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Abstract

Integral field spectroscopy can map astronomical objects spatially and spectroscopically. Due to instrumental and
atmospheric effects, it is common for integral field instruments to yield a sampling of the sky image that is both
irregular and wavelength dependent. Most subsequent analysis procedures require a regular, wavelength-
independent sampling (for example a fixed rectangular grid), and thus an initial step of fundamental importance is
to resample the data onto a new grid. The best possible resampling would produce a well-sampled image, with a
resolution equal to that imposed by the intrinsic spatial resolution of the instrument, telescope, and atmosphere, and
with no statistical correlations between neighboring pixels. A standard method in the field to produce a regular set
of samples from an irregular set of samples is Shepard’s method, but Shepard’s method typically yields images
with a degraded resolution and large statistical correlations between pixels. Here we introduce a new method,
which improves on Shepard’s method in both these respects. We apply this method to data from the Mapping
Nearby Galaxies at Apache Point Observatory survey, part of Sloan Digital Sky Survey IV, demonstrating a full
width at half maximum close to that of the intrinsic spatial resolution (and ∼16% better than Shepard’s method)
and low statistical correlations between pixels. These results nearly achieve the ideal resampling. This method can
have broader applications to other integral field data sets and to other astronomical data sets (such as dithered
images) with irregular sampling.

Unified Astronomy Thesaurus concepts: Observational astronomy (1145); Galaxies (573); Astronomy data
reduction (1861); Spectroscopy (1558)

1. Introduction

Integral field spectroscopy (IFS) yields a rich set of
information about extended objects such as galaxies. Modern
facilities for performing IFS include the Multi Unit Spectro-
scopic Explorer (Laurent et al. 2006), the Keck Cosmic Web
Imager (Morrissey et al. 2012), and several efforts to create
large samples of nearby galaxies, such as the Calar Alto Legacy
Integral Field Area Survey (CALIFA; Sánchez et al. 2012), the
Sydney-AAO Multi-object IFS (SAMI; Croom et al. 2012) and
Mapping Nearby Galaxies at Apache Point Observatory
(MaNGA; Bundy et al. 2015).

Here, we consider the MaNGA survey, one of three core
programs in the fourth-generation Sloan Digital Sky Survey
(SDSS-IV; Blanton et al. 2017). MaNGA uses integral field
units (IFUs) consisting of optical fiber bundles to obtain spectra
across the face of a sample of 10,000 low redshift galaxies,
making it possible to map the spectroscopic properties of
galaxies and to interpret this spectroscopy in terms of two-
dimensional maps of stellar age, gas phase and stellar phase
elemental abundances, star formation histories, and kinematics.

The MaNGA fiber bundles are arranged in a hexagonal grid
with a separation of 151 μm. Each fiber has a cladding and
buffer in its outer annulus and has an active core size of
120 μm, corresponding to 2″ in the Sloan Foundation
Telescope focal plane. This configuration results in an effective
filling factor for the active cores of 56% (Law et al. 2015). With
a typical seeing FWHM of 1 5 at Apache Point Observatory
(APO), a single observation undersamples the sky image
considerably. Thus, to increase the sampling of the point-
spread function (PSF) and to avoid sampling irregularities,
MaNGA uses dithered observations. Ideally, each observation

consists of three dithered exposures, performing a set of
subsequent exposures on each side of an equilateral triangle.
This pattern of observations leads to a finer, but still hexagonal,
pattern on the sky at the guiding wavelength. In the ideal case
when all observations are taken at the same hour angle, the
dithers produce a hexagonal pattern at all wavelengths, with an
overall wavelength-dependent shift of the hexagonal pattern on
the sky due to chromatic differential refraction by the
atmosphere. If the observations are taken at different hour
angles, the set of dithers will not produce a perfect hexagonal
pattern of samples at all wavelengths. Thus, generally speak-
ing, the MaNGA data produce an irregular sampling of fluxes
on the sky that varies with wavelength.
Most analysis techniques are designed to handle regular,

usually rectangular, grids. Except for analyses involving a full
“forward modeling” of the MaNGA data, resampling the fluxes
onto such a regular grid spatially is important. The resulting
product is referred to as a data cube. These data cubes are the
primary product of the MaNGA data reduction pipeline (DRP;
Law et al. 2016). The DRP extracts the individual fiber spectra
and calibrates them, producing row-stacked spectra (RSS)—
one spectrum per fiber all interpolated onto the same
wavelength grid. At each wavelength, MaNGA then uses a
modified version of Shepard’s method (Shepard 1968) to
resample the RSS data for that wavelength onto a rectangular
grid. This method, which is a flux-conserving variation of
Shepard’s interpolation method, is widely adopted because of
its simplicity and robustness (Yang et al. 2004), for example in
the CALIFA pipeline (e.g., Sánchez et al. 2012).
In this paper we reconsider this choice of resampling method

and propose an alternative. Before beginning, we ask: what is
the best performance we should expect from a resampling
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algorithm? Here we define this “best performance” as being
equivalent to actually sampling the real sky with the real
instrument at the location of every grid point in the desired
resampling. This process would produce an image with a
resolution equivalent to the intrinsic spatial resolution of the
instrument, telescope, and atmosphere, and zero statistical
correlations between the errors in each pixel. This definition
means we are not attempting to deconvolve the intrinsic
resolution—but to resample with as little loss of resolution or
introduction of statistical correlations as possible.

Relative to this ideal, Shepard’s method suffers two
problems. First, it broadens the final reconstructed PSF
substantially. In the cases we consider in this paper, the
FWHM of the final PSF can be 20% broader than the intrinsic
resolution. Second, the errors in pixels in the reconstruction are
highly correlated with each other. In the cases we consider in
this paper, for Shepard’s method pixels separated by ∼2
spaxels (1″) can have correlation coefficients between their
errors as high as 0.70, complicating any correct analysis of the
images that accounts for errors. These deficiencies drive us to
find a way to improve the performance of the resampling.

To do so, we make use of the techniques developed in
different contexts by Hamilton (1997); (for decorrelation of
galaxy power spectra) and Bolton & Schlegel (2010); (for
decorrelation of extraction of optical spectra). The latter term
their method “spectroperfectionism,” alluding to the fact that
they are performing a spectroscopic extraction. However, we
prefer the name “covariance-regularized reconstruction” as
more generally applicable, since the approach of Bolton &
Schlegel (2010) is appropriate for a number of other contexts
beyond spectroscopic extraction or (as applied here) IFS image
reconstruction. As far as we are aware, this general approach
has not been previously applied in the context that we explore
here of two-dimensional spatial reconstruction. We would like
to point out that neither Shepard’s method nor our method
intend to decorrelate in the spectral dimension.

