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1  |   INTRODUCTION

The electrical response of a crystalline oxide is often gov-
erned by interactions between the system's point defects and 
its interfaces. The segregation of charged point‐defects to a 
grain boundary, for instance, results in the grain boundary 
becoming electrostatically charged and space‐charge zones 
forming in the adjacent bulk phase to preserve global elec-
troneutrality. This re‐distribution of charged point‐defects 
may alter local point‐defect concentrations in the vicinity of a 
boundary by many orders of magnitude, and thus, it may give 

rise to grain boundaries that are, relative to the bulk phase, 
highly conductive or highly resistive.

The abrupt core|space‐charge model1‒8 currently rep-
resents the standard treatment of space‐charge layers at 
grain boundaries in complex oxides. It is essentially a 
two‐phase model, in which a grain‐boundary core phase 
is sandwiched between two slabs of bulk material, the 
grain‐boundary core being the structurally perturbed re-
gion between the two grains. (Since the grain‐boundary 
core is characterized by a finite width and by a distinct set 
of thermodynamic quantities, and since it is in (partial) 
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Abstract
The diminished conductivity of pristine grain boundaries in oxide‐ion conducting 
electrolytes, such as (Ce,Gd)O2 and (Zr,Y)O2, is widely interpreted with the Mott‐
Schottky space‐charge model, or less frequently, with the Gouy‐Chapman space‐
charge model. Although routinely applied to the entire compositional range of solid 
solutions, from dilute to concentrated, these models, being based on the Poisson‐
Boltzmann formalism, are limited in their range of validity to dilute solutions of 
point defects. Analyzing the grain‐boundary properties of concentrated solid solu-
tions with such models is expected to lead to errors and inconsistencies. In this study, 
we employ Poisson‐Cahn theory to analyze literature data for the grain‐boundary 
resistance of CeO2‐Gd2O3 materials as a function of Gd concentration. Poisson‐
Cahn theory combines the Cahn‐Hilliard theory of inhomogeneous systems with the 
Poisson equation of electrostatics and it is valid over the entire compositional range. 
We treat the realistic case of a restricted equilibrium: Gd accumulation profiles are 
frozen‐in from sintering temperatures, while the oxygen‐vacancy distributions are in 
equilibrium at sintering and (much lower) measurement temperatures. Data for the 
grain‐boundary resistance are also analyzed with the standard analytical expressions 
from the Mott‐Schottky and Gouy‐Chapman models. Outside the domain of their 
validity, these expressions are found to perform poorly. In general, we emphasize the 
importance of treating the interfacial properties of concentrated solid solutions with 
physically appropriate theories.
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thermodynamic equilibrium with the adjacent slabs of bulk 
phase but cannot exist independently of them, it can be 
termed a grain‐boundary complexion9,10.) The usefulness 
of the abrupt core|space‐charge model is that it easily links 
observable physical properties, such as the grain boundar-
ies' resistance and capacitance, to space‐charge quantities 
such as the space‐charge potential, which describes the de-
gree to which point defects are depleted or accumulated 
in the space‐charge zone, and the space‐charge screening 
length, which describes the length scale over which such 
changes occur.

For systems that contain a dopant and one charge‐compen-
sating defect, two limiting cases are commonly considered 
in the literature: (a) the Gouy‐Chapman case, in which both 
dopant and charge‐compensating defect are mobile and their 
concentration profiles are in electrochemical equilibrium; (b) 
the Mott‐Schottky case, in which the dopant's concentration 
is constant across the entire system, and only the mobile com-
pensating defect is in electrochemical equilibrium. (These 
two limiting cases are considered because they lead to simple 
analytical expressions linking space‐charge parameters to ob-
servable properties.) Many actual samples, however, will be 
characterized by some intermediate case, one in which the 
exact concentration profile of the dopant conforms neither 
to the Mott‐Schottky nor to the Gouy‐Chapman case. Such 
intermediate cases result whenever the dopant is mobile at 
fabrication temperatures (ie, sintering and conditioning of the 
polycrystalline oxide) but not at the (much lower) tempera-
tures at which electrical measurements are made (ie, at those 
temperatures at which the space‐charge layers are probed). 
The critical factors, therefore, are the thermal history of the 
sample and the mobility of the dopant.

One oxide system whose grain boundaries have received 
much attention is the fluorite‐structured oxide CeO2.

5,11‒45 
The total ionic conductivity of the solid solutions CeO2‐M2O3 
is sufficiently high that the materials find application as ox-
ygen‐ion conducting electrolytes in intermediate temperature 
solid oxide fuel cells,46‒52 despite pristine grain boundaries 
exhibiting substantially lower conductivity than the bulk 
phase. Since the structural perturbation on its own is deemed 
insufficient to generate such considerable resistance, and 
since the grain‐boundary width extracted from capacitance 
measurements is much larger than the structurally perturbed 
(core) region observed in transmission electron micrographs, 
it has been concluded that the high resistance is due to diffuse 
space‐charge layers depleted of oxygen vacancies.

The formation of space‐charge layers at grain boundaries 
in CeO2‐based materials is widely attributed to the behavior 
of ionic defects (as opposed to the trapping of electronic de-
fects in interface states). Specifically, oxygen vacancies, in 
response to their Gibbs formation energy being lower at the 
core than in the bulk,2,5,7,53 segregate from bulk to core. The 
grain‐boundary core thus develops an excess positive charge, 

and this charge is compensated by negatively charged space‐
charge zones, in which, at least in the dilute‐solution picture, 
oxygen vacancies are strongly depleted and acceptor‐dopant 
cations, if sufficiently mobile, are accumulated.

It is worth taking note of our use of the terms “segrega-
tion” and “accumulation.” Following Ref. 7, we use “segre-
gation” to refer to the redistribution of a defect from the bulk 
to the core, increasing the concentration of that defect in the 
core; and we use “accumulation” to refer to the redistribution 
from bulk to the diffuse space‐charge layers, increasing the 
concentration of that defect within the layers. Defect segre-
gation does not necessarily imply defect accumulation, and 
vice versa.

Grain‐boundary resistances measured for CeO2‐M2O3 solid 
solutions at T < 1000 K are generally analyzed24,31,34,35,40,54‒59 
within the Mott‐Schottky approach (with one notable ex-
ception5). Such an analysis ignores, however, two things. 
First, that concentrated solid solutions are being studied, 
whereas Mott‐Schottky (and Gouy‐Chapman) approaches, 
being based on the Poisson‐Boltzmann formulism, are only 
valid for dilute solutions. Second, that dopant accumulation 
will have occurred at sintering temperatures. Atomic‐level 
characterization by means of transmission electron micros-
copy38,60‒64 (TEM) or atom probe tomography (APT)65,66 
has found significant accumulation of the acceptor cation at 
grain boundaries in CeO2 solid solutions (grain boundaries 
in the related ZrO2‐Y2O3 materials also show accumulation 
of the Y cations60,67‒70). Acceptor‐cation accumulation can 
only take place at sintering temperatures because cation trans-
port in fluorite‐structured oxides, such as CeO2 and ZrO2, 
is extremely slow (orders of magnitude slower than oxygen 
transport) and because it is characterized by much higher acti-
vation energies.71‒75 Knowledge of a sample's thermal history 
is thus essential to the interpretation of experimental results.

