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Abstract

In this paper, we consider modeling missing dynamics with a nonparametric non-Markovian model,
constructed using the theory of kernel embedding of conditional distributions on appropriate Reproducing
Kernel Hilbert Spaces (RKHS), equipped with orthonormal basis functions. Depending on the choice of
the basis functions, the resulting closure model from this nonparametric modeling formulation is in the
form of parametric model. This suggests that the success of various parametric modeling approaches that
were proposed in various domains of applications can be understood through the RKHS representations.
When the missing dynamical terms evolve faster than the relevant observable of interest, the proposed
approach is consistent with the effective dynamics derived from the classical averaging theory. In the linear
Gaussian case without the time-scale gap, we will show that the proposed non-Markovian model with a
very long memory yields an accurate estimation of the nontrivial autocovariance function for the relevant
variable of the full dynamics. Supporting numerical results on instructive nonlinear dynamics show that
the proposed approach is able to replicate high-dimensional missing dynamical terms on problems with
and without the separation of temporal scales.

Keywords. Missing dynamical systems, closure model, nonparametric non-Markovian model, kernel
embedding
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1 Introduction
One of the long-standing issues in modeling dynamical systems is model errors arising from incomplete
understanding of the physics. The progress in tackling this problem goes under different names depending
on the scientific fields. In applied mathematics and engineering sciences, some of these approaches are known
as the reduced-order modeling, which ultimate goal is to derive an effective model with low computational
complexity from the first principle, assuming that the full dynamics is known. They include the Mori-Zwanzig
formalism [44, 53, 54] and its approximations [4, 5, 12, 17, 25]; the averaging/homogenization when there
is an apparent scale separation between the relevant and irrelevant variables [10, 42, 43, 50]. In domain
sciences, various methods for subgrid-scale parameterization were proposed to handle the same problem that
arises in applications such as material science, molecular dynamics, climate dynamics, just to name a few.
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They include the Markov chain type modeling [7, 23]; stochastic parameterization [1, 7, 18, 29, 32, 34,
37, 51]; superparameterization in cloud modeling [13, 24, 36] and in combustion problems [20, 21]; Direct-
Interaction Approximation (DIA) for parameterizing sub-grid scale processes in isotropic turbulence [26]
and its extensions [9], for modeling non-Markovian memory in inhomogeneous turbulence over topography.
We should point out that this list is incomplete and these approaches share some commonality despite
being developed independently and having different implementation details. Namely, the key unifying theme
in these aforementioned methods is the parametric modeling assumption with specific choices of class of
functions/distributions and typically having finite number of parameters.

In this paper, we consider a nonparametric modeling framework to compensate for the missing dynamical
components. One of the main goals in this paper is to show that parametric modeling approaches can be
understood and systematically derived from a nonparametric framework as opposed to the empirical choices
of parametric models. In our setup, suppose that the underlying full dynamics is an ergodic system of Itô
diffusion with relevant components x ∈ X and irrelevant components y ∈ Y . The objective is to predict the
evolution of x ∈ X and its statistics, given only the x−component of the full dynamics,

dx = a(x, y) dt+ b(x, y) dWt,

dy = c(x, y) dt+ d(x, y) dVt,
(1)

and a historical data set {xi := x(ti), yi = y(ti)}i=1,...,N . In (1), a and b denote, respectively, the x−component
of the drift and diffusion terms that are known, while c and d denote, respectively, the y−component of the
drift and diffusion terms that are not known. Also, Wt and Vt denote the standard (uncorrelated) Wiener
processes.

While the core of the problem is similar to that in the reduced-order modeling framework, the fact that
we have no knowledge of the full dynamics prohibits us to derive an effective equation from the first principle
as in the standard averaging theory or Mori-Zwanzig formalism. Motivated by the practical applications
where the underlying dynamics are not fully understood, instead, we will use the available historical data
to reconstruct the missing dynamical components. We should point out that the restriction of knowing
historical measurement of the irrelevant component, yi ∈ Y, can be relaxed in some cases. When {xi}i=1...,N

is the only available measurement, one can use, for example, likelihood maximum estimate [27, 33] in the
deterministic case or an adaptive Bayesian filtering [2] (when b is constant and the training data is noisy) to
extract the “identifiable” components of yi. By identifiable components, we refer to variables that depend on
y that appear in a and b, as we shall see in our numerical examples. Abusing the notation, we will denote y
as the identifiable components. We will clarify this notion in our numerical examples.

Given the pair of historical time series {xi, yi}i=1,...,N with time lag τ = ti+1 − ti, let us define zt :=
(xt−m:t,yt−n:t−1) ∈ Z with xt−m:t := (xt−m, xt−m+1, . . . , xt) and yt−n:t−1 := (yt−n, yt−m+1, . . . , yt−1) for
some integers m,n ∈ {−1, 0, . . .}. When m = −1, zt has only y components (similarly for n = 0, zt has
only x components). We should point out that we have reserved the index i for the training data and used a
different index t for an arbitrary prediction time with the same lag τ . Given these time series, our modeling
approach is to approximate the conditional expectations,

â(x, zt) := E[a(x, Y )|zt] B̂(x, zt) := E[b(x, Y )b(x, Y )>|zt], (2)

where the expectations are defined with respect to the equilibrium conditional density p(y|zt) of the random
variable Y |zt, a short hand for Y |z = zt. Here, Y |z is nothing but the stationary random variable Yt|zt.
Throughout this paper, we will not use the notation Yt|zt to avoid a potential confusion with the non-
stationary time-dependent distributions.

Given these conditional statistics, the closure model is given by

x̂t+1 = x̂t +

∫ (t+1)τ

tτ

â(x̂(s), ẑt) ds+

∫ (t+1)τ

tτ

B̂(x̂(s), ẑt)
1/2dWs, (3)

where ẑt := (x̂t−m:t, ŷt−n:t−1). To proceed the forecast at the next time step-(t+1), one needs to update ẑt+1.
This variable is obtained by concatenating the components from previous time steps, (x̂t+1−m:t+1, ŷt+1−n:t−1)
and ŷt = E[Y |ẑt] that is estimated at time t.

Notice that if the x−component is slow and the missing y−component is fast with a scale gap denoted by
a small parameter ε, the closure model in (3) is identical to the effective dynamics deduced by the averaging
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theory [22, 28, 46] when the conditional expectation in (2) is defined with respect to the invariant density of
the fast dynamics ρ∞(y; x̂t) for a fixed x̂t, if such density exists. In this specific situation (fast-slow system),
by setting ẑt = x̂t, that is m = 0, n = 0, our framework effectively closes the dynamics by averaging over
p(y|x̂t) = peq(x̂t, y)/

∫
peq(x̂t, y)dy, where peq denotes the invariant density of the full dynamics. We will show

that averaging over p(y|x̂t) is consistent with averaging over ρ∞(y; x̂t) up to order ε. In general case where
there is no separation of scales, the choice of m,n will be problem dependent. In this case, the predictive
skill of certain statistics will depend on the specific choices of zt. For example, in the linear Gaussian case
without a time-scale gap, we will show the existence of a conditional density p(y|z) which allows for Eq. (3)
to accurately estimate one-point and two-point statistics of the x-components of the full dynamics.

The main idea in this paper is to consider a nonparametric representation for p(y|z) using the theory
of kernel embedding of conditional distributions, which was introduced in the machine learning community
[48, 49]. The kernel embedding of conditional distributions [48, 49] suggests that one can represent probability
distribution as an element of a reproducing kernel Hilbert space (RKHS). In this paper, we will show that if H
is an RKHS induced by an orthonormal basis {φk : Y → R} of an appropriate L2−space, then any p(·|z) ∈ H
for any fixed z ∈ Z can be represented as p(·|z) =

∑∞
k=1 ck(z)φk(·), where the coefficients in ck will be pre-

computed using the historical data set and the kernel embedding of conditional distributions formula. Here,
the convergence of the series representation is in uniform sense. In this paper, we will consider parametric
orthonormal basis functions such as the Hermite polynomials for low-dimensional Z as well as the proper
orthogonal decomposition (POD) modes for high-dimensional Z. In the latter case, we shall see that the
resulting closure model in (3) is a parametric model that is well-known, namely the linear non-autonomous
autoregressive model. In general, the form of parametric closure models depends on the ansatz of φk as a
function of z. We should point out that one can also leave it entirely nonparametric with the data-driven
basis functions constructed by the diffusion maps algorithm as in [3, 19]. While this is theoretically sound,
the construction of data-driven basis functions requires an elaborate computational effort and is limited to
problems with intrinsically low-dimensional Y. In addition to constructing the basis, the main computational
cost arises when evaluating the estimated basis functions on new points ẑt for future-time prediction. Given
these constraints, we will not explore the data-driven nonparametric basis in this paper.

