dt (m, n), ET is the set
of edges between tweets, and the weight of an edge between d” and
d” is their topical similarity TS(d’,d"’).

We now employ PageRank [50], a random walk procedure, on the
tweet influence graph to bring orders to the influence of tweets in
Dr(m, n) and thus identify the top k tweets with the most influence,
denote by Z);(m, n). The topical coherence is thus defined as:

> TS(d’,d")
d’ED.];(m,n), d”eD’.ﬁ(m,n)
K2

!https://github.com/vendi12/tweet2vec_clustering

TCr(m,n) =

™)

The rationale is that if the tweets in D7 (m, n) are about the same
local event, the most topically influential tweets should have higher
topical similarity between each other. One may point out that such
a topical coherence measurement would suppress a grid cell having
multiple topically unrelated ongoing events. We argue that such a
case is very rare with a fine space and time discretization.

4.24 Ranking Function. As the final step, we now define the
ranking score of the grid cell (m, n) by aggregating its temporal
burstiness, spatial burstiness and topical coherence, after rescaling
them to [0, 1] with respect to other grid cells:

Rr(m,n) = TBY(m, n) - SB.(m, n) - TC.(m, n) (8)
where TB/.(m, n) = (TBr(m,n) — TBY''™)/(TBJ!%% — TBI''™) with
TBJ'%* and TB;’”" being the maximum and minimum of topical
burstiness among all grid cells at T. Spatial burstiness and topical
coherence are rescaled in the same way, receptively.

4.3 Expander

Suppose that we choose the top K unusual grid cells after ranking
at T, and claim that they are the candidates most likely to be local
events in Dr. In reality, different local events might have different
spatial and temporal ranges, e.g., spanning over a larger region
than the grid cell size Al * Al or for a longer duration than the time
discretization interval At. We therefore, in this section, try to infer
the spatiotemporal range of these local event candidates.

The basic idea of expander is to connect (spatially or temporally)
nearby grid cells if they share similar content. As presented in Al-
gorithm 1, the expansion consists of two parts: temporal expansion
and spatial expansion. The temporal expansion checks whether the
occurrence of previous event candidates continues to the present,
and updates them if so. The spatial expansion examines whether
nearby grid cells are relevant to the same event.

During the expansion, for each event candidate, we maintain a
grid cell as its event-focus grid cell. The event-focus grid cells are
initially set to be the most unusual cells (i.e., the top ranking cells
in Equation 8). As time proceeds, the event-focus grid cell of an
event might stay at the same grid cell (e.g., a sit-down protest), or
move to another one (e.g., a demonstration protest), or simply no
longer exists (e.g., the ending of an event). Meanwhile, new event-
focus grid cells might join as well if new events happen. Note that
during the spatial expansion, several event-focus grid cells might
exist adjacently and need to be merged if they are about the same
content. For a given cell (m, n), we denote by SECT(m, n) (Spatial
Expansion Cells) the cells for it to examine for spatial expansion at T,
and similarly TEC7(m, n) (Temporal Expansion Cells) for temporal
expansion. SECt(m, n) and TECT(m, n) are defined as follows.

SECr(m,n) ={(m£i,n=j)r|i,je{-1,0,1}}\ {(m n)r} )

TECt(m,n) = SECp(m,n) U {(m,n)t}

The spatial range for expansion is currently set to adjacent cells
incident at an edge or vertex and can extend further if necessary.

Whether or not two adjacent grid cells are connected depends
on their content similarity. We treat each grid cell containing
its tweets as a document and thus build a term-document matrix.
In this matrix, each row represents a token (non-stop words) in
tweets, each column represents a document, i.e., a grid cell, and each
element can refer to the token frequency (or TF-IDF) per document.
Next, the content similarity between two grid cells can be calculated
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Algorithm 1: Expander

Input: C7_; — the set of event-focus grid cells at time T — 1,
C7 — the top K ranking grid cells at time T (i.e., the
newly identified event-focus grid cells), s — content
similarity threshold.