In this study, we analyze the grain‐boundary resistance of 
CeO2‐Gd2O3 materials, moving beyond these usual assump-
tions of no dopant accumulation and of a dilute solution. To 
this end, we extend our previous work on space‐charge layers 
at grain boundaries in the theoretical framework of Poisson‐
Cahn theory.76 Combining Poisson‐Boltzmann and Cahn‐
Hilliard77,78 formalisms, Poisson‐Cahn theory76,79,80 is able 
to treat space‐charge layers at extended defects over the entire 
compositional space, from weakly doped systems up to con-
centrated solid solutions. We extend our previous study in one 
particular way: We take into account the (temperature‐depen-
dent) mobility of the cations and the thermal history of the 
sample. That is, we consider the realistic case of a restricted 
equilibrium in which (a) oxygen ions achieve electrochemical 
equilibrium quasi‐instantaneously at all temperatures; and (b) 
the Gd3+ cations are allowed to attain electrochemical equi-
librium at elevated (sintering) temperature, reacting to the 
electric potential profile set up by the vacancies' redistribu-
tion, but are frozen‐in at lower, measuring temperatures. We 
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also extend the work of Tschӧpe et al,5 who did consider such 
a restricted equilibrium but only within the framework of a 
dilute solution. Finally, we also provide a detailed compari-
son of Poisson‐Cahn theory with its dilute‐solution cousins.

Our study is set out as follows. The following section sum-
marises the standard dilute‐solution approaches, providing a 
foundation for the rest of the paper. Poisson‐Cahn theory is 
described in detail in the third section; the derivation of a 
characteristic length is also discussed. In the fourth section, 
results are presented; conductivity data from the literature are 
also analyzed with Poisson‐Cahn theory and with the stan-
dard Poisson‐Boltzmann theories.

2  |   THE STANDARD POISSON‐
BOLTZMANN TREATMENTS

The principal aim of the standard treatments is to obtain sim-
ple analytical expressions for the grain‐boundary resistance 
Rgb in terms of space‐charge potential Φ0. We reproduce 
below the major equations, although they have been reported 
elsewhere,18,81‒83 so that the assumptions involved in deriving 
such expressions are evident, and in this way, the conditions 
under which the expressions are valid are clear. This informa-
tion is required later (Section 4.3), when experimental data 
are analyzed with Poisson‐Cahn theory and with the standard 
approaches, and comparisons are made. Some mistakes and 
misconceptions in published studies are also cleared up.

Our considerations are restricted to an AO2 oxide con-
taining acceptor cations (site fraction na) and charge‐com-
pensating oxygen vacancies (site fraction nv). Electrons are 
neglected on the assumption that they are minority species in 
the bulk and in the space‐charge layers; this is a reasonable 
approximation for a CeO2‐M2O3 material under oxidizing 
conditions and at not too high temperatures.74 In the bulk, the 
electroneutrality condition is thus nb

a
=4nb

v
 (since the concen-

trations are related through cb
a
=2cb

v
 and the site densities in 

an AO2 oxide through 2Nb
a
=Nb

v
).

The standard treatments of Gouy‐Chapman and Mott‐
Schottky space‐charge layers in ionic solids are based on 
two main assumptions. First, materials' parameters, such 
as charge‐carrier mobilities or standard chemical poten-
tials, are assumed to exhibit step functions at the core 
(abrupt core|space‐charge model3,4,7). That is, the mo-
bilities, for example, exhibit one value in the bulk phase 
all the way up to the core and a different value in the 
grain‐boundary core. Second, point defects are assumed 
to behave as dilute, non‐interacting defects. The electro-
chemical potentials of the two defects (as building units) 
in the bulk and in the core take, therefore, the standard 
Maxwell‐Boltzmann form,7,84,85

where 𝜇⊖ are the standard chemical potentials of the defect 
building units; ϕ is the electric potential; and kB, T, and e 
have their usual meanings. It is the difference in 𝜇⊖

v
 between 

bulk phase and core phase, with 𝜇⊖,c
v

−𝜇⊖,b
v

<0, that drives 
the formation of the space‐charge layers in our AO2 oxide.5,7

A defect (building unit) is considered to be in electrochem-
ical equilibrium if its electrochemical potential is constant 
throughout the system (∇𝜇̃=0). (This presupposes that the de-
fect is sufficiently mobile over the appropriate time and length 
scales.) For the electroneutral bulk and the space‐charge lay-
ers, characterized in the model by spatially invariant values of 
𝜇⊖, this means that the equilibrium concentration profiles in 
the space‐charge layers take the form (with α = e/kBT).

2.1  |  Simple analytical expressions for Rgb

A measured conductivity contains contributions from all 
mobile charge carriers, electronic and ionic. Which contri-
butions need to be taken into account for the CeO2‐M2O3 
system? In the present case—oxidizing conditions, interme-
diate (measurement) temperatures—the contributions from 
electrons to the bulk and grain‐boundary conductivities can 
be ignored. For the bulk phase, the electronic conductivity is 
orders of magnitude lower than the ionic conductivity (the 
materials are excellent oxide‐ion conductors). In the space‐
charge layers, electron accumulation may be significant, but 
there can be no contribution to the measured grain‐boundary 
resistance, since an ionic current cannot be transformed into 
an electronic current within a material (the ionic and elec-
tronic rails run in parallel86). In addition, the contributions 
to measured conductivities from the cations can be safely ig-
nored, since, as noted above, they have negligible mobility 
at intermediate (measurement) temperatures. Consequently, 
only oxygen vacancies need to be taken into account when 
considering the measured conductivities.

The resistance of a single grain boundary, Rgb, when con-
sidered as an excess quantity, is the total resistance of a sys-
tem containing a bulk phase, one grain‐boundary core and two 
space‐charge layers minus the resistance of a grain of identical 
dimensions without grain boundary and space‐charge layers 
(Rgb = Rt − Rb = 2Rscl + Rc). Assuming the resistance of the 
core to be negligible (2Rscl ≫Rc), we can express Rgb as follows:

(1a)𝜇̃v =𝜇⊖

v
+kBT ln nv+2e𝜙

(1b)𝜇̃a =𝜇⊖

a
+kBT ln na−e𝜙.

(2a)cv(x)= cb
v
e−2�[�(x)−�b]

(2b)ca(x)= cb
a
e�[�(x)−�b].

(3)Rgb =
2

A

⎛⎜⎜⎝

L

∫
0

1

�v(x)
dx−

L

∫
0

1

�b
v

dx

⎞⎟⎟⎠
,
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where σv(x) is the local oxygen‐vacancy conductivity and �b
v
, its 

value in the bulk. A is the cross‐sectional area of the grain. The 
grain extends from x = 0 to x = 2L, with identical space‐charge 
layers at x = 0 and x = 2L. Hence, the grain is symmetrical 
about x = L, and only the portion between x = 0 and x = L needs 
to be considered. The grain half‐width L is considered to be 
large compared with the extent of the space‐charge zone, such 
that bulk defect concentrations are found at x = L.

The local oxygen‐vacancy conductivity σv(x) can be ex-
pressed as the product of the vacancies' concentration cv(x), 
charge 2e and mobility uv, that is,�v(x)= cv(x)2euv. Since, as 
one of the two main assumptions, uv is taken to be constant up 
to the core, the factor (1/uv) can be moved outside the integrals 
of Equation 3. In addition, since electrochemical equilibrium 
is assumed for the vacancies (∇𝜇̃v =0), cv(x) is related to cb

v
 

through Equation 2a, and the factor (1∕cb
v
) can be moved out-

side the integrals, too. In this way, Equation 3 becomes,

The potential distribution, �(x)−�b, is found by solving 
the Poisson equation,

for the boundary conditions Φ0 =�(0)−�b and ∇�b =0. The 
critical issue, as noted above, is the behavior of the dopant: 
Gouy‐Chapman corresponds to ∇𝜇̃a =0; Mott‐Schottky corre-
sponds to ∇ca =0. In each case the aim when solving Equation 
5 is to obtain an expression for �(x)−�b that, upon substi-
tution into Equation 4, gives a form amenable to analytical 
integration.