The remaining of the paper is organized as follows. In Section 2, we briefly review the theory of kernel
embedding of conditional distributions for estimating p(y|z) using an orthonormal basis representation and
discuss the proposed closure models in detail. In Section 3, we provide an intuition for choosing the density
p(y|z) by discussing missing dynamics in a linear Gaussian dynamics with and without temporal scale gaps.
In Section 4, we numerically demonstrate the proposed approach on two nonlinear high-dimensional test
problems, where m,n are small in the first example and large in the second example. In Section 5, we
conclude the paper with a brief summary and discussion. We supplement the paper with two Appendices:
Appendix A supplements Section 2 with a more detailed derivation of the kernel embedding of conditional
distributions; Appendix B shows the consistency of the proposed approach in estimating autocovariance
functions in the linear Gaussian case without the time-scale gap.

2 A nonparametric formulation of modeling missing dynamics
In this section, we first give a brief review on the kernel embedding of conditional distributions introduced
in [48, 49], formulated using an orthonormal basis of appropriate square-integrable function spaces as in
[3, 19, 52]. Subsequently, we present the proposed nonparametric modeling approach for missing dynamics.

2.1 Kernel embedding of conditional distributions
Let Y be a compact set and define K : Y × Y → R to be a kernel, which means it is symmetric positive
definite and let it be bounded. By Moore-Aronszajn theorem, there exists a unique Hilbert space H =
span{K(y, ·), ∀y ∈ Y}. Let q : Y → R be a positive weight function and {ψkq}k≥1 be a set of eigenfunctions
corresponding to eigenvalues {λk} of the following integral operator,

Kf(y) =

∫
Y
K(y, y′)f(y′)q−1(y′)dy′, f ∈ L2(Y , q−1). (4)
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We should note that {ψkq} forms an orthonormal basis of L2(Y , q−1) and by Mercer’s theorem, the kernel
K has the following representation,

K(y, y′) =
∞∑
k=1

λkψk(y)q(y)ψk(y′)q(y′). (5)

We should point out that if Y is not a compact domain such as Rn, with an exponentially decaying q, one
can construct a bounded Mercer-type kernel as in (5) with an appropriate choice of decreasing sequence {λk}
(see Lemma 3.2 in [52]) and it is a reproducing kernel corresponding to the RKHS H (see Proposition 3.4 in
[52]). This result provides a justification for the use of Hermite polynomials {ψk} with Gaussian weight q in
one of our numerical examples.

We should point out that the RKHS H induced by the Mercer-type kernel in (5) is a subspace of L2(Y , q−1)
with the reproducing property corresponding to the inner product defined as 〈f, g〉H =

∑∞
k=1

fkgk
λk

, where
fk = 〈f, ψkq〉L2(Y,q−1) and gk = 〈g, ψkq〉L2(Y,q−1). Then for any f ∈ H and y ∈ Y, we can represent,

f(y) = 〈f,K(y, ·)〉H =
∞∑
k=1

fkλkψk(y)q(y)

λk
=
∞∑
k=1

fkψk(y)q(y),

with the orthonormal basis of L2(Y , q−1) where the convergence of the series holds uniformly (or in C0(Rn)
for non-compact Y = Rn).

Let Y and Z be random variables on Y and Z, respectively, with distribution P (Y,Z). Assuming that
the conditional density p(·|z) ∈ H for any fixed z ∈ Z, we have the representation for p(·|z) in the RKHS H
of real-valued functions on Y:

p(y|z) =

∞∑
k=1

〈p(·|z), ψkq〉L2(Y,q−1)ψk(y)q(y) =

∞∑
k=1

〈p(·|z), ψk〉L2(Y)ψk(y)q(y), (6)

where the convergence of the series is in the uniform sense and the coefficients are to be determined. The
theory of kernel embedding of conditional distributions [48, 49], implemented also in [3, 19], suggests that
the coefficients can be expressed as,

〈p(·|z), ψk〉L2(Y) = EY |z[ψk(Y )] =
∞∑
l=1

[
CY ZC

−1
ZZ

]
kl
ϕl (z) , (7)

where {ϕl}l≥1 forms an orthonormal basis of L2(Z, q̂) and

[CY Z ]ks = EY Z [ψk(Y )⊗ ϕs(Z)] , [CZZ ]sl = EZZ [ϕs(Z)⊗ ϕl(Z)] .

See the detailed derivation of (7) in Appendix A. Substituting (7) to (6), we obtain,

p(y|z) =
∞∑

k,l=1

ψk (y) q(y)
[
CY ZC

−1
ZZ

]
kl
ϕl (z) . (8)

Notice that this representation can be understood as a linear regression in infinite-dimensional spaces
with respect to the basis functions ψkq and ϕl. Connecting to the notation in the introduction, ck(z) =∑∞
l=1

[
CY ZC

−1
ZZ

]
kl
ϕl (z) and φk = ψkq. The representation in (8) is nonparametric in the sense that we do

not assume any particular distribution for the density.
Given pairs of data {yi, zi}i=1,...,N , where zi := (xi−m:i,yi−n:i−1) ∈ Z, distributed according to P (Y,Z),

we can estimate these coefficients via Monte-Carlo averages:

[CY Z ]ks ≈
1

N

N∑
i=1

ψk (yi)ϕs (zi) , [CZZ ]sl ≈
1

N

N∑
i=1

ϕs (zi)ϕl (zi) . (9)

We should point out that if the weight q̂ in L2(Z, q̂) is the sampling density of the data in Z, since {ϕs} is
orthonormal under the corresponding inner product, then CZZ is an identity matrix. While a representation
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on this Hilbert space is desirable, finding the corresponding orthonormal basis for high-dimensional Z is
computationally challenging. In addition to constructing the basis, the main computational cost arises when
evaluating the estimated basis functions on new points ẑt for future-time prediction as shown in the next
section. To avoid these expensive computations, we will adopt simpler basis functions, namely the Hermite
polynomial basis for low-dimensional Z and the proper orthogonal decomposition (POD) basis for high-
dimensional Z.

2.2 Modeling the missing dynamics
Given the pre-computed conditional density in (8), the closure modeling approach proposed in (3) requires
estimating the following statistical quantities,

â(x̂, ẑt) := E[a|ẑt] :=

∫
Y
a(x̂, y)p(y|Z = ẑt) dy,

B̂(x̂, ẑt) := E[bb>|ẑt] :=

∫
Y
b(x̂, y)b(x̂, y)>p(y|Z = ẑt) dy.