We will make some important distinctions between different
terms in this paper to avoid confusion:

1. Kernel: The response K(x, y) to a delta-function source of
the atmosphere, telescope, and instrument combined. In
the specific case of MaNGA, the kernel is the atmo-
spheric seeing convolved with the telescope’s optical
response convolved with the fiber profile (which we
approximate as a 2″ diameter top hat).

2. Kernel-convolved image: The actual or model image on
the sky convolved with the kernel.

3. Shepard’s image: The resampling resulting from She-
pard’s method. Referred to as a vector of pixel values S.

4. Deconvolved reconstruction: A model of the image on
the sky with the kernel deconvolved. Referred to as a
vector of pixel values F (never used directly in the final
result).

5. Covariance-regularized Reconstruction (CRR): The
resampling resulting from our method. Referred to as a
vector of pixel values G.

6. Point-spread function (PSF): In our usage, the PSF will
refer to the response to a delta function on the sky of the
output image from the analysis, either Shepard’s image or
the CRR. In an ideal reconstruction, the PSF would be
identical to the kernel values at each pixel (using the
delta-function location as the center of the kernel
function).

This article is organized as follows. Section 2 describes the
resampling methods we consider here. Section 3 presents a
series of tests of this method for a simulation. Section 4
presents a demonstration of the method for real data. Section 5
summarizes and discusses the results.

2. Image Resampling Methods

2.1. Shepard’s Method, the MaNGA DRP Standard

A specialized version of Shepard’s method is described in
Sánchez et al. (2012) in the context of CALIFA and in Law
et al. (2016) in the context of MaNGA. The input data from the
IFU survey consists of the flux intensity f[i] and the variance of
the error [ ] [ ] [ ]s= = áD ñN i i f i2 2 in each fiber. For a system
with Nfiber fibers, with which we have taken Nexp exposures, for
each wavelength channel there are N0=Nfiber×Nexp values,
each corresponding to a different location on the sky. We will
refer below to each such observation as a fiber-exposure. For
the MaNGA DRP, the output grid is rectangular with a pixel
size 0 5 per spaxel, and we write the total number of pixels as
M0.
The transformation from intensities at the irregularly located

fiber locations to the Shepard’s image is:

[ ] [ ] [ ] ( )å=
=

S j W j i f i, 1
i

N

1

0

where S is Shepard’s image, and the M0×N0 matrix W[j, i] is
the weight of each fiber location i contributing to the output
grid point j. In Shepard’s method, the weight function is a
circularly symmetric Gaussian that depends on the distance r[i,
j] between the fiber location i and the grid point j:

⎛
⎝⎜

⎞
⎠⎟[ ] [ ]

[ ]
[ ] ( )
s

= -W j i
b i

W j

r i j
, exp

,

2
, 2

0

2

0
2

for r[i, j]<rlim, and zero otherwise. σ0 defines the width of the
Gaussian function, and for the MaNGA DRP is set to 0 7. The
MaNGA DRP takes rlim=1 6. The normalization parameter
W0[j] is defined as the sum of the N0 weights for each output
grid point j, to guarantee the conservation of flux:

⎛
⎝⎜

⎞
⎠⎟[ ] [ ] [ ] ( )å

s
= -W j b i

r i j
exp

,

2
, 3

i
0

2

0
2

over all pixels i for which r[i, j]<rlim. In Equations (2) and
(3), b[i] is zero if the inverse variance N[i]−1=0 and is unity
otherwise.

2.2. Covariance-regularized Reconstruction

Our method can be written in the same form as Shepard’s
method (Equation (1)), but with a different choice of W[j, i].
The choice is motivated in the following manner, which
explicitly designs the weights so that the final reconstruction
remains consistent with the samples and so that its covariance
matrix has small off-diagonal entries. We refer to an image
using our method as a CRR.
Consider fitting a linear model to reconstruct the observables

f[i]. Our model consists of a set of delta functions with fluxes F
[j], distributed on a regular grid (the same grid we want to use
for the reconstruction). Each fiber-exposure i observes this
function convolved with the kernel appropriate for that
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particular observation, Ki(x, y). In the case of MaNGA, the
kernel is the convolution of the atmospheric seeing, the
telescope optical response, and the fiber. This model for the
observables can be written as

[ ] [ ] [ ] ( )å=m i A i j F j, , 4

where:

[ ] ( ) ( )= - -A i j K x X y Y, , 5i i j i j

is the value of the kernel at the separation between the model
pixel j at (Xj, Yj) and the fiber-exposure i at (xi, yi). The kernel is
a known property of the observations based on the estimated
seeing at the time of each observation.

We can fit for the model parameters F[j] by minimizing the
χ2 error:

( [ ] [ ])
[ ]

( )åc
s

=
-f i m i

i
. 6

i

2
2

2

Because the model is linear in F[j], the solution can be written:

( ) ( )= - - -F A N A A N f , 7T 1 1 T 1

where N is the data covariance matrix, which in our case is
diagonal with diagonal entries σ[i]2.

Therefore, we can estimate F, which is analogous to a
deconvolved image based on the fiber samples, because it is the
sky image before convolution with the kernel. As one expects
for a deconvolution, the error covariance for F is highly
nondiagonal—there are strong correlations and anticorrelations
in the errors of neighboring pixels. The covariance matrix is

( ) ( )= áD D ñ = - -C F F A N A . 8T T 1 1

Using F for science is very undesirable because of these
correlations, which would complicate any error analysis but
also lead to large fluctuations among the values of F.

A common technique is to regularize the values of F, either
under a Tikhonov regularization, a maximum entropy criterion,
or something else (e.g., Warren & Dye 2003). However, here
we take a different approach, which is to regularize the
covariance such that it is diagonal, which turns out to be similar
to reconvolving F to a resolution similar to the kernel.

