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ABSTRACT
Modern software development workflow patterns often involve
the use of a developer’s local machine as the first platform for
testing code. SLATE mimics this paradigm with an implementa-
tion of a light-weight version, called MiniSLATE[? ], that runs
completely contained on the developer’s local machine or scales
to larger machines (laptop, virtual machine, or another physical
server). MiniSLATE resolvesmany development environment issues
by providing an isolated and local configuration for the developer.
Application developers are able to download MiniSLATE which
provides a fully orchestrated set of containers on top of a produc-
tion SLATE platform, complete with central information service,
API server, and a local Kubernetes cluster. This approach mitigates
the overhead of a hypervisor but still provides the requisite isolated
environment. They are able to create the environment, iterate, de-
stroy it, and repeat at will. A local MiniSLATE environment also
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allows the developer to explore the packaging of the edge service
within a constrained security context in order to validate its full
functionality within limited permissions. As a result, developers
are able to test the functionality of their application with the com-
plete complement of SLATE components local to their development
environment without the overhead of building a cluster or vir-
tual machine, registering a cluster, interacting with the production
SLATE platform, etc.
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1 MOTIVATION
Multi-institutional research collaborations propel much of science
today. These collaborations require platforms connecting exper-
imental facilities, computational resources, and data distributed
among laboratories, research computing centers, and in some cases
commercial cloud providers. The scale of the data and complex-
ity of the science drive this diversity. SLATE (Services Layer at
the Edge) [? ? ] provides a distributed multi-institutional research
computing environment, utilizing an edge computing architecture
[? ], which can support projects with a rapid "DevOps" type of
deployment model. These projects range from service deployments
to application "batch" payloads. The development efforts attempt
to follow a combination of science guidelines and "cloud native"
best practices[? ? ] so the results might easily migrate between
institutional data centers to cloud services. In this paper we dis-
cuss our approach of developing containerized edge services across
distributed research computing platforms. We also describe the
MiniSLATE[? ] platform we have developed in order to provide a
seamless workflow from development to operations.

2 APPROACH
Developing for a federated infrastructure such as SLATE requires a
consistent pattern for the packaging and deployment of services.
The idea of "services" can represent one or more software or data
applications bundled to work together to deliver some deliverable
based on specific input. The SLATE development model will al-
low a developer to create a deployment for a service in a local
environment based on one or more applications and then bundle
them together as a service to deliver to others. Once bundled, the
SLATE development model allows the consistent packaging of the
service so that the developer may deploy the service across geo-
graphically disparate sites with a few commands. SLATE supports
both edge infrastructure services, such as caches and data transfer
endpoints, and domain applications which perform particular scien-
tific calculations. There can be important differences between these
categories, but for the context of this paper they can generally be
treated together and will be referred to generically as ‘applications’.

2.1 Example Scientific Application - XCache
XCache, based on the XRootD [? ] transport protocol, is a distributed
caching application used by many scientists to store localized or
regional copies of large data sets. This application can reduce the
latency of access, as well as reduce the bandwidth needs of the wide
area network connections to the local environment. Reliable opera-
tion of the XCache application, without local systems administrator
input, is very important for the successful utilization of network
resources by the experiments at the CERN Large Hadron Collider,
which must deliver data to hundreds of HPC centers. Resources
needed by XCache depend on the scale of the computing resources
served by the cache, which range from a single caching node with
10 Gbps network interface card and a few terabytes of disk, to a
cluster of caching nodes and hundreds of terabytes of disk. The
single-node use case is very simple: a single pod with the XRootD
server. A cluster installation requires two applications per node
(XRootD and CMSD), and a "master" application that unifies them.
Figure 1 shows a production implementation which uses SLATE as

Figure 1: Example distributed caching and data delivery ap-
plication using SLATE
A data lake can deliver experimental data to processing facilities using
a network of caching servers and purpose-built delivery services that
transform the data into the needed format.