(10)

In the discussion below, we will just focus on the expectation of a (the calculation of the expectation of bb>
will be similar). In our formulation, we set the weight q in the Hilbert space L2(Y , q−1) to be the sampling
density of the data in Y. In particular, substituting (8) into (10), we obtain,

E[a|ẑt] =
∞∑

k,l=1

∫
Y
a(x̂, y)ψk (y) q (y) dy

[
CY ZC

−1
ZZ

]
kl
ϕl (ẑt) =

∞∑
l=1

Al(x̂)ϕl (ẑt) , (11)

where

Al(x̂) :=
∞∑
k=1

∫
Y
a(x̂, y)ψk (y) q (y) dy

[
CY ZC

−1
ZZ

]
kl

≈ 1

N

N∑
i=1

a(x̂, yi)
∞∑
k=1

ψk(yi)
[
CY ZC

−1
ZZ

]
kl

=
1

N

N∑
i=1

a(x̂, yi)

∞∑
k=1

ψk(yi)

∞∑
s=1

[CY Z ]ks
[
C−1
ZZ

]
sl

≈ 1

N2

N∑
i,j=1

a(x̂, yi)
∞∑
k=1

ψk(yi)
∞∑
s=1

ψk (yj)ϕs (zj)
[
C−1
ZZ

]
sl

≈ 1

N

N∑
i=1

a(x̂, yi)

∞∑
s=1

ϕs (zi)
[
C−1
ZZ

]
sl

(12)

can be pre-computed. In this derivation, the second line is due to the Monte-Carlo average using data yi ∼ q,
the fourth line above used (9), and the last line is due to the truncation in the summation of the index−k
up to order N , and the fact that,

1

N

N∑
k=1

ψk (yi)ψk (yj) = δij , (13)

whenever {ψk} is orthonormal in L2(Y , q), where the weight q is exactly the sampling density of {yi}. To
see (13), define an N ×N matrix with components Aij = ψj(yi), then the orthonormality condition means
that A>A = I, where I denotes an N ×N identity matrix. Thus, (13) is the (i, j)th component of AA> = I.
Since the resulting coefficients in (12) are independent to ψk(y), in practice, we only need to choose the basis
ϕl(z).

Notice that the resulting representation in (11) arising from the proposed nonparametric formulation in
(8) is a parametric model when the summation term is truncated, where the parametric ansatz is determined
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by how ϕl depends on z. For example, when Z is low-dimensional, we will consider Hermite polynomial
basis functions for {ϕl (z)}l=1,...,L in a numerical example in Section 4.1. In this case, the resulting para-
metric model is a polynomial of degree−L and the coefficients in Al(x̂) are directly estimated via the kernel
embedding formula.

We should point out that when we use the Hermite polynomial basis, we set the weight q̂ to be Gaussian
with mean and covariance determined empirically from the training data {zi}i=1,...,N . In our numerics, we
also employ a regularization (CZZ + λI)

−1 replacing C−1
ZZ in (12), with a small parameter λ to compensate

for the conditional density that is not in H (as suggested in [48, 49]). Basically, this regularization is the
penalty of not building the appropriate RKHSs that respect the sampling distribution and geometry of the
data.

For high-dimensional Z, we will consider using the proper orthogonal decomposition (POD) as a basis for
ϕl (z). Conceptually, this choice of basis corresponds to using an empirical covariance as the kernel in (4) (see
e.g., Chapter 5 of [15] for more detailed discussion). Computationally, define a matrix Z ∈ RN×nz , where the
ith row consists of the training data, zi − z̄ ∈ Rnz , centered about its empirical mean, z̄ = 1

N

∑N
i=1 zi, such

that its row sum is zero. In this case, the function value ϕj(zi) will be determined by the (i, j)th component
of the orthonormal matrix U defined as,

U = ZV Σ−1, (14)

where Z = UΣV > is the singular value decomposition (SVD). These basis functions are called the Proper
Orthogonal Decomposition (POD) modes or a discrete version of the Karhunen-Loève basis expansion (see
e.g., Chapter 5 of [15]).

From the orthonormality of U , we have CZZ = I/N such that Eq. (11) can be further simplified to,

E (a|ẑt) =
N∑
i=1

L∑
s=1

a(x̂, yi)ϕs (zi)ϕs (ẑt) , (15)

where we used L basis functions. Suppose that a(x̂, y) = y, then Eq. (15) can be equivalently rewritten in a
matrix form as,

E (Y |ẑt) = Y >UU>new, (16)

where the matrix Y = [y1, . . . , yN ]> is N × ny with {yi}Ni=1 denoting the training data with dimension ny.
Here, the matrix Unew := (ẑt − z̄)V Σ−1 ∈ R1×L is the Nyström extension for SVD [45], whose components
approximate the basis function values at a new point ẑt, that is, Unew ≈ [ϕ1 (ẑt) , . . . , ϕL (ẑt)]. Substituting
Eq. (14) into the conditional expectation (16), we obtain

E (Y |ẑt) = Y >ZV Σ−1Σ−1>V >(ẑt − z̄)> =
(
Y >Z

) (
Z>Z

)−1

(ẑt − z̄)>. (17)

The formula in (17) is exactly a linear regression between observations {yi}Ni=1 and {zi}Ni=1. This means
that the nonparametric RKHS representation reduces to the parametric linear regression when POD bases
are used to represent functions defined on the Z space. In the case where zi := (xi−m:i,yi−n:i−1) ∈ Z,
nz = m+ n+ 1, the resulting closure model in (17) is nothing but a linear autoregressive model for variable
x with a linear non-autonomous variable y.

While the POD representation is convenient for high dimensional problems, we should point out these
basis functions may not be adequate for systems with nonlinear and/or non-Gaussian nature. In fact, we
will show in Section 4.2 that the POD basis representation is not sufficient to recover the missing terms in
a nonlinear system even when the invariant density is close to Gaussian. In this case, we will find that an
additional Gaussian white noise term can be used to compensate for the residual space (orthogonal to POD).

3 A linear Gaussian example
In this section, we provide an intuitive argument for the choice of conditional density function p(yt|zt) in
compensating the missing dynamical terms as proposed in (3). Specifically, we will build our intuition for
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choosing variables zt by studying the missing dynamics of an analytically tractable linear Gaussian problem
with and without temporal scale gaps. That is, we consider a linear multi-scale dynamical model,

dx = (a11x+ a12y) dt+ σxdWx, (18)

dy =
1

ε
(a21x+ a22y) dt+

σy√
ε
dWy, (19)

for a slow variable x ∈ R and a fast variable y ∈ R [11]. Here, Wx and Wy are independent Wiener processes.
The parameters σx, σy 6= 0 and the eigenvalues of the matrix

Aε =

(
a11 a12
1
εa21

1
εa22

)
are strictly negative, to assure the existence of a unique invariant joint density peq (x, y). The parameter
ε > 0 characterizes the time-scale separation between variables x and y. Moreover, we assume the coefficient

ã = a11 − a12a
−1
22 a21 < 0, a22 < 0, (20)

to assure that the leading-order slow dynamics supports an invariant measure ρ̂eq(x).
When there is a time-scale gap, in the limit of ε→ 0, the leading-order dynamics,

dx̂t = ax̂tdt+ σxdWx, (21)

with a = ã as defined in (20), can be obtained by averaging the slow component of the vector field, (a11x+
a12y), with respect to the invariant density ρ∞(y; x̂t) of the fast dynamics in (19) for a fixed x̂t := x̂(tτ). For
this simple example, it is clear that ρ∞(y;x) = N (−a21a

−1
22 x,−.5σ2

ya
−1
22 ). The effective equation in (21) is

deduced using the averaging theory [22, 28, 46], which approximates the density of the full dynamics as,

p(x, y, t) = ρ̂(x, t)ρ∞(y;x) +O(ε), t ≥ 0, (22)

where ρ̂(x, t) denotes the evolution density corresponding to the leading-order dynamics. First, we should
point out that when the fast dynamics for y in (19) is not available, we have no information about the
invariant density ρ∞(y;x) and we also cannot generate samples of this density. Thus, ã is not computable
since a21 and a22 are unknown.

Our proposed model in (3) for the closure is motivated by the following observation. Here, we first
provide the theoretical validity of our closure model. Taking t → ∞ in (22), the invariant density of the
full dynamics can be approximated by that of the leading-order dynamics up to order-ε, that is, peq(x, y) =
ρ̂eq(x)ρ∞(y;x) +O(ε). Therefore,

p(y|x) :=
peq(x, y)∫
Y peq(x, y) dy

=
ρ̂eq(x)ρ∞(y;x) +O(ε)

ρ̂eq(x) +O(ε)
= ρ∞(y;x) +O(ε). (23)

This equation basically suggests that one can approximate ρ∞(y;x) with the following conditional density
p(y|x). For this linear Gaussian example, one can solve the Lyapunov equation of the full system in (18)-(19)
for the equilibrium covariance matrix S = (sij)i,j=1,2 and deduce that p(y|x) = N (s21s

−1
11 x, s22− s21s

−1
11 s12).