Output: The updated event-focus grid cells Ct at time T

/* Temporal Expansion %/

1 foreach event-focus grid cell (m,n)r_; € Cr_1 do

// TCCr(m,n) are the grid cells at time T
// that are temporally connected to (m,n)r_;

2 TCCr(m,n) «— { c|c € TECt(m,n),

£cs < ContentSimilarity(c (m,n)7-1)};

3 if TCCt(m, n) # @ then

4 ¢’ = argmax ContentSimilarity(c, (m,n)7-1);
c€TCCr(m,n)

// ¢’ is now a new event-focus grid cell
// transited from (m,n)r_q

5 Cr «— CLU{c'};

/* Spatial Expansion */
s foreach event-focus grid cell (m,n)r € C. do

// SCCr(m,n) are the grid cells at time T
// that are spatially connected to (m,n)r

7 SCCr(m,n) «— { c|c € SECr(m,n),
£cs < ContentSimilarity(c (m,n)r)};

// If (m,n)r is spatially connected to other
// event-focus grid cells, merge them.

8 if SCCr(m,n) N C’T # @ then

9 Temp = (SCCr(m,n) N C}) U{(m,n)r};

10 ¢’ = argmax TopicalCoherence(c) ;
ceTemp

11 C/T — (C% \ Temp) U{c'};

12 return C’T

by their corresponding column vectors under the metric of cosine
similarity. More advanced document similarity techniques such
as Latent Semantic Analysis (LSA) [51] may further be applied
on the term-document matrix to measure the similarities between
documents at a lower rank. It is, however, usually a time-consuming
process due to the introduction of Singular Value Decomposition
(SVD). For approximation as well as efficiency, we limit each column
vector to contain the information on its most frequent k. tokens

during cosine similarity calculation, where k¢ is a predefined value.

4.4 Summarizer

The module of summarizer selects the most representative tweets
from a cluster of tweets in an event, and thereby produce a succinct
description. When summarizing an event across several time steps,
the tweets at the latest time step T are preferred to earlier ones in
order to reflect the newest dynamic updates on events.

The general idea of event summarization expects that the tweets
associated with the event demonstrate a meaningful description
of the event for human consumption [21]. For this purpose, we
exploit the most influential tweets in the grid cells. As discussed
in Section 4.2.3, D;(m, n) consists of the top k tweets with the
most influence at the grid cell (m, n). The summarization works as
follows. First, if an event is limited to one grid cell, then its top k
tweets are the summarization set of tweets. i.e., D%(m, n). Second,
if an event impacts several grid cells, then we look at the top grid
cells with the largest topical coherence scores defined in Equation 7

to select which tweets to form the summarization. To be specific,
suppose that an event e’s spatial impact at T consists of a set of grid
cells, denoted by SIZ.. The subset of SI. used for summarization is
defined as: e P i ,
SISumz. = {(m',n")|i=1--- k'} (10)
where 1 < k’ < k, specifying that the summarization tweets are
only from the top-k’ grid cells with the largest topical coherence
scores in SI7. The topical coherence score in each grid cell weighs
how many tweets it will contribute to the summarization. For
example, let TCr(m?, n) be the i-th largest topical coherence score,
then the number of tweets its grid cell (m’, n’) should contribute is:

TCr(m?,n’)

k! = round(— —_—
=K TCr(mi, ni)

* k. (11)
And such k! tweets come from the top k influential tweets in (mi, nt ),
denoted by D;l (m’, n'). Therefore, the summarization tweet set is:

