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ABSTRACT: Aminofutalosine synthase (MqnE) catalyzes an
important rearrangement reaction in menaquinone biosyn-
thesis by the futalosine pathway. In this Letter, we report the
identification of previously unreported inhibitors of MqnE
using a mechanism-guided approach. The best inhibitor shows
efficient inhibitory activity against H. pylori (IC50 = 1.8 ± 0.4
μM) and identifies MqnE as a promising target for antibiotic
development.
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M enaquinone is a lipid-soluble, redox-active cofactor
involved in the transmembrane electron transport chain

of the majority of microbes.1 Humans use menaquinone
(vitamin K) as an essential blood clotting vitamin2−4 and
acquire it from dietary sources and from its biosynthesis in the
gut microbiome.5 Menaquinone biosynthesis is therefore an
attractive target for antibiotic development,6 and inhibitors
against Gram-positive organisms such as Mycobacterium
tuberculosis and Staphylococcus aureus have been identified.7

The recent discovery of a new, futalosine-dependent,
menaquinone biosynthesis pathway has presented new
opportunities for antibacterial development8,9 because im-
portant human pathogens including Helicobacter pylori (causes
gastric ulcers and cancer), Campylobacter jejuni (causes
diarrhea), Chlamydia strains (cause urethritis and respiratory
tract infections), and Spirochetes (cause syphilis and Lyme
disease) utilize this pathway.10 The absence of this pathway in
humans and in most of the human gut bacteria potentially
provides the required selectivity for targeting this pathway
without affecting the commensal bacteria. Potent, transition-
state analog inhibitors against the 5′-methylthioadenosine
nucleosidase (MTAN) from H. pylori11−13 and C. jejuni14 have
been developed, and long chain fatty acids and macrolides
targeting the later steps of the pathway have been
reported.15−19 The antibiotic potential of the other enzymes
on the futalosine pathway, including the two radical SAM
enzymes MqnE and MqnC, has not been explored. In this
Letter, we report the identification of a mechanism-based
inhibitor of MqnE and demonstrate its antibacterial activity
against H. pylori and C. jejuni.
MqnE is a radical SAM enzyme20,21 in the futalosine-

dependent menaquinone biosynthesis pathway that catalyzes a
key C−C bond formation.22 We have previously reported
mechanistic studies on this enzyme with successful trapping of

the captodative radical 3 and the aryl radical anion 7 (Figure

1).23,24

High throughput screening for inhibitors of radical SAM
enzymes is technically demanding because these enzymes are
extremely oxygen sensitive and have low turnover. We
therefore undertook a mechanism-guided approach for the
development of an inhibitor of MqnE. The captodative radical
intermediate 3 is expected to be the most stable radical
intermediate in the conversion of 1 to 8. We therefore
anticipated that a structural analog of this intermediate might
act as a substrate or transition state mimic and form a bi-
substrate inhibitor of MqnE. A bi-substrate inhibitor is a
molecule that is chemically synthesized or enzymatically
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Figure 1. Mechanistic proposal for the MqnE-catalyzed conversion of
1 to 8.
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generated by covalent linking of two substrates of a bi-
substrate enzyme reaction and mimics the ternary enzyme
substrate complex.25 This inhibitor design strategy has been
demonstrated to be effective in achieving enhanced potency
and selectivity and has led to the development of FDA
approved therapeutics such as finasteride, mupirocin, and
isoniazid.25

We hypothesized that replacing the bridging oxygen of the
native substrate 1 with a methylene group (compound 9)
would block the conversion of 11 to 13/14 due to the
instability of a primary carbanion (or radical). This would
allow the accumulation of 10, which, after hydrogen atom
abstraction (or electron/proton transfer), would result in the
formation of the shunt product 12, a potential bi-substrate
inhibitor (Figure 2).

