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ABSTRACT
The SLATE (Services Layer at the Edge) platform supports collab-
orative, multi-institution scientific computing through federation
of containerized edge services. This paper considers issues of trust
between resource providers and developers of orchestrated services
which span administrative domains. The context for discussion
is the SLATE federation architecture and application deployment
pattern. The major features are a custom central API server which
implements the federation, partitioning of user and group applica-
tions on edge clusters, and a curated catalog of applications which
can be installed within the federation.

CCS CONCEPTS
• Computer systems organization → Grid computing, Edge
Computing.
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1 INTRODUCTION
Many current science experiments are performed by collaborations
which span multiple institutions and laboratories, and these col-
laborations often utilize computing grids such as the Open Science
Grid [? ] and the Worldwide LHC Computing Grid [? ] to access
computing resources at yet different locations. This paradigm of
computing requires considerable supporting software infrastruc-
ture to support movement of data and computing jobs among sites
at which computation occurs. Software is typically distributed us-
ing the CernVM File System [? ] on individual compute nodes, with
Frontier Squid [? ] used as a cache to reduce redundant requests
from the site as a whole, as well as caching of other HTTP re-
quests from computing jobs [? ]. As computing and storage cannot
always be colocated, data transfer services, such as Globus [? ],
XRootD [? ? ], Rucio [? ], and iRODS[? ] are often needed to handle
the large volumes of data processed or produced. The ‘compute ele-
ment’ components of a grid, such as the HTCondor CE [? ] and Arc
CE [? ], must also be deployed in order to handle transferring users’
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batch jobs from submit hosts to the computing facilities. In many
cases, the expertise concerning which of these software services
are needed and how they must be configured is held substantially
by the science collaborations or the grid organizations, yet in order
to function they must be deployed at the computing facilities, with
the permission of those sites’ administrators.

The SLATE platform [? ? ] supports this type of collaborative,
multi-institution scientific computing by enabling distributed soft-
ware infrastructure to deploy close to computing resources, at sites
such as high performance computing centers and storage facilities.
It is designed to provide the necessary trust guarantees enabling
service administrators to deploy and manage their software infras-
tructure effectively, while simultaneously maintaining the security
of the computing resource providers’ software, storage, computing,
and network resources. To do this, SLATE combines a federation
architecture, which limits access required by the platform to the
resources contributed by the site, and a curated catalog of software
which the SLATE process audits for basic suitability. While SLATE
uses Kubernetes [? ? ], a platform for deploying and managing
containerized applications, as its underlying technology, the con-
cept outlined here is largely independent of particular Kubernetes
features, making it applicable to other implementations. While the
SLATE platform is still quite new, several groups are investigat-
ing using it to deploy services. Using SLATE, the XCache variant
distribution of XRootD has been successfully deployed at multiple
sites, and is being tested for use as a component of the ATLAS data
processing system. Typical components of Open Science Grid site
deployments including Frontier Squid and the Stashcache version
of XRootD [? ] are already available from the SLATE catalog and
are being tested prior to production use.

SLATE supports both edge [? ] infrastructure services, such as
caches and data transfer endpoints, and domain applications which
perform particular scientific calculations. While there are important
differences between infrastructure services and domain applica-
tions, for the context of this paper they can generally be treated
together and will be referred to generically as ‘applications’. For
the purposes of this paper, we will draw focus to how edge infras-
tructure services provided by SLATE may augment the capabilities
of HPC facilities and reduce overall operational burden.

