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Semi-Supervised Multi-Modal Clustering and
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Abstract—In this paper, we propose a novel Semi-supervised Learning with Incomplete Modality (SLIM) method considering the
modal consistency and complementarity simultaneously, and Kernel SLIM (SLIM-K) based on matrix completion for further solving the
modal incompleteness. As is well known, most realistic data have multi-modal representations, multi-modal learning refers to the
process of learning a precise model for complete modalities. However, due to the failures of data collection, self-deficiencies or other
various reasons, multi-modal examples are usually with incomplete modalities, which generate utility obstacle using previous methods.
In this paper, SLIM integrates the intrinsic consistency and extrinsic complementary information for prediction and cluster
simultaneously. In detail, SLIM forms different modal classifiers and clustering learner consistently in a unified framework, while using
the extrinsic complementary information from unlabeled data against the insufficiencies brought by the incomplete modal issue.
Moreover, in order to deal with missing modality in essence, we propose the SLIM-K, which takes the complemented kernel matrix into
the classifiers and the cluster learner respectively. Thus SLIM-K can solve the defects of missing modality in result. Finally, we give the
discussion of generalization of incomplete modalities. Experiments on 13 benchmark multi-modal datasets and 2 real-world incomplete
multi-modal datasets validate the effectiveness of our methods.

Index Terms—Semi-supervised Learning, Incomplete Multi-Modal Learning, Modal consistency, Modal Complementarity, Matrix
Completion.
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1 INTRODUCTION

T HIS paper investigates an essential problem focusing on
semi-supervised incomplete multi-modal learning. Nowa-

days, multi-modal learning becomes attractive with the devel-
opment of data collection, and is widely used in relative ap-
plications, e.g., biological data with gene expression, array-
comparative genomic hybridization, single-nucleotide polymor-
phism, and methylation. Most multi-modal learning approaches
aim to utilize the consistency or complementarity principle among
multiple modalities, to improve the generalization ability of the
whole learner. E.g., [1] handled multiple modal information in
semi-supervised scenario while extracting informative features of
weak modality by feature learning; [2] studied the partial least
square problem as a stochastic optimization problem in the big
data setting; [3] proposed probabilistic latent variable models for
multi-modal anomaly detection; [4], [5], [6] generalized novel
deep cross-modal hash methods, which can effectively capture the
intrinsic relationships between modalities. It is notable that these
mainstream multi-modal learning approaches assume that all the
examples are with complete modalities.

Nevertheless, the completeness hypothesis is too excessive,
since many reasons could lead to incompleteness, including data
collection failures from the damage of data sensors, data corrup-
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tion by network communication, and data privacy policies. E.g.,
in web page classification with document/image representations,
documents and images are two modalities, yet some web pages
only have document or image information; in cross-network user
identification, the user profile features, content information and
linkage information can be regarded as multiple modalities, yet
some users only have one or partial modalities due to person-
al preference or privacy issues. Existing multi-modal learning
approaches cannot be directly applied to the incomplete modal
situation, unless with some straightforward strategies, e.g., re-
moving the examples with partial modalities, filling the incom-
plete modalities with missing data techniques. Straightforward
strategies can execute the foundations for current multi-modal
learning approaches, while the process causes information lose
and introduces extra noises.

Aiming at the incomplete modal issue, there are some prelim-
inary investigations. [7] studied a partial modal approach, which
completes the missing modal similarity matrix using Laplacian
regularization; [8] proposed the collective kernel learning to infer
hidden instance similarities from multiple incomplete modalities.
Yet these methods require at least one modality that contains all
the examples, this is impractical in real application. Therefore,
[9] learned an online multi-modal clustering algorithm OMVC
to learn the latent feature matrices; [10] handled the incomplete
multi-modal data well by transforming the original and incomplete
data to a new and complete representation in a latent space.
However, these methods mainly focus on making full use of
the inherent information, i.e., the consistencies among multiple
modalities. In this paper, we consider the defects of insufficient
information caused by the incompleteness, can be remedied by
supplementing extrinsic information, i.e., complementary modal
information. Transductive multi-modal learning methods are pro-
posed for utilizing extrinsic information, e.g., [11] proposed a new
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method SMGI, which integrates multiple graphs for label propa-
gation; [12] proposed a novel approach to integrate heterogeneous
features by performing multi-modal semi-supervised classification
on unlabeled instances. However, these transductive methods are
difficult to extend to classification under the incomplete modal
setting with unseen data.

Different from solutions mentioned above, we propose a novel
Semi-supervised Learning with Incomplete Modalities (SLIM).
SLIM utilizes the intrinsic modal consistency for learning discrim-
inative modal predictors, while considering the extrinsic unlabeled
multi-modal information for clustering. In result, SLIM can per-
form in both transductive and inductive configurations. Essentially,
SLIM only considers the extrinsic modal complementary against
the incompleteness, while ignores the incomplete examples in
learning modal predictors. We further improve SLIM with matrix
completion to the Kernel SLIM (SLIM-K). Specifically, SLIM-K
uses the latent consistently prediction to complement each modal
kernel matrix, then takes the complemented kernel matrix into
the classifiers and the cluster learner respectively, thus solving the
defects of missing modality in result. Finally, we give out the
discussion of generalization of incomplete modalities, and point
out that it is better with more incomplete instances for better
generalization. In conclusion, more discriminative classifiers and
robust clustering learner can be achieved with SLIM and SLIM-K.
In other words, SLIM/SLIM-K has wider applicable range in both
classification and clustering tasks

The main contributions of this paper are summarized in the
following points:
• A novel unified Semi-Supervised Learning with Incomplete

Modalities (SLIM) method, which utilizes the intrinsic modal
consistencies and extrinsic complementary information in
one unified framework to perform transductive and inductive
configurations;

• A square-root loss is utilized to calibrate modal similarity
matrix by considering the different noise levels of all modal
features, without learning the weights;

• A Kernel SLIM (SLIM-K) method, which takes the comple-
mented kernel matrix into the classifiers and the cluster learn-
er respectively, thus solves the defects of missing modality
essentially;

• A discussion of generalization of incomplete modalities,
finding that it is better with more incomplete instances;

• A superior performance on real-world applications, and ob-
taining consistently superior performances stably.