the management layer in the edge network. A production deploy-
ment of the XCache application will have three more applications
comprising the full application:

• Application registration: A health-check probe
• Cache state reporting: Metadata plus cached blocks of data
accessed

• Summary stream reporting: Reporting on operational pa-
rameters

2.2 Development Workflow
The review of the requirements of the XCache application and the
review of other distributed scientific applications has allowed the
SLATE project to abstract a typical development workflow into
several major components. In order to ensure consistency across
distributed environments, and, to provide security guarantees re-
quired by resource providers of the edge services, the SLATE model
comprises the following major components for a typical Develop-
ment workflow:

• Break scientific application into discrete processeswith clearly
defined dependencies.

• Create an appropriate set of Docker containers that compose
the application processes and dependencies.

• Write appropriate configuration scripts for the set of con-
tainers.

• Write appropriate packaging scripts for the set of containers.
• Document ports, system level requirements and security
requirements required by the scientific application.

• Submit packaged application to SLATE incubator catalog.
• Test deployment on SLATE platform.
• Validate functionality and security posture of scientific ap-
plication.

• Request acceptance to production catalog.
• Deploy scientific application across acceptable sites.
• Deploy operational monitoring of scientific application.

This description of a typical workflow allows SLATE to focus
and highlight areas where developers of science applications have
struggled in getting their applications out to collaborators and other
members of the community.
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2.3 Containers
The SLATE project focuses on scientific applications which can
deploy within containers. Containers are a lightweight and efficient
construct which are able to present applications and processes in
an isolated and consistent method. Containers allow the virtualiza-
tion of only the operating system and key processes of a particular
application. Due to their lightweight characteristics, containers
are relatively straightforward to orchestrate with appropriate tools
such as Kubernetes, Mesos, or Docker Compose. The orchestra-
tion of containers allows a scientific developer to break apart a
application into discrete components and run these components
in a modular and portable fashion. In turn, this modularity and
portability allows a scientific developer to maintain and swap out
components as the science workflow evolves over time. Modularity
also has the additional advantages of isolating any conflicting li-
braries or versions of code. Use of containers lends itself to scientific
reproducibility by allowing different versions of code to run, and
also lends itself to enhanced security posture by providing minimal
attack vectors on very small areas of isolated code. The portability
aspects allow ease of support across different environments. With
the help of the orchestration tools, the containers can also migrate
easily across disparate sites.

The SLATE model relies on the ability of the developer to suc-
cessfully break the application into discrete processes with clearly
defined dependencies. The developers can then put these processes
into separate containers which SLATE can orchestrate within a site
or across federated sites.

2.4 SLATE Platform
Once a developer has created the requisite containers, they can be
deployed on the SLATE platform across geographically disparate
sites. The SLATE team has created a platform architecture [? ] with
a centralized application deployment model in mind. Science groups
interact with a centralized SLATE Application Programming Inter-
face (API) to deploy their applications in a secure and consistent
fashion across multiple federated SLATE clusters. This API has a
RESTful design which both the SLATE command line tool and the
web portal use.

The SLATE team has designed the platform to make deploy-
ment and operation as streamlined as possible. Figure 2 gives a
schematic picture of the SLATE architecture. The SLATE Web Por-
tal will provide views for science groups to observe the status of
the applications they have deployed as well as for operators of the
underlying edge clusters to view how science groups are utilizing
the hardware.

3 MINISLATE: A PERSONALIZED
DEVELOPMENT PLATFORM

3.1 Necessity of a Development Platform
Science applications are often made up of several discrete com-
ponents. Each of these components have specific dependencies,
configurations and characteristics. As the science evolves, the appli-
cation must evolve with it. This fact implies that components and
configurations with their requisite characteristics must occasionally
change with minimal disruption to the end user. Science developers
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Data Store

SLATE
Cluster

SLATE
Cluster

SLATE
Cluster
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then applies base 
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Figure 2: SLATE architecture

need a "sandbox environment" in which to regularly test new ideas,
iterations of components, and changes to configuration files.