Expanding the mean and variance statistics in terms of ε, we obtain

E[Y |x] :=

∫
Y
yp(y|x) dy = −a−1

22 a21x+O(ε),

E[Y 2|x] :=

∫
Y
y2p(y|x) dy = −

σ2
y

2a22
+O(ε),

which means that the order-ε expansion error in (23) is in the sense of the mean and variance.
Averaging the slow Eq. (18) with respect to this conditional density, p(y|x̂t), we obtain a closure model

of the form (21) with

ax̂t = ax̂t =

∫
Y

(a11x̂t + a12y) p (y|x̂t) dy =
(
a11 + a12s21s

−1
11

)
x̂t = ãx̂t +O(ε), (24)
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which means that the proposed closure obtained by averaging over p(yt|xt) is consistent (up to an order-ε
error) with the reduced model obtained from the classical averaging theory. However, in general, such an
analytical expression in (24) will not be available since we have no access to s21 and s11. Numerically,
we will approximate the conditional density, p(y|x), by applying the kernel embedding of the conditional
distributions discussed in the previous section on the training data set {xi, yi}Ni=1. In this case, it is clear
that zt = xt is the natural choice. In the remainder of this section, we will refer to this closure model as the
“RKHS p(yt|xt)".

Now we turn to the discussion of our closure model for large ε. When there is no time-scale gap, i.e.,
ε = O(1) is large, the approximation via the averaging theory is not valid, and thus, averaging over p(yt|xt)
will not work. In this case, let us consider zt = xt−m:t such that our closure model is an average over a
non-Markovian conditional density function p(yt|xt−m:t). That is,

dx̂t = (a11x̂t + a12E [Y |x̂t−m:t]) dt+ σxdWx(t), (25)

where the conditional average is evaluated at a new data point x̂t−m:t :=
(
x̂((t−m)τ ), x̂((t−m+1)τ ), . . . , x̂(tτ)

)
for the time lag interval τ > 0, resulting from the integration of (25) at previous time steps. Since the random
variables Y of yt and X of xt−m:t are both Gaussian with mean zero and covariance,

Cov
([

Y
X

]
,

[
Y
X

])
:=

[
Σ11 Σ12

Σ21 Σ22

]
, (26)

we can deduce that

E [Y |x̂t−m:t] = Σ12Σ−1
22 x̂t−m:t. (27)

When the covariance components Σ12 and Σ22 are empirically estimated from the training data, notice
that (27) is identical to the conditional expectation with respect to the kernel embedding of the conditional
distributions formulated using the POD basis in (17). More importantly, one can analytically show that
the autocovariance function (ACV) of the proposed non-Markovian model in (25) with m→∞ agrees with
the ACV of the x−component of the full model (see Appendix B for the detailed proof of this statement).
The consistency of the ACV prediction as well as the closure in (27) with the RKHS formulation in (17)
justifies the choice of zt = xt−m:t when ε is large. In the numerics below, we will verify the robustness of the
non-Markovian closure model resulted from this choice of zt in terms of the short-time prediction skill and
the long-time statistics of ACVs for any ε > 0.

In Figure 1, we compare our proposed closure model in (27) , which we will refer to as “RKHS p(yt|xt−m:t)”,
with the standard averaging model in (21) with a = ã and the RKHS p(yt|xt) as well. In this numerical
simulation, we build the closure models using the simulated data at discrete time step τ = 0.01. When ε is
small, one can observe the pathwise convergence of the solutions of the closure models to those of the full
model (18)-(19) [Fig. 1(a)]. For small ε = 0.01, the ACVs of all the closure models are in good agreement
with the ACV of the full model [Fig. 1(b)]. These results agree with the invariant manifold theory for small
ε [47]. However, when ε is large, the short-time predictions and the long-time ACVs become quite different
among the three closure models [Figs. 1(c) and (d)]. In term of short-time predictions, the closure model (25)
with m = 500 memory terms provides a slightly better RMSE than the other two closure models [Fig. 1(c)].
In term of long-time statistics, only the closure model (25) with long memory terms produces an accurate
approximation of the ACV, whereas the other two closure models do not [Fig. 1(d)]. This consistency of
ACVs can be verified explicitly as we mentioned before (see Appendix B).

The analysis over this simple example shows that the proposed modeling framework using the kernel
embedding of the conditional density formulation provides accurate short-time predictions and consistent
long-term statistical recoveries in the limit of the memory length m → ∞. This consistency is robust
whether the underlying full system has or does not have any temporal scale gap. Using this result as a
guideline, a natural extension for compensating missing components in nonlinear systems is to consider
zt := (xt−m:t,yt−n:t−1), that allows for the missing dynamical components to also depend on the history of
y in addition to that of x. In practice, the key parameters which will be determined case-by-case are the
memory length, m and n, as we shall see in the nonlinear examples in the next section.
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Figure 1: (Color online) (a) Supremum errors Esup as functions of parameters ε, where Esup ≡
E
(

sup0≤t≤40 |e (t)|2
)

with e (t) = x(t) − x̂(t). Here, x (t) are solutions of the full model (18)-(19) and
x̂ (t) are solutions of the closure models. Trajectories are averaged over 100 realizations. The parameters are
a11 = a21 = a22 = −1, a12 = 1, and σx = σy =

√
2. When ε is small, the solutions of all the closure models

are pathwise convergent nearly on the order of ε. (c) Comparison of RMSEs averaged over 1000 realizations
for large ε = 1.30 regime. Comparison of ACVs for (b) the small ε = 0.01 regime and (d) the large ε = 1.30
regime.
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4 Nonlinear examples
In this section, we study the short-time prediction and long-time statistical properties of two nonlinear
examples: the Lorenz-96 (L96) model [31] possessing a short memory effect and the truncated Burgers-Hopf
(TBH) model [39, 35, 38, 41] possessing a long memory effect.

4.1 Two-layer Lorenz-96 model
Consider the two-layer Lorenz-96 (L96) model [31],

Ẋk = Xk−1
(
Xk+1 −Xk−2

)
−Xk + F +Bk,

Ẏ j,k =
1

ε

[
Y j+1,k

(
Y j−1,k − Y j+2,k

)
− Y j,k + hyX

k
]
,

(28)

for k = 1, . . . ,K, and j = 1, . . . , J , where each relevant variable Xk is coupled to J irrelevant variables Y j,k,
and

Bk =
hx
J

J∑
j=1

Y j,k. (29)

The indices of the variables Xk and Y j,k are cyclic, Xk = Xk+K , Y j,k = Y j,k+K , Y j+J,k = Y j,k+1. The
parameters are taken to be K = 18, J = 20, F = 10, hx = −1, and hy = 1 [7]. The parameter ε characterizes
the time scale separation between the relevant component Xk and the irrelevant component Y j,k. In this
example, we will show the results for a small ε = 1/128 and a large ε = 0.5 (the large ε = 0.5 regime was
studied in [7, 8, 29, 34]). We integrate the full L96 model using a 4th-order Runge-Kutta method for 103

time units with a time step δt = 0.001. We observe the trajectories of the variables (Xk, Bk) every 10 time
steps, so that the observation time step is τ = 0.01 and the dataset contains N = 105 observation points.

