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1 | INTRODUCTION

| Roger A. De Souza®

Abstract

The diminished conductivity of pristine grain boundaries in oxide-ion conducting
electrolytes, such as (Ce,Gd)O, and (Zr,Y)O,, is widely interpreted with the Mott-
Schottky space-charge model, or less frequently, with the Gouy-Chapman space-
charge model. Although routinely applied to the entire compositional range of solid
solutions, from dilute to concentrated, these models, being based on the Poisson-
Boltzmann formalism, are limited in their range of validity to dilute solutions of
point defects. Analyzing the grain-boundary properties of concentrated solid solu-
tions with such models is expected to lead to errors and inconsistencies. In this study,
we employ Poisson-Cahn theory to analyze literature data for the grain-boundary
resistance of CeO,-Gd,0; materials as a function of Gd concentration. Poisson-
Cahn theory combines the Cahn-Hilliard theory of inhomogeneous systems with the
Poisson equation of electrostatics and it is valid over the entire compositional range.
We treat the realistic case of a restricted equilibrium: Gd accumulation profiles are
frozen-in from sintering temperatures, while the oxygen-vacancy distributions are in
equilibrium at sintering and (much lower) measurement temperatures. Data for the
grain-boundary resistance are also analyzed with the standard analytical expressions
from the Mott-Schottky and Gouy-Chapman models. Outside the domain of their
validity, these expressions are found to perform poorly. In general, we emphasize the
importance of treating the interfacial properties of concentrated solid solutions with

physically appropriate theories.

rise to grain boundaries that are, relative to the bulk phase,
highly conductive or highly resistive.

The electrical response of a crystalline oxide is often gov-
erned by interactions between the system's point defects and
its interfaces. The segregation of charged point-defects to a
grain boundary, for instance, results in the grain boundary
becoming electrostatically charged and space-charge zones
forming in the adjacent bulk phase to preserve global elec-
troneutrality. This re-distribution of charged point-defects
may alter local point-defect concentrations in the vicinity of a
boundary by many orders of magnitude, and thus, it may give

The abrupt corelspace-charge model'® currently rep-
resents the standard treatment of space-charge layers at
grain boundaries in complex oxides. It is essentially a
two-phase model, in which a grain-boundary core phase
is sandwiched between two slabs of bulk material, the
grain-boundary core being the structurally perturbed re-
gion between the two grains. (Since the grain-boundary
core is characterized by a finite width and by a distinct set
of thermodynamic quantities, and since it is in (partial)
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thermodynamic equilibrium with the adjacent slabs of bulk
phase but cannot exist independently of them, it can be
termed a grain-boundary complexiong’lo.) The usefulness
of the abrupt corelspace-charge model is that it easily links
observable physical properties, such as the grain boundar-
ies' resistance and capacitance, to space-charge quantities
such as the space-charge potential, which describes the de-
gree to which point defects are depleted or accumulated
in the space-charge zone, and the space-charge screening
length, which describes the length scale over which such
changes occur.

For systems that contain a dopant and one charge-compen-
sating defect, two limiting cases are commonly considered
in the literature: (a) the Gouy-Chapman case, in which both
dopant and charge-compensating defect are mobile and their
concentration profiles are in electrochemical equilibrium; (b)
the Mott-Schottky case, in which the dopant's concentration
is constant across the entire system, and only the mobile com-
pensating defect is in electrochemical equilibrium. (These
two limiting cases are considered because they lead to simple
analytical expressions linking space-charge parameters to ob-
servable properties.) Many actual samples, however, will be
characterized by some intermediate case, one in which the
exact concentration profile of the dopant conforms neither
to the Mott-Schottky nor to the Gouy-Chapman case. Such
intermediate cases result whenever the dopant is mobile at
fabrication temperatures (ie, sintering and conditioning of the
polycrystalline oxide) but not at the (much lower) tempera-
tures at which electrical measurements are made (ie, at those
temperatures at which the space-charge layers are probed).
The critical factors, therefore, are the thermal history of the
sample and the mobility of the dopant.

One oxide system whose grain boundaries have received
much attention is the fluorite-structured oxide CeOz.S’“_“5
The total ionic conductivity of the solid solutions CeO,-M,0;
is sufficiently high that the materials find application as ox-
ygen-ion conducting electrolytes in intermediate temperature
solid oxide fuel cells,*? despite pristine grain boundaries
exhibiting substantially lower conductivity than the bulk
phase. Since the structural perturbation on its own is deemed
insufficient to generate such considerable resistance, and
since the grain-boundary width extracted from capacitance
measurements is much larger than the structurally perturbed
(core) region observed in transmission electron micrographs,
it has been concluded that the high resistance is due to diffuse
space-charge layers depleted of oxygen vacancies.

The formation of space-charge layers at grain boundaries
in CeO,-based materials is widely attributed to the behavior
of ionic defects (as opposed to the trapping of electronic de-
fects in interface states). Specifically, oxygen vacancies, in
response to their Gibbs formation energy being lower at the
core than in the bulk,>>"3 segregate from bulk to core. The
grain-boundary core thus develops an excess positive charge,

and this charge is compensated by negatively charged space-
charge zones, in which, at least in the dilute-solution picture,
oxygen vacancies are strongly depleted and acceptor-dopant
cations, if sufficiently mobile, are accumulated.

It is worth taking note of our use of the terms “segrega-
tion” and “accumulation.” Following Ref. 7 we use “segre-
gation” to refer to the redistribution of a defect from the bulk
to the core, increasing the concentration of that defect in the
core; and we use “accumulation” to refer to the redistribution
from bulk to the diffuse space-charge layers, increasing the
concentration of that defect within the layers. Defect segre-
gation does not necessarily imply defect accumulation, and
vice versa.

Grain-boundary resistances measured for CeO,-M,05 solid
solutions at 7'< 1000 K are generally analyzedz“’“’m’35 40.54-59
within the Mott-Schottky approach (with one notable ex-
ception®). Such an analysis ignores, however, two things.
First, that concentrated solid solutions are being studied,
whereas Mott-Schottky (and Gouy-Chapman) approaches,
being based on the Poisson-Boltzmann formulism, are only
valid for dilute solutions. Second, that dopant accumulation
will have occurred at sintering temperatures. Atomic-level
characterization by means of transmission electron micros-
copyS&(’O"(’4 (TEM) or atom probe tomography (APT)®3
has found significant accumulation of the acceptor cation at
grain boundaries in CeO, solid solutions (grain boundaries
in the related ZrO,-Y,0; materials also show accumulation
of the Y cations®*®"~7°). Acceptor-cation accumulation can
only take place at sintering temperatures because cation trans-
port in fluorite-structured oxides, such as CeO, and ZrO,,
is extremely slow (orders of magnitude slower than oxygen
transport) and because it is characterized by much higher acti-
vation energies.71—75 Knowledge of a sample's thermal history
is thus essential to the interpretation of experimental results.