2.2  |  Gouy‐Chapman (GC) space‐
charge layers
For the case of both point defects being mobile, we can sub-
stitute Equation 2 into Equation 5 to give,

where �D is the Debye length,

Writing Equation 6 in this way emphasizes that �D 
emerges naturally as the characteristic length87.

Equation 6 does not have an analytical solution. 
Numerical solutions can be easily obtained for all val-
ues of Φ0, but only those numerical solutions for which 
𝛼Φ0 < ln [Nb

a
∕cb

a
] are physically reasonable, that is, for val-

ues of Φ0 such that the dopant concentration at the interface 
does not exceed the number of cation sites, cb

a
e𝛼Φ0 <Nb

a
.  

With cb
a
∕Nb

a
=1% at T = 713 K, for example, physically rea-

sonable values of the space‐charge potential are limited to 
Φ0 <0.28 V. One can avoid this problem by replacing the 
Maxwell‐Boltzmann form of Equation 1b {containing kBT 
ln na} with a Fermi‐Dirac‐type expression {containing kBT 
ln[na/(1  −  na)]}, which takes site exclusion into account. 
This does not lead, however, to a simple expression for �(x)

, and consequently, for Rgb.
An analytical solution is possible by making the deple-

tion approximation: the concentration of the depleted species 
(oxygen vacancies) is neglected in Equation 6. This is a rea-
sonable approximation, since the contribution of the depleted 
charge carriers to the charge density is small compared to 
that from the accumulated acceptor dopants. The resultant 
Poisson equation has the solution87

In order to show how reasonable the depletion approxi-
mation is, we compare in Figure 1 the exact (numerical) and 
approximate (depletion‐approximation) solutions to Equation 
6. The approximate solution is identical to the exact solution 
close to the interface, since in this region the depletion ap-
proximation is best fulfilled, cv(x)≪ ca(x). Further from the 

(4)Rgb =
2

A�b
v

L

∫
0

(
e2�[�(x)−�b]−1

)
dx.

(5)
�0�r

d2�

dx2
= eca(x)−2ecv(x),

(6)
d2�

dx2
=

1

2��2
D

(
e�[�(x)−�b]−e−2�[�(x)−�b]

)
,

(7)�D =

√
�0�rkBT

2e2cb
a

.

(8)

𝜙(x)−𝜙(L)

=

{
Φ0−

2

𝛼
ln
(

1+
x

2�D

e𝛼Φ0∕2
)

, 0≤ x≤2�D

0, 2�D < x

F I G U R E  1   Dimensionless space‐charge potential plotted against 
normalised spatial coordinate for a Gouy‐Chapman space‐charge 
layer: comparison of numerical (exact) and depletion‐approximation 
solutions to the Poisson equation, Equation 6. �

D
 is the Debye 

screening length; �= e∕k
B

T
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interface, the approximate solution deviates from the numeri-
cal solution, as the concentration of vacancies approaches that 
of the dopant and the depletion approximation loses validity.

Substitution of Equation 8 into Equation 4 and integrating 
over x=0… 2�D (the region for which Equation 8 is valid) 
gives,

For values of 𝛼Φ0 >3, the two latter terms within the 
square brackets are negligible, and one obtains

The analysis of experimental data is often based on the 
ratio of the grain‐boundary to bulk resistance, Rgb/Rb. In the 
Gouy‐Chapman case, this ratio follows from Equation 10 as 
(note the grain size of 2L).

In Figure 2 we compare the resistance ratio obtained nu-
merically by integration (first, of the Gouy‐Chapman Poisson 
equation, Equation 6, and then, of Equation 4) with the ap-
proximate value from Equation 11. We see that Equation 11 
is a remarkably good approximation down to �Φ0 ≈0.8. A 
closer examination of the data (not shown) indicates that, 
for 0.8≤�Φ0 ≤10, Equation 11 underestimates the resis-
tance ratio by less than 3%. Alternatively, using Equation 
11 to analyze resistance ratios yields values of �Φ0 that are 

overestimated by up to 6% for 0.8≤�Φ0 ≤3 but by less than 
1% for 3≤�Φ0 ≤10.

2.3  |  Mott‐Schottky (MS) space‐
charge layers
One widely held misconception is that the alternative ex-
treme case—a Mott–Schottky space‐charge layer—refers to 
the dopant being immobile. This is incorrect. It refers to the 
dopant's concentration being fixed at its bulk value. Dopant 
immobility is of course required for the concentration to be 
constant, but it is not the defining condition.

With ca(x)= cb
a
, Equation 5 becomes,

Neglecting, as before, the depleted charge carriers (the ex-
ponential term) and integrating twice, one obtains,

�MS, the Mott‐Schottky screening length, is given by,

Unfortunately, substitution of Equation 13 into Equation 4 
does not yield an expression that can be easily integrated 
(∫ ex2

dx). In this case, a further approximation is required: By 
linearizing the electric potential of Equation 13, to give 
�(x)−�b =Φ0[1−2x∕�MS],* the integral of Equation 4 can 
be evaluated, and one obtains,

For values of 𝛼Φ0 >3, the first term in the square brackets 
dominates and the sinh function can be approximated by a 
single exponential, leading to,

The ratio of grain boundary to bulk resistance, Rgb/Rb, in 
this case follows from Equation 16 as follows:

(9)R
gb

GC
=

4�D

3A�b
v

[
e3�Φ0∕2−

e3�Φ0∕2

(e�Φ0∕2+1)3
−3

]
.

(10)R
gb

GC
≈

4�D

3A�b
v

e3�Φ0∕2.

(11)
(

Rgb

Rb

)

GC

≈
2�D

3L
e3�Φ0∕2.

(12)
d2�

dx2
=

1

2��2
D

(
1−e−2�[�(x)−�b]

)
.

(13)𝜙(x)−𝜙b =

⎧⎪⎨⎪⎩

Φ0

�
x

�MS

−1
�2

, 0≤ x≤�MS

0, �MS < x

(14)�MS =

�
2�0�rΦ0

ecb
a

=�D

√
4�Φ0.

* NB: Potential profiles for the MS depletion approximation and linearized 
depletion approximation plotted in Figure 8 of Göbel et al83 are incorrect.

(15)R
gb

MS
=

2�MS

A�b
v

[
sinh(2�Φ0)

2�Φ0

−1

]
.

(16)R
gb

MS
≈

2�MS

A�b
v

e2�Φ0

4�Φ0

=
2�D

A�b
v

e2�Φ0√
4�Φ0

.

(17)

�
Rgb

Rb

�

MS

≈
�D

L

e2�Φ0√
4�Φ0

.
F I G U R E  2   The ratio of grain‐boundary to bulk resistance, 
Rgb/Rb, for Gouy‐Chapman space‐charge layers as a function of 
dimensionless potential, �Φ

0
: comparison of numerical (exact) values 

with the analytical expression of Equation 11. Calculations performed 
with �

D
=4.88 nm and 2L = 2 μm
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A comparison of the exact (numerical) and two approximate 
solutions to Equation 12 is given in Figure 3. Again, the deple-
tion approximation yields a relatively good description of �(x) 
close to the interface, with slight deviations at the edge of the 
space‐charge layer, where the depletion approximation does not 
hold. The linearized depletion approximation provides a poor 
description of �(x), describing only the potential distribution 
close to the interface. Nevertheless, the analytical expression 
derived for Rgb/Rb from the linearised depletion approximation 
(Equation 17) gives a surprisingly good approximation (see 
Figure 4) of the resistance ratio obtained numerically by inte-
gration (first, of the Mott‐Schottky Poisson equation, Equation 
12, and then, of Equation 4). This is because the most resistive 
part of an MS space‐charge layer is that part closest to the in-
terface (the local resistivity in a space‐charge layer depending 
exponentially on �(x)−�b, see Equation 4), and this part is de-
scribed well by the linearized depletion approximation.