In the following numerical simulations, we compare our proposed closure RKHS models with the deter-
ministic parametric formulation suggested by Wilk’s method [51]. In particular, the Wilk’s deterministic
parameterization scheme is a closure model obtained by fitting the data {(Xk

i , B
k
i )}Ni=1 with the following

polynomial,
Bk = b0 + b1X

k + b2
(
Xk
)2

+ b3
(
Xk
)3

+ b4
(
Xk
)4

+ b5
(
Xk
)5
. (30)

We should point out that if we are restricted to only observing {Xk
i }, then {Bki } are the identifiable compo-

nents that can be extracted, for example, using a likelihood maximum estimate [27, 33, 51] or an adaptive
Bayesian filtering [2], as we pointed out in the introduction. The key point is that we cannot extract the
detailed components Y j,k if the fast dynamical components in (28) are unknown and, in fact, we are not
interested in constructing a closure model by averaging over conditional density that depends directly on
Y j,k since this can be very expensive. Instead, we will consider a closure model based on averaging over the
conditional density p

(
Bkt |Xk

t

)
for small ε, where Bkt := Bk (tτ) and Xk

t := Xk (tτ). For the large ε regime, we
will consider p

(
Bkt |Xk

t , B
k
t−1

)
. While conditioning to other variables (e.g., spatial neighbors of Xk or Bk or

longer temporal history) can be considered, we do not find any meaningful improvement over the results that
are presented below. These densities will be constructed using the kernel embedding formulation discussed
in Section 2 for each k; connecting to the notation in the previous section, yt := Bkt and zt is either Xk

t or
(Xk

t , B
k
t−1). To clarify, the full problem in (30) is K +KJ = 18 + 18× 20 = 378 dimension, and the closure

model for the missing components, {Y j,k}k=1,...,K,j=1,...,J , is defined through a set of either one-dimensional
or two-dimensional conditional densities; i.e., for each k, the density takes either Xk

t or (Xk
t , B

k
t−1) as inputs.

Since these densities are low-dimensional functions with respect to the conditional variables (either Xk
t or

(Xk
t , B

k
t−1)), we will represent the kernel embedding formula in (8) using the Hermite polynomials, expansion

truncated at order L = 50 for each memory term.
To validate the proposed approach, we compare the short-time predictions and long-time statistics of the

Xk-components between the full model and the closure models. Particularly, we compare several standard
long-time statistical quantities as in [7, 33]:

• The probability density function (PDF) for Xk.

• The autocorrelation function (ACF) for Xk,
〈
Xk
t X

k
0

〉
/
〈
Xk

0X
k
0

〉
, where 〈·〉 denotes the temporal average

over N = 105 data points.
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Figure 2: (Color online) Long-time statistics and short-time predictions for the small ε = 1/128 regime of
the L96 model. (a) The yellow dots are the scatter plot of Bk vs. Xk for the full L96 model. The black dots
are the fifth-order polynomial fit used for the deterministic parametrization of Bk using Wilks’s method [51].
The green squares are the closure model using the conditional density p

(
Bkt |Xk

t

)
. Comparison of (b) PDFs

and (c) ACFs among the full L96 model and the closure models. (d) Comparison of RMSEs from ensemble
averages. The number of ensembles is 1000 where each ensemble corresponds to an initial state.
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• The cross-correlation function (CCF) between Xk and Xk+1,
〈
Xk
t X

k+1
0

〉
/
〈
Xk

0X
k
0

〉
.

• The mean wave amplitude 〈|um|〉, for m = 0, . . . ,K/2, where um is the Fourier transform of Xk.

• The wave variance
〈
|um − 〈um〉|2

〉
.

For the PDFs, ACFs, and CCFs, we plot the average over all k = 1, . . . ,K. For small ε = 1/128, we only
show the results for the PDFs and ACFs. To assess the short-time prediction skill, we calculate the root-
mean-square error (RMSE) and the anomaly correlation (ANCR), where the RMSE measures the difference
between the true trajectory and the forecast trajectory whereas the ANCR measures the correlation between
them [7]. The definitions of RMSE and ANCR are the same as those in [7]. We take the average using the
data from 1000 different ensembles, each starting from a different initial state over five time units.

We first report the small ε = 1/128 regime of the L96 model. Figure 2(a) displays the scatter plot of Bkt
vs. Xk

t for the full L96 model, the polynomial fit (30) for the deterministic parametrization of Bk (Wilks’s
method), and the expectation E

[
Bkt |Xk

t

]
using the RKHS representation (method referred to as the RKHS

p
(
Bkt |Xk

t

)
). For long-time statistics, one can see from Figs. 2(b) and 2(c) that the PDFs and ACFs for Xk

can be well reproduced by both closure models. For short-time predictions, one can see from Fig. 2(d) that
the RKHS p

(
Bkt |Xk

t

)
provides a better approximation of the trajectory compare to the Wilks’s deterministic

parametrization scheme. These results can be expected due to the validity of the classical averaging theory
on dynamical systems with time-scale separation (small ε regime) [47].

We now report the L96 model for the large ε = 0.5 regime in which there is no significant time-scale
separation between the relevant, Xk, and irrelevant variables, Bk. By comparing Fig. 2(a) and 3(a), one
can see that the patterns of the scatter plots differ substantially between the small and large ε regimes.
Specifically, the scatter plot for the large ε regime is much broader in Bk direction compare to that for the
small ε regime. This indicates that when ε is small, the irrelevant (fast) variable significantly relies on the
relevant (slow) variable. When ε becomes large, such dependence of irrelevant variable Bk on the relevant
variable Xk reduces.

For large ε = 0.5, one can observe from Fig. 3(a) that the RKHS representation of E
[
Bkt |Xk

t , B
k
t−1

]
can nearly reproduce the scatter plot of the full model, whereas the Wilks’s deterministic parametrization
scheme and the RKHS representation E

[
Bkt |Xk

t

]
cannot. The PDFs for Xk of the full model can be re-

produced by all the closure models [Fig. 3(b)]. For the other long-time statistics, ACFs, CCFs, mean wave
amplitudes, and wave variances can be well reproduced only by the closure model using the conditional
density p

(
Bkt |Xk

t , B
k
t−1

)
[Figs. 3(c)(d)(e)(f)]. Notice also the significant improvement in terms of short-time

predictions using the RKHS p
(
Bkt |Xk

t , B
k
t−1

)
(smaller RMSE and higher ANCR) over the Wilks’s method

and the RKHS p
(
Bkt |Xk

t

)
as shown in Fig. 4.

To determine the reliability of the ensemble forecasts, we also calculate the rank histograms from an
ensemble of integrations [14]. A rank histogram is obtained by repeatedly tallying the rank of the true
observation relative to the sorted Nens-member ensemble [14]. We use the same method as in [7]. For
every initial state Xk

t0 , we do Nens integrations of the closure models over the lead T time units starting
from the Xk

t0 plus a small random perturbation. The random perturbations are Gaussian distribution with
mean zeros and standard deviation 0.15. We sort the Nens + 1 values for Xk

t for each grid point k and
time t from the ensemble members and the full L96 model. Figure 5 displays the rank histograms for all
the closure models with Nens = 9 at lead time T = 2. An ideal rank histogram is flat. One can see that
the rank histogram by the RKHS p

(
Bkt |Xk

t , B
k
t−1

)
is close to be flat, whereas rank histograms by Wilks’s

deterministic parametrization scheme and the RKHS p
(
Bkt |Xk

t

)
exhibit U-shape distributions. Therefore,

the closure model with p
(
Bkt |Xk

t , B
k
t−1

)
performs better than the other two closure models.