The methylene analog 9 was synthesized as shown in Figure
S126,27 and tested with the Thermus thermophilus ortholog of
MqnE. HPLC analysis of the reaction mixture indicated the
formation of one major product that was absent in the controls
(Figure S2). This product had a molecular ion m/z of 456 Da
consistent with the mass of the shunt product 12 (Figure S3).
This structure was confirmed using MS fragmentation and
NMR analysis (Figures S4−S9). On running the reaction in
95% D2O buffer, this peak showed one deuterium incorpo-
ration implying that the added proton in 12 originated from
solvent or a solvent exchangeable protein residue (Figure S3).
The T. thermophilus MqnE enzyme catalyzed >25 turnovers

under our in vitro conditions with the native substrate (Figure
S10). The MqnE reaction was slow with the methylene analog
9, providing a single turnover (Figure S10). Encouraged by this
result, we used competitive inhibition experiments in which
MqnE-[4Fe-4S]2+ was preincubated with variable concen-
trations of the methylene analog 9 in the presence of excess
SAM and substrate 1. Reactions were then initiated by
reducing the enzyme with Ti(III) citrate, and the rate of
aminofutalosine 8 formation was followed by a discontinuous
HPLC analysis. The normalized relative initial reaction rates
were plotted as a function of inhibitor concentration to
generate a dose−response curve, and an IC50 value of 38.7 ±

3.4 μM was obtained (Figure S11). Since this IC50 value was
within 5-fold of the enzyme concentration used, the dose−
response curve data was fitted to the Morrison equation for
tight-binding inhibition,28 which gave an inhibition constant Ki

of 3.1 ± 0.1 μM (Figure 3). Irreversible inhibition was
eliminated by demonstrating full restoration of enzyme activity
after the enzyme was preincubated with 9 for 1 h, followed by
removal of the inhibitor by gel filtration (Figure S12).
The bi-substrate analog 12 was enzymatically synthesized

and also tested as a competitive inhibitor. This compound was
a weaker inhibitor of MqnE with an IC50 value of 839 ± 187
μM (Figure S13). This suggests that the enzyme undergoes a
major conformational change after the formation of 10

resulting in reduced affinity of the enzyme for 12 and avoiding
product inhibition by 8.
The human pathogens H. pylori and C. jejuni were selected

to test the antibiotic activity of the methylene analog 9 and the
bi-substrate analog 12. The effect of these inhibitors on C.
jejuni and H. pylori growth was measured using the 96-well
plate liquid culture method.29−31 As shown in Table 1, the IC50

values for the methylene analog 9 and the bi-substrate analog
12 on C. jejuni were 13.6 ± 1.5 and 83.3 ± 3.4 μM,
respectively. Gentamicin was used as a control and had an IC50

value of 1.9 ± 0.2 μM (Table 1). The measured IC50 values for
methylene analog 9 and bi-substrate analog 12 on H. pylori

were 1.8 ± 0.4 and 16.1 ± 3.9 μM, respectively. BTDIA, a
transition state analog of the H. pylori MTAN (Figure S14),12

was tested as a control and displayed IC50 values of 0.012 ±

0.001 and 1.4 ± 0.3 μM for H. pylori and C. jejuni,14

respectively (Table 1).
Radical SAM enzymes are widespread in cofactor biosyn-

thesis pathways.21 While these enzymes are reasonable targets
for antibiotic development, technical difficulties working with
highly oxygen sensitive low turnover enzymes have retarded
the development of inhibitors against this family of enzymes.
The methylene analog 9 is a potential lead compound as an
antibiotic against H. pylori. It has comparable antibacterial
activity to amoxicillin and clarithromycin, currently approved
antibiotics in the treatment of H. pylori infections.33 In
addition, this compound is resistant to acid hydrolysis, making
it a suitable lead compound for the development of an orally
available antibiotic against an acidophile like H. pylori.
In summary, we have identified methylene analog 9 as an

inhibitor of MqnE and have demonstrated its antibacterial
activity against H. pylori (IC50 = 1.8 ± 0.4 μM). These studies
set the stage for the future development of antibiotics against
H. pylori with MqnE as the target.

Figure 2. Mechanistic proposal for the MqnE reaction with 9.

Figure 3. Inhibition kinetics with the methylene analog 9.

Table 1. IC50 Values for the Inhibitors Tested against H.
pylori and C. jejuni

IC50 (μM)

12 9 gentamicin BTDIA

C. jejuni 83.3 ± 3.4 13.6 ± 1.5 1.9 ± 0.2 1.4 ± 0.3

H. pylori 16.1 ± 3.9 1.8 ± 0.4 0.26a 0.012 ± 0.0001
aLiterature reported value.32
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