Comparing Figures 2 and 4, we see that, in the MS case, 
the analytical expression gives resistance ratios that underes-
timate the numerical (exact) values to a much larger degree 
for 𝛼Φ0 >0.8. The detailed analysis (not shown) indicates a 
difference of up to 12% for 0.8≤�Φ0 ≤10 but below 5% for 
10≤�Φ0 ≤30. Alternatively, for a given value of Rgb/Rgb, 
�Φ0 is overestimated by up to 12% for 0.8≤�Φ0 ≤3 but by 
less than 5% for 3≤�Φ0 ≤10.

2.4  |  Interfacial thermodynamics
The quantity reported most often to characterize space‐charge 
layers at grain boundaries in ion‐conducting oxides is the 
space‐charge potential Φ0. It is easily determined by apply-
ing, for example, Equation 17 to experimental resistance 

ratios. Sometimes it is used as a simple test of reasonableness: 
If values of Φ0 obtained in an analysis are similar to those 
reported in the literature for other oxide‐ion conducting sys-
tems (not necessarily referring to the same materials system, 
let alone the same composition), then the results are regarded 
as reasonable. Φ0, however, is neither specific to a material 
nor specific to a particular interface. For a given interface, 
it will vary with the thermodynamic variables (eg, tempera-
ture and dopant concentration). For given thermodynamic 
variables, it will vary with the atomistic structure of the grain 
boundary, and thus, with the grain‐boundary orientation.88‒91 
Values of Φ0 obtained for ceramics are thus weighted aver-
ages over the type, frequency and spatial distribution of grain 
boundaries in the ceramic sample. The quantities that are spe-
cific to a material and to interfaces are the differences in the 
standard chemical potentials of the defects between bulk and 
core,Δ𝜇⊖

def
=𝜇

⊖,c

def
−𝜇

⊖,b

def
. These differences constitute the ther-

modynamic driving energies for space‐charge formation.
The space‐charge potential can be predicted from a given set 

of Δ𝜇⊖

def
 by coupling the interfacial defect thermodynamics to 

the bulk defect thermodynamics. Essentially, one assumes that 
the mobile point defects are in electrochemical equilibrium be-
tween core and bulk phases, 𝜇̃c

def
− 𝜇̃b

def
=0, subject to the con-

dition that the charge (per unit area) of the grain‐boundary core 
is compensated by the two space‐charge layers,Qc+2Qscl =0

. Generally, for a system containing two charge carriers, these 
two contributions can be written7 as (wc is the core's width),

(18)

Qc =wc
[
2e(cc

v
−cb

v
)−e(cc

a
−cb

a
)
]

Qscl =

L

∫
0

[
2ecv(x)−eca(x)

]
dx

F I G U R E  3   Dimensionless space‐charge potential plotted 
against normalised spatial coordinate for a Mott‐Schottky space‐charge 
layer: comparison of numerical (exact), depletion‐approximation and 
linearized depletion‐approximation solutions to the Poisson equation, 
Equation 12. �

MS
 is the Mott‐Schottky screening length; �= e∕k

B
T

F I G U R E  4   The ratio of grain‐boundary to bulk resistance, 
Rgb/Rb, for Mott‐Schottky space‐charge layers as a function of 
dimensionless potential, �Φ

0
: comparison of numerical (exact) values 

with the analytical expression of Equation 17. Calculations performed 
with �

D
=4.88 nm and 2L = 2 μm
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Let us first briefly sketch out the procedure of calculating 
Φ0 from given Δ𝜇⊖

def
, taking as our example the case of Mott‐

Schottky space‐charge layers. With the help of Equation 1a, 
one can re‐write Equation 18 as follows:

To evaluate the integral, one requires the electric poten-
tial profile, �(x)−�b, and this can only be obtained exactly 
by solving numerically Equation 12 (the relevant Poisson 
equation). Obtaining a self‐consistent solution requires, 
therefore, an iterative procedure,6,7 in which Φ0 is varied 
(with Equation 12 being solved and Equation 19 being eval-
uated) until Qc

MS
+2Qscl

MS
=0 is fulfilled to required accuracy.

This procedure is not undemanding because �(x)−�b has 
to be calculated numerically in every single iteration cycle. 
A preferable procedure would avoid this, and here we present 
a closed‐form solution. A single integration of Equation 12 
and subsequent application of Gauss' Law yields namely92,93

Thus, combining Qc
MS

 from Equation 19 and Qscl
MS

 from 
Equation 20 according to Qc

MS
+2Qscl

MS
=0 results in a single 

equation with one unknown (Φ0) that can be solved for given 
T, cb

a
, Nb

v
, Nc

v
, wc, and Δ𝜇⊖

v
. Although this simple short‐cut 

avoids determining the exact form of �(x)−�b, it is neverthe-
less mathematically exact.

In the case of Gouy‐Chapman space‐charge layers, the rel-
evant equations are as follows:

The considerations in this section have employed the 
Maxwell‐Boltzmann forms of Equation 1 in Equations 19 
and 21 for consistency, but we recommend using Fermi‐Dirac 
expressions for the electrochemical potentials of the defect 
building units, in order to avoid physically unreasonable de-
fect concentrations.

Lastly, we note that Maier and co‐workers include a gap 
between core and bulk phases.3,8,87 Their arguments for 
the inclusion of a gap are essentially phenomenological, 

that is, that certain grain‐boundary properties can only be 
described with a thermodynamic model when a gap is in-
cluded. In contrast, examination of grain‐boundary struc-
tures obtained experimentally from TEM or obtained by 
atomistic modelling reveal no such gap. It appears, there-
fore, that the inclusion of such a gap serves only to account 
for non‐ideal thermodynamic behavior.

3  |   POISSON‐CAHN THEORY

For a system of point defects that exhibits deviations from 
dilute‐solution behavior, one traditionally accounts for the 
deviations by introducing defect associates into the ther-
modynamic description of the system. Thus for the present 
case, in addition to considering acceptor dopants (a) and 
oxygen vacancies (v) as defect chemical species, one in-
troduces dopant‐vacancy associates, such as a‐v pairs and 
a‐v‐a trios. By specifying equilibrium constants for the re-
spective defect association reaction(s), one can, in princi-
ple, achieve a quantitative description of the point‐defect 
thermodynamics. One may, however, obtain enthalpies of 
defect association that vary with acceptor concentration, 
and one may have to introduce even higher order associates 
arbitrarily with increasing acceptor concentration.

There is also a conceptual problem in seeking to extend 
the standard dilute‐solution approach by introducing defect 
associates. The idea of acceptor species trapping vacancies 
makes no sense at high acceptor concentrations because the 
vacancies can never be free: they are always trapped. Moving 
away from one acceptor cation in a solid solution, a vacancy 
finds itself immediately next to another acceptor cation. For 
a trapping model to be applicable, vacancies need to be able 
to reside at lattice positions away from the influence of the 
acceptor cations.