In the following parts, we start with a brief review of related
works. Then we propose SLIM/SLIM-K approaches and the
theoretical analysis. After that, we give the experimental results.
Finally, we conclude the paper.

2 RELATED WORK

T HE exploitation of multiple modal learning has attracted
much attention recently. In this paper, our method integrates

the intrinsic consistent and extrinsic complementary information
in a semi-supervised scenario with incomplete data, and the
proposed method can acquire each modal classifiers and overall
clustering learner. Therefore, our work is related to both multi-
modal learning and semi-supervised transductive learning.

Most of the previous multi-modal methods assume that train-
ing examples have complete modalities. However, multi-modal
examples are usually with incomplete feature representation in

real applications. Therefore, many researches have devoted to
handle the incomplete modal data. E.g., [13] established a latent
subspace where the instances corresponding to the same example
in different modalities are close to each other; [14] proposed the
multi incomplete modal clustering, which learns the latent feature
matrices for all the modalities, and generates a consensus matrix to
minimize the difference between each modality and the consensus
matrix; [15] studied an effective algorithm to accomplish multi-
modal learning with incomplete modalities by assuming that
different modalities are generated from a shared subspace. These
algorithms exploited the connections between multiple modalities,
and enabled the incomplete modalities to be restored with the
help of the complete modalities. However, these methods mainly
focus on the inherent information, i.e., the consistency among
multiple modalities. In this paper, we consider that the defects
of insufficient information caused by the incompleteness among
modalities, should be remedied by extrinsic information instead,
i.e., using the complementarity of modal structure information.

Transductive multi-modal learning, as a matter of fact, utilizes
the extrinsic information from test sets. E.g., [16] proposed a
constrained clustering that can operate with an incomplete map-
ping, and can propagate given pairwise constraints using a local
similarity measure; [17] gave a novel subspace learning frame-
work for incomplete and unlabeled multi-modal data, the learning
algorithm directly optimizes the class indicator matrix, so that
the inter-modal and intra-modal data similarities are preserved to
enhance the model. These approaches incorporate with the semi-
supervised learning techniques can relax the issues introduced by
modal incompleteness partially. However, these approaches are
under the configuration of transductive learning and are difficult
to extend on unseen test data, i.e., cannot build classifiers for
prediction.

3 THE SLIM APPROACH

T HE incomplete multi-modal learning problem in this paper
focuses on following problems: 1) process the incomplete

multi-modal data, rather than remove the incomplete modalities
or fill in with the complete modal average values; 2) use the
latent consistent predictions to complement each modal kernel
representation, thus the predictors can take more advantage of the
incomplete modalities. 3) generalize discussion in the incomplete
modal scenario. Consequently, we can perform both transductive
and inductive configurations in one unified framework.

3.1 Problem Formulation
In multiple modal learning, an instance is characterized by mul-
tiple modal representations with one unified label. Suppose we
are given a dataset possessing N examples with V modalities.
The i−th instance xi of v−th modality can be represented as
xiv ∈ Rdv , where dv is the dimension of the v−th modality.
In the complete modal setting, all the instances have V modal
representations. On the contrary, partial instances exist missing
modalities in incomplete modal scenario. For example, as shown
in Fig. 1, each instance may have complete or partial modalities,
i.e., incomplete image/content pairs only have text or image
information. It is worth noting that incomplete modalities exist
in both labeled and unlabeled instances, this is more suitable for
realistic application.

Without any loss of generality, under the semi-supervised
scenario, we assume that there are l labeled examples including
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Fig. 1. An illustration of the Incomplete Multi-Modal Data in real-world
application as Wiki data.

complete or incomplete modalities, the labeled example sets can
be represented as Θl. For labeled examples, the ground truth
can be represented as yi ∈ {1, · · · , C}, C represents the
number of class. For the incomplete representation perspective,
suppose we have Nc homogeneous examples with complete
modal features, i.e., Xc = {(x1,x2, · · · ,xNc

)} ∈ RNc×d,
where xi represents the instance with complete modalities, i.e.,
xi = {xi1 ,xi2 , · · · ,xiV } ∈ Rd, d = d1 + d2 + · · · + dV .
The remaining Nin = N − Nc instances are with incomplete
modalities. Xin = {(x̂1, x̂2, · · · , x̂Nin

)} ∈ RNin , where x̂
denotes the instance with incomplete modalities missing one
or more modalities. Therefore, Xv = {Xcv , Xinv} denotes
the representation of v−th modality and ignores the incomplete
instances in this modality. Consequently, the incomplete multi-
modal learning problem can be defined as:

Definition 1. (Semi-supervised Learning with Incomplete Modal-
ities) Given D = {x1,x2, · · · ,xNc

, x̂Nc+1, · · · , x̂N} and
the ground truth Y of labeled examples, v−th modality can be
denoted as Xv . The task is to learn a function set for various
modalities: H = {h1, h2, · · · , hV }, where hv : Xv → Y
represents the classifier for v−th modality. While the task also
aims to get the Ŷ , which represents the cluster results for all
the unlabeled instances.

3.2 The Proposed Approach

In this section, we will describe the SLIM and SLIM-K in detail.
In incomplete modal learning, SLIM utilizes the intrinsic modal
consistencies to learn more discriminative predictors, while con-
siders the extrinsic complementary modal structure information
againsts the incompleteness for clustering. It is easy to find that
the SLIM ignores the missing modality during predicting, to solve
this problem, SLIM-K uses the modal kernel matrix instead of
the similarity matrix, and the latent consistent prediction across
various modalities can complement each modal kernel matrix
conversely. Therefore, we include the complemented kernel matrix
in predictors to overcome the missing modalities.