2 SLATE ARCHITECTURE
SLATE uses a container-based approach to deploying applications
to provide uniform environments and encourage scalable, stateless
applications. In order to orchestrate these containers, the SLATE
team uses Kubernetes, a container orchestration system with a
robust open source community and used by a number of scientific
computing providers. Many options are possible for federating
multiple sites using Kubernetes, including “stretched” Kubernetes
clusters with geographically distributed nodes, native Kubernetes
federation [? ], and add-on products such as Admiralty [? ]. The
approach taken by SLATE, as illustrated in Figure ??, is instead to
introduce a central, custom component, distinct fromKubernetes, to
implement federation capabilities. SLATE’s “lightweight” federation
introduces a number of advantages: a) a tailoring of the federation to
the exact needs of the SLATE platform, b) a partial decoupling of the
development of the SLATE platform from changes in the Kubernetes
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Edge
Cluster
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Cluster
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Figure 1: Structure of the SLATE federation. The central API
server accepts user requests from the command line inter-
face (CLI) and graphical interface (the web portal), looks
up data as needed from the persistent store, generates com-
mands to participating Kubernetes clusters, and sends back
results.

project itself, and c) allowing sites to retain full administrative
control of their own Kubernetes cluster.

The central SLATE component implements a REST API, accepts
user requests, and forwards instructions to individual Kubernetes
clusters as appropriate. Within the SLATE framework, a user or de-
veloper can typically generate requests through either a graphical
web portal or a command line interface. The SLATE web portal and
central services do not provide a custom authentication backend,
and instead use federated identity as implemented by the Globus Re-
search Data Portal [? ]. The state of the SLATE platform is persisted
in a database, currently DynamoDB [? ], which provides scalability
and independence from hardware at a single site. When determin-
ing whether to forward instructions to Kubernetes, the API server
accepts the user requests, validates the user with federated identity
access, and applies authorization rules to determine whether the
user in question has sufficient privilege for the requested action.
Groups defined in the SLATE platform determine the capabilities
of users. These same groups also authorize the user to manage
member clusters and application instances. Each resource provider
which chooses to participate in the federation typically operates
one Kubernetes cluster, on which multiple groups may deploy ap-
plications.

2.1 Application packaging
In order to deploy applications on the SLATE platform, develop-
ers containerize applications and package them through the use
of Helm [? ] charts and templates. Helm charts and templates are
a simple format for providing some configuration values and for
requesting Kubernetes object definitions. This approach makes ap-
plication deployments simple and consistent. Charts are able to
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Figure 2: Application install process on the SLATE platform.
Applications are made available in a standardized catalog,
with the SLATE API server enforcing that applications are
installed only from this source.

abstract application configuration settings out into a single doc-
ument (in the form of a YAML [? ] file). When the application is
installed, the settings are substituted into the object definitions
which are loaded into Kubernetes. Charts make usage simple for
science users who are conversant with the configuration of the
application (e.g. the amount of storage allocated for a data cache or
the number of nodes to run in a distributed data analysis cluster)
but may not be familiar with the syntax and structure of Kubernetes.
Codifying applications into charts has the additional benefit that
the chart represents a unified description of how the application
will install. Another entity can then review and audit this unified
description for several key security properties, such as code loaded
and network ports utilized. The design and implementation of the
SLATE platform will install only the charts which source from an
application catalog maintained by the SLATE platform team (cur-
rently) to enforce a baseline level of trust in the software which
it can run at participating sites, as shown in Figure ??. Section ??
goes through the details of maintaining this catalog.

2.2 Cluster use permissions
When a Kubernetes cluster is first joined to the SLATE platform,
by default only the administrating group who added it have autho-
rization to deploy applications to it. These cluster administrators
can then grant other groups access to the cluster, including having
the option to open access to the cluster to all groups. Furthermore,
cluster administrators may regulate which applications from the
catalog each allowed group may install; by default each group
which is allowed access may install any application, but the cluster
administrators may choose to replace this universal permission
with a specific whitelist of allowed applications on a per-group
basis. These capabilities are intended to give the cluster adminis-
trators at each participating site the necessary oversight to enforce
site-specific security policies beyond the basic trust level of SLATE
users and applications. At this time the SLATE platform does not
contain a specific, formal system for arbitrating these types of ac-
cess being granted. Instead users within SLATE are given access
to the contact information provided for other users and groups
so that, for example, an application administrator who wants to
deploy a application to a cluster in the federation can look up the
group which administers the cluster and send a request for access,

and the two parties can reach their own understanding of the scope
and acceptability of the request.