The covariance matrix can be whitened through a linear
transformation of F that can be found by taking a square root of
the inverse covariance matrix =- -C A N A1 T 1 . For this
symmetric and positive definite matrix, we can take its square
root by finding its eigensystem:

( )( ) ( )= = =- - - -C PDP PD P PD P QQ, 91 1 1 11
2

1
2

where D here is a diagonal matrix of eigenvalues and P is the
matrix of eigenvectors. For D

1
2 , the positive root is always

chosen.
Another path to finding the same matrix Q is through the

singular value decomposition (SVD):

( )S=-N A U V . 10T1
2

where S is diagonal, V is orthogonal ( )=VV 1T , and U is
close to orthogonal (UUT is diagonal with ones for dimensions
i with S ¹ 0i or zeros for dimensions i with Σi=0). In this
case:

( )S= - -F V U N f 11T1 1
2

ifS ¹ 0i for all i. We can also use the standard Moore–Penrose
inverse technique and setS =- 0i

1 for Σi=0, which allows us
to handle truly degenerate cases smoothly. We can show that

( )SS=-C V V 121 T

and therefore,

( )S=Q V V . 13T

Thus, we can find Q without ever constructing the full
covariance matrix or its inverse, or explicitly finding its
eigenvectors, which may be useful in cases when the
covariance matrix is ill conditioned.
The linear transformation of F that we will use is not quite

Q, because we want the transformation to conserve the total
flux in F. We can achieve this goal by normalizing over each
row to give the transformation matrix:

[ ]
[ ]

[ ] ( )
å

=R i j
Q i j

Q i j,
1

,
, . 14

j

R is then a linear transformation under which C can be
diagonalized:

( )=C RCR 15G
T

with the entries of the diagonal matrix CG given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ] [ ] ( )å=
-

C i i Q i j, , . 16G
j

2

(In detail, the resulting covariance matrix is not precisely
diagonal if any Σi=0.) This result means that if we define:

( )

( )

S

=
=

=

=

- - -

- -

G RF
R A N A A N f

RV U N f

Wf 17

T 1 1 T 1

1 T

def

1
2

then CG is the covariance matrix of G. Multiplying by the
matrix R turns out to be similar to a reconvolution of F with
the kernel, although it is not strictly speaking a convolution.
G will be our reconstruction, which by design should have

close to a diagonal covariance matrix. We will show later that
in the context of MaNGA it also has a sharper PSF than
Shepard’s method. Like Shepard’s method it is just a linear
combination of the input fluxes and so can be written in the
same form as Equation (1).
There are some adjustments we will make to this method.

The first adjustment is that we will apply a regularization term
to handle singular values. This adjustment will make the
procedure more numerically robust but have almost no impact
on the results. We can think of this regularization term in terms
of an adjustment to the function we are minimizing in
Equation (6) with a quadratic term, the simplest version of
Tikhonov regularization:

[ [ ] [ ])]
[ ]

[ ] ( )å åc
s

l=
-

+
f i m i

i
F j . 18

i j

2
2

2
2 2

The solution F is altered under this regularization to:

( )
( )

l

S
= +

=

- - -

- -

F A N A I A N f

V U N f 19

T 1 2 1 T 1

1 T 1
2

*
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where S* is diagonal and

( )
l

S =
S

S +
- , 20ii

ii

ii
,
1

2 2*

and the solution G becomes

( )S= - -G RV U N f . 211 T 1
2

*
The second adjustment is that we will not use the actual

variance matrix N created from the observed fiber spectra. If
we did so, this would introduce a correlation between the
brightness of an object (which for bright sources dominates the
true variance vector) and the values of the corresponding
column of the weight matrixW . This correlation would lead to
an undesirable dependence of the reconstructed PSF on the
brightness of the source that would greatly complicate analysis
of our data cubes. Additionally, it is well known that using an
inverse variance–based weight function can produce a
systematic underestimate of the derived fit when the variances
are derived from the signal itself. (see, e.g., Section 5.1 of
Mighell 1999; Law et al. 2016). For these reasons, we use Ñ in
our calculations, which equals unity where -N 1 is not zero, and
zero where -N 1 is zero.

A third adjustment we make is to slightly alter the kernel to
remove contributions for which the radius is larger than 4″.
This choice makes little difference in the final result but makes
the calculation considerably faster.

The fourth adjustment we make is to remove from the SVD
calculation any model pixels j that are further than some
distance rlim (which we here set to 1 6, the same as DRP’s
choice) from any fiber—basically, any pixels not well-
constrained by the data—which lowers the condition number
of A and makes the SVD more stable.

The final method then can be written as follows:

( )=G Wf , 22

where

˜ ( )S= - -W RV U N , 231 T
1
2

*
in which V , U , and Σ are from the SVD of ˜ -N A1 2 , Σ* is
defined in Equation (20), and R is defined by Equations (13)
and (14). The covariance matrix of G is then:

( )= á D D ñ =C W f f W WNW . 24G
T T T

Here, N is the diagonal variance matrix from the individual
fibers. This covariance matrix is not guaranteed to be diagonal,
but because of how we have constructed the weights it will
prove to be much closer to diagonal than Shepard’s method.

When operating on the resulting data cube for science, it is
important to identify unreliable spaxels about which there is
little information provided by the fiber data. The MaNGA
pipelines use two masks, NOCOV to indicate that there is no
information about the pixel, and LOWCOV to indicate that there
is a low amount of information about the pixel. These masks
are based on the fiber-level maskbits, which record the effect of
hot pixels, cosmic ray hits, and other effects that can make the
data from a fiber unusable at some or all wavelengths. Our
approach to defining these masks for the data cube spaxels is
different from the standard MaNGA pipeline. The MaNGA
pipeline counts the total contribution of fibers to each pixel,
based on theW matrix for Shepard’s method, to identify poorly
constrained spaxels. We use a different approach, which is to

use the diagonal elements of the covariance matrix when we
assume constant unit noise in each fiber that is not masked:

˜ ˜ ( )=C WNW . 25T

This covariance matrix is not the same as the actual covariance
CG. We set spaxels with a variance more than twice the median
variance to LOWCOV, so that they may be ignored in scientific
analysis. This procedure appropriately masks spaxels too near
the edge of the fiber bundle or that are affected by bad fibers.
There are several free parameters in the CRR method as

applied to MaNGA, which we now discuss. First, there is the
shape of the kernel, which is determined by our estimate of the
observing conditions at each exposure. Second, there are the
conditions for dropping edge pixels. Third, there is the
regularization parameter λ. Fourth, there is the pixel scale of
CRR. The first three parameters prove to have no significant
effect on the results for MaNGA, as we show later in this paper.
We will explore below the effect of the reconstruction pixel
scale.
Some general aspects of the method, compared to Shepard’s

method, are worth noting before describing those tests.
Although our method is also just a linear combination of the
fluxes, the weights are not determined by a stationary function
as they are for Shepard’s method. They are also not restricted to
be nonnegative. These properties, particularly the latter, are
essential to reducing the off-diagonal covariances and produ-
cing a PSF close to the kernel resolution.
Although we motivated the method based on the model fit to

the parameters F expressed in Equation (6) and the
diagonalization of their covariance matrix C, we never need
to explicitly determine either F or C. We will nevertheless
calculate these quantities below in order to demonstrate their
properties.
Our approach is mathematically identical to the approach

proposed by Bolton & Schlegel (2010) in the different context
of spectroscopic extraction. Our notation differs somewhat
from theirs. Specifically, their p is our f , their f is our F, and
their f̃ is our G.