The need to move beyond dilute‐solution treatments for 
interfaces is impelled, therefore, in part by dilute‐solution 
treatments of the bulk phase being inadequate or unsatisfac-
tory. Indeed, current models of the bulk properties of CeO2‐
Gd2O3 materials require far more complex approaches than 
simply introducing defect associates.94‒97 The need to move 
beyond dilute‐solution treatments is also impelled in part by 
the very presence of an interface in a system of interacting 
species98,99 (see Section 3.1). And it is impelled by two sub-
stantial deficiencies in the dilute‐solution descriptions of 
interfacial behavior. One deficiency concerns the extent of 
acceptor‐cation accumulation at grain boundaries in ceria 
solid solutions. Experimentally they are found to extend 
several nanometers;38,60,64,65 the Debye length (Equation 7) 
of the dilute‐solution approach predicts, in contrast, values 
of only a few angstroms. This deficiency cannot be reme-
died by including a‐v pairs and a‐v‐a trios. The second de-
ficiency concerns the spatial variation of oxygen vacancies 
in space‐charge layers. APT studies66 of grain boundaries in 

(19)

Qc
MS

=wcecb
a

[(
Nc

v

Nb
v

)
e−𝛼(2Φ0+Δ𝜇

⊖
v
∕e)−1

]

Qscl
MS

= ecb
a

L

∫
0

[
e−2𝛼[𝜙(x)−𝜙b]−1

]
dx.

(20)Qscl
MS

=−2eca�D

√(
�Φ0−

1

2

)
.

(21)

Qc
GC

=wcecb
a

[(
Nc

v

Nb
v

)
e−𝛼(2Φ0+Δ𝜇

⊖
v
∕e)

−

(
Nc

a

Nb
a

)
e𝛼(Φ0+Δ𝜇

⊖
a
∕e)

]

Qscl
GC

=−4ecb
a
�D sinh

(
𝛼Φ0

2

)
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Ce0.9Nd0.1O1.95 and Ce0.7Nd0.3O1.85, as well as atomistic sim-
ulations of grain boundaries53 and surfaces100,101 in Gd2O3‐
substituted CeO2, find co‐accumulation of acceptor cations 
and oxygen vacancies. It is impossible for such behavior—
co‐accumulation of oppositely charged defects—to emerge 
from a dilute‐solution approach (see Equation 1). There is 
little doubt, therefore, that a new approach is necessary.

Our approach to this problem, essentially, is to restrict the 
thermodynamic description to the two fundamental defect 
species, a and v, (in order to keep the same basic formulism) 
but to replace the site fractions of the dilute approximation 
with chemical activities. Poisson‐Cahn theory constitutes 
one method for calculating activity coefficients for a and v 
as a function of temperature and composition. And it does so 
consistently across the entire compositional range. For dilute 
solutions, the activity coefficients reduce to unity, and for the 
case of mobile a and v, Gouy‐Chapman behavior (see Section 
2.2) is obtained, as it should (this being one benefit of keeping 
the same basic formalism); for concentrated solid solutions, 
in contrast, the activity coefficients deviate substantially from 
unity, and complex behavior may emerge.76,80. In the follow-
ing section, we present Poisson‐Cahn theory in detail.

3.1  |  Variational formulation
We focus on the same system as in Section 2, that is, with two 
charge carriers (a and v). Poisson‐Cahn theory, it is stressed, is 
not restricted to only two charge carriers, and we have already 
extended the theory elsewhere80 to include electronic charge 
carriers. Here, the restriction to two charge carriers is made so 
that the Poisson‐Cahn results can easily be compared with those 
from the standard dilute‐solution approaches. We also focus, as 
in Section 2, on a grain extending from x = 0 to x = 2L with two 
identical space‐charge layers. Here, the core has to be included 
explicitly from the beginning, but to keep the two cases compa-
rable and for the sake of simplicity, we assume that the core has 
no width. This assumption can be discarded if the need arises, but 
it does serve to keep the following derivation relatively simple.

We begin by considering the total free energy of the non-
homogeneous system between x = 0 and x = 2L. Again, since 
the grain is symmetrical about x=L, only the portion between 
x = 0 and x = L needs to be considered. The inhomogeneity 
of the system makes this free energy a functional:

where Γc are the areal densities of sites characterized by Δ𝜇⊖

def
 

within the core; the function g is the excess free energy due to 
defect interactions; and the coefficients B are gradient energy 
coefficients. Here, we assume that g takes the form,

where fij is an association free energy between the species i and 
j, and Nij is the bond density.

It is worth devoting a few words to the gradient energy 
terms of Equation 22. The concept of a gradient energy in 
a solid solution was introduced by Cahn in the context of a 
miscibility gap in a phase diagram that leads to spinodal de-
composition.77 Such a miscibility gap is one source of sym-
metry breaking—in this context meaning a departure of the 
average solute lattice configuration from the space‐group 
symmetry of the host lattice—but others may arise from 
external fields such as those imposed on the system by the 
presence of extended defects. In such situations there must 
be a positive gradient energy contribution to the free energy, 
for the simple reason that the homogeneous solution is not 
otherwise stable. One can imagine a microscopic explana-
tion for this phenomenon in terms of the ensemble of solute 
configurations that characterizes the free energy minimum 
in the homogeneous state. These configurations will extend 
infinitely in space, and hence, an external field inducing an 
inhomogeneous solute concentration will necessarily cause 
the system's free energy to increase. That long‐range config-
urations result from short‐range forces is well understood in 
statistical mechanics: the same principles explain why the 
long‐range effects of gradient energies have their origin in 
short‐range solute interactions.102 In summary, the inclusion 
of gradient energy terms for an inhomogeneous concentrated 
solid solution is a thermodynamic necessity.

Recently, Vikrant et al103 predicted defect concentrations 
in ceria solid solutions neglecting gradient energy terms but 
introducing elastic energy terms into their free energy func-
tional.† Such terms arise, essentially, from point defects pos-
sessing non‐zero formation volumes.104 In our study, we 
neglect elastic effects for simplicity, so that we can focus on 
our main theme, the analysis of the grain‐boundary resistance 
in a thermodynamically consistent manner.

Let us now return to the free energy functional, Equation 
22. The equilibrium state of the system is given by the func-
tions nv, na, and � that minimize the functional, subject to the 
mass‐conservation constraints.

(22)

 [nv,na,𝜙;T ,nb
a
]

=Γc
v
Δ𝜇⊖

v
nv(0)+Γc

a
Δ𝜇⊖

a
na(0)

+ �
L

0

{
g(na,nv,T)+e𝜙(2Nb

v
nv−Nb

a
na)

−Nc
a
kBT

[
na ln na+ (1−na) ln (1−na)

+2nv ln nv+2(1−nv) ln (1−nv)
]

+
1

2
Ba

(
dna

dx

)2

+
1

2
Bv

(
dnv

dx

)2

−
1

2
𝜀r𝜀0

(
d𝜙

dx

)2
}

dx

(23)g=Nvv

1

2
fvvn2

v
+Naa

1

2
faan2

a
+Naafavnvna,

† Vikrant et al103 claim surprisingly that gradient energy coefficients are 
“experimentally unmeasurable.” This is incorrect: they are measurable in 
the same way that thermodynamic driving energies of space‐charge 
formation, interaction energies between point defects and diffusion 
coefficients are measurable. That is, by fitting a mathematical model to 
experimental data in order to extract the required parameter.
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Standard variational calculus yields the Euler‐Lagrange 
equations for the minimizing functions:

where �x =Bx∕Nb
x
. We term these equations the Poisson‐Cahn 

equations. The expressions on the left‐hand side of Equations 
26 and 27 are the electrochemical potentials for inhomogeneous 
systems, meaning that the constants on the right—the Lagrange 
multipliers—are the electrochemical potentials in the bulk. 
These three equations are subject to the boundary conditions.

The boundary conditions in the oxide bulk are the bulk 
defect concentrations and the reference electrostatic poten-
tial. Because the theory does not consider the grain‐boundary 
core to exist as a separate phase, there is no charge separation 
outside of the interval [0, L], and the derivative of the electro-
static potential is therefore zero at the interface.

The model so formulated is a second‐order, nonlinear 
boundary value problem (retaining the elliptic character of 
the Poisson‐Boltzmann model) that can be solved with stan-
dard techniques. The results presented in the subsequent 

section were generated with a custom‐built, adaptive finite‐
elements solution implemented in Matlab.