In this study, we analyze the grain-boundary resistance of
Ce0,-Gd,0O5 materials, moving beyond these usual assump-
tions of no dopant accumulation and of a dilute solution. To
this end, we extend our previous work on space-charge layers
at grain boundaries in the theoretical framework of Poisson-
Cahn theory.76 Combining Poisson-Boltzmann and Cahn-
Hilliard”""® formalisms, Poisson-Cahn theory76’79’80
to treat space-charge layers at extended defects over the entire
compositional space, from weakly doped systems up to con-
centrated solid solutions. We extend our previous study in one
particular way: We take into account the (temperature-depen-
dent) mobility of the cations and the thermal history of the
sample. That is, we consider the realistic case of a restricted
equilibrium in which (a) oxygen ions achieve electrochemical
equilibrium quasi-instantaneously at all temperatures; and (b)
the Gd** cations are allowed to attain electrochemical equi-
librium at elevated (sintering) temperature, reacting to the
electric potential profile set up by the vacancies' redistribu-
tion, but are frozen-in at lower, measuring temperatures. We

is able
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also extend the work of TschOpe et al,5 who did consider such
a restricted equilibrium but only within the framework of a
dilute solution. Finally, we also provide a detailed compari-
son of Poisson-Cahn theory with its dilute-solution cousins.

Our study is set out as follows. The following section sum-
marises the standard dilute-solution approaches, providing a
foundation for the rest of the paper. Poisson-Cahn theory is
described in detail in the third section; the derivation of a
characteristic length is also discussed. In the fourth section,
results are presented; conductivity data from the literature are
also analyzed with Poisson-Cahn theory and with the stan-
dard Poisson-Boltzmann theories.

2 | THE STANDARD POISSON-
BOLTZMANN TREATMENTS

The principal aim of the standard treatments is to obtain sim-
ple analytical expressions for the grain-boundary resistance
R® in terms of space-charge potential ®,. We reproduce
below the major equations, although they have been reported

elsewhere,lg’gl_83

so that the assumptions involved in deriving
such expressions are evident, and in this way, the conditions
under which the expressions are valid are clear. This informa-
tion is required later (Section 4.3), when experimental data
are analyzed with Poisson-Cahn theory and with the standard
approaches, and comparisons are made. Some mistakes and
misconceptions in published studies are also cleared up.

Our considerations are restricted to an AO, oxide con-
taining acceptor cations (site fraction n,) and charge-com-
pensating oxygen vacancies (site fraction n,). Electrons are
neglected on the assumption that they are minority species in
the bulk and in the space-charge layers; this is a reasonable
approximation for a CeO,-M,0; material under oxidizing
conditions and at not too high ternperatures.74 In the bulk, the
electroneutrality condition is thus n‘; = 4n‘v’ (since the concen-
trations are related through cg =2c5 and the site densities in
an AO, oxide through 2N® =NP).

The standard treatments of Gouy-Chapman and Mott-
Schottky space-charge layers in ionic solids are based on
two main assumptions. First, materials' parameters, such
as charge-carrier mobilities or standard chemical poten-
tials, are assumed to exhibit step functions at the core
(abrupt corelspace-charge model**"). That is, the mo-
bilities, for example, exhibit one value in the bulk phase
all the way up to the core and a different value in the
grain-boundary core. Second, point defects are assumed
to behave as dilute, non-interacting defects. The electro-
chemical potentials of the two defects (as building units)
in the bulk and in the core take, therefore, the standard
Maxwell-Boltzmann form,7’84’85

ﬁvz,uve+kBTlnnv+26¢ (1a)
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fi,=uS +kgTInn, —eg. (1b)

where u® are the standard chemical potentials of the defect
building units; ¢ is the electric potential; and kg, 7, and e
have their usual meanings. It is the difference in u4® between
bulk phase and core phase, with y&¢— S <0, that drives
the formation of the space-charge layers in our AO, oxide.>’

A defect (building unit) is considered to be in electrochem-
ical equilibrium if its electrochemical potential is constant
throughout the system (V ji =0). (This presupposes that the de-
fect is sufficiently mobile over the appropriate time and length
scales.) For the electroneutral bulk and the space-charge lay-
ers, characterized in the model by spatially invariant values of
1, this means that the equilibrium concentration profiles in
the space-charge layers take the form (with a = e/kgT).

e, ()= Cse—2a[¢(x)—¢b] (2a)

Ca(x)=cher =" (2b)

2.1 | Simple analytical expressions for R

A measured conductivity contains contributions from all
mobile charge carriers, electronic and ionic. Which contri-
butions need to be taken into account for the CeO,-M,0;
system? In the present case—oxidizing conditions, interme-
diate (measurement) temperatures—the contributions from
electrons to the bulk and grain-boundary conductivities can
be ignored. For the bulk phase, the electronic conductivity is
orders of magnitude lower than the ionic conductivity (the
materials are excellent oxide-ion conductors). In the space-
charge layers, electron accumulation may be significant, but
there can be no contribution to the measured grain-boundary
resistance, since an ionic current cannot be transformed into
an electronic current within a material (the ionic and elec-
tronic rails run in paralle186). In addition, the contributions
to measured conductivities from the cations can be safely ig-
nored, since, as noted above, they have negligible mobility
at intermediate (measurement) temperatures. Consequently,
only oxygen vacancies need to be taken into account when
considering the measured conductivities.

The resistance of a single grain boundary, Rgb, when con-
sidered as an excess quantity, is the total resistance of a sys-
tem containing a bulk phase, one grain-boundary core and two
space-charge layers minus the resistance of a grain of identical
dimensions without grain boundary and space-charge layers
(R® = R' — R° = 2R* + R°). Assuming the resistance of the
core to be negligible (2R*! > R¢), we can express R as follows:

L L
2 1 1
REP == dx— | —dx|, 3
A [o-v(x) Ja}? )
0
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where o,(x) is the local oxygen-vacancy conductivity and cr};, its
value in the bulk. A is the cross-sectional area of the grain. The
grain extends from x = 0 to x = 2, with identical space-charge
layers at x = 0 and x = 2L. Hence, the grain is symmetrical
about x = L, and only the portion between x = 0 and x = L needs
to be considered. The grain half-width L is considered to be
large compared with the extent of the space-charge zone, such
that bulk defect concentrations are found at x = L.

The local oxygen-vacancy conductivity o,(x) can be ex-
pressed as the product of the vacancies' concentration ¢, (x),
charge 2e and mobility u,, that is,o, (x) =c,(x)2eu,. Since, as
one of the two main assumptions, u, is taken to be constant up
to the core, the factor (1/u,) can be moved outside the integrals
of Equation 3. In addition, since electrochemical equilibrium
is assumed for the vacancies (V i, =0), c,(x) is related to cg
through Equation 2a, and the factor (1/ clv’) can be moved out-
side the integrals, too. In this way, Equation 3 becomes,

L

Reb = Ai J <62a[¢<X)—¢“] _ 1) du. (4)
(2

< g

0

The potential distribution, ¢(x) — ¢®, is found by solving
the Poisson equation,

2
eoerix—f =ec,(x)—2ec,(x), ©)
for the boundary conditions @, = ¢(0) — ¢° and V¢p® =0. The
critical issue, as noted above, is the behavior of the dopant:
Gouy-Chapman corresponds to V ji, = 0; Mott-Schottky corre-
sponds to V¢, =0. In each case the aim when solving Equation
5 is to obtain an expression for ¢(x)— P that, upon substi-
tution into Equation 4, gives a form amenable to analytical
integration.