3. Tests on Simulated Data

In this section, we use simulations to characterize the
performance of Shepard’s method, which is what the MaNGA
DRP uses, and our CRR method.

3.1. General Information

MaNGA uses a hexagonal pattern of fibers to detect flux as a
function of position on the sky. The hexagonal pattern is
dithered in position between different exposures, and varies on
the sky with wavelength. Our goal is to resample the fluxes
onto a rectilinear grid. In Figure 1, the blue points show the
fiber locations at λ=5500Å for the plate-IFU 8720-1901,
shown as a function of X and Y position in the focal plane
(corresponding to R.A. and decl.). The red points show the
pixels we are using in the reconstruction. As explained above,
we exclude pixels when their distance to all the fibers is larger
than 1 6. In this figure, we show both 0 5 and 0 75 pixel−1

scales. We will examine the effect of difference choices of
pixel scales on our reconstruction later.
We will simulate observations for a point source to test the

methods. Since the methods we test are linear, the point source
responses at different locations can fully characterize the
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performance. The flux for each fiber is sampled from the kernel
function K as the response of a point source at some location
(in most cases, we use X=Y=0).
Panel (a) of Figure 2 shows our adopted kernel for

wavelength λ=5500Å. We use a double Gaussian function
to simulate the atmospheric seeing, and convolve with the fiber
profile (a 2″ top hat) to generate the kernel function. The
normalized double Gaussian is defined by the standard
deviation σ1 for the inner Gaussian, the ratio σ2/σ1 of the
outer to inner Gaussian standard deviation, and the ratio A2/A1

of the central values of the outer and inner Gaussians. We use a
typical pair of ratios that approximates the inner parts of a
Moffat-like atmospheric PSF (Law et al. 2015; J. Gunn 2019,
private communication):

( )

s
s

=

=
A

A

2

1

9
. 26

2

1

2

1

The FWHM of the resulting model PSF is:

( )s= =FWHM 1.05 FWHM 2.473 . 271 1

The MaNGA DRP reports the FWHM of atmospheric seeing
for each exposure at the guider wavelength λ0=5400Å. For
other wavelengths, we will assume the seeing varies as λ−1/5

(Yan et al. 2016).
For each simulation, the fiber locations are provided by a

MaNGA observation with several exposures, for which
positions accounting for a variety of observational effects
(bundle metrology, dithering, chromatic and field differential
refraction, etc.) are stored in the MaNGA data products, for
example those shown in Figure 1. Normally the number of
MaNGA exposures ranges from 6 to 21 in order to achieve
uniformity and the required signal-to-noise ratio (S/N).

Each pixel in the output image is a weighted sum of the
values sampled for each fiber-exposure. Figure 3 shows an

example for the central pixel. For Shepard’s weights (right
panel), the weights for each fiber-exposure are just a decreasing
function of distance from the pixel. For the CRR, the weights
are both positive and negative and have an oscillatory nature,
similar to that found in sinc-interpolation methods.
Whereas the fluxes sampled from the kernel are noiseless,

the fluxes of the actual observations are not. The main sources
of noise are Poisson noise in the number of electrons due to the
object, sky, and dark current, plus the read noise from the
amplifiers. For the bulk of locations and wavelengths in
MaNGA, the noise is object dominated. When we include
simulated noise in our tests, we concentrate on this regime, so
that the noise is proportional to the square root of the flux. We
characterize the S/N of the simulations based on that of the
fiber with the maximum simulated (noiseless) flux fmax. For a
chosen S/N we then define a scale factor s converting flux to
number of photons Np=fs, so that:

·
·

· ( )= =S N
f s

f s
f s . 28p

max

max
max

Then for each fiber we apply Poisson noise based on the
resulting Np for each fiber.

3.2. Nominal Case

We start our tests with the nominal case at 0 5 pixel−1, in
order to compare directly at the MaNGA DRP pixel scale.
Figure 2 shows the response of a point source in the center,
averaged over the g-band wavelength range. Panels (b)–(d)
show, respectively, MaNGA’s DRP data cube (which uses
Shepard’s method), the CRR image, and our implementation of
Shepard’s image, all at 0 5 pixel−1. Panels (e) and (f) show the
CRR image and Shepard’s image at 0 75 pixel−1. As we said
previously, panels (b) and (d) are almost the same because they
use the same method. We show the DRP result in (b) to confirm
that we are analyzing the data consistently.

Figure 1. Configuration of plate-IFU 8720-1901 with two different pixel scales and for wavelength λ=5500 Å. Blue points are IFU fiber locations, red points are
pixels in the reconstruction. The left panel shows pixel scale 0 5 pixel−1, and the right panel shows pixel scale 0 75 pixel−1.
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We compare the performance of the methods quantitatively
by measuring the FWHM and also a pseudo-Strehl ratio for the
resulting PSF. We define the pseudo-Strehl ratio as the ratio of
the peak image data cube slice intensity compared to the center
of the kernel-convolved point source image. This is the ratio of

the peak intensity to the largest possible given the resolution of
the instrument. We show here a single typical wavelength slice
at λ=5500Å with seeing FWHM around 1 19, but we find
similar results throughout the whole spectrum and various
plate-IFUs.
Figure 4 shows the profile of the intensity of the resulting

images. To determine a FWHM reliably, we fit a model to the
pixel values. In particular, we use the kernel function K as our
model, which is parameterized by a choice of seeing. We use
least-squares to find the best-fitting seeing value, and infer the
FWHM and the pseudo-Strehl ratio from the corresponding
kernel. In analyzing the MaNGA DRP results, Law et al.
(2016) used a Gaussian fit instead; we find that this is adequate
for a broad PSF but not for the CRR image PSF. The results for
plate-IFU 8720-1901, including the FWHM and the Strehl ratio
for the kernel, for Shepard’s method, and for the CRR method,
are listed in Table 1.
For consistency, given a pair of Strehl ratios or FWHM

values v1 and v2 for the Shepard and CRR images, we define
the improvement in this quantity as ∣ ∣-

+
v v

v v

2 2 1

2 1
. The radial profile

shows that there is a 16.0% improvement in the FWHM
between Shepard’s method and CRR, which turns out to be a
typical level of improvement. Denoting the kernel FWHM as
v0, the maximum possible improvement of the FWHM would
be ( ) =-

+
19.5%v v

v v

2 2 0

2 0
. The pseudo-Strehl ratio increase is

around 40%. Our results are very close to the best possible
performance without performing a deconvolution (i.e., very

Figure 2. Data cube slices from simulated observations of a point source
generated for plate-IFU 8720-1901. The flux is averaged over the g band, and
we assume seeing at 5500 Å is around 1 19. Panel (a): the kernel for
wavelength λ=5500 Å. Panel (b): the MaNGA DRP implementation of
Shepard’s method (0 5 pixels). Panel (c): reconstruction using the CRR
method (0 5 pixels). Panel (d): our implementation of Shepard’s method (0 5
pixels). Panel (e): reconstruction using the CRR method (0 75 pixels). Panel
(f): our implementation of Shepard’s method (0 75 pixels). The image scaling
is linear for Panel (a), but is arcsinh-scaled for Panels (b)–(f) to show the
behavior in the PSF wings.