3.2.1 SLIM Method

Specifically, SLIM can be decomposed into two targets: first, we
aim to learn the predictors to classify each modality accurately.
Second, we wish to cluster the unlabeled instances by modeling
a joint transformed matrix factorization problem, with respect to

each modal similarity matrix and the shared learned predictions.
Therefore, SLIM can be defined as:

min
fv,Ŷ

V∑
v=1

(L̂v(fv(Xv), Ŷ ) +
λ2

2
L̃v(Xv, Ŷ ))

s.t. Ŷ Θl = Y

(1)

There are V modalities, the first term L̂v(fv(Xv), Ŷ ) denotes
the loss of classification of v−th modality, which indicates the
intrinsic consistency among different modalities. fv(Xv) is the
classification result, Ŷ is the label to be learned. In multi-class
cases, we expand the label Y to a vector with C elements, where
Yi,j = 1 indicates the i−th instance with label j, otherwise, yi,j =
0. The constraint Ŷ Θl = Y restricts the prediction on labeled data
as same as the ground truth to avoid collapsing of predictions, Θl

here is the set of labeled data. The second term L̃v(Xv, Ŷ ) con-
siders extrinsic complementary modal structure information for
clustering. More specifically, it models a joint transformed matrix
factorization problem, here Xv ∈ Rdv is the v−th modality with
missing rows filling with zeros. In other words, we treat each
modal similarity matrix and the learned consistent predictions as
a transformed matrix factorization problem, and λ2 > 0 is the
balance parameter.

Predictor for Each Modality. Objective function L̂v of the
v−th modality in Eq. 1 can be generally represented as the form:

min
fv

`(fv(Xv), Ŷ ) +
λ1

2
r(fv). (2)

Here r(fv) is the regularization for modal-specific classifier.
λ1

2 is a scalar coefficient to balance the weights of the two terms.
Without any loss of generality, the fv can take linear or non-
linear classifier here, for simplicity, here we use linear function
for SLIM:

Fv = XvWv + 1b>v � Pv (3)

Where Fv = {fv(x1v ), fv(x2v ), · · · , fv(xNv )} ∈ RN×C ,
missing rows are filled with zeros. Wv ∈ Rdv×C is the linear
classifier, bv ∈ RC is the bias for current predictor, 1 is the all one
vector, � represents element wise product operator, Pv ∈ RN×C
is the indicator matrix, where [Pv]i,· = 1 iff i−th instance is
complete on v−th modality, otherwise [Pv]i,· = 0 indicates the
incomplete modal scenario. The loss function `(·) can take any
convex forms, we use square loss here. As a result, combining
with Eq. 3, the loss function can be rewritten as:

min
Wv,bv

1

2ηv
‖Fv − Ŷ � Pv‖2F +

λ1

2
‖Wv‖2F (4)

Here Ŷ ∈ RN×C denotes the predictions of all instances, ηv is the
number of the complete examples of v−th modality for balance
weight.

Cluster learner for All Modalities. The extrinsic information,
i.e., the complementarity among different modalities, is one of the
most prominent information to relieve the modal incompleteness.
We refer the complete modalities to complement the incomplete
modalities. Therefore, as to the supervised case, the 2nd term can
be defined as:

L̃v = ‖RΩ(Mv)−RΩ(Y Y >)‖2F
Where Mv ∈ RNl×Nl is the Laplacian matrix of the v−th modal
labeled examples, and we define [Mv]i,j = [Dv]i,j − [Sv]i,j ,
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[Sv]i,j is similarity matrix of v−th modal instances, denotes as
exp(− 1

2δ2 (xiv − xjv )>(xiv − xjv )) according to [18]. [Dv]i,j
is the diagonal matrix induced from [Sv]i,j , [Dv]i,i =

∑
j [Sv]i,j .

[RΩ(Mv)]i,j = [Mv]i,j iff i−th instance and j−th instance have
complete entries on v−th modality, otherwise [RΩ(Mv)]i,j = 0,
Y denotes the label matrix of the labeled examples.

However, in the semi-supervised scenario, more extrinsic in-
formation can be involved for better modeling. In this paper, we
treat all examples, both labeled and unlabeled data, with learned
labels as Ŷ , and L̃v can be reformulated as:

min
Ŷ

1

η2
v

‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖2F

s.t. Ŷ Θl = Y, 0 ≤ Ŷ ≤ 1,

(5)

note that here each similarity matrix only has ηv × ηv real-valued
entries and we fill the rest entries with zeros. In addition, we
constrain the predicted values into the same range as true labels
by 0 ≤ Ŷ ≤ 1 to maintain the intrinsic consistency. It is notable
that the Eq. 5 relates to the kernel k-means and laplacian-based
spectral clustering closely in a wild condition [19], which implies
that the whole approach can also be applied in clustering tasks.

Considering Modal Insufficiencies. It is also notable that
real world data always contain noise and outlier entries that
result in the unreliable similarity matrix, which will impair the
final performance. Previous multi-modal learning methods usually
weight different modalities or instances against the affections
caused by noises. However, in semi-supervised learning scenario,
few labeled data can be used for parameters tuning. In this
paper, we further employ the square-root loss function instead
of the least square function in Eq. 5 to reduce the affections
from noisy data. This solution can be regarded as a weighted
regularized least square form of the original one, where the weight
for each modality is: 1

ηv‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F
according to [20].

This modification can calibrate each modality by considering the
different noise levels, and increase the robustness of the 2nd term
in SLIM:

min
Ŷ

1

ηv
‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F

s.t. Ŷ Θl = Y, 0 ≤ Ŷ ≤ 1.