kK X o
SumTweetss. = U Z); (m',nt) (12)
1

5 ONLINE MODIFICATIONS

In this section, we present the modifications that allow DELLE to
process tweets in an approximately online way. The major modi-
fication is to utilize a continuous moving sliding window instead
of disjoint intervals of time. For example, suppose that the current
time is ¢, the window length is At, and the current sliding window
is at [t — 2At,t — At). Then the next sliding window to consider
in the online processing is at [t — 2At + As, t — At + As), instead of
[t — At, t) as in the batch mode. As denotes the moving step length
in the sliding window. In what follows, we describe the changes to
the modules in the batch mode needed to enable online processing.
Seeker In the online processing, with a small moving step As,
two consecutive sliding windows mostly overlap each other and
might present little difference. Consequently, if the prediction
model takes the previous consecutive windows as the input, it
probably generates a prediction very similar to the current sliding
window and thus fails to detect anomalous aggregation of tweets.
Therefore, to make predictions in the online processing, we still use
the data in the previously disjoint time interval as the input. For
example, the last time interval in the closeness sequence used for
predicting the tweet count at [t — At, t) is [t — 2At, t — At), instead
of [t — At — As, t — As), which is the last sliding time window.
Ranker As the sliding window proceeds, the tweets in the grid
cells may also change, as well as the scoring factors in the ranking
Equation 8. Recalculating some scores like spatial burstiness and
topical coherence from scratch can be very time-consuming. There-
fore, we leverage historical results to update the changes caused by
inserting new tweets as well as deleting old tweets. For example,
in updating the spatial burstiness scores, the system maintains a
keyword list which specifies the frequency of a keyword’s appear-
ance in each grid cell. Thus, only simple addition or subtraction
is necessary for updating frequencies of words. The more com-
plex changes come from updating the scores of topical coherence as
the tweet influence graph may evolve when inserting new tweets
or deleting obsolete tweets. To handle such changes, we exploit
OSP [52], a fast random walk algorithm on dynamic graphs using
Offset Score Propagation. The core idea of OSP is to first calculate
an offset seed vector based on the adjacency difference between
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Figure 6: (a) 12 >£a{2 grid map in Seattle. (b) 46 X 46 (g'id map in NYC.
old and new graphs.Next, such a seed vector is propagated across
the new graph, resulting in offset scores. Finally, OSP adds up the
old and offset random walking scores to get the final scores.

Expander The most time-consuming part in this module is cal-
culating the content similarities between grid cells using their most
frequent keywords, which may change as news tweets come in
or old tweets go away. For a fast implementation, each grid cell
maintains a local heap to track the top frequent keywords in it.

Summarizer The summarizer is easy to modify for online pro-
cessing because the topical coherence of each grid cell and its most
influential tweets have already been calculated in the modified
ranker module. Therefore, the essential task is to, for each event,
maintain a list of top-k” grid cells with the largest topical coherence
scores, by using a priority queues.

6 EVALUATION

DELLE is implemented in Python and evaluated on a computer
with an Intel Xeon E5 CPU, an Nvidia Quadro P6000 GPU and 64GB
memory. The tweet count prediction model is built using Keras [53].

6.1 Experimental Settings

6.1.1 Datasets. The evaluation is performed on two sets of geo-
tagged tweets collected from 2015-07-09 to 2017-07-23 in two cities:
Seattle, WA (SEA) and New York City (NYC) [10]. Their geograph-
ical regions are two bounding boxes spanning from [47.579784, -
122.373135] to [47.633604, -122.293062] in SEA, and from [40.647984,
-74.111093] to [40.853945, -73.837472] in NYC as illustrated in Fig-
ure 6. The total number of tweets after removing spam tweets [10],
is 756,457 and 9, 353, 721, respectively. We take the data from 2017-
06-23 to 2017-07-23 for testing and local event detection, and its

previous data for training the tweet count prediction model.
6.1.2  Baseline Approaches. The baseline approaches are below:

o EVENTWEET [16] first identifies temporal bursty keywords and
spatial local keywords and then clusters them to find local events.

e Eyewitness [21] finds tweet volume spikes in discretized time and
space as potential local events by comparing the actual number
of tweets with the predicted value using a regression model.

o GEOBURST [28] first generates candidate events by seeking pivot
tweets based on geographical and semantic similarities and then
ranks them with spatiotemporal burstiness to remove noisy ones.

e TRIOVECEVENT [24] first learns multimodal embeddings of tweets
on the domains of location, time, and text and then uses a Bayesian
mixture clustering model to find event candidates.