Parameters used in the simulations appear in Table 1. They 
probably do not constitute a unique set: another set may give an 
equally good, if not better, description of the system. Some pa-
rameters appearing in Table 1 have been drawn from first princi-
ples calculations—it should be possible to derive first principles 
estimates for the other parameters as well, including the gradient 
energy coefficients—however, the theory as utilized in this work 
is phenomenological. Some of the parameters are substantially 
different to those published in our previous paper;76 this is a conse-
quence of considering the restricted equilibrium case for acceptor 
cations here, but the less realistic case of electrochemical equi-
librium for acceptor cations in the previous study.76 In addition, 
we are aware that a continuum approach is an approximation that 
becomes poorer as the space‐charge layer and structural extent of 
the grain boundary become comparable in length. However, con-
tinuum theories operating at similar length scales (in particular 
the Cahn‐Hilliard theory itself) have proven successful in the past, 
and there is currently no straightforward possibility of recourse to 
an atomistic theory if equilibrium with a bulk phase is desired.

3.2  |  Length scale
Experiments indicate that the characteristic length for accep-
tor accumulation derived from Poisson‐Boltzmann theory—
the Debye length—does not pertain to concentrated systems 
in which accumulation layers have been found to be an order 
of magnitude larger.38,60,64,65 Since Poisson‐Cahn theory 
yields space‐charge layers that extend nanometres,76,80 rather 
than angstroms, it is interesting to consider whether a charac-
teristic length may be derived from the theory.

(24)

L

∫
0

[
nv(x)−nb

v

]
dx=0

(25)
L

∫
0

[
na(x)−nb

a

]
dx=0

(26)
1

Nb
a

�g

�na

+kBT ln
na

1−na

−e�−�a

d2na

dx2
=�a

(27)1

Nb
v

�g

�nv

+kBT ln
nv

1−nv

+2e�−�v

d2nv

dx2
=�v

(28)�r�0

d2�

dx2
= e(2Nb

v
nv−Nb

a
na)

(29)Ba

dna

dx
|x=0 =Γc

a
Δ𝜇⊖

a

(30)dna

dx
|x=L =0

(31)Bv

dnv

dx
|x=0 =Γc

v
Δ𝜇⊖

v

(32)
dnv

dx
|x=L =0

(33)d�

dx
|x=0 =

d�

dx
|x=L =0

T A B L E  1   Parameters used in the Poisson‐Cahn simulations

Parameter Value Comment

�r 35 Relative dielectric permittivity

auc/Å 5.43 Lattice constant

fvv/eV 0.47 v‐v interaction energy*

faa/eV 1.67 a‐a interaction energy*

fav/eV −1.33 a‐v interaction energy*

Δ𝜇⊖
v

/eV −2.20 Drives space‐charge formation*

Δ𝜇⊖
a

/eV 0  

Γc
v
/mol m−2 2.38 × 10−5 Areal density of sites with Δ𝜇⊖

v

Nvv/m
−3 3Nv  

Nav/m
−3 8Na  

Naa/m
−3 4Na  

Bv/eV nm−1 4.56 × 10−5 Gradient energy coefficient for v*

Ba/eV nm−1 5.06 × 10−4 Gradient energy coefficient for a*

The symbol (*) indicates that this parameter was varied to reproduce experimen-
tal conductivity data.
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The Debye length, we recall, emerges naturally as a charac-
teristic length in Poisson‐Boltzmann theory (see Equations 6 
and 12). In Poisson‐Cahn theory, there is no such natural emer-
gence of a characteristic length because we have a systems of 
linked Equations 26–28, each of which shows some mathe-
matically complexity. We may also recall105,106 that the Debye 
length can be obtained by linearizing a Poisson‐Boltzmann ex-
pression (for a dilute solution of two mobile, equally charged 
species). We follow, therefore, an analogous route to obtain 
a characteristic Poisson‐Cahn length. We linearise the system 
of Equations 26–28 about the bulk values nb

a
 and nb

v
, using the 

local excess free energy of Equation 23 and extending the do-
main to L=∞. We thus obtain the linear system.

with the solution,

where ki are constants determined by boundary conditions 
and �i and 1∕�2

i
 are the eigenvectors and eigenvalues, respec-

tively, of the matrix.

with �xx =Nxx∕Nb
x
, �av =Nav∕Nb

a
, and �va =Nav∕Nb

v
.

Equation 37 thus indicates that there are several lengths in 
Poisson‐Cahn theory (one or more of which may be complex, 
indicative of an oscillatory solution). The maximum length 
�

max
PC

 derived from the eigenvalues of the matrix (38) will 
dominate the solution of Equation 37 and thus we take it to 
be the characteristic Poisson‐Cahn length. A note of caution 

is warranted here. Since it has been obtained through linear-
ization, �max

PC
 is only valid in the limit of small effects, that is, 

it gives the screening length in a homogeneous, concentrated 
solid solution probed by an infinitesimal charge. Much larger 
effects, for example, acceptor accumulation in space‐charge 
layers, may not necessarily be characterized by �max

PC
.

3.3  |  Vacancy mobility
One of the two main assumptions of the Poisson‐Boltzmann 
models, as already mentioned in Section 2, is that the mo-
bility of the charge carriers is constant throughout the bulk 
phase and the space‐charge layers. This is a reasonable zero‐
order assumption for a dilute solution. In the Mott‐Schottky 
case, a and v constitute a dilute solution in the bulk phase, 
and the concentration of v gets even more diluted in the 
space‐charge zones. The Gouy‐Chapman case is more com-
plex because of acceptor accumulation in the space‐charge 
zones. As long as the accumulation profile is accurately de-
scribed by cb

a
e�[�(x)−�b] (cf. Equation 1b), however, the system 

behaves as a dilute solution. One may say, therefore, that the 
assumption of a constant mobility is reasonable as long as 
the composition of the matrix does not change significantly.

In a concentrated solid solution, on the other hand, the 
composition of the matrix—on both anion and cation sublat-
tices—can change significantly in a space‐charge layer. The 
assumption of constant charge‐carrier mobility loses, there-
fore, its validity. In order to calculate the vacancy mobility 
as a function of composition (and thus of position within the 
space‐charge layers), we employed the model of Nakayama 
and Martin.107 This model considers the association between 
oxygen vacancies and ionized acceptors, beginning with a 
defect equilibrium model composed of cation tetrahedra and 
the accompanying tetrahedrally coordinated anion sites in 
the fluorite lattice. The acceptor‐vacancy interaction energy 
in the Poisson‐Cahn model is thus employed to determine a 
distribution of tetrahedral configurations found in the lattice. 
An average activation energy for vacancy hopping between 
two adjoining tetrahedra is determined through a weighted 
harmonic mean of Boltzmann factors calculated with the ac-
tivation enthalpy appropriate to the composition of the cat-
ion‐cation edge (whether Ce‐Ce, Ce‐Gd, or Gd‐Gd) through 
which the vacancy must move. The three activation enthalpies 
and a common attempt frequency were used as fitting param-
eters. The values are listed in Table 2.