(6)

We can combine Eq. 4 and Eq. 6 in a unified framework and
yield the whole SLIM model:

min
Wv,bv,Ŷ

V∑
v=1

1

2ηv
‖Fv − Ŷ � Pv‖2F +

λ1

2
‖Fv‖2F

+
λ2

η2
v

‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F

s.t. 0 ≤ Ŷ ≤ 1, Ŷ Θl = Y

(7)

3.2.2 Kernel SLIM (SLIM-K)
SLIM utilizes the complementarity among different modalities to
avoid the influence of incompleteness. However, SLIM ignores the
missing modal features when build the predictor for each modality
in Eq. 3, which only considers the complete modal information.
Consequently, it may lead weak predictors when there are a
large number of missing modalities. To consider the intrinsic and
extrinsic information in learning cluster learner and predictors
simultaneously, we propose a kernel extension for building the
predictors. Specifically, inspired from [21], we apply kernel tricks

Algorithm 1 The pseudo code of SLIM
Input:
• Dataset: D = {x1,x2, · · · ,xNc

, x̂Nc+1, · · · , x̂N}
• Parameter: λ1, λ2

• maxIter: T , learning rate: {αt}Tt=1

Output:
• Classifiers: Wv,bv, v = 1, 2, · · · , V
• Clustering Result: Ŷ

1: Initialize Mv ← Xv

2: Initialize Ŷ ← Y
3: while ‖Funct+1

obj − Functobj‖ > ε and t < T do
4: Calculate gt ← Eq. 15
5: Ŷ t+1 = Ŷ t − αtgt
6: Ŷ t+1Θl = Y
7: Funct+1

obj ← calculate obj. value in Eq. 14 with Ŷ t+1

8: end while
9: Solve Wv , bv from Ŷ using Eq. 13, Eq. 11

to build fv , in which the inner products of two data instances xi
and xj in the new random space approximates the kernel function
K(xi,xj), as a result, the kernel SLIM method (named SLIM-K)
is given as:

F̂v = αv
>Kv + 1b>v (8)

where F̂v = {f̂v(x1v ), f̂v(x2v ), · · · , f̂v(xNv )} ∈ RC×N .
αv = {αcjv , j = 1, 2, · · · , N} ∈ RN×C , C is the class number,
Kv(·, ·) is the v−th modal kernel matrix for both labeled and
unlabeled data, where [Kv]i,j = φ(xiv )φ(xjv ), and φ(·) is
the defined kernel function. Consequently, loss function can be
reformulated as:

min
αv,bv,Kv

1

2ηv
‖F̂v − Ŷ ‖2F +

λ1

2
‖F̂v‖22 +

λ2

η2
v

‖RΩ(Mv)−RΩ(Kv)‖F
(9)

‖F̂v‖22 is the structure risk of v−th modal predictor in the function
space. Kv is a variable for optimization, ‖RΩ(Mv)−RΩ(Kv)‖F
controls the intrinsic and extrinsic consistency among different
modal kernel matrixes and observed similarity matrix. Mv ∈
RN×N is the v−th modal similarity matrix of the labeled and
unlabeled examples. Furthermore, to insure the consistency be-
tween the latent indicator matrix and each modal kernel matrix,
we can define a new regularization as following:

min
Kv,Ŷ
‖Kv − Ŷ Ŷ >‖2F

s.t. Ŷ Θl = Y, 0 ≤ Ŷ ≤ 1,

Here the regularization aims to learn more discriminative kernel
matrix and indicator matrix, note that this term also acts as the
matrix completion. Thereby we can acquire more robust predictors
and cluster learner. And the SLIM-K can be formulated as:

min
αv,bv,Kv,Ŷ

V∑
v=1

1

2ηv
‖F̂v − Ŷ ‖2F +

λ1

2
‖F̂v‖2F

+
λ2

η2
v

‖RΩ(Mv)−RΩ(Kv)‖F + ‖Kv − Ŷ Ŷ >‖2F

s.t. 0 ≤ Ŷ ≤ 1, Ŷ Θl = Y
(10)
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3.3 Optimization

In this section, we mainly focus on the methodology of addressing
the optimization of SLIM and SLIM-K. These two methods share
a similar optimization process. Without any loss of generalization,
we take SLIM as an example. SLIM is convex to Wv,bv yet
not a jointly convex problem. An alternative descent algorithm is
considered to solve this problem. Nevertheless, further derivations
successfully show that alternative descent approach is with closed-
form solutions for some key parameters, i.e., Wv,bv .

3.3.1 Fix Wv and Ŷ , Update bv

First, the optimal solution of bv is with closed-form when Wv

and Ŷ are fixed,

bv =
1

ηv
(Ŷ � Pv −XvWv)

>1 (11)

3.3.2 Fix bv and Ŷ , Update Wv

Substitute Eq. 11 into Eq. 7, we can simplify Eq. 7 as:

min
Wv,Ŷ

V∑
v=1

1

2ηv
‖CvXvWv − Cv(Ŷ � Pv)‖2F +

λ1

2
‖Wv‖2F

+
λ2

2

1

ηv
‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F

s.t. 0 ≤ Ŷ ≤ 1, Ŷ Θl = Y,
(12)

where Cv = I − 1
ηv
11>�Pv . Then we can find that the optimal

solution of Wv is also with closed-form when Ŷ is fixed:

Wv = AvBvCv(Ŷ � Pv), (13)

where Av = (Xv
>C>v CvXv + ηvλ1I)−1, Bv = Xv

>C>v .

3.3.3 Fix bv and Wv, Update Ŷ

Combining Eq. 13 and Eq. 12, we can rewrite the Eq. 12 as:

min
Ŷ

tr(Ŷ >HŶ ) + λ2

V∑
v=1

1

2ηv
‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F, (14)

where tr(·) is the matrix trace operator, H =∑V
v=1 ΠΓv

[CvC
>
v B
>
v A
>
v (λ1

2 AvBv + 1
2ηv

BvB
>
v AvBv −

1
ηv
Bv) + 1

2ηv
C>v Cv], where Γv = {γ1, γ2, · · · , γηv} represents

the index set of the complete instances of v−th modality. ΠΓv
(A)

represents the rows and columns in Γv of matrix A are 0. And we
can use the project sub-gradient method to optimize Eq. 14 for
simplicity.

g =


HŶ , L̄ = 0,

HŶ + λ2

V∑
v=1

RΩ(Ŷ Ŷ >)−RΩ(Mv)

‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F
Ŷ ,Otherwise

(15)

where L̄ = ‖RΩ(Mv)−RΩ(Ŷ Ŷ >)‖F.
With the parameters Wv and bv in closed-form, we can solve

the Ŷ with the projected sub-gradient of Eq. 15. The whole
procedure is summarized in Algorithm 1.