2.2 | Gouy-Chapman (GC) space-
charge layers

For the case of both point defects being mobile, we can sub-
stitute Equation 2 into Equation 5 to give,

2
dé__1_ <ea[¢(X)—¢"] _ e—za[¢<x>—¢b1>

a2~ 2ar} (©)

where £, is the Debye length,

_ |eoekgT
‘o= V 2e2cb 2
a

Writing Equation 6 in this way emphasizes that ¢,
emerges naturally as the characteristic length87.

Equation 6 does not have an analytical solution.
Numerical solutions can be easily obtained for all val-
ues of @, but only those numerical solutions for which
a®, <In [N;3 / c';] are physically reasonable, that is, for val-
ues of @, such that the dopant concentration at the interface
does not exceed the number of cation sites, cPe*® <NP.
With ¢? /N> =1% at T =713 K, for example, physically rea-
sonable values of the space-charge potential are limited to
@, <0.28 V. One can avoid this problem by replacing the
Maxwell-Boltzmann form of Equation 1b {containing kg7
In n,} with a Fermi-Dirac-type expression {containing kg7
In[n,/(1 — n,)]}, which takes site exclusion into account.
This does not lead, however, to a simple expression for ¢(x)
, and consequently, for R,

An analytical solution is possible by making the deple-
tion approximation: the concentration of the depleted species
(oxygen vacancies) is neglected in Equation 6. This is a rea-
sonable approximation, since the contribution of the depleted
charge carriers to the charge density is small compared to
that from the accumulated acceptor dopants. The resultant
Poisson equation has the solution®’

) —p(L)
_ (I)O—%ln<l+ée“‘b0/2>, 0<x<2¢p (8)
0, 2, <x

In order to show how reasonable the depletion approxi-
mation is, we compare in Figure 1 the exact (numerical) and
approximate (depletion-approximation) solutions to Equation
6. The approximate solution is identical to the exact solution
close to the interface, since in this region the depletion ap-
proximation is best fulfilled, c,(x) < c,(x). Further from the

10
numerical solution
8 4 — — — depletion approx.
n; 6 -
<
=
s 4
2 -
AN
~ ~
0 T T T I |
0 1 2 3 4 5 6
x1ey
FIGURE 1 Dimensionless space-charge potential plotted against

normalised spatial coordinate for a Gouy-Chapman space-charge
layer: comparison of numerical (exact) and depletion-approximation
solutions to the Poisson equation, Equation 6. £}, is the Debye
screening length; a =e/kyT
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interface, the approximate solution deviates from the numeri-

cal solution, as the concentration of vacancies approaches that

of the dopant and the depletion approximation loses validity.
Substitution of Equation 8 into Equation 4 and integrating

over x=0...27¢ (the region for which Equation 8 is valid)
gives,
gb _ ﬁ e32®o/2 _ ﬂ -3]. )
GC 3A63 (eaCIJO/Z + 1)3

For values of a®,>3, the two latter terms within the
square brackets are negligible, and one obtains

gb 4"ﬂD e3a%/2.

cc”™ 3A6b (10)

The analysis of experimental data is often based on the
ratio of the grain-boundary to bulk resistance, RE/R. In the
Gouy-Chapman case, this ratio follows from Equation 10 as
(note the grain size of 2L).

Reb 26 4 ,/2
—_— r ——e %07, 11
<Rb> 3L (1)

In Figure 2 we compare the resistance ratio obtained nu-
merically by integration (first, of the Gouy-Chapman Poisson
equation, Equation 6, and then, of Equation 4) with the ap-
proximate value from Equation 11. We see that Equation 11
is a remarkably good approximation down to a®,~0.8. A
closer examination of the data (not shown) indicates that,
for 0.8 <a®,<10, Equation 11 underestimates the resis-
tance ratio by less than 3%. Alternatively, using Equation
11 to analyze resistance ratios yields values of a®, that are

102
numerical solution
——- Eq. (11)

101 -
- 100 4
x
UQ,: 10-1 -

102

10°

0 1 2 3 4 5 6

adg

FIGURE 2 The ratio of grain-boundary to bulk resistance,
RE%R®, for Gouy-Chapman space-charge layers as a function of
dimensionless potential, a®,: comparison of numerical (exact) values
with the analytical expression of Equation 11. Calculations performed
with £, =4.88 nm and 2L = 2 pm
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overestimated by up to 6% for 0.8 <a®, <3 but by less than
1% for 3 <ad, < 10.

2.3 | Mott-Schottky (MS) space-
charge layers

One widely held misconception is that the alternative ex-
treme case—a Mott—Schottky space-charge layer—refers to
the dopant being immobile. This is incorrect. It refers to the
dopant's concentration being fixed at its bulk value. Dopant
immobility is of course required for the concentration to be
constant, but it is not the defining condition.

With ¢,(x) =P, Equation 5 becomes,

d¢¢_ 1 <1_e—2a[¢<x>—¢h]>‘
A 2af2 (12)

Neglecting, as before, the depleted charge carriers (the ex-
ponential term) and integrating twice, one obtains,

2
@, (--1) ., 0<x<lys

fMS

0, Oyms <X

dx)— "= (13)

s> the Mott-Schottky screening length, is given by,

2e),D,
Frs =y~ =/ a, (14)
a

Unfortunately, substitution of Equation 13 into Equation 4
does not yield an expression that can be easily integrated
(J ¢ dx). In this case, a further approximation is required: By
linearizing the electric potential of Equation 13, to give
Pd(x)—p° =dy[1-2x/ st],* the integral of Equation 4 can
be evaluated, and one obtains,

g _ 20y | sinh(2a®,) 1
MS Acb 2a®, '

5)

For values of a®, > 3, the first term in the square brackets
dominates and the sinh function can be approximated by a
single exponential, leading to,

RED o Pms 2 20p et
MS™ Acb 4a®, Acd \/4a®, (16)

The ratio of grain boundary to bulk resistance, RE/R®, in
this case follows from Equation 16 as follows:

l’ﬂD e2a®,

(%)
R Jys L \fia®, (17)

“NB: Potential profiles for the MS depletion approximation and linearized

depletion approximation plotted in Figure 8 of Gobel et al®? are incorrect.
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numerical solution
— — — depletion approx.
8 9\ linearised dep. approx.

a [0(x) - 6°]

1.5 2.0

X/ byg

FIGURE 3 Dimensionless space-charge potential plotted

against normalised spatial coordinate for a Mott-Schottky space-charge
layer: comparison of numerical (exact), depletion-approximation and
linearized depletion-approximation solutions to the Poisson equation,
Equation 12. #)s is the Mott-Schottky screening length; a =e/kzT

A comparison of the exact (numerical) and two approximate
solutions to Equation 12 is given in Figure 3. Again, the deple-
tion approximation yields a relatively good description of ¢(x)
close to the interface, with slight deviations at the edge of the
space-charge layer, where the depletion approximation does not
hold. The linearized depletion approximation provides a poor
description of ¢(x), describing only the potential distribution
close to the interface. Nevertheless, the analytical expression
derived for RE/R" from the linearised depletion approximation
(Equation 17) gives a surprisingly good approximation (see
Figure 4) of the resistance ratio obtained numerically by inte-
gration (first, of the Mott-Schottky Poisson equation, Equation
12, and then, of Equation 4). This is because the most resistive
part of an MS space-charge layer is that part closest to the in-
terface (the local resistivity in a space-charge layer depending
exponentially on ¢p(x) — ¢°, see Equation 4), and this part is de-
scribed well by the linearized depletion approximation.