Given the number of steps involved, and potential for delay and
disruption in the software development cycle, a local, standalone
environment which mimics the essential features of the produc-
tion SLATE platform is needed. MiniSLATE achieves this goal by
providing a fully self-contained environment complete with the
SLATE API server, SLATE command line and other tools. Mini-
SLATE allows the developer to test containers, configurations and
application characteristics all within a determined state. The de-
veloper can rely on this state thereby reducing concern of wasted
time and resources from potential unknown variables in their de-
velopment environment.

The self-contained nature of the MiniSLATE development envi-
ronment gives the developer confidence that the deployed applica-
tion will transition from development to production in a seamless
manner. Since the environment contains the same tooling and or-
chestration mechanisms as the production SLATE platform, the
developer can test various iterations of the components of the ap-
plication and have a fair confidence that the results will deploy
consistently. The developer can also prepare an application simul-
taneously for different groups that require different characteristics
and configurations because the MiniSLATE environment also in-
herently supports the same namespacing and other isolation tech-
niques that the full SLATE platform supports.

3.2 MiniSLATE Architecture
MiniSLATE is a complete implementation of the production SLATE
platform packaged in Docker Containers and orchestrated within
the Docker Compose [? ] framework. This configuration allows a
minimum set of requirements for the endpoint (python, Docker,
Docker Compose), and also allows the installation and orchestra-
tion of the entire development environment to be light-weight,
consisting of only a small number of scripts and configuration
files. Figure 3 shows an example of the simplicity of installing Mini-
SLATE. With the addition of a few performance tweaks for personal
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Installing MiniSLATE

$ git clone https://github.com/slateci/minislate.git

Cloning into 'minislate'...

$ cd minislate

$ ./minislate init

(...)

Default Group: ms-group

Default Cluster: ms-c

DONE! MiniSLATE is now initialized.

$ ./minislate slate app install nginx --group ms-group --cluster ms-c

Installing application...

...

Successfully installed application nginx as instance ms-group-nginx-default with ID 

instance_tey72YzGYuw

Figure 3: Example MiniSLATE installation

machines, MiniSLATE provides the science developer with the iso-
lated environment necessary to create and iterate an application.
Figure 4 shows the MiniSLATE architecture.

MiniSLATE utilizes four Docker containers to provide the actual
development environment . These containers are the Kubernetes
Node container, the SLATE Management container, the DynamoDB
container and the NFS storage container. MiniSLATE pulls these
docker containers from the respective sources during its build pro-
cess. Docker Compose places each of these containers in the same
local Docker network to allow direct communication between them.
The orchestration provided by Docker Compose allows MiniSLATE
to bring up the full development environment consisting of the four
containers in a consistent and isolated manner.

3.2.1 Docker-in-Docker Kubernetes Node. The production SLATE
platform uses Kubernetes for its underlying orchestration tooling.
The MiniSLATE development platform offers this same tooling
for its development environment. Kubernetes has various system
requirements that one may not wish to satisfy on their develop-
ment workstation. Therefore, MiniSLATE utilizes an architecture
whereby it sets up a Docker-in-Docker[? ] environment, and places
Kubernetes inside the first Docker layer. MiniSLATE utilizes the sec-
ond Docker layer for the container runtime interface. MiniSLATE
provides some configuration changes to kubeadm on initialization
to ensure compatibility with this environment. This architecture is
similar to the kubernetes-sigs/kubeadm-dind-cluster project[? ].

3.2.2 SLATE Management Container. All management controls
for SLATE, including the SLATE client and API server with all
dependencies exist within the SLATE Management container. This
container contains other useful tools such as vim [? ], kubectl [? ],
and helm [? ]. A shared Docker volume exposes the "kubeconfig"
file from the Kubernetes container into this container, directing the
clients to connect to the Kubernetes API over the Docker network.