3.4 Discussion

In the incomplete multi-modal scenario, assuming that we miss
the v−th modality of i−th instance with the probability p, the
probability of missing the i−th instance will be pV obviously.
In other words, we may miss an instance of all modalities with
equal probability of pV (V is the number of modality), while
other instances are complete. This brings out the dilemma between
“more incomplete instances missing partial modalities” and “more
complete instances missing all modalities”.

In Eq. 7, the 3rd term can be regarded as a variant of the
consistency principle of co-regularize method, and our method
can be degenerated as a CoRLS style method. Considering the
binary classification for two modalities, [22] gives the generaliza-
tion bounds for the class in terms of the empirical Rademacher
complexity. Analogously, under the “more complete instances”
scenario, we remove the instances with the probability of pV .
Thus, the generalization bounds is give as:

Theorem 1. Suppose that L: Y2 → [0, 1] satisfies the uniform
Lipschitz condition: for all y ∈ Y and all ȳ1, ȳ2 ∈ Y with
ȳ1 6= ȳ2,

‖L(ȳ1, y)− L(ȳ2, y)‖
ȳ1 − ȳ2

≤ B

where B is the size of the labeled kernel sub-matrices. Then
conditioned on the unlabeled data, for any δ ∈ (0, 1), with
probability at least 1 − δ over the sample of labeled points
drawn i.i.d. from D, we have that for any predictor f ∈ J :

EDL(ϕ(X), Y ) ≤ 1

(1− pV )l
L(ϕ(X), Y ) + 2BR̂l(J)

+
1√

(1− pV )l
(2 + 3

√
ln(2/δ)/2)

The Loss function L(ȳ, y) is defined the same as [22].

Theorem 2. For the CoRLS style function class J ,

1
4
√

2

U

(1− pV )l
≤ R̂l(J) ≤ U

(1− pV )l

Where U can be calculated by the unlabeled kernel sub-
matrices, labeled kernel sub-matrices and cross-terms in the
kernel matrix K , and can be defined similar to [22].

Given the incomplete kernel matrix, “more incomplete in-
stances” can be regarded as a matrix decomposition problem,
which computes the low rank approximation Ŷ of a given matrix
K by using the actual rows and columns of the matrix. [23] gives
the matrix approximation theorem,

Theorem 3. Assume rank(K) ≤ r, d ≥ 7µ(r)r(t+ lnr) is the
number of columns and rows uniformly sampled at random,
and the complete size ‖Ω‖ ≥ 7µ2(r)r2(t + 2lnr). Then,
with a probability at least 1− 5e−t, we have K = K̂ , where
K̂ is a approximation estimation.

Theorem 3 shows that under the incoherent condition, a rank
r incomplete matrix can be perfectly recovered with O(nrlnr)
observed entries. With Theorem 3, we can firstly predict a well
approximated kernel matrix K , then get a more tight gener-
alization bound with N instances in Theorem 1. Thus, “more
incomplete instances” in our setting is better than the “more
complete instances” in previous works.
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TABLE 1
Clustering comparison results (mean and std.) of SLIM and SLIM-K with both compared methods on 14 benchmark datasets only missing one

modality for each instance, the ratio of the multiple incomplete modal data is 90%. 2 commonly used criteria are evaluated. The best performance
for each criterion is bolded. ↑ / ↓ indicate the larger/smaller the better of a criterion.

Data Putity ↑ NMI ↑
SLIM-K SLIM ConvexSub PVC MIC SLIM-K SLIM ConvexSub PVC MIC

Mov. .266±.014 .247±.009 .123±.004 .193±.003 .172±.001 .387±.049 .353±.010 .361±.010 .309±.015 .365±.007
Cite. .524±.052 .490±.010 .218±.003 .472±.014 .202±.003 .384±.039 .379±.011 .250±.008 .376±.014 .325±.004
Cora .606±.064 .587±.015 .214±.002 .225±.013 .201±.009 .476±.080 .454±.014 .264±.004 .294±.045 .341±.004
Corn. .476±.034 .458±.041 .340±.051 .449±.051 .313±.022 .423±.048 .386±.039 .231±.044 .272±.057 .290±.026
Texas .697±.082 .694±.053 .428±.030 .554±.074 .433±.033 .432±.050 .406±.071 .234±.031 .264±.067 .298±.028
Wash. .628±.065 .586±.029 .406±.055 .583±.055 .359±.020 .452±.051 .401±.032 .264±.059 .332±.048 .282±.029
Wis. .609±.030 .545±.065 .378±.043 .568±.063 .355±.021 .462±.047 .408±.046 .240±.050 .301±.063 .286±.031

M2 .839±.032 .791±.030 .547±.016 - .530±.006 .502±.057 .479±.056 .159±.051 - .176±.030
M5 .630±.031 .617±.026 .265±.017 - .228±.003 .590±.038 .506±.029 .241±.039 - .288±.011
M10 .476±.027 .401±.024 .159±.007 - .117±.002 .476±.029 .416±.028 .260±.024 - .339±.010
NG1 .806±.032 .773±.032 .535±.012 - .531±.008 .469±.090 .448±.059 .141±.068 - .176±.033
NG2 .675±.024 .635±.019 .246±.007 - .225±.002 .577±.054 .522±.021 .230±.024 - .300±.009
NG3 .565±.034 .566±.012 .178±.015 - .144±.002 .569±.039 .518±.014 .274±.023 - .335±.006
Reut. .510±.041 .472±.014 .198±.002 - .200±.002 .411±.034 .376±.014 .252.±.006 - .341±.007

TABLE 2
Classification comparison results (mean and std.) of SLIM and SLIM-K with both compared methods on 14 benchmark datasets only missing one
modality for each instance, the ratio of the multiple incomplete modal data is 90%. 2 commonly used criteria are evaluated. The best performance

for each criterion is bolded. ↑ / ↓ indicate the larger/smaller the better of a criterion.