4  |   RESULTS

4.1  |  Space‐charge extent
We begin by considering the evolution of acceptor accu-
mulation profiles at grain boundaries in the CeO2‐Gd2O3 

(34)�a

d2na

dx2
=

[
kBT
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a
(1−nb

a
)
+�aafaa

]

×(na−nb
a
)+�avfav(nv−nb

v
)−e�

(35)
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= �vafav(na−nb

a
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v
(1−nb

v
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+�vvfvv
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v
)+2e�
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(na−nb

a
)−2Nb

v
(nv−nb
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      |  15TONG et al.

system as a function of acceptor site fraction. With our 
focus being on the profiles' extent, we compare in Figure 5 
profiles predicted from Poisson‐Cahn theory for the param-
eter values appearing in Table 1 with profiles calculated 
from the Gouy‐Chapman model (Equation 6) with the same 
na(0)∕nb

a
. The two types of profile agree very well at low nb

a

, indicating clearly that Poisson‐Cahn theory reduces to 
Gouy‐Chapman theory in the limit of dilute solutions. 
From nb

a
≈10−2 onwards, however, the profiles predicted 

from Poisson‐Cahn theory are almost constant in extent, at 
around 4 nm, whereas the corresponding Gouy‐Chapman 
profiles are far shorter and decrease in a strong and con-
stant manner (Figure 5D‐F). In other words, differences in 
the lengths of the accumulation layers start to appear at 
nb

a
≈10−2, and these differences become more prominent 

with increasing nb
a
.

Keeping these results in mind, let us now consider the 
characteristic screening lengths. The benefit of calculating a 
screening length from Poisson‐Cahn theory is that it obvi-
ates the need to solve the nonlinear Poisson‐Cahn equations. 
Instead, a comparatively simple mathematical procedure is 
performed—the eigendecomposition of a matrix—and as de-
scribed in Section 3.2, it is only a 3 × 3 matrix that needs 
to be eigendecomposed for a solid solution of two species 
(a and v). The characteristic Poisson‐Cahn length, �max

PC
, was 

obtained from the eigenvalues of matrix (38) for the parame-
ter values appearing in Table 1. The data are plotted for two 
different temperatures in Figure 6A, B, taking the real part of 
any complex‐valued data, and including the Debye length �D 
for comparison.

At low nb
a
 there is, as required, no difference between 

�
max
PC

 and �D at either temperature: Poisson‐Cahn theory re-
duces to Gouy‐Chapman theory in the dilute limit. As nb

a
 

increases, one sees from some critical level onwards in-
creasing deviations between the two characteristic lengths. 
�D continues to fall, decreasing even below the lattice con-
stant of CeO2, whereas �max

PC
, after a short plateau, rises 

strongly. This behavior is qualitatively, but not quanti-
tatively, similar to that shown in Figure 5. This, then, is 
the (expected) disadvantage of the linearization required 
to obtain �max

PC
 (see Section 3.2). We attribute the rise in 

�
max
PC

 with increasing nb
a
 to the gradient energy becoming 

increasingly important. The crossover point—the point 
at which the Debye length (and thus the dilute‐solution 
approximation) is no longer valid for this system—is at 
nb

a
≈0.5% at T = 713 K and at nb

a
≈1% at T = 1573 K (again, 

similar to the behavior of Figure 5). The data of Figure 
6 thus provide a means for determining quantitatively the 
limit of dilute‐solution behavior. Furthermore, it indicates 
that the critical concentration depends on temperature and 
that materials with less than 1% bulk acceptor concentra-
tion may display the behavior of concentrated systems.

Lastly, we comment on why the Mott‐Schottky model (rather 
than the Gouy‐Chapman model) is widely applied in the litera-
ture to concentrated solid solutions. Sometimes it is because the 
Mott‐Schottky case is misunderstood as the case of immobile ac-
ceptors rather than the case of constant acceptor concentration. 
Sometimes it is because of the characteristic screening length. 
Equation 14 indicates that �MS can be much larger than �D. For 
example, at T = 713 K, and with a modest space‐charge potential 
of only Φ0 =0.25 V, one finds �MS ≈4�D. The Mott‐Schottky 
approach thus permits the electrical width of a grain boundary 
to take values that are much larger than the Debye length, and 
hence, comparable with experiment. That is, �MS can be physi-
cally reasonable, while �D drops below the lattice spacing.

4.2  |  Conductivity
In Figure 7A, B we compare literature data5,17,21,31,50,108 for 
the total and the bulk conductivity of CeO2‐Gd2O3 ceramics 
at T = 713 K. In those cases where no experimental data are 
available at this temperature, we interpolated or extrapolated 
as necessary. Some studies only reported the total conduc-
tivity, which is why there are more datasets in (A) than in 
(B). The total conductivity, it is noted, is an effective quantity 
over bulk and grain boundaries. It can expressed in terms of 
the resistance ratio as follows:

It is emphasized that the range of acceptor site fractions 
that we consider in this figure corresponds, in the light of 
Figure 6, to those outside the dilute regime, that is, nb

a
≥1%.

Let us start by examining the data for �b in Figure 7B. 
Small variations between the individual studies are evident, 
with the variation between minimum and maximum values 
being less than a factor of 1.4; the maximum conductivity at 
this temperature is achieved for nb

a
≈0.1. Turning now to the 

data for �t in Figure 7A, we find more pronounced scatter, 
with the variation between minimum and maximum values 
varying by up to a factor of 4; the broad maximum in the total 
conductivity appears at this temperature at nb

a
≈0.2.

That the data for �t exhibit more pronounced scat-
ter than the �b data is to be expected. The former includes 

(39)�b

�t
=

Rgb

Rb
+1.

T A B L E  2   Parameters used in the Nakayama‐Martin model107 to 
calculate the composition‐dependent ionic conductivity of the CeO2‐
Gd2O3 system

Parameter Value

�0/s
−1 1.062 × 1013

ΔH
Ce - Ce
mig,v

/eV 0.682

ΔH
Ce - Gd
mig,v

/eV 1.192

ΔH
Gd - Gd
mig,v

/eV 1.323
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contributions from the grain boundaries, see Equation 39. 
Samples from various studies will thus be characterized, pos-
sibly, by differing grain sizes; by differing amounts and dis-
tributions of intergranular porosity; by differing amounts and 
types of impurities at the grain boundaries; and in particular, 
by differing degrees of acceptor accumulation resulting from 
differing thermal histories.

In Figure 7C we plot the ratio �b∕�t (see Equation 39), 
together with values of the ratio calculated by combining 
Poisson‐Cahn theory and the Nakayama‐Martin model for 
the conductivity (with the set of parameters listed in Tables 
1 and 2). Here, we have focussed on describing the data from 
Tschöpe et al.5 because we know the samples' thermal his-
tories and they are simple: All samples were quenched from 
T = 1573 K. Cooling samples in a furnace from the sintering 

F I G U R E  5   Acceptor accumulation profiles in space‐charge layers at grain boundaries in the CeO2‐Gd2O3 system at T = 1573 K. Solid lines 
refer to the results of Poisson‐Cahn simulations. Dashed lines refer to the results of the Gouy‐Chapman model

(A)

(D) (E) (F)

(B) (C)
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temperature constitutes a far more complicated case, since it 
is unclear at what the temperature(s) the acceptor accumula-
tion profiles are frozen in.

4.3  |  Space‐charge potential
The parameter used most often in the literature to character-
ize space‐charge layers is the space‐charge potential (see also 
Section 2.4). Previously, this meant applying dilute‐solution 
theories, even though invalid, to concentrated solutions. 
Poisson‐Cahn theory avoids this inconsistency but generates 
a different problem: it does not provide a comparatively sim-
ple mathematical procedure for extracting the space‐charge 
potential from experimental data, and there is a reason for 
this.

In Sections 2.2 and 2.3, we saw that the simple functional 
form of the electrochemical potential of a defect in a dilute 
solution (Equation 1) allows simple equations relating the 
grain‐boundary resistance to the space‐charge potential to be 
derived. In a concentrated solid solution, a far more complex 
form is required for the electrochemical potential of a defect, 
in order to capture the increased complexity of the system. 
Within Poisson‐Cahn theory, the defect electrochemical po-
tential (Equations 26 and 27) contains additional terms that 
arise from the excess free energy due to defect‐defect interac-
tions and from the gradient energy terms. It is, therefore, the 
necessarily complex functional form of a defect electrochem-
ical potential in a concentrated solid solution that prevents 
simple procedures from being developed.