4.2 The truncated Burgers-Hopf (TBH) model
Consider the truncated Burgers-Hopf (TBH) model [39, 35, 38, 41], which is described by a system of quadratic
nonlinear equations for the complex Fourier modes, uk, with u−k = (uk)∗ for 1 ≤ |k| ≤ Λ,

duk

dt
= − ik

2

∑
k+p+q=0

1≤|p|,|q|≤Λ

(up)∗(uq)∗. (31)
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Figure 3: (Color online) Long-time statistics and short-time predictions for the large ε = 0.5 regime of the
L96 model. (a) The yellow dots are the scatter plot of Bk vs. Xk for the full L96 model. The green squares
are the fifth-order polynomial fit using Wilks’s method [51]. The red asterisks and black crosses correspond to
the closure models using the conditional densitys p

(
Bkt |Xk

t

)
and p

(
Bkt |Xk

t , B
k
t−1

)
, respectively. Comparison

of (b) PDFs, (c) ACFs, (d) CCFs, (e) mean wave amplitudes, and (f) wave variances among the full model
and closure models.
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Figure 4: (Color online) Comparison of (a) RMSEs and (b) ANCRs for the large ε = 0.5 regime. The number
of ensembles is 1000 where each ensemble corresponds to an initial state.
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Figure 5: (Color online) Rank histograms for closure models with ensemble members Nens = 9 at lead
time T = 2. Ideally, the rank histogram is nearly flat. The rank histogram of the closure model using
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)
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This model is a Galerkin truncation of the inviscid Burgers equation on Fourier modes and we should
point out that the dynamics of the truncated system is totally different from the inviscid Burgers equation.
Particularly, the TBH exhibits intrinsic stochastic dynamics with ergodic behavior in a large deterministic
system [39, 35, 38, 41]. We are interested in estimating the TBH model’s first Fourier mode given only the
dynamical component of this mode,

du1

dt
= −i(u1)∗u2 + F, (32)

where u2 denotes the second Fourier mode and F denotes the forcing component obtained by subtracting
−i(u1)∗u2 from the right hand side of Eq. (31), that is,

F = − i

2

∑
1+p+q=0

2≤|p|,|q|≤Λ

(up)∗(uq)∗. (33)

While u2 and F may be identifiable from observing u1 alone, in our experiment below, we assume that we
are given the data set of {u1

i , u
2
i , Fi}Ni=1. We should point out that this model has an equipartition energy,

that is, all of the Fourier modes in TBH have the same variances, and the first Fourier mode (which is of our
interest) possesses the longest autocorrelation time and the largest statistical memory [40], which makes this
example a tough test problem.

To compensate for the missing dynamics in (32), we substitute the irrelevant variables u2 and F with their
conditional expectations. In this case, the closure model involves p(y|xt−m:t−1,yt−n:t−1), where the irrelevant
variable y is one of {u2,Re, u2,Im, FRe, F Im}, and the relevant variable x is one of {u1,Re, u1,Im} such that y and
x are both real or both imaginary parts. In particular, we employ the RKHS formulation to construct four con-
ditional densities: p(u2,Re

t |u1,Re
t−m:t−1,u

2,Re
t−n:t−1), p(u2,Im

t |u1,Im
t−m:t−1,u

2,Im
t−n:t−1), p(FRe

t |u
1,Re
t−m:t−1,F

Re
t−n:t−1), and

p(F Im
t |u

1,Im
t−m:t−1,F

Im
t−n:t−1). For the forcing F , an additional Gaussian noise term is added to compensate for

the residual space. Since the conditional states are high-dimensional (when m,n are large), the conditional
expectations over these densities are represented using the POD bases as in (17).

To conduct this numerical experiment, the training dataset is generated from the full TBH model (31),
where F is calculated by Eq. (33). We integrate the full TBH model for 104 time units with time step
∆t = 10−3. We store the data at every 0.01 time unit and thereafter the dataset contains 106 points for
all uk. We compare the results generated by the full TBH model (31) and the closure models, resulted by
averaging the partial dynamics in (32) over the pre-trained conditional densities. In this example, we consider
the full TBH model (31) in a high-energy regime with β = 10 and Λ = 50 as in [41]. Here, Λ denotes number
of modes in Eq. (31) and β = Λ/E with E being the mean energy per mode. Here, the full dynamics in
(31) has 50-dimensional complex variables and the four conditional densities (in previous paragraph) are
proposed as the closure model for the dynamics of the missing components, {u2, . . . , uΛ}. Each of the four
conditional densities above is a real-valued function that takes m+n dimensional variables. In our numerical
experiments, we will take m+ n ≥ 20.

We compare three closure models of (32) with different memory terms m and n and different temporal
steps τ = 0.01 or 0.1. Figure 6 displays long-time statistics and short-time predictions for these closure
models. One can see from Figs. 6(a)(b)(c)(d) that the long-time statistics can be well reproduced by the
proposed closure models of (32) when the irrelevant variables have long memory terms, that is, n is large
enough. In terms of short-time predictions, all three closure models exhibit comparable results for RMSEs
and ANCRs where the errors saturate at about the time when the autocovariance function diminishes [Figs.
6(e) and 6(f)]. The fact that the two choices of m,n, τ (m = n = 20, τ = 0.1 and m = n = 200, τ = 0.01),
corresponding to the two models with the same memory length nτ = 2 time units, produce comparable results
(see the red dash-dotted and black dashed curves in Fig. 6) suggests that the temporal step τ does not affect
the inference. Thus it is more economical to use the model with smaller n (and possibly coarser time lag τ)
that gives the same accuracy. Finally, we should also point out that if the memory length nτ (in unit time)
is small, the estimates become less accurate. Therefore, for this difficult test problem involving observations
of the first Fourier mode of the TBH model, the proposed closure model can replicate the long-time statistics
accurately and produce reasonable short-time prediction skills when there are long enough memory terms.
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Figure 6: (Color online) Long-time statistics and short-time predictions for the TBH model. Comparison
of PDFs of (a) u1,Re and (b) u1,Im. Comparison of ACVs of (c) u1,Re and (d) u1,Im. Comparison of (e)
RMSEs and (f) ANCRs. The closure models use the conditional density p(y|xt−m:t−1,yt−n:t−1) with different
observation time step τ and number of memory terms m and n [see text].
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5 Summary and discussion
In this paper, we considered a data-driven nonparametric model for capturing the missing dynamics in
the context of systems of ergodic SDE’s and ODE’s. The non-Markovian closure model is formulated as an
averaging over an equilibrium conditional density function, p(yt|xt−m:t,yt−n:t−1), that is approximated using
the kernel embedding of conditional distribution formulation. In particular, we considered a representation of
the conditional density on RKHS induced by an orthonormal basis of appropriate weighted Hilbert space. A
thorough investigation of the modeling framework on a linear Gaussian problem shows the consistency with
the classical averaging theory for fast-slow systems and justifies our use of long non-Markovian memory terms
to obtain accurate two-point statistical predictions in the case of no temporal scale separation. Numerical
simulations on nonlinear problems demonstrate the robustness of the framework in producing accurate short-
term predictions as well as to recover two-point statistics even when the missing terms are high-dimensional
and have no separation of scales.

Modeling of missing dynamics with parametric models (or closure) has a long history as we noted in the
introduction. Practically, such modeling paradigm requires modeler to choose the parametric model (ansatz)
and fit the proposed model to the data to estimate the parameters in the ansatz. The choice of the parametric
model is typically problem specific. When the underlying full system is known, one can deduce the model
from the first principle. For example, one can apply the Mori-Zwanzig formalism to deduce such parametric
model (see e.g., [4, 5, 17, 25]) and then use various mathematical tools to estimate the memory integral terms
as well as the parameters in the reduced model, which remains challenging if the resulting closure model is
nonlinear or contains high-dimensional parameters. For example, when a rational approximation is used as
a model for the memory kernel [30], while the parameters can be identified from derivatives of the kernel, it
requires the availability of highly accurate time series (in the sense of accurate several order of derivatives)
which is rare in practice.