6.1.3  Parameter Settings. We run DELLE in its batch mode by
default and will evaluate its difference from the online processing
in Section 5. The major parameters in DELLE are set as follows. For

space and time, we set the side length of grid cells Al = 500m and
the length of time interval At = 30 minutes (by dividing a natural
integral hour into two intervals) since such values provide fine
enough resolution for local event detection as well as yield good
performance for tweet count prediction [10]. As a result, we have
a 12 X 12 grid map in SEA and 46 X 46 in NYC. For the moving
step length in sliding windows, we set As = 5 minutes, which is
long enough for the online processing latency in our system. In
the seeker module, we set the length of closeness, period and trend
tole = 3,1 = 1and l; = 1 as in [10] because such a setting
achieves the best prediction accuracy. We set the threshold for
determining the unusualness of a grid cell kag/;. = 3, a commonly
used value for anomaly detection. As for the PageRank procedure to
calculate topical coherence in the ranker module, we use the default
damping factor 0.8 and run 20 iterations in all cases. After tuning, in
calculating content similarity between grid cells for expansion, we
set the number of frequent tokens ks to 5 and the content similarity
threshold e;5 to 0.7. We set k = 5 as the number of the most
influential tweets used for calculating the topical coherence as well
as the number of tweets used to summarize a local event [21, 28].
In each time interval, we select at most K = 5 unusual grid cells
as the local event candidates. Because not every time interval
does necessarily have K local events happening, we apply a simple
heuristic for suppressing the negative candidates. It removes grid
cells having too few users (i.e., less than 5) or having a topical
coherence score less than 0.8, which is a suggested lower bound
for tweet clustering using Tweet2Vec [48, 49]. For fairness, we also
similarly filter out the event candidates with less than 5 users for
the baseline approaches as well in the evaluation.

EVENTWEET takes the same space partition as in DELLE and
similarly selects the top K local event candidates. Since each event
in EVENTWEET is a cluster of keywords instead of tweets, we use the
implementation in [28] to retrieve the top k representative tweets.

Eyewitness exhaustively sweeps through a set of different space
and time discretization and is unsuitable for processing live tweet
streams. We ease its settings by using the same space and time
discretizations in the batch mode of DELLE. To select the top K local
event candidates, we rank them by the prediction error divided by
the standard deviation of the error of its regression function, which
has shown to be an important feature in classifying events to be
postivie or negative [21]. After that, each local event is represented
by by choosing k = 5 tweets with the highest frequency words.

For GEOBURST and TRIOVECEVENT, we adopt their default pa-
rameter settings and implementations in [28] and [24], respectively.
Since both methods require an input time window to query the
occurrence of local events, we set it as a list of disjoint At-size win-
dows like the time discretization in DELLE’s batch mode and choose
the top K candidates for comparison. Note that TRIOVECEVENT
also classifies an event candidate to be true or false, we therefore
use the spatial deviation (i.e., lat/long deviations, which are the two
most important features in their classifier) to rank local events.

6.2 Illustrative Cases

We select several positive and negative examples of local event
detection and present them in Figure 7 and Figure 8, respectively.
Each example is described by 5 representative tweets with locations
plotted as red circles in the accompanying maps. Ahead of each
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(a) People talking about food near the Space Needle (2017-07-22 4:30 PM).
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Figure 8: Examples of false local events. The left is in Seattle, WA, and the right is in New York City, respectively.

tweet is its publisher’s username. Note that multiple tweets may
reside at the same location causing overlapping and dark red circles.
Figure 7 illustrates two positive local events reported in DELLE.
Figure 7a is about a baseball game between the Yankees and the
Mariners held at the Safeco Field in Seattle. Figure 7b is about
NYC Pride March 2017 traversing southward down Fifth Avenue
in New York City. Those two events are very demonstrative as
examples of local events because they have exhibited the necessary
properties DELLE wants to capture: spatiotemporal unusualness re-
garding the number of tweets at a local place and topical coherence
regarding the content of aggregated tweets. The tweets selected to
describe the events are also representative to convey the necessary
information. It is worth mentioning that the tweets in Figure 7a fall
closely to the common border of two neighboring grid cells. The
expander module in DELLE effectively captures this case by con-
necting spatiotemporally adjacent grid cells sharing similar content.
These two examples also appeared in the baseline approaches.
Figure 8 presents two cases of negative local events reported in
EvENTWEET and Eyewitness, respectively. Figure 8a refers to an
activity about people talking food near the Space Needle in Seattle,
WA. EVENTWEET reported this activity as a local event since it
finds some spatiotemporal bursty keywords like “Bite”. This is
because, when the day comes around dinner time, that area seems
to be a popular place for people to eat and thereby aggregates
tweets with similar keywords about food. Likewise, GEOBURST
also falsely reported a related geo-topic cluster because it groups
together tweets mentioning similar keywords on the topic and
locating geographically closely. Although such an activity may
attract enough tweets at a high rate at certain time (e.g., dinner
time in the example), it usually follows a periodic daily pattern
and does not reflect any unusual event. Neither Eyewitness or
our method DELLE reported this activity because both of them
take routine patterns into consideration. Similarly, TRIVECEVENT
classified it as a non-local event too. This is because its multimodal
embedding model also addresses the effect of time in tweets and
unveils typical words in different regions and time periods.