Given the lack of alternatives, we examine, consequently, 
how well the expressions from the dilute‐solution theories 
perform when applied to data obtained for concentrated solu-
tions (ie, outside their region of validity). To this end, we 

take the conductivity ratios calculated by combining Poisson‐
Cahn theory and the Nakayama‐Martin model (Figure 7C) 
and extend them down to the dilute‐solution regime. We 
then apply Equations 11 and 17 to obtain ΦGC

0
 and ΦMS

0
, re-

spectively. These data can be compared with values from the 
Poisson‐Cahn simulations, ΦPC

0
.

Before we compare the data, let us first consider possible 
sources of discrepancy between ΦPC

0
 and ΦGC

0
 or ΦMS

0
. We ex-

pect, of course, discrepancies as we cross the boundary be-
tween dilute and concentrated solutions; but we also expect 
discrepancies for the entire range of acceptor concentrations 
from three separate sources. First, the Poisson‐Cahn model 
that we implemented in this study refers to a restricted equi-
librium for the acceptors—equilibrated at T = 1573 K but fro-
zen‐in at T = 713 K—whereas the Poisson‐Boltzmann models 
assume that the acceptors are either in electrochemical equi-
librium at T = 713 K (Gouy‐Chapman) or have a constant 
concentration (Mott‐Schottky). The electrostatic potential 
profiles in the space‐charge zones will thus differ substan-
tially between the two cases. Second, the Nakayama‐Martin 
model necessarily predicts a spatially varying conductivity 
within the space‐charge zones on account of compositional 
changes; the Poisson‐Boltzmann models, in contrast, employ 
a constant charge‐carrier mobility equal to the value in the 
bulk phase. The values of ΦGC

0
 and ΦMS

0
 obtained will thus 

include the effect of the spatially varying ion mobility. Third, 
various approximations are made in deriving Equations 11 
and 17, and as discussed in Sections 2.2 and 2.3, they also 
introduce errors.

Bearing these points in mind, we now compare ΦPC
0

 with 
ΦGC

0
 and ΦMS

0
 as a function of nb

a
 in Figure 8. We consider 

three general regions, without wanting to define strict bound-
aries between these regions. At low nb

a
, ΦPC

0
 is close to the 

F I G U R E  6   Characteristic length scale of space‐charge layers in the CeO2‐Gd2O3 system obtained from Poisson‐Cahn theory (�max

PC
) against 

bulk acceptor site fraction nb

a
. Plotted for comparison is the Debye length (�

D
). A, T = 713 K and (B) T = 1573 K. The dashed, horizontal, gray line 

denotes the lattice parameter of CeO2

(A) (B)
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two dilute‐solution values, falling between them at the low-
est nb

a
. This suggests that Equations 11 and 17, despite the 

three sources of discrepancy—neglecting restricted equilib-
rium; ignoring spatially varying mobility; including simpli-
fying approximations—yield values of Φ0 that reflect the 

space‐charge potential at the interface. In the intermediate re-
gion, with site fractions from below one percent up to several 
percent, ΦGC

0
 and ΦMS

0
 diverge substantially from ΦPC

0
; and 

at high nb
a
, that is, above several percent, the dilute‐solutions 

values bear no relation to the electrostatic potential at the 
interface. So, one can apply dilute‐solution models to con-
centrated solid solutions, but the results one obtains will be 
meaningless.

Finally, we comment on other experimental proce-
dures that can be used to extract the space‐charge po-
tential. One alternative electrical method, proposed by 
Kim and Lubomirsky, is the analysis of a polycrystal's 
current‐voltage characteristics.57 Such an analysis has 
been shown for ceria‐based electrolytes to yield space‐
charge potentials different to those obtained by applying 
Equation 17 to conductivity data.57,109 One consequence 
according to Kim and Lubomirsky is that there are ad-
ditional sources of resistance (eg, a non‐negligible core 
resistance109). It is not surprising, though, that the two 
approaches, current‐voltage characteristics and resis-
tance ratio, yield different values. Both approaches start 
by assuming incorrectly that the point defects in a con-
centrated solid solution behave as in a dilute solution, and 
then they take different routes to the space‐charge poten-
tial. There is no reason to believe that they will yield 
the same value of Φ0. It seems unnecessary, therefore, 
to invoke other sources of resistance, if the complexity 
of point‐defect behavior in concentrated solid solution is 
not taken into account.

Consequently, there is a need to determine directly the 
space‐charge potential at grain boundaries, and this can be 

F I G U R E  8   Comparison of the grain‐boundary space‐charge 
potential Φ

0
 as a function of bulk acceptor site fraction nb

a
 at T = 713 K 

in the CeO2‐Gd2O3 system. Poisson‐Cahn values taken from the 
simulations. Gouy‐Chapman and Mott‐Schottky values obtained by 
analysing the Poisson‐Cahn data of Figure 7C with Equations 11 and 
17

F I G U R E  7   Conductivity σ of the CeO2‐Gd2O3 system as a 
function of Gd site fraction, na, at T = 713 K: (A) total conductivity σt, 
(B) bulk conductivity σb, (C) ratio σb/σt. Data taken from experiment 
and extrapolated or interpolated where necessary: (A) Tschöpe et al5, 
(B) Tianshu et al21, (C) Ralph et al17, (D) Kim et al31, (E) Kudo and 
Obayashi108, (F) Kharton et al50, (G) Calculated by combining Poisson‐
Cahn theory and the Nakayama‐Martin model 

(A)

(B)

(C)
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achieved by electron holography in a TEM or by scanning 
probe techniques. Conducting and analyzing such experiments 
is not trivial, however. In electron holography, large changes 
in composition (acceptor accumulation!) complicate the ex-
traction of the electrostatic potential, while for scanning probe 
measurements, the grain‐boundary potential has to be isolated 
from that arising from the surface space‐charge layer.

5  |   CONCLUDING REMARKS

The intrinsic simplicity of a dilute solution of point defects 
is beguiling, part of the allure being the ability to describe 
not only the bulk properties but also the interfacial properties 
of such a system with simple analytical expressions. Most 
oxide‐ion conducting electrolytes, however, are concentrated 
solutions and thus constitute complex systems of point de-
fects. The addition of interfaces that modify the complex 
point‐defect behavior by generating deviations from local 
electroneutrality introduces yet further complexity. The ap-
plication of dilute‐solution concepts to systems that evidently 
do not conform to this degree of simplicity is, therefore, 
incorrect. In this study, we have concerned ourselves with 
some of the consequences.

We have demonstrated that there is no simple way to 
calculate the extent of the acceptor accumulation layers at 
a grain boundary in a concentrated solution. A characteris-
tic screening length, analogous to the Debye length, can be 
derived from linearized Poisson‐Cahn theory in a relatively 
simple fashion. It provides a means to determine quantita-
tively the (temperature‐dependent) limit between dilute and 
concentrated solid solutions. But, owing to the linearization 
of a highly nonlinear problem, it fails to describe the extent 
of space‐charge zones in concentrated solutions. The extent 
of the accumulation layer can only be obtained through solu-
tion of the Poisson‐Cahn equations. In addition, we have 
demonstrated that there is no simple way to analyze the grain‐
boundary resistance of a concentrated solution. Worse still, 
the application of the standard analytical expressions from 
dilute‐solution theories will generally yield values for the 
space‐charge potential that, though not physically unreason-
able, bear no relation to reality. In this way, we advocate the 
use of a sufficiently complex approach, such as Poisson‐Cahn 
theory, to describe the complex electrical behavior of com-
plex materials.
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