3.2.3 DynamoDB Container. The SLATE API server utilizes Dy-
namoDB as a database for storing persistent information. The con-
tainer image, dwmkerr/dynamodb on Docker Hub[? ], provides a
simple and easy to use deployment of DynamoDB that the SLATE
API server utilizes while running in the SLATE Management Con-
tainer.

Figure 4: MiniSLATE architecture

3.2.4 NFS Storage Container. Production SLATE deployments cur-
rently utilize NFS as a persistent storage solution that is compatible
with Kubernetes. In order to maintain parity with production de-
ployments and to avoid the need to change code when moving from
testing to production, MiniSLATE utilize a NFS storage container as
well. The image, itsthenetwork/nfs-server-alpine on Docker Hub[?
], provides a quick deployment of NFS4. An NFS client provisioner[?
] is also installed by default on the Kubernetes node that can be
utilized immediately by developers for their packages. Develop-
ers can also utilize other remote storage systems from MiniSLATE
to handle existing data of any size by providing a storage class
configured for the desired storage system.

3.3 Alternatives to MiniSLATE
Prior to developing MiniSLATE, the SLATE team evaluated cur-
rent available solutions which might fit the needs of development.
Primarily, MiniKube[? ] was used, a popular local development
solution for Kubernetes. MiniKube includes a Virtual Machine that
runs Kubernetes and allows users to connect from their host. We
found this solution to be workable, but with several drawbacks.
Primarily, MiniKube did not allow for much customization within
Kubernetes. Storage also had no support for dynamic provisioning.
MiniSLATE provides a more robust solution, mimicking the stor-
age solution used in the production SLATE platform. In addition,
clients for Kubernetes, Helm, or SLATE had to be placed and con-
figured on the host as well as any requirements to run MiniKube,
such as a compatible hypervisor. MiniSLATE only requires Python
and Docker/Docker Compose. All other dependencies are housed
within the deployment and can be removed as easily as they are put
in place. MiniSLATE also has no hypervisor requirement, helping
save resources.

The SLATE project team also investigated a dedicated centralized
SLATE development model which would require minimal effort on
behalf of developers. The team set up this model, and like MiniKube,
it provided a usable but imperfect solution. Issues such as configura-
tion consistency, maintenance, refreshes, and most of all volatility
resulted in the solution being difficult to keep in working order.
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MiniSLATE CLI Interfaces

$ ./minislate slate instance list

Name          Group     Cluster ID

nginx-default ms-group ms-c  instance_fXlxlZPtkGY

$ ./minislate slate app install /mnt/mychart

Installing application...

Successfully installed application mychart as instance 

ms-group-chart-default with ID instance_fXlxlZPtkGY

$ ./minislate shell slate

# whoami

root

# slate instance list

Name Group Cluster ID

Nginx-default ms-group ms-c instance_fXlxlZPtkGY

Mychart-default ms-group ms-c instance_K1c8fjXpq1T

$ source shell_aliases

$ cd ~

$ slate instance list

Name          Group     Cluster ID

nginx-default ms-group ms-c  instance_fXlxlZPtkGY

$ kubectl get nodes

NAME           STATUS   ROLES    AGE   VERSION

e0934ffdc141   Ready    master   11m   v1.14.0

$ minislate destroy -y

Killing minislate_kube_1 ... done

Removing minislate_slate_1 ... done

Removing minislate_kube_1  ... done

Removing minislate_db_1    ... done

Removing minislate_nfs_1   ... done

Command Wrapper Aliases

Figure 5: Example of MiniSLATE Command Line Interface

These attempts provided insights that the development model
should support systematic code rule-sets and be completely destruc-
tible, so it could be reset to a known state whenever desired. As a
result, the SLATE team emphasized these ideas as priorities in the
development of MiniSLATE.