Comparing Figures 2 and 4, we see that, in the MS case,
the analytical expression gives resistance ratios that underes-
timate the numerical (exact) values to a much larger degree
for a®,>0.8. The detailed analysis (not shown) indicates a
difference of up to 12% for 0.8 <a®, <10 but below 5% for
10<a®, <30. Alternatively, for a given value of RE°/REP,
ad, is overestimated by up to 12% for 0.8 <ad, <3 but by
less than 5% for 3 <ad, < 10.

2.4 | Interfacial thermodynamics

The quantity reported most often to characterize space-charge
layers at grain boundaries in ion-conducting oxides is the
space-charge potential ®,. It is easily determined by apply-
ing, for example, Equation 17 to experimental resistance

102
numerical solution
Eq. (17)
101 -
o 100
g
5
X 401 4
102
103 T T T T T
0 1 2 3 4 5 6

a @

FIGURE 4 The ratio of grain-boundary to bulk resistance,
RE°/R®, for Mott-Schottky space-charge layers as a function of
dimensionless potential, a®,: comparison of numerical (exact) values
with the analytical expression of Equation 17. Calculations performed
with £, =4.88 nm and 2L = 2 pm

ratios. Sometimes it is used as a simple test of reasonableness:
If values of @, obtained in an analysis are similar to those
reported in the literature for other oxide-ion conducting sys-
tems (not necessarily referring to the same materials system,
let alone the same composition), then the results are regarded
as reasonable. ®,, however, is neither specific to a material
nor specific to a particular interface. For a given interface,
it will vary with the thermodynamic variables (eg, tempera-
ture and dopant concentration). For given thermodynamic
variables, it will vary with the atomistic structure of the grain
boundary, and thus, with the grain-boundary orientation.®!
Values of @ obtained for ceramics are thus weighted aver-
ages over the type, frequency and spatial distribution of grain
boundaries in the ceramic sample. The quantities that are spe-
cific to a material and to interfaces are the differences in the
standard chemical potentials of the defects between bulk and
core. Aug = Higi ~Hygr
modynamic driving energies for space-charge formation.

The space-charge potential can be predicted from a given set
of A “deef by coupling the interfacial defect thermodynamics to
the bulk defect thermodynamics. Essentially, one assumes that

the mobile point defects are in electrochemical equilibrium be-

These differences constitute the ther-

tween core and bulk phases, fg . — ﬁgef =0, subject to the con-
dition that the charge (per unit area) of the grain-boundary core
is compensated by the two space-charge layers,0° +20°! =0
. Generally, for a system containing two charge carriers, these
two contributions can be written’ as (w* is the core's width),

o =w° [Ze(c\cl - CS) —e(c; — cg)]

L
0¥ = J [Zecv(x) - eca(x)] dx (18)
0
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Let us first briefly sketch out the procedure of calculating
@, from given A /"deef’ taking as our example the case of Mott-
Schottky space-charge layers. With the help of Equation 1a,
one can re-write Equation 18 as follows:

0% =n" b ]v_\(i —a(Q®y+AuS fe) _ 1
MS — w eCa Nb € v
L (19)

scl _ b —2a[p(x)—¢°] _
Ms—ecaI [e 1]dx.

0

To evaluate the integral, one requires the electric poten-
tial profile, ¢(x) —@P, and this can only be obtained exactly
by solving numerically Equation 12 (the relevant Poisson
equation). Obtaining a self-consistent solution requires,
therefore, an iterative procedure,®’ in which D, is varied
(with Equation 12 being solved and Equation 19 being eval-
uated) until Oy ( + 2Q15v°[lS =0 is fulfilled to required accuracy.

This procedure is not undemanding because ¢(x) — @P has
to be calculated numerically in every single iteration cycle.
A preferable procedure would avoid this, and here we present
a closed-form solution. A single integration of Equation 12
and subsequent application of Gauss' Law yields namelygz’93

N =—2ec,tp (a‘l)o - %) (20)

Thus, combining Qf,¢ from Equation 19 and QISVCIIS from

Equation 20 according to Of +2va°[1S =0 results in a single
equation with one unknown (@) that can be solved for given
T, ¢, NP, N¢, w’, and Au®. Although this simple short-cut
avoids determining the exact form of ¢p(x) — ¢, it is neverthe-
less mathematically exact.

In the case of Gouy-Chapman space-charge layers, the rel-

evant equations are as follows:

N°¢
cC _..C,.b v —a2@+Au® /e)
Qe =wlec, [(N—b>e o
v

_ (ﬂ) ea(®o+Aﬂ?/6)] 1)
Ny

ad,
sl =—dect?}, sinh <TO>

The considerations in this section have employed the
Maxwell-Boltzmann forms of Equation 1 in Equations 19
and 21 for consistency, but we recommend using Fermi-Dirac
expressions for the electrochemical potentials of the defect
building units, in order to avoid physically unreasonable de-
fect concentrations.

Lastly, we note that Maier and co-workers include a gap
between core and bulk phas<es.3’8’87 Their arguments for
the inclusion of a gap are essentially phenomenological,
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that is, that certain grain-boundary properties can only be
described with a thermodynamic model when a gap is in-
cluded. In contrast, examination of grain-boundary struc-
tures obtained experimentally from TEM or obtained by
atomistic modelling reveal no such gap. It appears, there-
fore, that the inclusion of such a gap serves only to account
for non-ideal thermodynamic behavior.

3 | POISSON-CAHN THEORY

For a system of point defects that exhibits deviations from
dilute-solution behavior, one traditionally accounts for the
deviations by introducing defect associates into the ther-
modynamic description of the system. Thus for the present
case, in addition to considering acceptor dopants (a) and
oxygen vacancies (v) as defect chemical species, one in-
troduces dopant-vacancy associates, such as a-v pairs and
a-v-a trios. By specifying equilibrium constants for the re-
spective defect association reaction(s), one can, in princi-
ple, achieve a quantitative description of the point-defect
thermodynamics. One may, however, obtain enthalpies of
defect association that vary with acceptor concentration,
and one may have to introduce even higher order associates
arbitrarily with increasing acceptor concentration.