Figure 8b is an example of negative local event reported in
Eyewitness. It is about people waiting for the 4th of July fireworks
show at East River Ferry Dock in New York City. This is more like
a national event in the United States because fireworks show on
Independence Day may happen at different places in a nationwide
scale. When it comes close to the evening, one may expect that
tweets about fireworks suddenly increase all over the country. Both
GEOBURST and TRIOVECEVENT reported this nationwide event too.
This is because such an event is also geographically compact and
more importantly, semantically coherent. In contrast, we do not
find the occurring grid cell of this event ranked in the top unusual
grid cell candidates in our method DELLE. There are three reasons
behind this. First, the likelihood of unusualness in this grid cell was
not high considering that other places were experiencing similar
burstiness in tweet volume. Second, the spatial burstiness was not
strong either because similar keywords were being used every-
where. Third, the topical coherence in this grid cell deteriorated
due to the presence of lots of other tweets like “@511NY Cleared:
Incident on #ServiceBus at Midtown”. EVENTWEET did not report
this event either because the keyword like “fireworks” and “july4th”
appeared adequately in other regions too and thus was considered
not to be local to this event’s occurring site.

6.3 Quantitative Analysis

Table 2: Comparison results using Precision, Recall and F-Score.

Seattle, WA NYC
Method |, p™ R 4 P R F
EVENTWEET 354 0.391 0.390 0.390 |1665 0.146 0.131 0.138
Eyewitness 273 0.769 0.593 0.670 |1204 0.614 0.398 0.483
GEOBURST 354 0.517 0.517 0.517 |1665 0.203 0.182 0.192
TRIOVECEVENT (240 0.858 0.582 0.694 [1214 0.704 0.461 0.557
DELLE 269 0.862 0.655 0.745|1128 0.741 0.450 0.560
6.3.1 Effectiveness. We first evaluate the different local event

detection methods using precision, recall and f-score. For precision,
we recruited 3 volunteers to individually judge the detected events
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and collect the results using the strategy of majority votes?. In lack
of groundtruth on the set of events happened in the real world,
we build a pseudo groundtruth by assembling a set of distinct true
positive local events reported in different methods to calculate the
recall and f-score. The comparison results are listed in Table 2. It
shows that DELLE outperforms baseline approaches in most cases.
In particular, a significant improvement is observed over EVEN-
TweET and GEOBURsT. DELLE also achieves comparatively better
results to Eyewitness, showing the effectiveness of its unusualness
detection and consideration of topical coherence. We notice that
TRrIOVECEVENT outperforms all other methods except for the pro-
posed one, showing its effectiveness of multimodal embedding of
location, time and text information in tweets.
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Figure 9: (a) Precision with different K values. (b) Temporal span
and spatial region size of positive local events in DELLE.

To evaluate the sensitivity of K, Figure 9a illustrates the number
of positive local events out of the total detected ones in DELLE
when K varies. The decimal number above each bar represents
the precision. In general, the precision decreases as K increases
because a larger K likely outputs more negative local events, even
thought it may also give more positive ones. We notice that the
precision and the number of positive local events nearly maintain
the same in SEA after K = 2 and NYC after K = 3.

Figure 9b plots the distributions of positive local events in DELLE
regarding the temporal span (i.e., number of time intervals) and
spatial region size (i.e., number of grid cells). The results show
that majority of the events fall within one single time interval and
one grid cell. This validates our settings in the time and space
discretization.

6.3.2 Efficiency. To investigate the efficiency, after each time
interval ends, we record the time spent in processing the tweets
aggregated during that interval for the 5 different methods. The
results are reported on the NYC dataset as it contains relatively
more tweets. The total number of time intervals is 1, 488.