Figure 3. The contribution of all fibers on the pixel at (0, 0) for plate-
IFU8720-1901, which is a row of weights matrix · Ål =W 5500 . Left
panel: our CRR image. Right panel: Shepard’s method. The red cross is the
central pixel evaluated in the graph.

Figure 4. Profile of the PSF in the output images from the simulated data in
Figure 2. Points are flux values per pixel throughout the image at 0 5 and
0 75 pixel−1, for wavelength λ=5500 Å. The horizontal lines indicate the
half maximum for each radial profile fit.

Table 1
Sharpness Measures of PSF

Analysis Item Pixel Scale Kernel Shepard’s CRR
Per Pixel

FWHM(arcsec) 0.5 1.905 2.316 1.973
Strehl ratio 0.5 1 0.664 0.996

FWHM(arcsec) 0.75 1.905 2.317 1.973
Strehl ratio 0.75 1 0.664 0.996
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close to the kernel). We note in passing that we were surprised
that the kernel had a FWHM slightly less than 2″, given that the
fiber top-hat FWHM is precisely 2″; however, this result is
correct—slightly blurring the top hat with a Gaussian slightly
reduces the FWHM.

Next we compare the covariance between pixels for both
methods. The covariance between pixels of the final image is
expressed in Equation (24), for both our method and Shepard’s
method, depending only on which weightsW are used. In order
to factor out the magnitude of the covariance along the
diagonal, we will examine the correlation matrix between
pixels, defined in the usual way as r = C C Cjk jk jj kk .

Figure 5 shows the resulting correlation matrix between
pixels. We omit masked pixels, which are mostly at the corners.
The image scaling is arcsinh to best examine the off-diagonal
components. Shepard’s output image has a broad covariance
matrix, while our method is nearly diagonal, as expected from
the previous section. We show pixel scales of 0 5 and
0 75 pixel−1, and for the CRR covariances the difference in the
level of correlation between these cases is clear. We consider

the choice of pixel size and its effect on covariance more
quantitatively in the next subsection.

3.3. Choice of Pixel Size

Here we discuss the choice of pixel size. The primary
considerations are the sharpness of the resulting PSF (as
quantified by FWHM and pseudo-Strehl ratio), the covariance
between pixels, and the sampling of the image. The results
shown in this section for plate-IFU 8720-1901 and λ=5500Å
are representative of what we find at other wavelengths and in
other plate-IFUs.
The sharpness of the PSF differs very little between the two

pixel scales, as Table 1 demonstrates.
The correlation coefficients do tend to depend on pixel scale,

as shown in Table 2, based on the central pixel of plate-IFU
8720-1901 at 5500Å. In this table, we list the quadratic means
of the correlation coefficients between the central pixel and the
pixels which are separated from it by 1 pixel or 2 pixels. We
examine the correlations more fully in Figure 6, which shows

Figure 5. The correlation matrix of CRR’s and Shepard’s result for plate-IFU 8720-1901, both shown at 0 5 and 0 75 pixel−1, for wavelength λ=5500 Å. The
image scaling is arcsinh to better see the small off-diagonal elements. Left panel: CRR result. The correlation coefficients between values separated by two or more
pixels are typically of the order 10−2 or less. Right panel: Shepard’s result.
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the full correlation between the central pixel and all others for
both methods with the two pixel scales. Each image
corresponds to a row of the correlation matrix. The CRR
image outperforms the Shepard’s image in either case. The
CRR image has some ringing in its correlation matrix that is
greatly reduced at a pixel scale of 0 75 pixel−1. Statistical
independence is desirable so that the fluxes in the cube can be
used to fit models and to propagate errors without tracking a
broad covariance matrix, which is complex and burdensome, or

relying on approximated error-scaling relations (e.g., Law et al.
2016).
The final major consideration for pixel size is whether the

pixels provide sufficient sampling of the image. At
0 75 pixel−1, the FWHM of the images are about 2.5 pixels,
which is above the usual rough guide for critical sampling.
Although for unusual PSFs of the sort produced by this
instrument there may yet be some poorly sampled power at
0 75 pixel−1, sampling more densely leads to an increase in
covariance between pixels, as shown above.
These considerations of sampling and covariance lead us to

0 75 pixel−1 as the best choice for our application. This pixel
scale provides decent sampling without inducing excess
correlations between pixels or ringing behavior.

3.4. PSF as a Function of Source Position

The PSF response for both CRR and Shepard’s is sensitive to
the relative position on the sky of the point source and the
fibers. We therefore need to characterize the PSF response
across the face of the IFU and verify that we satisfy MaNGA’s
requirement that the PSF FWHM varies by less than 10%

Table 2
Correlation Coefficient between Pixels with Different Separations (Quadratic
Mean of Values between the Central Pixel and Its Surrounding Pixels), for

Shepard’s Method and CRR

Separation Pixel Scale 1 pixel 2 pixels
Method arcsec/pixel

Shepard’s 0.5 0.876 0.703
Shepard’s 0.75 0.767 0.465
CRR 0.5 0.303 0.094
CRR 0.75 0.050 0.024

Figure 6. The correlation between the central pixel flux and that of other pixels for images produced from plate-IFU 8720-1901, at wavelength λ=5500 Å. Upper
panels: Shepard’s method at 0 5 and 0 75 pixel−1. Lower panel: our method at 0 5 and 0 75 pixel−1.
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across the IFU. In Figure 7 we consider the FWHM
homogeneity and in Figure 8 we consider the pseudo-Strehl
ratio homogeneity. Below, we also discuss the homogeneity of
the axis ratio b/a of the PSF.