4 DEVELOPING ON MINISLATE
Once a developer has installed MiniSLATE, the full SLATE platform
toolset is available. This includes the Kubernetes toolset for orches-
trating the application component containers, Helm for packaging
the component containers into a service to deploy, and the SLATE
toolset, including SLATE client and API server, for deployment
testing. Figure 5 shows an example of the MiniSLATE CLI.

4.1 Science Application Packaging
In the Kubernetes ecosystem, Helm [? ] has become the leading
de-facto standard for packaging and installing applications. This
approach is similar to packaging applications in the Linux world,
i.e. the RedHat Package Manager (RPM) for RedHat [? ] and the
Advanced Packaging Tool (APT) for Debian based Linux [? ]. Helm
provides templated YAML[? ], called "charts", for packaging. Ku-
bernetes uses this packaging to deploy applications in a consistent
fashion with sets of initial configurations and values provided by
Helm. This feature allows a developer to deploy a complete appli-
cation made up of one or more applications on clusters that match
the required specifications and permissions. This feature is a pri-
mary reason the SLATE project has adopted the Helm approach
for providing packaging templates for applications. Figure 6 shows
examples of a Helm chart and the Values file used for providing
initial settings.

4.2 Science Application Deployment
Modern science workflows no longer depend on one or two appli-
cations independently installed, they often depend on a whole set
of applications deployed together in a cohesive manner often at
multiple locations. The use of the Helm toolset with the SLATE
toolset allows for this type of deployment. The SLATE toolset has
the concept of a "catalog" which lists packaged science applications
from which users can pick to deploy. The SLATE toolset allows a
user or developer to pick a science application and deploy it across
one or many federated sites, provided the proper permissions exist.

Helm Charts
Chart.yaml Values.yaml

# Version of Kubernetes in use

apiVersion: v1

# Version of application packaged for 

installation

appVersion: 3.5.27

description: A Helm chart for configuration 

and deployment of the Open Science Grid's 

Frontier Squid application.

name: osg-frontier-squid

# Chart version

version: 1.0.0

Instance: global
SLATE:
  Logging:
    Enabled: true
    Server:
      Name: atlas-kibana.mwt2.org
      Port: 9200
  Cluster:
    Name: ms-c
  LocalStorage: false
Service:
  Port: 3128
  ExternalVisibility: NodePort
SquidConf:
  CacheMem: 128
  CacheSize: 10000
  IPRange: 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Figure 6: Example of Helm chart and Values file

TheMiniSLATE development platform allows science developers
to locally package one or more applications in a fairly straightfor-
ward manner. MiniSLATE utilizes Docker volumes for accessing
developer code that is stored on the host. Developers mount their
code inside a container directory and install their Helm charts from
this directory as opposed to the production SLATE application cata-
log. This container directory is a feature available for development
purposes only and is not available for production SLATE deploy-
ments. A developer can make iterative changes to their code and
reset the environment as needed. When a developer has a relatively
stable chart that they wish to make available in the SLATE cata-
log they can make a pull request to the catalog repository, placing
their code in an "incubator" catalog. Charts will undergo a curation
process which checks for compliance with the SLATE platform
functionality requirements, minimal level of documentation, and
validation that the application configuration will deploy in a reason-
able fashion. When the curation process is complete and the science
developer is ready, the developer can make a pull request to be in
the SLATE "stable" catalog for other science users and developers to
access at will and deploy at remote federate sites, provided proper
permissions and requirements exist.

5 SUMMARY & OUTLOOK
MiniSLATE provides developers with a full suite of tools to develop
and validate the functionality of their application in a consistent
and easy to use environment. Developers use MiniSLATE for the
development of packaged services to deploy onto the production
SLATE platform. Developers are able to create, destroy, and re-
create their environment as many times as needed to facilitate
useful iterative debugging. At the same time, MiniSLATE provides a
small footprint and isolates the development from the host machine.
MiniSLATE will continue to evolve and adapt as further needs arise
at https://github.com/slateci/minislate and http://slateci.io/.
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