2.3 Multi-tenancy
One of the key design goals of SLATE is to be able to support multi-
tenancy; that is, multiple users of the SLATE platform deploying
applications on the same participating Kubernetes cluster should
not be able to interfere with each others’ activities. Kubernetes
provides two critical building blocks for protecting sensitive user
data: namespaces [? ] and secrets [? ]. Namespaces provide scopes
for organizing user objects. Secrets directly represent pieces of
sensitive data (such as database passwords, certificates, etc.). Kuber-
netes guarantees that a secret in one namespace cannot be accessed
by applications in another namespace, and SLATE therefore orga-
nizes applications run by different groups of users into separate
namespaces. Additionally, sites wishing to participate in the SLATE
federation may want to do so with general-purpose Kubernetes
clusters which they already operate, and so they may wish to ensure
that the SLATE platform itself cannot interfere with their other
users. Normally, in order to create Kubernetes namespaces SLATE
would require access to all namespaces on the cluster, meaning that
a bug or security flaw in SLATE could lead to undesired access to
or alteration of non-SLATE resources. This possible class of prob-
lems is mitigated through the use of an additional component, the
NRP-controller, written by D. Mishin [? ]. This controller supplies a
pair of Custom Resource Definitions (CRDs) which extend the Ku-
bernetes API to grant SLATE indirect access to create namespaces
for its users, without granting it access to all namespaces. These
particular implementation choices are specific to using Kubernetes
as the underlying technology; with a different orchestration tech-
nology equivalent multi-tenancy isolation features would have to
be used.

3 CATALOG CURATION
SLATE’s design allows flexible deployment of new science services
in close proximity to major computing resources, but this proxim-
ity brings additional security concerns. Because of the amount of
computing and bandwidth available at such sites, administrators
must be vigilant not only for malicious software directly abusing
the resources, but also legitimate, but misconfigured, software cre-
ating openings for abuse. The fundamental concept of the SLATE
application catalog is to limit applications to those which the plat-
form operations team can certify meet security criteria required by
resource providers. This concept requires application developers
submitting their work for review by the platform team, and con-
structing mechanisms to ensure that only code which has passed
the platform team’s review can deploy. The review process must not
be unduly burdensome to application developers, lest the overhead
of working with the platform be greater than the value the platform
can provide.

Deploying containerized applications to Kubernetes involves
two levels of code which must be trusted, and therefore must be
reviewed. The first is the actual executable code and its immediate
configuration, which is embodied in a Docker [? ] image, defined
by a set of image sources (primarily a ‘Dockerfile’). The second is
the higher level configuration of the container within Kubernetes,



PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Weaver, et al.

which (at present) SLATE treats in the form of a Helm chart. Helm
charts offer the opportunity to separate the majority of application
configuration from a reduced set of user adjustable parameters.
While Helm has proven to be the most convenient mechanism
presently available, SLATE’s usage of it is fairly simple, and it is
possible that it could be replaced with a different templating mech-
anism if a good alternative appears or SLATE’s needs change. In
order to ensure that an application is well behaved, the Helm chart
must be reviewed to ensure that it provides a suitable configuration
of the application, and exposes no adjustable parameters which
would compromise that configuration. The Docker image sources
must be likewise audited. Finally, steps must be taken to ensure that
the Docker image which will be used in the future will correspond
to the sources which are reviewed. This is required because images
are typically fetched from central repositories (e.g. Docker Hub)
when an application instance is deployed, and these repositories
typically allow the image corresponding to a given identifier to be
replaced.