Each figure uses a grid of locations of the point source, using
the 0 75 pixel−1 CRR and the 0 5 pixel−1 Shepard’s method
results (to match MaNGA’s implementation). We quantify the
variation of each quantity relative to its median:

( )dh
h h
h

=
-

. 290

0

Here, η is the FWHM or the pseudo-Strehl ratio, and η0 is its
median value. As noted above, the CRR image is consistently
higher resolution than the Shepard’s image for point sources
regardless of where they are relative to the fibers. In addition, in
this case the CRR image also shows less fractional variation in
resolution than Shepard’s method, especially in the FWHM. In
the example plate-IFU 8720-1901, the fractional standard
deviation of the FWHM is 0.033 for Shepard’s method,
compared to 0.023 for our method. Meanwhile, the fractional

standard deviation of the pseudo-Strehl ratio is 0.056 in
Shepard’s method, compared to 0.048 in our method. Thus, the
CRR image slightly outperforms Shepard’s image in terms of
PSF homogeneity for this fiber bundle. This comparison
depends on the location of the fiber-exposures; for the other
fiber bundles we have tested, the CRR images always give
similar or better homogeneity than Shepard’s images for the
FWHM and pseudo-Strehl ratio.
However, for the PSF roundness we find that Shepard’s

method outperforms CRR. We quantify the roundness with the
axis ratio b/a of the PSF. For each point source location within
a radial distance to the center equaling to the FWHM, we fit the
PSF with a 2D Gaussian. The parameters of this fit yield the
minor-to-major axis ratio. Following Law et al. (2015), we
quantify the performance with (b/a)99, which is the axis ratio
for which 99% of the point source locations yield a PSF with
b/a>(b/a)99. This quantity is a conservative lower limit on
the PSF roundness and its variation. In order to compare more
directly to Law et al. (2015), we implemented our test with
constant seeing. In our analysis, Shepard’s image has
(b/a)99=0.91, whereas the CRR image has (b/a)99=0.85.

Figure 7. Fractional FWHM variation as a function of point source location for plate-IFU8720-1901 at wavelength λ=5500 Å. Left panel: CRR image, using
0 75 pixel−1. Right panel: Shepard’s image, using 0 5 pixel−1 to simulate the MaNGA DRP performance.

Figure 8. Similar to Figure 7, for the fractional Strehl ratio variation.
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We were unable to reproduce the results of (Law et al. 2015)
for Shepard’s method, who found a substantially higher value
of (b/a)99=0.96 using a very similar methodology to ours.
This is partly because the coordinates we adopt are from an
actual observational fiber bundle. If we use a three-point
dithered hexagonal grid with seeing FWHM=1 4 to do the
simulation, we get (b/a)99=0.942 with Shepard’s reconstruc-
tion method. The homogeneity statistics parameters are
consistently better than with the real observational coordinates.
But we also found Shepard’s method outperforms our result in
the homogeneity.

3.5. Adding Noise

The simulated data we test on above is noiseless. However,
we need to test our performance in the presence of realistic
noise. The sources of noise in MaNGA are outlined in
Section 3.1, but as noted there we will only consider the effect
of Poisson noise due to the object signal, which is the most
problematic (increasing with the signal rather than staying
constant) and which is usually dominant.

Figure 9 shows a point source with noise, quantified by the
S/N of peak flux in the reconstruction image, for both the CRR
and Shepard’s image. Obviously the image exhibits some
noise. For Shepard’s image, the result looks smoother, due to
the larger off-diagonal covariances—i.e., the pixel-to-pixel
fluctuations are reduced because neighboring pixels are
correlated.

Figure 10 examines the FWHM and pseudo-Strehl ratios
under a range of noise conditions. The CRR image remains
sharper and brighter in the center regardless of the noise level.

3.6. Effect of an Inaccurate PSF Model

We build our analysis based on the assumption that the
kernel is the same as our assumed one—that is that our double
Gaussian model for the seeing with a given width, convolved
with the fiber profile, is correct. However, the seeing width is
an estimate and its FWHM can deviate from reality as much as
20%; other aspects of the kernel model may be incorrect
as well.

Shepard’s method does not use any information about the
kernel, and thus its behavior is independent of how accurately
we know the kernel. However, our CRR method depends on a
kernel model to determine the weights. Therefore we need to
test whether the CRR image varies under reasonable assump-
tions about the inaccuracy of our kernel model.

To test the behavior of the algorithm under these conditions,
we varied the FWHM of the assumed seeing from the actual

value in our simulations, and compared the CRR image with
the case that the assumed seeing was the same as the actual
seeing. The results are shown in Figure 11. We varied the
seeing by as much as 30% from the observational estimate for
this plate of 1 19. The FWHM and pseudo-Strehl ratio for this
case are 1 973 and 0.996, when the seeing is correctly
estimated. For a 10% error in our assumed seeing, the FWHM
of CRR image changes by around 0.30%; for a 20% error in
our assumed seeing, the FWHM of CRR image changes by
around 0.40%. The fractional variation of the Strehl ratio is
similarly small. Therefore our results are relatively insensitive
to whether or not we know the kernel exactly. We have
checked that this variation is small independent of the actual
seeing in the simulation (e.g., if the actual seeing is poor rather
than the relatively good value of 1 19).

3.7. Regularization Parameter

One of the free parameters in the method is the regularization
parameter λ. Here we examine the effect of this parameter on
the results. Figure 12 shows results without regularization in
the upper panels and with regularization in the lower panels, for
comparison. The left panels show the deconvolved reconstruc-
tion F; the upper left panel (using 0 75 pixel−1) for a simulated
point source shows significant ringing, with large correlations
and anticorrelations between pixels. The upper center panel

Figure 9. Simulated data cube slice with noise at 0 5 pixel−1 and S/N=0.75
for plate-IFU8720-1901 at wavelength λ=5500 Å. Left panel: CRR
method. Right panel: Shepard’s method.

Figure 10. Comparison of Shepard’s method and CRR method at different S/
N for plate-IFU8720-1901 and wavelength λ=5500 Å. The pixel
size=0 75. Left panel: FWHM of the PSF. Right panel: the pseudo-Strehl
ratio of the PSF.

Figure 11. The FWHM and Strehl ratio of the CRR image when the assumed
kernel deviates from actual (simulated) kernel, for plate-IFU8720-1901 at
wavelength λ=5500 Å, with pixel size 0 75. The x-axis indicates the ratio of
the assumed FWHM of kernel to the average of the actual seeing values for the
observations (1 19). The piecewise discontinuities are an artificial result of the
fact that our kernel is constructed at a set of discrete FWHM values.
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quantifies the covariance between the central pixel of F and all
the other pixels (the central row of the covariance matrix),
showing large anticorrelations between the central pixel and its
immediate neighbors.