Data Accuracy ↑ F1 ↑
SLIM-K SLIM WNH RANC MVL-IL SLIM-K SLIM WNH RANC MVL-IL

Mov. .229±.027 .211±.055 .149±.040 .203±.042 .134±.043 .139±.013 .131±.035 .113±.008 .118±.033 .129±.006
Cite. .529±.037 .510±.028 .287±.142 .457±.076 .486±.019 .364±.039 .347±.027 .259±.009 .303±.029 .343±.017
Cora .646±.096 .617±.020 .436±.154 .537±.119 .536±.022 .444±.023 .433±.021 .295±.016 .381±.068 .379±.019
Corn. .509±.081 .502±.094 .492±.097 .441±.091 .493±.076 .484±.062 .431±.064 .384±.055 .373±.065 .412±.056
Texas .630±.063 .625±.065 .623±.077 .591±.043 .568±.050 .577±.037 .560±.043 .548±.057 .498±.065 .532±.067
Wash. .600±.090 .612±.046 .552±.026 .586±.086 .584±.074 .578±.040 .539±.034 .491±.076 .511±.068 .467±.058
Wis. .627±.081 .611±.079 .554±.019 .570±.056 .574±.054 .569±.068 .525±.076 .492±.069 .461±.054 .502±.086

M2 .733±.013 .743±.071 .651±.039 .705±.030 .692±.049 .695±.051 .673±.042 .570±.022 .586±.027 .609±.018
M5 .600±.079 .573±.056 .337±.045 .504±.044 .571±.052 .402±.036 .401±.041 .298±.025 .327±.026 .326±.015
M10 .353±.090 .365±.048 .275±.039 .351±.029 .251±.025 .210±.013 .207±.027 .179±.003 .182±.022 .182±.006
NG1 .731±.087 .726±.066 .679±.071 .687±.043 .712±.071 .666±.013 .642±.038 .575±.035 .583±.023 .619±.010
NG2 .700±.099 .660±.040 .349±.020 .552±.040 .597±.053 .490±.057 .489±.039 .291±.020 .365±.037 .324±.009
NG3 .600±.067 .600±.024 .325±.083 .471±.030 .474±.029 .400±.079 .367±.025 .221±.001 .266±.020 .225±.005
Reut. .440±.073 .434±.053 .433±.136 .394±.072 .439±.058 .301±.017 .285±.015 .237±.035 .246±.027 .280±.013

4 EXPERIMENTS

Data Sets: In this paper, we conduct experiments on 8 two
modalities datasets and 8 multiple modalities datasets. In detail,
two modal datasets come from: Movie dataset is extracted from
IMDB, which has 617 movies of 17 genres, with two modalities
describing the same movies, i.e., keywords matrix and actors
matrix. The goal is to find the genre of the movies. Citeseer
dataset [24] is originally made with 4 modalities, i.e., content,
inbound, outbound, citation. Cora dataset [24] has the same
structure as Citeseer, i.e., the content modality and the citation
modality are used in our experiment as well [25]. WebKB [24] is
described with two modalities: content and citation. In this paper,
we seperate WebKB into 4 sub-datasets grouped by universities:
Cornell, Texas, Wisconsin and Washington, each has 5 categories,
i.e., student, project, course, stuff and faculty. Multiple modal
datasets include: NewsGroup [25] has 3 modalities, which are
constructed by different preprocessing methods for texts, i.e.,

partitioning around medoids, supervised mutual information and
unsupervised mutual information. NewsGroup dataset [25] is of
6 groups extracted from 20 Newsgroup datasets, i.e., M2, M5,
M10, NG1, NG2, NG3. Every group contains 10 subsets, and
we choose the first subset for all 6 groups in our experiment,
i.e., News-M2, News-M5, News-M10, News-NG1, News-NG2
and News-NG3, respectively. Reuters dataset [25] is built from
the Reuters RCV1/RCV2 multilingual test collection, multi-modal
information is created from different languages, i.e., English,
French, German, Italian and Spanish.

We also conduct experiments on with 2 realistic incomplete
multi-modal datasets. 3-Source Text data (3Sources) 1 is collected
from three online news sources, i.e., BBC, Reuters, and Guardian,
each source can be seen as one modality for the news reports.
In total, there are 948 news articles covering 416 distinct news
reports. In these reports, 169 were reported with three sources,

1 http://mlg.ucd.ie/datasets/3sources.html
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TABLE 3
Classification comparison results (mean and std.) of SLIM and SLIM-K with both compared methods on different modalities (only missing one

modality for each instance), the ratio of the multiple incomplete modal data is 90%. The best performance for each criterion is bolded.

Accuracy ↑ F1 ↑

Data Modality1 Modality1

SLIM-K SLIM WNH RANC MVL-IL SLIM-K SLIM WNH RANC MVL-IL

Mov. .143±.028 .139±.012 .046±.029 .130±.026 .055±.013 .129±.013 .127 ±.011 .114±.007 .105±.006 .113±.009
Cite. .386±.044 .314±.023 .239±.016 .307±.017 .207±.009 .321±.056 .317 ±.034 .258±.014 .255±.009 .214±.003
Cora .406±.070 .403±.016 .331±.017 .402±.101 .297±.012 .400±.095 .303 ±.008 .298±.011 .304±.022 .221±.007
Corn. .441±.061 .437±.083 .390±.089 .268±.065 .395±.111 .440±.049 .417 ±.046 .373±.061 .338±.026 .345±.040
Texas .601±.038 .554±.054 .382±.108 .440±.150 .568±.050 .555±.031 .553 ±.044 .460±.043 .500±.062 .506±.109
Wash. .437±.058 .432±.062 .384±.065 .433±.093 .257±.136 .478±.040 .477 ±.041 .391±.042 .415±.054 .412±.049
Wis. .571±.052 .517±.058 .430±.074 .395±.088 .271±.150 .486±.051 .485 ±.052 .421±.050 .393±.047 .370±.033