To address all of these concerns, application image sources and
Helm charts are maintained by the platform team in the application
catalog in the form of a public repository (that is, readable by the
public but modifiable only by the platform team), and the platform
team publishes charts and images for use on the platform from this
repository only. New applications (and changes to existing applica-
tions) are proposed by application developers, and reviewed and
approved by members of the platform team. Typically, the reposi-
tory would be hosted on a provider like GitHub [? ], and proposals
for additions and changes are made in the standard way supported
by that provider, i.e. Pull Requests on GitHub. The SLATE project
team provides and maintains a public repository of applications [?
], though the pattern could be copied by an independent organiza-
tion of federated sites to source specific applications from trusted
sources. A complete workflow involving an Application Developer
and a Platform Application Reviewer is as follows:

(1) Application Developer writes image sources, and tests locally
until the image functions as intended

(2) Application Developer writes chart sources, tests locally
until the chart installs cleanly

(3) Application Developer ‘forks’ the application catalog git
repository

(4) ApplicationDeveloper adds image and chart sources to his/her
copy of the catalog repository (to the section for applications
under consideration, the ‘incubator’ catalog)

(5) Application Developer submits a ‘pull request’ to the original
catalog git repository to merge his/her additions

(6) Continuous integration system detects the request and per-
forms a test build of the application image and chart, which
includes simple automated checks (i.e. for valid syntax). The
results of this test build are visible to the Platform Applica-
tion Reviewer, and an indication of its success or failure to
the public.

(7) Platform Application Reviewer examines the pull request. If
all sources appear valid he or she merges the pull request

(8) Continuous integration system detects the change, publishes
an updated version of the catalog, builds the image and
publishes it to a Docker repository
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Figure 3: Application reviewprocess for the SLATEplatform.
An application developer submits suggested changes, includ-
ing both sources for a container image and a Helm chart, a
platform reviewer considers the changes, and after approval
by the reviewer an updated version of the application cata-
log is automatically published.

(9) Platform Application Reviewer performs a review of the
contributed chart and image sources to determine whether
they meet all requirements for inclusion in the stable catalog

(10) Platform Application Reviewer moves the chart and image
sources to the stable section of the catalog, if requirements
are met.

(11) Continuous integration system detects the change, publishes
an updated version of the catalog, and builds the image and
publishes it to a Docker repository

A simplified diagram of this scheme is shown in Figure ??. Essen-
tially the same process is also relevant for changes to an existing
application, with the science application developer preparing a set
of changes and submitting a pull request for their inclusion, from
which point the review steps would be the same except that basic
information about the application would not generally need to be
recollected.

When the Continuous Integration (CI) system performs its test
build on submitted applications in Step ?? of the process, it must
not be vulnerable to arbitrary code execution. As the build process
is defined by configuration files which are themselves stored in
the catalog repository, the CI system must be configured to ignore
changes to these specific files, or to refuse to build proposed changes
which include alterations to them. As long as the integrity of the
build system itself is ensured, building the Helm charts executes
no user defined code (barring vulnerabilities in Helm itself), and
produces fixed output files which are known ahead of time. Building
Docker images necessarily involves executing user-supplied code,
however, this is contained within the scope of the container being
created. Standard best practices should be followed to mitigate
Docker container breakout exploits.

An important caveat is that most Docker images are based on
other, more general images; for example, many application images
are based on an operating system image. Inspecting the contents
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of entire operating system distributions is clearly beyond the scope
of the SLATE platform, and in addition it is already typical in scien-
tific computing to trust these same distributions when they install
directly on the hardware in a data center. Likewise, some appli-
cations which might be relevant for inclusion in the catalog are
already major open-source projects with their own security and
quality procedures, which are already widely trusted. Examples
might include the Apache httpd [? ] and NGINX [? ] web servers.
When such projects already prepare their own Docker container
images which are well trusted by the computing community it is
more desirable for the SLATE platform to make use of them than
to make and attempt to maintain copies. Therefore, not all SLATE
applications should be required to include image sources within
the catalog if the images sources are maintained and the images
published by a suitably reputable group. This is formalized by the
platform reviewers maintaining a whitelist of trusted organizations,
and application developers should be able to propose new additions
to the whitelist. It is expected that when such an application is
submitted to the catalog review process, the Application Developer
making the submission would include a written explanation of why
the images being used, and the organization which produces them
should be added to the whitelist, and the Reviewer would take this
into consideration.