These correlations and anticorrelations are large and can
introduce numerical instability to our analysis, since F results
from the last four factors in Equation (23). However, with
appropriate regularization, the behavior of F (and therefore
those last four factors) is much more constrained. While
improving the numerical stability, this regularization will not
affect the extraction of our final reconstruction from the fiber
data, due to the first factor R in Equation (23).

The right panels show the contribution of a particular fiber to
all the pixels on the grid, equivalent to a column of the W
matrix. Unlike the Shepard’s method weights, the contributions
are not all positive and exhibit some ringing. This behavior is
characteristic of accurate interpolation kernels, such as sinc-
interpolation, so it is expected. These weights remain identical
even under regularization, meaning that for the values of λ we
use (or smaller), it does not affect the final results.

3.8. Consistency Across Wavelength

The locations of fibers and the kernel shape are a function of
wavelength, which causes a necessary variation with wave-
length of the weights W in our method. Here we examine
whether the CRR method produces spectra that are consistent
across wavelength under this variation.

We simulate a constant fλ point source for all wavelengths
and use the meta-data (positions, atmosphere conditions) for
plate-IFU 8720-1901. We compare the output spectra for CRR
and Shepard’s method in Figure 13 for the total flux within the

bundle. In Figure 14, we perform the same comparison for just
the spectrum in the central pixel.
Figure 13 shows that the variation of the sum of all the pixels

in the simulation results is within about 3% of constant. Once
the overall difference in amplitude of ∼1% between the CRR
and Shepard’s method is accounted for, the relative variation is
consistent between the methods to about 0.5%. The variation in
both methods is due to not having enough dithers of exposures,
which inevitably leads to a variation in the flux due to the
changing position of the point source relative to the fibers as a
function of wavelength. Artificially adding in more dithers can
reduce this variation for the simulations (though of course we
cannot do that for the observations!).
Figure 14 shows the variation of the central pixel intensity

across wavelength. The variation of intensity is 6% for the
CRR result, compared to 3% for Shepard’s result. Therefore,
for an individual pixel there is a slightly larger spectro-
photometric inconsistency in the CRR method than in
Shepard’s method.
For the real case, besides the nonconstant flux and extended

fiber configuration, we need to consider the bad fibers identified
by the MaNGA DRP for each plate-IFU, leading to the “low
coverage” or “no coverage” masks. These fiber masks occur
because of cosmic ray events, bad flat fields, CCD defects,
broken fibers, or 2D extraction problems (Law et al. 2016).
They will result in zero weights in theW matrix. But we have
verified that they do not affect the spectrophotometric
consistency as a function of wavelength, because of the
normalization over the contributions from all the good fibers.
We applied our method on 140 fiber bundles in order to

demonstrate that the example plate-IFU (8720-1901) is typical.
In each case, we simulate a point source at the center of the

Figure 12. The effect of regularization for our method for plate-IFU 8720-1901. Upper panels are without regularization and lower panels are with regularization
10−3. We used pixel size 0 75 pixel−1. Left panels: the distribution of the deconvolved solution. Middle panels: the covariance between the central pixel and other
pixels in the deconvolved solution. Right panels: the contribution of a particular fiber to all pixels in the CRR image.
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cube. We compare the PSF FWHM and central intensity
between CRR and Shepard’s image at several different
wavelengths. As shown in Figures 15 and 16, the reconstruc-
tion in our method is generally narrower than Shepard’s result
and with higher pseudo-Strehl ratio.

4. Demonstration with Actual Data

The tests in the previous section used fiber sampling
locations and weather conditions taken from real observations,
but with artificially injected fluxes from a simulated point
source profile. In this section we apply the method to several
real sets of MaNGA data as a demonstration and to verify that
it is working as expected.

Figure 17 shows four test galaxies at pixel size 0 75 pixel−1.
As the irg-band color images in the left column show, two are
elliptical galaxies and two are spiral galaxies. The first two
rows (plate-IFUs 8720-1901 and 8143-6101) are active galactic
nuclei (AGNs), and the second two (plate-IFUs 8247-6101 and
9183-12702) are non-AGN. We use these different types of
galaxies just to show the variety of possible cases.

The remaining columns, from left to right, show the Hα
emission in the CRR method and in Shepard’s method, the
[O III] 5007 Å emission in both methods, and the mean
continuum of the 5300–6000Å region in both methods. The
Hα and [O III] line emission fluxes are estimated by subtracting
a continuum estimate using side bands around each line, and an
unweighted integration of the line flux in a fixed rest frame
wavelength range around each line. This relatively crude

method is adequate to characterize the image quality, and we
defer to the next phase of this work a more careful analysis
with the MaNGA Data Analysis Pipeline (Westfall et al. 2019).
In each image, the sharper nature of the CRR image is clear.

This clarity is most dramatically shown in the Hα emission in
the bottom row and in the [O III] emission in the second row. It
is also clear that the off-diagonal covariance in the CRR images
is lower, manifesting as a noisier-looking image. For example,
in the [O III] images in the bottom two rows, the regions
without significant emission show uniform white noise in the
CRR image, but show the characteristic mottling of correlated
noise in Shepard’s method.

Figure 13. Spectrum of the sum of all pixels for a constant fλ point source with
Shepard’s method and CRR method. The y-axis is normalized by its maximum
value.

Figure 14. Similar to Figure 13, for the spectrum of the central pixel.

Figure 15. PSF FWHM of point source simulation results at several different
wavelengths. Each set of points represents a fiber bundle simulation. Dark red
points are for CRR image, and green points are for Shepard’s image. The points
are randomly offset slightly in wavelength for clarity. The four wavelength
slices we use are λ=[3900, 5500, 7000, 9000] Å.

Figure 16. Similar to Figure 16, for the pseudo-Strehl ratio of the point source
simulation results.
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Figure 17. Real galaxy extraction slices for four different plate-IFUs at 0 75 pixel−1. From top to bottom, the rows correspond to plate-IFUs 8720-1901, 8143-6101,
8247-6101, and 9183-12702. From left to right the columns are the irg-band color image in MaNGA, the continuum subtracted CRR images in the Hα 6563 Å region,
the O[III] 5007 Å region, and a continuum 5300–6000 Å region. In each case, we show our method on the left and Shepard’s method on the right.