Data Modality2 Modality2

SLIM-K SLIM WNH RANC MVL-IL SLIM-K SLIM WNH RANC MVL-IL

Mov. .200±.025 .170±.046 .039±.012 .135±.026 .078±.007 .132±.032 .130 ±.019 .114±.005 .106±.009 .123±.010
Cite. .486±.057 .474±.094 .210±.015 .349±.065 .468±.028 .311±.069 .289 ±.052 .264±.002 .269±.010 .243±.009
Cora .521±.083 .506±.013 .285±.032 .350±.059 .484±.016 .403±.054 .305 ±.009 .285±.021 .274±.015 .239±.006
Corn. .489±.097 .488±.053 .397±.098 .397±.119 .480±.068 .423±.047 .425 ±.057 .404±.042 .369±.053 .427±.057
Texas .621±.072 .611±.070 .581±.050 .477±.086 .604±.069 .552±.045 .558 ±.050 .557±.044 .420±.078 .497±.078
Wash. .556±.088 .559±.076 .443±.049 .426±.079 .532±.115 .539±.034 .496 ±.045 .496±.049 .409±.031 .490±.058
Wis. .600±.050 .608±.029 .491±.102 .463±.067 .466±.077 .528±.039 .518 ±.073 .448±.099 .416±.052 .512±.075

Data OverAll OverAll

SLIM-K SLIM WNH RANC MVL-IL SLIM-K SLIM WNH RANC MVL-IL

Mov. .229±.027 .211±.055 .149±.040 .203±.042 .134±.043 .139±.013 .193±.038 .116±.003 .164±.043 .160±.007
Cite. .529±.037 .510±.028 .287±.142 .457±.076 .486±.019 .364±.039 .347±.027 .259±.009 .303±.029 .343±.017
Cora .646±.096 .617±.020 .436±.154 .537±.119 .536±.022 .444±.023 .433±.021 .295±.016 .381±.068 .379±.019
Corn. .509±.081 .502±.094 .492±.097 .441±.091 .493±.076 .484±.062 .431±.064 .384±.055 .373±.065 .412±.056
Texas .630±.063 .625±.065 .623±.077 .591±.043 .568±.050 .577±.037 .575±.042 .575±.075 .535±.078 .565±.074
Wash. .600±.090 .612±.046 .552±.026 .586±.086 .584±.074 .578±.040 .539±.034 .491±.076 .511±.068 .467±.058
Wis. .627±.081 .611±.079 .554±.019 .570±.056 .574±.054 .569±.068 .525±.076 .492±.069 .461±.054 .502±.086

TABLE 4
Dataset description, datasets with two modalities or multiple modalities

are separated with a horizontal line.

Datasets C N V dv(v = 1, 2, · · · , V )

Movie (Mov.) 17 617 2 1878, 1398
Citeseer (Cite.) 6 3264 2 3703, 3264
Cora 7 2708 2 1433, 2708
Cornell (Corn.) 5 195 2 1703, 195
Texas 5 185 2 1703, 185
Washington (Wash.) 5 217 2 1703, 217
Wisconsin (Wis.) 5 262 2 1703, 262
WKG 2 6,500 2 1024,300

News-M2 (M2) 2 1200 3 2000, 2000, 2000
News-M5 (M5) 5 500 3 2000, 2000, 2000
News-M10 (M10) 10 500 3 2000, 2000, 2000
News-NG1 (NG1) 2 500 3 2000, 2000, 2000
News-NG2 (NG2) 5 400 3 2000, 2000, 2000
News-NG3 (NG3) 8 1000 3 2000, 2000, 2000
Reuters (Reut.) 6 1600 5 2000, 2000, 2000, 2000, 2000
3Sources 6 416 3 3560, 3631, 3068

194 with two sources, and 53 appeared with single news source.
Each report is manually annotated with one of the 6 topical labels:
business, entertainment, health, politics, sport, and technology. We
also collect data from WKG Game-Hub, which consists 13,750
articles collected from the Game-Hub of “ Strike of Kings”,
we take the largest two classes as a binary balance problem.

Each article contains several images and content paragraphs. The
text is represented as a 300-dimensional word2vector vector, the
image is represented as 1024 deep output feature. The description
sketches of datasets, including the number of classes, the number
of examples and modalities as well as the feature numbers, are
summarized in Table 4.

We run each compared method 30 times for the 16 datasets.
In each datasets, we randomly select 70% for training and the
remains are for testing. For both the training and testing set, we
randomly select 10% to 90% examples in each split, with 20%
as interval, as homogeneous examples with complete modality,
and remains are incomplete instances as in [13], i.e., in WebKB
datasets, they are described by either content or citation modality.
For all the examples, we randomly choose 30% as the labeled
data, and the left 70% are unlabeled data. In the training phase, the
parameters λ1 and λ2 are selected by 5-fold cross validation from
{10−5, 10−4, · · · , 104, 105}, there is no overlap between the test
set and the validation set. Empirically, when the variation between
the objective values of Eq. 14 is less than 10−6 in iteration, we
treat SLIM/SLIM-K converged. The average mean and std. of
predictions are recorded for indicating the classification perfor-
mance, and NMI and Purity are recorded for cluster performance.
For compared methods, the parameters are tuned respected to the
original paper suggested.

Compared Approaches: Our method solves the problem of semi-
supervised clustering and classification with incomplete modality.
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Fig. 2. The NMI, Purity, Accuracy, Mirco-F1 results of the Texas, Movie, News-M2, News-NG1 with only missing one modality for each instance.
PER (partial example ratio) is the ratio of incomplete examples.