Where possible it is desirable to automate investigation of con-
tainer images to allow deeper insight than what the Reviewer can
gain from a manual inspection, given limited review time per ap-
plication. One class of tools available in this area are image vulner-
ability scanners [? ? ? ]. These tools generally unpack images and
compare the collection of software found to be installed against
public databases of known software vulnerabilities, reporting any
vulnerabilities known to be present in installed package versions.
It is therefore useful to include such scanning in the set of auto-
mated checks performed by the application catalog’s continuous
integration system, but the output probably cannot be acted on in
an automatic way. This is due to the fact that scanner tools are not
able to usefully inspect all images (often due to the images being
minimally constructed so that they do not include any package man-
ager information about software versions) and images which can be
scanned often produce large numbers of real but likely unimportant
vulnerability warnings. As a result, the intention is to make the
results of such scans available to Platform Application Reviewers
and alongside applications which are accepted into the catalog, but
it appears impractical to require that submitted images successfully
pass a scan with zero known vulnerabilities. Instead, the Reviewer
should consider whether detected vulnerabilities are sufficiently
relevant that the image should be revised to eliminate them, and
cluster administrators would also have the scan results available for
when considering requests to run the application on their cluster.
It would be natural to also provide in the same place any related
information that participants in the platform may generate and
contribute, such as results from audits performed on particular
applications.

One possible area for the application contribution, review, and
publishing process to be extended is verification of contributors’
identities and authenticity of charts and images. By using private-
key cryptography it could be possible for application developers
to sign their contributions and then for the SLATE platform to

verify that subsequent contributions are made by the owner of
the same private key. When submissions are managed through a
service provider like GitHub, which already carries out authentica-
tion, adding such steps would make little difference in security, and
would add an additional burden on scientific application developers
who do not typically employ cryptographic signing in their devel-
opment workflows. However, they would be an important addition
if such a service provider is not used. Likewise, it is possible for
the SLATE platform to sign charts and images it publishes so that
when used they can be verified not to have been tampered with
after the platform’s build process. It is difficult, though to provide
any type of verification mechanism that the build artifacts were
indeed created from the intended sources, particularly since in the
case of the container images the ‘sources’ often implicitly include
whatever package versions were most recently available from a
particular Linux distribution package manager at the time the im-
age was built. At this time SLATE does not employ cryptographic
signing in either context, but this will be explored further in the
future.

If problems do arisewith an application after its publication in the
catalog, such as security vulnerabilities or some type of malicious
code being discovered, a few mitigations are possible. First, an
application determined to be dangerous can be removed from the
catalog until it is corrected, preventing it from being deployed
any further. Existing deployments can be shut down, either by
the service administrators who deployed them, or by the central
administrators of the SLATE platform, depending on urgency.While
SLATE cannot give particular insight into the behavior of each
packaged application (such as interpreting its particular log files), it
does record when any application instance is deployed or removed,
which information could be made available to administrators of
sites at which the suspect application had been running to assist
them in investigating possible impacts.

4 SUMMARY
The SLATE platform facilitates efficient deployment of science ser-
vices and applications by creating a trust relationship between
application developers, application administrators, and computing
resource providers. This trust is built from isolation of sensitive
application inputs among user applications, providing controls to
limit privileges on federation member clusters by groups, and man-
agement of a central catalog of reviewed applications. Not only is
this type of federation capable of supporting both infrastructure
services and domain applications, but multiple, independent feder-
ations can also be operated using the same tools, potentially with
their own catalogs of applications. We are not aware of any other
published solutions which address the same needs of building a
trust relationship for multi-institution federation.
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