In this paper, the proposed nonparametric formulation discovered some of the well-known parametric
models, including the non-autonomous autoregressive linear models. An important feature of the proposed
nonparametric framework in this paper is that it translates the problem of choosing parametric model into
choosing the memory length m,n and constructing orthonormal basis of a weighted Hilbert space of functions
that take values on z ∈ Z. For the memory length, our experience suggests that we can use the decaying time
scale of processes x and y as a guideline. While the natural candidate of model is a representation on a Hilbert
space spanned by the orthonormal basis of functions that respect the geometry and sampling density of the
data as in [19], constructing such a basis is computationally challenging especially if Z is high-dimensional.
In addition to the difficulty in the basis construction, the main computational cost arises as we evaluate the
estimated basis functions on new points for future-time prediction. For very low-dimensional Z, our numerical
results suggest that we can avoid all of this practical issue with classical polynomial basis functions. In this
case, the form of parametric model is polynomial functions. For very high-dimensional Z, we showed the
effectiveness of using the POD basis for representing linear problems. In nonlinear problems, we found that
in some case, additional noise terms can be used to compensate for the orthogonal components that are
not represented by the POD bases. In this case, the resulting parametric model is a linear non-autonomous
autoregressive model. The second important feature is that the proposed nonparametric framework provides
a linear technique for estimating the parameters in the resulting parametric models regardless of whether
they are linear or nonlinear. This important feature is inherited from the kernel embedding formulation that
allows one to “gain” linearity by representing nonlinear functions of a finite dimensional space Z with a basis
of functions of infinite dimensional linear space. To summarize, the proposed framework and the results in
this study suggest that one can understand the parametric modeling paradigm from a unified framework using
appropriate Reproducing Kernel Hilbert Spaces. Such realization lies on the interpretation of the Mercer’s
type kernels in (5). While the so-called kernel “trick” uses Mercer kernels to avoid the evaluation of inner
product in feature space, our view point is to use the Mercer kernels to construct the parametric model of
interest by an appropriate choice of finite number of basis functions. Thus, this framework turns the problem
of finding the right closure model into a problem of constructing a complete basis of the Hilbert space induced
by the data, which remains challenging in general.

Finally, we should also point out that the modeling framework introduced here can also be realized
with any supervised learning algorithm other than the kernel embedding discussed here. In a separate
report, [16], we found that the closure modeling framework introduced here is effective for high-dimensional
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nonlinear problems when it is realized with the Long-Short-Term-Memory (a special class of Recurrent Neural
Network).
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A Kernel mean embedding of conditional distributions
The purpose of this review is to verify Eq. (7). While the derivation here follows closely the description in
[49, 48], we taylor the discussion here for Mercer-type kernels induced by orthonormal basis of L2-spaces.
Some of the basic theory of RKHS can be found in many texts, such as [6].

First, let us repeat the discussion in Section 2.1 on Z. Let Z be a compact set and define K̂ : Z ×Z → R
to be a kernel, which means it is symmetric positive definite and let it be bounded. By Moore-Aronszajn
theorem, there exists a unique Hilbert space HZ = span{K̂(z, ·), ∀z ∈ Z}. Let q̂ : Z → R be a positive
weight function and {ϕk}k≥1 be a set of eigenfunctions corresponding to eigenvalues {ξk} of the following
integral operator K̂ : L2(Z, q̂)→ L2(Z, q̂), defined as,

K̂f(z) :=

∫
Z
K̂(z, z′)f(z′)q̂(z′)dz′. (34)

By Mercer’s theorem, the kernel K̂ has the following representation,

K̂(z, z′) =
∞∑
k=1

ξkϕk(z)ϕk(z′). (35)

We should point out that if Z is not a compact domain such as Rn, with an exponentially decaying q̂, one
can construct a bounded Mercer-type kernel as in (35) with an appropriate choice of decreasing sequence
{ξk} (see Lemma 3.2 in [52]) and it is a reproducing kernel corresponding to the RKHS HZ (see Proposition
3.4 in [52]).

In this case, the RKHS HZ induced by the Mercer-type kernel in (35) is a subspace of L2(Z, q̂) with the
reproducing property corresponding to an inner product defined as 〈f, g〉HZ

=
∑∞
k=1

fkgk
ξk

, for all f, g ∈ HZ
where fk = 〈f, ϕk〉L2(Z,q̂) and gk = 〈g, ϕk〉L2(Z,q̂) . Then for any f ∈ HZ and z ∈ Z, we can represent

f(z) = 〈f, K̂(z, ·)〉HZ
=

∞∑
k=1

fkξkϕk(z)

ξk
=
∞∑
k=1

fkϕk(z), (36)

with basis of L2(Z, q̂), where the convergence of the series holds uniformly (or in C0(Rn) for non-compact
Z = Rn).

We called the Hilbert space of functions, HZ , as an RKHS induced by the orthonormal basis of L2(Z, q̂).
While we have discussed H as an RKHS induced by the orthonormal basis of L2(Y , q−1) in Section 2.1, we
can also repeat the argument above and construct HY as an RKHS induced by the orthonormal basis of
L2(Y , q). In this case, recall that while {ψkq} are orthogonal eigenbasis of the integral operator in (4), the
orthogonal basis ψk ∈ L2(Y , q) are eigenfunctions of an adjoint integral operator of (4). That is, one can
verify that

〈ψkq,K∗ψk〉L2(Y) = 〈K(ψkq), ψk〉L2(Y) = λk〈ψkq, ψk〉L2(Y), (37)
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where for f ∈ L2(Y , q),

K∗f(x) :=

∫
Y
K∗(x, y)f(y)q(y) dy,

and K∗(x, y) = q(x)−1K(x, y)q−1(y) is also a symmetric positive definite kernel. By Mercer’s theorem, one
can write

K∗(y, y′) =
∞∑
k=1

λkψk(y)ψk(y′). (38)

Let Y and Z be random variables on Y and Z with distribution P (Y,Z), we define the cross-covariance
operators, CY Z : HZ → HY and CZZ : HZ → HZ as,

CY Z := EY Z [K∗(Y, ·)⊗ K̂(Z, ·)],
CZZ := EZ [K̂(Z, ·)⊗ K̂(Z, ·)].

(39)

One can immediately see that for any f ∈ HY and g ∈ HZ ,

EY Z [f(Y )⊗ g(Z)] =

∫
Y×Z

f(y)g(z)dP (y, z) =

∫
Y×Z
〈f,K∗(y, ·)〉HY

〈g, K̂(z, ·)〉HZ
dP (y, z)

=

∫
Y×Z
〈f ⊗ g,K∗(y, ·)⊗ K̂(z, ·)〉HY ⊗HZ

dP (y, z) = 〈f ⊗ g, CY Z〉HY ⊗HZ
. (40)

Let us define feature maps Ψ : Y → FY ⊂ `2 and Φ : Z → FZ ⊂ `2, respectively,

Ψ(y) = (
√
λ1ψ1(y),

√
λ2ψ2(y), . . .),

Φ(z) = (
√
ξ1ϕ1(z),

√
ξ2ϕ2(z), . . .).

(41)

Then we can write

K̂(z, z′) = 〈Φ(z),Φ(z′)〉`2 = 〈K̂(z, ·), K̂(z′, ·)〉HZ
,

K∗(y, y′) = 〈Ψ(y),Ψ(y′)〉`2 = 〈K∗(y, ·),K∗(y′, ·)〉HY
,

where the inner products in HZ and HY can be identified by `2 inner products in the corresponding feature
spaces. Also, for any function f ∈ HZ and z ∈ Z, we can rewrite the expansion in (36) as,

f(z) = 〈f, K̂(z, ·)〉HZ
=
∞∑
k=1

〈f, ϕk〉L2(Z,q̂)ϕk(z) =
∞∑
k=1

〈f, ϕk〉L2(Z,q̂)√
ξk

Φk(z) =
∞∑
k=1

〈f,Φk〉HZ
Φk(z), (42)

where we have defined the functions Φk =
√
ξkϕk ∈ HZ . For convenience of the discussion below, we also

define the functions Ψk :=
√
λkψk ∈ HY .