There is also a conceptual problem in seeking to extend
the standard dilute-solution approach by introducing defect
associates. The idea of acceptor species trapping vacancies
makes no sense at high acceptor concentrations because the
vacancies can never be free: they are always trapped. Moving
away from one acceptor cation in a solid solution, a vacancy
finds itself immediately next to another acceptor cation. For
a trapping model to be applicable, vacancies need to be able
to reside at lattice positions away from the influence of the
acceptor cations.

The need to move beyond dilute-solution treatments for
interfaces is impelled, therefore, in part by dilute-solution
treatments of the bulk phase being inadequate or unsatisfac-
tory. Indeed, current models of the bulk properties of CeO,-
Gd,O5 materials require far more complex approaches than
simply introducing defect associates.”*™’ The need to move
beyond dilute-solution treatments is also impelled in part by
the very presence of an interface in a system of interacting
species%‘99 (see Section 3.1). And it is impelled by two sub-
stantial deficiencies in the dilute-solution descriptions of
interfacial behavior. One deficiency concerns the extent of
acceptor-cation accumulation at grain boundaries in ceria
solid solutions. Experimentally they are found to extend
several nanometers; %646 the Debye length (Equation 7)
of the dilute-solution approach predicts, in contrast, values
of only a few angstroms. This deficiency cannot be reme-
died by including a-v pairs and a-v-a trios. The second de-
ficiency concerns the spatial variation of oxygen vacancies
in space-charge layers. APT studies®® of grain boundaries in
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Ce(oNd, ;0 95 and Ce(, 7Nd 30, g5, as well as atomistic sim-
ulations of grain boundaries™ and surfaces'®'! in Gd,0;-
substituted CeO,, find co-accumulation of acceptor cations
and oxygen vacancies. It is impossible for such behavior—
co-accumulation of oppositely charged defects—to emerge
from a dilute-solution approach (see Equation 1). There is
little doubt, therefore, that a new approach is necessary.

Our approach to this problem, essentially, is to restrict the
thermodynamic description to the two fundamental defect
species, a and v, (in order to keep the same basic formulism)
but to replace the site fractions of the dilute approximation
with chemical activities. Poisson-Cahn theory constitutes
one method for calculating activity coefficients for a and v
as a function of temperature and composition. And it does so
consistently across the entire compositional range. For dilute
solutions, the activity coefficients reduce to unity, and for the
case of mobile a and v, Gouy-Chapman behavior (see Section
2.2) is obtained, as it should (this being one benefit of keeping
the same basic formalism); for concentrated solid solutions,
in contrast, the activity coefficients deviate substantially from
unity, and complex behavior may emerge.76’80. In the follow-
ing section, we present Poisson-Cahn theory in detail.
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We focus on the same system as in Section 2, that is, with two
charge carriers (a and v). Poisson-Cahn theory, it is stressed, is
not restricted to only two charge carriers, and we have already
extended the theory elsewhere® to include electronic charge
carriers. Here, the restriction to two charge carriers is made so
that the Poisson-Cahn results can easily be compared with those
from the standard dilute-solution approaches. We also focus, as
in Section 2, on a grain extending from x = 0 to x = 2L with two
identical space-charge layers. Here, the core has to be included
explicitly from the beginning, but to keep the two cases compa-
rable and for the sake of simplicity, we assume that the core has
no width. This assumption can be discarded if the need arises, but
it does serve to keep the following derivation relatively simple.

We begin by considering the total free energy of the non-
homogeneous system between x = 0 and x = 2L. Again, since
the grain is symmetrical about x =L, only the portion between
x =0 and x = L needs to be considered. The inhomogeneity
of the system makes this free energy a functional:

Variational formulation

Flny.n,¢;T.n°]
=T ApOn,(0)+T¢Ausn, (0)

L
+ J {8(nyn,.T)+ep(2N°n, —N°n,)
0

(22)
—N¢kgT [n,Inn,+(1—n)In(1-n,)

+2n, Inn,+2(1-n,)In(1-n,)]

2 2 2
1 dn, 1 dn, 1 d¢
2B, (=2) +=B e (2) b
+2a<dx)+2v<dx> 2£r£0<dx

where I'® are the areal densities of sites characterized by A ,udeef
within the core; the function g is the excess free energy due to
defect interactions; and the coefficients B are gradient energy
coefficients. Here, we assume that g takes the form,

1, » 1, »

_f n +Naa_f n +Naafavnvna’ (23)

8=Nwzfwh, aally
where f;; is an association free energy between the species i and
J> and Nj; is the bond density.

It is worth devoting a few words to the gradient energy
terms of Equation 22. The concept of a gradient energy in
a solid solution was introduced by Cahn in the context of a
miscibility gap in a phase diagram that leads to spinodal de-
composition.”” Such a miscibility gap is one source of sym-
metry breaking—in this context meaning a departure of the
average solute lattice configuration from the space-group
symmetry of the host lattice—but others may arise from
external fields such as those imposed on the system by the
presence of extended defects. In such situations there must
be a positive gradient energy contribution to the free energy,
for the simple reason that the homogeneous solution is not
otherwise stable. One can imagine a microscopic explana-
tion for this phenomenon in terms of the ensemble of solute
configurations that characterizes the free energy minimum
in the homogeneous state. These configurations will extend
infinitely in space, and hence, an external field inducing an
inhomogeneous solute concentration will necessarily cause
the system's free energy to increase. That long-range config-
urations result from short-range forces is well understood in
statistical mechanics: the same principles explain why the
long-range effects of gradient energies have their origin in
short-range solute interactions.'"” In summary, the inclusion
of gradient energy terms for an inhomogeneous concentrated
solid solution is a thermodynamic necessity.

Recently, Vikrant et al'® predicted defect concentrations
in ceria solid solutions neglecting gradient energy terms but
introducing elastic energy terms into their free energy func-
tional.” Such terms arise, essentially, from point defects pos-
sessing non-zero formation volumes.'™ In our study, we
neglect elastic effects for simplicity, so that we can focus on
our main theme, the analysis of the grain-boundary resistance
in a thermodynamically consistent manner.

Let us now return to the free energy functional, Equation
22. The equilibrium state of the system is given by the func-
tions n,, n,, and ¢ that minimize the functional, subject to the
mass-conservation constraints.

"Vikrant et al'®®

“experimentally unmeasurable.” This is incorrect: they are measurable in

claim surprisingly that gradient energy coefficients are

the same way that thermodynamic driving energies of space-charge
formation, interaction energies between point defects and diffusion
coefficients are measurable. That is, by fitting a mathematical model to
experimental data in order to extract the required parameter.
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0

Standard variational calculus yields the Euler-Lagrange
equations for the minimizing functions:

2

1 dg dn,
+kgT1In —ep=f 5 =4
Np on, e TN T (26)
9 an
;bag +kBT1n1 =i, @D
¢ b b
eeodx =e(2N;n,—N,n,) (28)

where . =B, /N}C’. We term these equations the Poisson-Cahn
equations. The expressions on the left-hand side of Equations
26 and 27 are the electrochemical potentials for inhomogeneous
systems, meaning that the constants on the right—the Lagrange
multipliers—are the electrochemical potentials in the bulk.
These three equations are subject to the boundary conditions.

dn
R IV (29)
dn,
S),,=0 (30)
dn, .
By Lo =T3 A48 31)
dn,
el (32)
do do
EIX:OZ alx:Lzo (33)

The boundary conditions in the oxide bulk are the bulk
defect concentrations and the reference electrostatic poten-
tial. Because the theory does not consider the grain-boundary
core to exist as a separate phase, there is no charge separation
outside of the interval [0, L], and the derivative of the electro-
static potential is therefore zero at the interface.