Figure 18. Similar to Figure 17, for three AGN-like plate-IFUs: 8718-12701, 8549-12701, and 8482-12704.
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We also check the profile as a function of radius from the
center for real images. Considering that the morphology of the
galaxy will affect the radial profile, it is best to choose point-
like sources for the comparison. In Figure 18, we select three
targets identified as AGN by Rembold et al. (2017). Using the
same methods we use for the PSF fitting, we measure the
FWHM and central flux. Table 3 shows the results. Only the
comparison of FWHM and central intensity for different
methods has meaning, not the absolute value of these
quantities, since the galaxies are more extended than a PSF
and may have more irregular morphologies than a PSF. In
addition, we expect for extended sources the change in their
size to be smaller than for a PSF. The CRR image reveals a
28.3% brighter center and a 16.6% smaller spatial size on
average based on these three cases, showing that the method is
working as we expect from the simulation tests in Section 3.2.

Finally, we check the full spectra of the CRR and Shepard’s
image results for real data. Figure 19 shows the ratio of the
spectrum from CRR to the spectrum from Shepard’s image. We
consider the full spectrum summed over all pixels, and the
intensity of the central pixel, as labeled, for plate-IFU 8720-
1901. The thick solid curve overlaid on each spectral ratio is
the running mean for the ratio smoothing over 100 wavelength
slices or 84Å. For the sum of all pixels of the running mean,
the ratio of Shepard’s image and our reconstruction is 0.9729
on average with 0.0033 for the standard deviation, meaning it is
almost constant in the running mean. The central intensity of
our reconstruction is 29.9% brighter than Shepard’s result, with
a standard deviation of 0.0439. These results indicate that we
have not introduced major wavelength-dependent artifacts
relative to what might exist in Shepard’s method.

5. Discussion

Shepard’s method is one of the most commonly used
techniques to spatially interpolate irregularly sampled data onto
a regular grid (see Franke & Nielson 1980; Dell’Accio et al.
2016). The largest IFU surveys to date are all using a variant of
it. MaNGA and CALIFA both used the form of Shepard’s
method described here, and SAMI uses a differently motivated
technique, but one which is very similar to Shepard’s method
with a different kernel.

However, Shepard’s method produces images whose flux
errors are correlated with one another; i.e., they have a very
nondiagonal covariance matrix (Law et al. 2016). In addition,

as we found in this investigation, it unnecessarily broadens the
PSF of the resulting image.
Other techniques exist in the statistical literature for

interpolating from irregularly distributed samples, for example
radial basis function techniques, Wiener interpolation, “kri-
ging,” and Gaussian processes (Krige 1951; Wiener 1964;
Schaback 1995; Hartkamp et al. 1999; Rasmussen &
Williams 2006; Press 2007). However, these methods are not
designed to produce a consistent and tight PSF, and generally
lead to highly off-diagonal covariances.
Motivated by a desire to avoid off-diagonal covariances, we

examined the techniques of Bolton & Schlegel (2010), and in
this paper have adapted them to the imaging context. The result
is a technique that successfully reduces the off-diagonal
covariances to a very small level and also provides a final
image PSF that is better than other methods by around 16% in
the FWHM, for the MaNGA example we consider.
The off-diagonal covariances produced by other methods can

heavily affect the subsequent analysis. For simple measure-
ments such as aperture fluxes, the correct propagation of errors
becomes cumbersome and complex. For more complicated
measurements such as maximum likelihood model fitting, even
determining the best-fit parameters depends on accounting for
the covariance accurately. The MaNGA data, and IFU data
generally, is often used for such measurements. Our recon-
struction represents a way to simplify these measurements up
front.
One may wonder why it is possible for us to obtain near-zero

off-diagonal covariances, considering that dithered samples are
spaced every 1 44 while our pixel scale is 0 75. First, it is
worth noting that the covariance between adjacent neighbors is
not entirely eliminated, but remains at the few percent level for
this pixel size. Second, the differences in seeing and even slight
differences in coordinates for different exposures allow the
method to create nearly independent data points in neighboring
pixels.
The improved image PSF is substantial. It is equivalent to

building an instrument with 30%–40% more fibers. It provides
a greater ability to resolve structures within galaxies and to
measure gradients accurately, as well as to find fainter point-
like features (e.g., AGN).

Table 3
Radial Profile Measurements for Real Galaxies Whose Morphologies Are

Dominated by AGN

Plate Method Hα 6563 Å O[III] 5007 Å

FWHM Center FWHM Center

8718-12701 CRR 2.511 79.5 2.181 42.9
Shepard’s 2.729 62.7 2.644 29.0

8549-12701 CRR 2.193 405 2.184 201.6
Shepard’s 2.640 278 2.591 202

8482-12704 CRR 2.283 181 2.264 37.8
Shepard’s 2.729 128 2.729 26.2

Note. FWHM is in units of arcsec, while the central flux is in units of
10−17 erg s−1 cm−2 Å−1 arcsec−2.

Figure 19. Ratio of the spectrum from CRR method to the spectrum from
Shepard’s method for plate-IFU 8720-1901. The pixel scale=0 75. The blue
line is for the central pixel, and the magenta line is for the sum of all pixels. The
solid curves are running averages for the ratio smoothing over 100 wavelength
slices.
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A critical aspect of obtaining diagonal covariances is that
some of the weights are negative, whereas Shepard’s method
has all positive weights (see Figure 3). All positive weights will
always produce correlated errors. Although at first glance the
fact that a positive fiber flux can contribute negatively to a pixel
flux may be non-intuitive, this same feature exists in all
accurate image interpolation techniques on a grid (e.g., those
based on a sinc kernel) and is not in itself a cause for concern.

We plan to apply this method to the entire MaNGA sample
and to test the MaNGA Data Analysis Pipeline code on the
revised cubes. Since our method is still experimental (we have
only applied it to around 100 or so cubes) we cannot determine
yet if it will yield a practical improvement to the results, but we
view its prospects as promising. A drawback of this approach is
that it will take about 4–5 times longer to build a cube than with
Shepard’s method, mainly in the SVD process.

So far as we can determine, although our technique was
derived from that of Bolton & Schlegel (2010), this application
is entirely new, and represents a new method for scattered
image interpolation. Since its main function is to control the
covariance matrix of the result, rather than to regularize the
result by enforcing a notion of smoothness, we refer to it as
CRR. It is relevant when the input samples are noisy and
irregular, when result of the interpolation is meant to be a
specific grid of values, and when there is a natural resolution
(in our case, the kernel) in the sampled image that is meant to
be preserved. These conditions apply in other IFU data sets
(e.g., those that will be provided by the James Webb Space
Telescope), as well as to a number of ground-based and space-
based imaging data sets. Thus, this method may provide an
alternative and improved method to analyze those data sets.
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