2The instructions given to the judges are summarized at http://www.cs.umd.edu/~hyw/
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Figure 10: Distributions on the numbers of time intervals over their
processing times in (a), and over their number of tweets in (b).

Figure 10a presents the distributions of time intervals over their
processing time in different methods. To have an idea of the number
of tweets in each time interval, we plot its histogram in Figure 10b.
Among the three methods that exploit space partition strategy
(i.e., EVENTWEET, Eyewitness and DELLE), Eyewitness in general
is the most efficient method because it does not require sophisti-
cated tweet text processing except when summarizing its detected
event. DELLE has achieved similar efficiency with Eyewitness in
majority cases, even though a few of the cases sometimes take as
long as 15 seconds. The major overhead lies in computing topical
coherence in the ranker module as well as content similarity in the
expander module. These steps, however, are only necessary when
an unusual grid cell appears. Simply running the seeker module
to identity potential local event candidates is very fast and takes
0.06 seconds on the average. EVENTWEET is less efficient than the
other methods due to its calculation of spatial entropy to identify
spatially local keywords and then performing clustering. Although
GEOBURsT and TRIOVECEVENT have excellent efficiency as well,
their implementations [24, 28] require certain preprocessing steps
on the tweets like extracting keywords and keyword co-occurrence
relation, which would take considerably more time.

6.4 Online Modifications

The batch mode of DELLE divides the temporal dimension into
disjoint time intervals, i.e., {--- [t — 2At,t — At), [t — At,t)}. In
practice, some local events may fall across these interval boundaries.
We made online modifications in Section 5 for handling this issue.
In this section, we investigate the effectiveness and efficiency of
these modifications on the NYC dataset.
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Figure 11: (a) Venn diagram on the sets of events in batch mode and
online mode. (b) Distribution of time spent in online mode.

Effectiveness is evaluated by examining how many local events
detected in the batch mode are also detected in the online processing
and meanwhile how many local events the batch mode misses. For
comparison, we here claim that two local event candidates refer
to the same occurrence if i) their content similarity is greater than
0.7; ii) their time centroids (i.e., the average publish time of the
tweets ) are within 2At (i.e., one hour); iii) they come from the
same grid cell. Figure 11a shows the Venn diagram of different
sets of local event candidates generated in batch and online mode.
For comparison, we also include one variant of the batch mode,
called Batch Iap which offsets the disjoin time intervals by %At,
ie {---[t— %At, t— %At), [t - %At, t— %At)}. The Venn diagram
shows that the online mode, with help of the flexible sliding time

window, has chances to screen different interval settings on the
temporal dimension and indeed discovers more local events. We
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also found that Batchy ,, has slightly more events than the original
2

batch mode (i.e., dividing an integral hour into two time intervals).
This is reasonable in the sense that although the latter time division
fits more with the habits of people for planning events, people are
likely to post tweets before an event starts when they have chances.

For evaluating the efficiency, we similarly record the processing
time for each step in the sliding moving window. The results are
presented in Figure 11b. Generally, the online processing shows a
similar trend with the batch mode except with more cases falling
after 10 seconds. After analyzing, we found that the major over-
head lies in the frequent invocation of the expansion procedure
to connect temporally adjacent cells that are semantically similar.
Even so, the worst case takes less than 20 seconds in general and is
likely acceptable for many applications.

7 CONCLUSIONS

In this paper, we presented DELLE for detecting latest local events
in geotagged tweet streams. In essence, DELLE first identifies spa-
tiotemporal unusualness using a novel prediction-based anomaly
detection approach, and subsequently ranks them to identify poten-
tial local events, by addressing both spatiotemporal burstiness and
topical coherence. Afterwards, DELLE monitors the impact range
for an ongoing local event in space and time by tracking its move-
ment with content similarity, and meanwhile selects influential
tweets for summarization. The evaluation results on two selected
cities show that DELLE outperforms competitive baselines in most
cases, showing the effectiveness of the proposed method.

The human evaluation yields a groundtruth of local events, and
therefore enables the exploration of learning to classify spatiotem-
poral unusualness into true/false local events using features like
burstiness and topical coherence. We leave this for our future work.
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