The model so formulated is a second-order, nonlinear
boundary value problem (retaining the elliptic character of
the Poisson-Boltzmann model) that can be solved with stan-
dard techniques. The results presented in the subsequent
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section were generated with a custom-built, adaptive finite-
elements solution implemented in MATLAB.

Parameters used in the simulations appear in Table 1. They
probably do not constitute a unique set: another set may give an
equally good, if not better, description of the system. Some pa-
rameters appearing in Table 1 have been drawn from first princi-
ples calculations—it should be possible to derive first principles
estimates for the other parameters as well, including the gradient
energy coefficients—however, the theory as utilized in this work
is phenomenological. Some of the parameters are substantially
different to those published in our previous paper;76
quence of considering the restricted equilibrium case for acceptor
cations here, but the less realistic case of electrochemical equi-
librium for acceptor cations in the previous study.76 In addition,
we are aware that a continuum approach is an approximation that
becomes poorer as the space-charge layer and structural extent of
the grain boundary become comparable in length. However, con-
tinuum theories operating at similar length scales (in particular
the Cahn-Hilliard theory itself) have proven successful in the past,
and there is currently no straightforward possibility of recourse to
an atomistic theory if equilibrium with a bulk phase is desired.

this is a conse-

3.2 |

Experiments indicate that the characteristic length for accep-
tor accumulation derived from Poisson-Boltzmann theory—
the Debye length—does not pertain to concentrated systems
in which accumulation layers have been found to be an order
of magnitude lalrger.38’60‘64’65 Since Poisson-Cahn theory
yields space-charge layers that extend nanometres, ** rather
than angstroms, it is interesting to consider whether a charac-
teristic length may be derived from the theory.

Length scale

TABLE 1 Parameters used in the Poisson-Cahn simulations
Parameter Value Comment
£, 35 Relative dielectric permittivity
auC/;A 5.43 Lattice constant
fnleV 0.47 v-v interaction energy*
Jfaal€V 1.67 a-a interaction energy*
fuleV —1.33 a-v interaction energy*
Au®leV —2.20 Drives space-charge formation*
Au®leV 0
I'Y/mol m> 238 x 1070 Areal density of sites with Apu®
N, /m™ 3N,
N,/m™> 8N,
N, /m™3 4N,
B,/eV nm™" 456 x 107 Gradient energy coefficient for v*
B, /eV nm™! 5.06 x 107 Gradient energy coefficient for a*

The symbol (*) indicates that this parameter was varied to reproduce experimen-
tal conductivity data.
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The Debye length, we recall, emerges naturally as a charac-
teristic length in Poisson-Boltzmann theory (see Equations 6
and 12). In Poisson-Cahn theory, there is no such natural emer-
gence of a characteristic length because we have a systems of
linked Equations 26-28, each of which shows some mathe-
matically complexity. We may also recall'®'* that the Debye
length can be obtained by linearizing a Poisson-Boltzmann ex-
pression (for a dilute solution of two mobile, equally charged
species). We follow, therefore, an analogous route to obtain
a characteristic Poisson-Cahn length. We linearise the system
of Equations 2628 about the bulk values ng and ”E’ using the
local excess free energy of Equation 23 and extending the do-
main to L= oco. We thus obtain the linear system.

Ba

d’n, kg T
a2 | oy Ve (34)
a a

X(n, — n:) + v, [ (1 — n'j) —e¢

d’n, b kgT
ﬁvﬁzvvafav(na_na)—i_ +Vvvav

n(1—nb)
X(n, —nd)+2ed

2

5r50£ =e[N:(na—nZ)—2N},’(nv _”5)] (36)

with the solution,

(n,—n?)

3
(ny—nb) |=D k& exp <—%> (37)
¢ i=1 !

where k; are constants determined by boundary conditions
and & and 1/ fiz are the eigenvectors and eigenvalues, respec-
tively, of the matrix.

g, O 0
0 g 0
0 0 eg
(33)
[np(kf_Tnp)'i_vaafaa] Vawl av —-e
kT
x Ve |l +vnd] 2e
eN: —ZeN"f 0

with v =N, /N v,, =N, /N®, and v,, =N, /N°.

Equation 37 thus indicates that there are several lengths in
Poisson-Cahn theory (one or more of which may be complex,
indicative of an oscillatory solution). The maximum length
£p¢ derived from the eigenvalues of the matrix (38) will
dominate the solution of Equation 37 and thus we take it to
be the characteristic Poisson-Cahn length. A note of caution

is warranted here. Since it has been obtained through linear-
ization, fg‘g" is only valid in the limit of small effects, that is,
it gives the screening length in a homogeneous, concentrated
solid solution probed by an infinitesimal charge. Much larger
effects, for example, acceptor accumulation in space-charge
layers, may not necessarily be characterized by 5.
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One of the two main assumptions of the Poisson-Boltzmann
models, as already mentioned in Section 2, is that the mo-
bility of the charge carriers is constant throughout the bulk
phase and the space-charge layers. This is a reasonable zero-
order assumption for a dilute solution. In the Mott-Schottky
case, a and v constitute a dilute solution in the bulk phase,
and the concentration of v gets even more diluted in the
space-charge zones. The Gouy-Chapman case is more com-
plex because of acceptor accumulation in the space-charge
zones. As long as the accumulation profile is accurately de-
scribed by cbe®#)-#"] (cf. Equation 1b), however, the system
behaves as a dilute solution. One may say, therefore, that the
assumption of a constant mobility is reasonable as long as
the composition of the matrix does not change significantly.

In a concentrated solid solution, on the other hand, the
composition of the matrix—on both anion and cation sublat-
tices—can change significantly in a space-charge layer. The
assumption of constant charge-carrier mobility loses, there-
fore, its validity. In order to calculate the vacancy mobility
as a function of composition (and thus of position within the
space-charge layers), we employed the model of Nakayama
and Martin.'”” This model considers the association between
oxygen vacancies and ionized acceptors, beginning with a
defect equilibrium model composed of cation tetrahedra and
the accompanying tetrahedrally coordinated anion sites in
the fluorite lattice. The acceptor-vacancy interaction energy
in the Poisson-Cahn model is thus employed to determine a
distribution of tetrahedral configurations found in the lattice.
An average activation energy for vacancy hopping between
two adjoining tetrahedra is determined through a weighted
harmonic mean of Boltzmann factors calculated with the ac-
tivation enthalpy appropriate to the composition of the cat-
ion-cation edge (whether Ce-Ce, Ce-Gd, or Gd-Gd) through
which the vacancy must move. The three activation enthalpies
and a common attempt frequency were used as fitting param-
eters. The values are listed in Table 2.