Using the identity in (40), we can represent the cross-operators in (39) on the basis coordinates Ψk ∈ HY
and Φ` ∈ HZ as follows:

[CY Z ]k` := EY Z [Ψk(Y )⊗ Φ`(Z)] = 〈Ψk ⊗ Φ`, CY Z〉HY ⊗HZ
,

[CZZ ]k` := EZZ [Φk(Z)⊗ Φ`(Z)] = 〈Φk ⊗ Φ`, CZZ〉HZ⊗HZ
= 〈Φk, CZZΦ`〉HZ

.
(43)

Thus, the components of the following matrix multiplication are given as,[
CY ZC

−1
ZZ

]
k`

=
∑
j

[CY Z ]kj
[
C−1
ZZ

]
j`

=
∑
j

〈Ψk ⊗ Φj , CY Z〉HY ⊗HZ
〈Φj , C−1

ZZΦ`〉HZ

=

〈
CY Z ,Ψk ⊗

∑
j

〈Φj , C−1
ZZΦ`〉HZΦj

〉
HY ⊗HZ

=
〈
CY Z ,Ψk ⊗ C−1

ZZΦ`
〉
HY ⊗HZ

=
〈
CY ZC−1

ZZ ,Ψk ⊗ Φ`
〉
HY ⊗HZ

=
〈
CY ZC−1

ZZΦ`,Ψk

〉
HY

. (44)
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To clarify this derivation, the second equality used the definition in (43), the fourth line used the fact that
C−1
ZZΨ` ∈ HZ can be expanded as in (42), and the rest of the lines used the standard tensor identity.
The theory of kernel mean embedding of conditional distributions (see [49, 48]) suggests that,

EY |z[Ψk(Y )] = 〈Ψk, CY ZC−1
ZZK̂(z, ·)〉HY

. (45)

Since K̂(z, ·) ∈ HZ , we can employ the expansion in (42) and deduce,

EY |z[Ψk(Y )] = 〈Ψk, CY ZC−1
ZZ

∞∑
j=1

〈K̂(z, ·), ϕj〉L2(Z,q̂)√
ξj

Φj〉HY

=
∞∑
j=1

〈K̂(z, ·), ϕj〉L2(Z,q̂)√
ξj

〈Ψk, CY ZC−1
ZZΦj〉HY

=
∞∑
j=1

1√
ξj

[
CY ZC

−1
ZZ

]
kj

∫
Z
K̂(z, z′)ϕj(z

′)q̂(z′) dz′

=
∞∑
j=1

[
CY ZC

−1
ZZ

]
kj

Φj(z), (46)

where we have used (44) to deduce the third equality above and used the fact that ϕj and ξj are eigenfunction
and eigenvalue of the integral operator in (34). Define,

[CY Z ]ks = EY Z [ψk(Y )⊗ ϕs(Z)] , [CZZ ]sl = EZZ [ϕs(Z)⊗ ϕl(Z)] ,

then from (43) and the definitions of the corresponding feature maps in (41),

[CY Z ]ks =
√
λkξs [CY Z ]ks , [CZZ ]sl =

√
ξsξl [CZZ ]sl ,

[
CY ZC

−1
ZZ

]
k`

=

√
λk√
ξl

[
CY ZC

−1
ZZ

]
k`
.

Substituting the third equation above to (46) and using the definitions of the feature maps in (41), we obtain

EY |z[ψk(Y )] =
1√
λk

∞∑
j=1

[
CY ZC

−1
ZZ

]
kj

Φj(z) =
∞∑
j=1

[
CY ZC

−1
ZZ

]
kj
ϕj(z),

which is exactly the claim in (7).

B ACV of the multi-scale linear Gaussian model
The full model (18)-(19) can be rewritten as

ẋ = (a11x+ a12y) + σxξx, (47)

ẏ =
1

ε
(a21x+ a22y) +

σy√
ε
ξy,

where ξx and ξy are independent standard Gaussian noises. Similarly, the closure model (25) can be rewritten
as

ẋt =
(
a11xt + a12Σ12Σ−1

22 x
)

+ σxξx, (48)

where x := xt−m:t = [xt−m, xt−m+1, . . . , xt]
> and Σ12 and Σ22 are defined in Eq. (26). To simplify the

notation, we drop the time indices t−m : t. We also drop the “hat"-notation in xt and xt since we will use it
to denote the Fourier coefficient in this section. In this Appendix, we prove that the autocovariance (ACV)
function of the closure model (48) is approximately equal to that of the full model (47) for any value of ε.

The Fourier transform and inverse Fourier transform is defined as

f̂ (ω) =

∫
f (t) e−iωtdt, f (t) =

1

2π

∫
f̂ (ω) eiωtdω.
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The Fourier transforms of variables x and y of the full model (47) can be obtained as

x̂ =

(
iω − 1

εa22

)
σxξ̂x + a12

σy√
ε
ξ̂y

(iω − a11)
(
iω − 1

εa22

)
− a12

1
εa21

, (49)

ŷ =
(iω − a11)

σy√
ε
ξ̂y + 1

εa21σxξ̂x

(iω − a11)
(
iω − 1

εa22

)
− a12

1
εa21

. (50)

Then, for the full model (47), the resulting spectrum of x is

|x̂ (ω)|2 =

(
ω2 + c20

)
σ2
x

∣∣∣ξ̂x∣∣∣2 + d2
0σ

2
y

∣∣∣ξ̂y∣∣∣2
(−ω2 + ω2

0)
2

+ γ2
0ω

2
,

where

c0 =
a22

ε
, d0 =

a12√
ε
, ω0 =

√
1

ε
(a11a22 − a12a21),

γ0 = a11 +
1

ε
a22,

∣∣∣ξ̂x∣∣∣2 = 1,
∣∣∣ξ̂y∣∣∣2 = 1.

Now we compute the Fourier transform of the closure model (48),

iωX̂ = a11X̂ + a12Σ12Σ−1
22


1

e−iωτ

...
e−iωmτ

 X̂ + σxξ̂x, (51)

where X̂ is the Fourier transform of xt in Eq. (48). We need to simplify the quantity
Σ12Σ−1

22

[
1 e−iωτ · · · e−iωmτ

]> in Eq. (51). Let S = Σ12Σ−1
22 be the 1 × (m+ 1) vector with compo-

nents denoted by S [n] for n = 0, . . . ,m. Then, we can write

Σ12Σ−1
22


1

e−iωτ

...
e−iωmτ

 = S


1

e−iωτ

...
e−iωmτ

 =
m∑
n=0

S [n] e−iωnτ := Ŝm (ω) , (52)

which is nothing but the discrete Fourier transform of S. Notice that, for any n = 0, . . . ,m,

m∑
k=0

S [k] γxx,m [n− k] =

m∑
k=0

S [k] Σ22 [k, n] = Σ12 [n] = γxy,m [n] (53)

where the first equality is due to the fact that the process is stationary such that Σ22[k, n] = γxx,m[n−k], the
second equality is due to SΣ22 = Σ12, and the last equality is by the definition of the covariance function.
By the discrete convolution theorem, we have

Ŝm (ω) γ̂xx,m (ω) = γ̂xy,m (ω) , (54)

where γ̂xx,m and γ̂xy,m are the discrete Fourier transforms of γxx,m and γxy,m, respectively. Substituting
Ŝm (ω) in Eq. (54) into Eq. (52), we obtain

Σ12Σ−1
22


1

e−iωδt

...
e−iωmδt

 =
γ̂xy,m (ω)

γ̂xx,m (ω)
−→ γ̂xy (ω)

γ̂xy (ω)
, as m→∞, (55)
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where γ̂xx and γ̂xy denote the Fourier transform of the covariance functions γxx and γxy.
Substituting the limiting case of Eq. (55) into Eq. (51), we can simplify the Fourier transform of the

closure model as follows,

iωX̂ = a11X̂ + a12
γ̂xy (ω)

γ̂xx (ω)
X̂ + σxξ̂x. (56)

Moreover, based on the Wiener-Khinchin theorem and the cross-correlation theorem, we can further simplify
Eq. (56) as

iωX̂ = a11X̂ + a12
ŷ

x̂
X̂ + σxξ̂x. (57)

Substituting Eqs. (49) and (50) into above Eq. (57), we obtain the Fourier transform of the relevant variable,
X̂, of the closure model,

X̂ =

(
iω − 1

εa22

)
σxξ̂x + a12

σy√
ε
ξ̂y

(iω − a11)
(
iω − 1

εa22

)
− a12

1
εa21

, (58)

which is the same as the x̂ of the full model in Eq. (49). Therefore, the ACV of the closure model (48) is
consistent with that of the full model (47) in the limit of m→∞. In the numerics, the error comes from the
truncation of finite number of memory terms in Eq. (52).
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