Vacancy mobility

4 | RESULTS

4.1 |

We begin by considering the evolution of acceptor accu-
mulation profiles at grain boundaries in the CeO,-Gd,04

Space-charge extent
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TABLE 2 Parameters used in the Nakayama-Martin model'"’ t

calculate the composition-dependent ionic conductivity of the CeO,-
Gd,0O; system

(0]

Parameter Value
vofs ™! 1.062 x 10"
AHS &/eV 0.682
AHC:, SfeV 1.192
AHS - GYfeV 1.323

system as a function of acceptor site fraction. With our
focus being on the profiles' extent, we compare in Figure 5
profiles predicted from Poisson-Cahn theory for the param-
eter values appearing in Table 1 with profiles calculated
from the Gouy-Chapman model (Equation 6) with the same
n,(0)/ n:. The two types of profile agree very well at low ng
, indicating clearly that Poisson-Cahn theory reduces to
Gouy-Chapman theory in the limit of dilute solutions.
From n‘;w 1072 onwards, however, the profiles predicted
from Poisson-Cahn theory are almost constant in extent, at
around 4 nm, whereas the corresponding Gouy-Chapman
profiles are far shorter and decrease in a strong and con-
stant manner (Figure 5D-F). In other words, differences in
the lengths of the accumulation layers start to appear at
nEle‘z, and these differences become more prominent
with increasing nP.

Keeping these results in mind, let us now consider the
characteristic screening lengths. The benefit of calculating a
screening length from Poisson-Cahn theory is that it obvi-
ates the need to solve the nonlinear Poisson-Cahn equations.
Instead, a comparatively simple mathematical procedure is
performed—the eigendecomposition of a matrix—and as de-
scribed in Section 3.2, it is only a 3 X 3 matrix that needs
to be eigendecomposed for a solid solution of two species
(a and v). The characteristic Poisson-Cahn length, f]‘,“g", was
obtained from the eigenvalues of matrix (38) for the parame-
ter values appearing in Table 1. The data are plotted for two
different temperatures in Figure 6A, B, taking the real part of
any complex-valued data, and including the Debye length £,
for comparison.

At low ”E there is, as required, no difference between
£pe and £, at either temperature: Poisson-Cahn theory re-
duces to Gouy-Chapman theory in the dilute limit. As ng
increases, one sees from some critical level onwards in-
creasing deviations between the two characteristic lengths.
¢, continues to fall, decreasing even below the lattice con-
stant of CeO,, whereas f{fg", after a short plateau, rises
strongly. This behavior is qualitatively, but not quanti-
tatively, similar to that shown in Figure 5. This, then, is
the (expected) disadvantage of the linearization required
to obtain f;,“(‘j”‘ (see Section 3.2). We attribute the rise in
£p¢" with increasing n',j to the gradient energy becoming
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increasingly important. The crossover point—the point
at which the Debye length (and thus the dilute-solution
approximation) is no longer valid for this system—is at
ng ~0.5%atT=713 K and at n'; ~1%at T= 1573 K (again,
similar to the behavior of Figure 5). The data of Figure
6 thus provide a means for determining quantitatively the
limit of dilute-solution behavior. Furthermore, it indicates
that the critical concentration depends on temperature and
that materials with less than 1% bulk acceptor concentra-
tion may display the behavior of concentrated systems.

Lastly, we comment on why the Mott-Schottky model (rather
than the Gouy-Chapman model) is widely applied in the litera-
ture to concentrated solid solutions. Sometimes it is because the
Mott-Schottky case is misunderstood as the case of immobile ac-
ceptors rather than the case of constant acceptor concentration.
Sometimes it is because of the characteristic screening length.
Equation 14 indicates that £y can be much larger than £, For
example, at 7= 713 K, and with a modest space-charge potential
of only ®,=0.25V, one finds £y = 4, The Mott-Schottky
approach thus permits the electrical width of a grain boundary
to take values that are much larger than the Debye length, and
hence, comparable with experiment. That is, )5 can be physi-
cally reasonable, while £, drops below the lattice spacing.
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In Figure 7A, B we compare literature data
the total and the bulk conductivity of CeO,-Gd,O5 ceramics
at 7 =713 K. In those cases where no experimental data are
available at this temperature, we interpolated or extrapolated
as necessary. Some studies only reported the total conduc-
tivity, which is why there are more datasets in (A) than in
(B). The total conductivity, it is noted, is an effective quantity
over bulk and grain boundaries. It can expressed in terms of
the resistance ratio as follows:

Conductivity

5,17,21,31,50,108 for

b
°_R (39)

It is emphasized that the range of acceptor site fractions
that we consider in this figure corresponds, in the light of
Figure 6, to those outside the dilute regime, that is, ng >1%.

Let us start by examining the data for ¢° in Figure 7B.
Small variations between the individual studies are evident,
with the variation between minimum and maximum values
being less than a factor of 1.4; the maximum conductivity at
this temperature is achieved for ng ~0.1. Turning now to the
data for ¢! in Figure 7A, we find more pronounced scatter,
with the variation between minimum and maximum values
varying by up to a factor of 4; the broad maximum in the total
conductivity appears at this temperature at n: ~0.2.

That the data for o' exhibit more pronounced scat-
ter than the ¢ data is to be expected. The former includes
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FIGURE 5  Acceptor accumulation profiles in space-charge layers at grain boundaries in the CeO,-Gd,O5 system at 7= 1573 K. Solid lines

refer to the results of Poisson-Cahn simulations. Dashed lines refer to the results of the Gouy-Chapman model

contributions from the grain boundaries, see Equation 39.
Samples from various studies will thus be characterized, pos-
sibly, by differing grain sizes; by differing amounts and dis-
tributions of intergranular porosity; by differing amounts and
types of impurities at the grain boundaries; and in particular,
by differing degrees of acceptor accumulation resulting from
differing thermal histories.

In Figure 7C we plot the ratio 6®/6! (see Equation 39),
together with values of the ratio calculated by combining
Poisson-Cahn theory and the Nakayama-Martin model for
the conductivity (with the set of parameters listed in Tables
1 and 2). Here, we have focussed on describing the data from
Tschope et al’ because we know the samples' thermal his-
tories and they are simple: All samples were quenched from
T = 1573 K. Cooling samples in a furnace from the sintering
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FIGURE 6 Characteristic length scale of space-charge layers in the CeO,-Gd,Oj; system obtained from Poisson-Cahn theory (£p3*) against
bulk acceptor site fraction n?. Plotted for comparison is the Debye length (¢). A, T =713 K and (B) T = 1573 K. The dashed, horizontal, gray line

denotes the lattice parameter of CeO,

temperature constitutes a far more complicated case, since it
is unclear at what the temperature(s) the acceptor accumula-
tion profiles are frozen in.
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The parameter used most often in the literature to character-
ize space-charge layers is the space-charge potential (see also
Section 2.4). Previously, this meant applying dilute-solution
theories, even though invalid, to concentrated solutions.
Poisson-Cahn theory avoids this inconsistency but generates
a different problem: it does not provide a comparatively sim-
ple mathematical procedure for extracting the space-charge
potential from experimental data, and there is a reason for
this.

In Sections 2.2 and 2.3, we saw that the simple functional
form of the electrochemical potential of a defect in a dilute
solution (Equation 1) allows simple equations relating the
grain-boundary resistance to the space-charge potential to be
derived. In a concentrated solid solution, a far more complex
form is required for the electrochemical potential of a defect,
in order to capture the increased complexity of the system.
Within Poisson-Cahn theory, the defect electrochemical po-
tential (Equations 26 and 27) contains additional terms that
arise from the excess free energy due to defect-defect interac-
tions and from the gradient energy terms. It is, therefore, the
necessarily complex functional form of a defect electrochem-
ical potential in a concentrated solid solution that prevents
simple procedures from being developed.

Given the lack of alternatives, we examine, consequently,
how well the expressions from the dilute-solution theories
perform when applied to data obtained for concentrated solu-
tions (ie, outside their region of validity). To this end, we

Space-charge potential

take the conductivity ratios calculated by combining Poisson-
Cahn theory and the Nakayama-Martin model (Figure 7C)
and extend them down to the dilute-solution regime. We
then apply Equations 11 and 17 to obtain ®§€ and @), re-
spectively. These data can be compared with values from the
Poisson-Cahn simulations, d>OPC.

Before we compare the data, let us first consider possible
sources of discrepancy between ®f and ®J or ®}'S. We ex-
pect, of course, discrepancies as we cross the boundary be-
tween dilute and concentrated solutions; but we also expect
discrepancies for the entire range of acceptor concentrations
from three separate sources. First, the Poisson-Cahn model
that we implemented in this study refers to a restricted equi-
librium for the acceptors—equilibrated at 7= 1573 K but fro-
zen-in at T= 713 K—whereas the Poisson-Boltzmann models
assume that the acceptors are either in electrochemical equi-
librium at 7' = 713 K (Gouy-Chapman) or have a constant
concentration (Mott-Schottky). The electrostatic potential
profiles in the space-charge zones will thus differ substan-
tially between the two cases. Second, the Nakayama-Martin
model necessarily predicts a spatially varying conductivity
within the space-charge zones on account of compositional
changes; the Poisson-Boltzmann models, in contrast, employ
a constant charge-carrier mobility equal to the value in the
bulk phase. The values of d)OGC and d)g/ls obtained will thus
include the effect of the spatially varying ion mobility. Third,
various approximations are made in deriving Equations 11
and 17, and as discussed in Sections 2.2 and 2.3, they also
introduce errors.

Bearing these points in mind, we now compare (I)gc with
<I)OGC and QDB’IS as a function of ng in Figure 8. We consider
three general regions, without wanting to define strict bound-
aries between these regions. At low n?, @gc is close to the
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FIGURE 7 Conductivity o of the CeO,-Gd,O; system as a
function of Gd site fraction, n,, at 7= 713 K: (A) total conductivity o',
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Obayashimx, (F) Kharton et also, (G) Calculated by combining Poisson-
Cahn theory and the Nakayama-Martin model

two dilute-solution values, falling between them at the low-
est n';. This suggests that Equations 11 and 17, despite the
three sources of discrepancy—neglecting restricted equilib-
rium; ignoring spatially varying mobility; including simpli-
fying approximations—yield values of @, that reflect the
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FIGURE 8 Comparison of the grain-boundary space-charge
potential @, as a function of bulk acceptor site fraction n° at 7= 713 K
in the CeO,-Gd,05 system. Poisson-Cahn values taken from the
simulations. Gouy-Chapman and Mott-Schottky values obtained by
analysing the Poisson-Cahn data of Figure 7C with Equations 11 and
17

space-charge potential at the interface. In the intermediate re-
gion, with site fractions from below one percent up to several
percent, d)OGC and d)g’ls diverge substantially from ®°C; and
at high ng, that is, above several percent, the dilute-solutions
values bear no relation to the electrostatic potential at the
interface. So, one can apply dilute-solution models to con-
centrated solid solutions, but the results one obtains will be
meaningless.

Finally, we comment on other experimental proce-
dures that can be used to extract the space-charge po-
tential. One alternative electrical method, proposed by
Kim and Lubomirsky, is the analysis of a polycrystal's
current-voltage characteristics.”” Such an analysis has
been shown for ceria-based electrolytes to yield space-
charge potentials different to those obtained by applying
Equation 17 to conductivity data.’™'% One consequence
according to Kim and Lubomirsky is that there are ad-
ditional sources of resistance (eg, a non-negligible core
resistance'?). It is not surprising, though, that the two
approaches, current-voltage characteristics and resis-
tance ratio, yield different values. Both approaches start
by assuming incorrectly that the point defects in a con-
centrated solid solution behave as in a dilute solution, and
then they take different routes to the space-charge poten-
tial. There is no reason to believe that they will yield
the same value of @,. It seems unnecessary, therefore,
to invoke other sources of resistance, if the complexity
of point-defect behavior in concentrated solid solution is
not taken into account.

Consequently, there is a need to determine directly the
space-charge potential at grain boundaries, and this can be
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achieved by electron holography in a TEM or by scanning
probe techniques. Conducting and analyzing such experiments
is not trivial, however. In electron holography, large changes
in composition (acceptor accumulation!) complicate the ex-
traction of the electrostatic potential, while for scanning probe
measurements, the grain-boundary potential has to be isolated
from that arising from the surface space-charge layer.

S | CONCLUDING REMARKS

The intrinsic simplicity of a dilute solution of point defects
is beguiling, part of the allure being the ability to describe
not only the bulk properties but also the interfacial properties
of such a system with simple analytical expressions. Most
oxide-ion conducting electrolytes, however, are concentrated
solutions and thus constitute complex systems of point de-
fects. The addition of interfaces that modify the complex
point-defect behavior by generating deviations from local
electroneutrality introduces yet further complexity. The ap-
plication of dilute-solution concepts to systems that evidently
do not conform to this degree of simplicity is, therefore,
incorrect. In this study, we have concerned ourselves with
some of the consequences.

We have demonstrated that there is no simple way to
calculate the extent of the acceptor accumulation layers at
a grain boundary in a concentrated solution. A characteris-
tic screening length, analogous to the Debye length, can be
derived from linearized Poisson-Cahn theory in a relatively
simple fashion. It provides a means to determine quantita-
tively the (temperature-dependent) limit between dilute and
concentrated solid solutions. But, owing to the linearization
of a highly nonlinear problem, it fails to describe the extent
of space-charge zones in concentrated solutions. The extent
of the accumulation layer can only be obtained through solu-
tion of the Poisson-Cahn equations. In addition, we have
demonstrated that there is no simple way to analyze the grain-
boundary resistance of a concentrated solution. Worse still,
the application of the standard analytical expressions from
dilute-solution theories will generally yield values for the
space-charge potential that, though not physically unreason-
able, bear no relation to reality. In this way, we advocate the
use of a sufficiently complex approach, such as Poisson-Cahn
theory, to describe the complex electrical behavior of com-
plex materials.
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