Thus, to evaluate the performance of our proposed approaches. We
choose 3 state-of-the-art multi-modal methods to evaluate semi-
supervised clustering task: ConvexSub [26]; PVC [13]; MIC [14].
Considering the limitation of the compared clustering method,
we first learn a latent representation of the original data, and
use the semi-supervised K-means to get clustering result. For
classification task, we compare the WNH [27], RANC [28] and
MVL-IL [15]. Since some methods cannot handle incomplete
examples, i.e., ConvexSub, WNH, RANC, for fair comparison, we
facilitate with the ALM (Augmented Lagrange Multipliers) [29]
matrix completion method to fill in the missing information of
the partial examples. In detail, ConvexSub: construct a subspace-
based multi-modal clustering; PVC: establish a latent subspace
to make different incomplete modalities are close to each other;
MIC: learn the latent feature matrices for different incomplete
modalities and a consensus matrix, by minimizing the difference
between each modal matric and the consensus matrix; WNH:
combine all modal values together and then uses l2,1-norm to reg-
ularize the modal selection process; RANC: convert each modal
predicted values into an accumulated prediction matrix with low-
rank constraint; MVL-IL: exploit the connections among multiple

modalities to handle the incomplete modalities, and estimates the
incomplete modalities by integrating the information from the
other observed modalities through this subspace.

4.1 Experiment Results

First, we evaluate our algorithm with fix incomplete ratio, then
evaluate the influence of incomplete ratio.

4.1.1 Semi-Supervised Clustering/Classification
To demonstrate the effectiveness of our proposed method, we de-
signed two missing settings. First, we set each incomplete instance
only miss one modality, and we record both the clustering results
in Table 1 and the classification results in Table 2. Moreover, we
record each modal classification performance of binary datasets
in Table 3. Meanwhile we set each incomplete instance missing
modalities with the probability of 1

K randomly, and record the
clustering and classification results in Table 5, Table 6. For all
datasets, we fix the incomplete ratio as 90%. To further validate
the effectiveness of the proposed methods, we experiment on 2
real-world datasets, i.e., 3Sources (3S.) and WKG, and record the
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TABLE 5
Clustering comparison results (mean and std.) of SLIM and SLIM-K with both compared methods on 14 benchmark datasets with missing

modalities randomly, the ratio of the multiple incomplete modal data is 90%. 2 commonly used criteria are evaluated. The best performance for
each criterion is bolded. ↑ / ↓ indicate the larger/smaller the better of a criterion.

Data Purity ↑ NMI ↑
SLIM-K SLIM ConvexSub PVC MIC SLIM-K SLIM ConvexSub PVC MIC

Mov. .343±.017 .341±.018 .184±.010 .275±.016 .150±.012 .372±.047 .358 ±.018 .168±.010 .330±.013 .149±.008
Cite. .398±.029 .362±.024 .342±.032 .356±.043 .250±.031 .188±.046 .143 ±.013 .133±.043 .096±.027 .081±.032
Cora .410±.073 .408±.035 .383±.042 .378±.036 .328±.018 .196±.076 .195 ±.032 .177±.043 .120±.038 .067±.015
Corn. .501±.052 .499±.058 .472±.029 .477±.031 .420±.017 .181±.047 .138 ±.035 .082±.023 .111±.024 .074±.018
Texas .687±.042 .675±.025 .583±.026 .605±.030 .555±.011 .188±.070 .151 ±.087 .085±.053 .139±.055 .068±.021
Wash. .664±.086 .653±.045 .534±.048 .627±.065 .495±.017 .234±.069 .219 ±.042 .012±.056 .202±.072 .079±.030
Wis. .673±.053 .654±.018 .527±.050 .595±.041 .529±.048 .223±.073 .193 ±.075 .110±.057 .179±.044 .138±.028

M2 .644±.032 .621±.038 .500±.018 - .510±.024 .063±.046 .050 ±.030 .003±.004 - .022±.014
M5 .353±.042 .335±.029 .243±.016 - .250±.020 .077±.046 .063 ±.026 .028±.017 - .052±.019
M10 .400±.036 .386±.019 .246±.020 - .199±.010 .175±.049 .156 ±.027 .140±.017 - .129±.017
NG1 .532±.017 .591±.040 .504±.003 - .500±.008 .086±.029 .073 ±.033 .059±.004 - .060±.008
NG2 .372±.032 .337±.027 .223±.022 - .244±.011 .091±.051 .084 ±.020 .034±.016 - .032±.008
NG3 .413±.028 .395±.028 .230±.020 - .196±.017 .198±.044 .183 ±.036 .150±.026 - .072±.012
Reut. .502±.055 .474±.032 .284±.041 - .310±.038 .192±.048 .169 ±.029 .113±.020 - .119±.031

TABLE 6
Classification comparison results (mean and std.) of SLIM and SLIM-K with both compared methods on 14 benchmark datasets with missing

modalities randomly, the ratio of the multiple incomplete modal data is 90%. 2 commonly used criteria are evaluated. The best performance for
each criterion is bolded. ↑ / ↓ indicate the larger/smaller the better of a criterion.

Data Accuracy ↑ F1 ↑
SLIM-K SLIM WNH RANC MVL-IL SLIM-K SLIM WNH RANC MVL-IL

Mov. .204±.032 .188±.044 .107±.042 .116±.031 .082±.022 .144±.027 .126 ±.018 .104±.019 .094±.047 .115±.004
Cite. .614±.040 .596±.015 .383±.114 .457±.076 .333±.025 .441±.078 .410 ±.017 .299±.012 .303±.029 .349±.016
Cora .571±.058 .557±.013 .450±.085 .368±.056 .281±.057 .424±.077 .389 ±.014 .326±.038 .259±.036 .309±.024
Corn. .583±.026 .554±.079 .446±.138 .446±.091 .427±.069 .478±.098 .471 ±.070 .422±.093 .372±.065 .440±.041
Texas .693±.071 .674±.041 .518±.142 .557±.073 .435±.164 .656±.073 .643 ±.037 .541±.066 .469±.068 .512±.082
Wash. .750±.063 .696±.042 .509±.232 .584±.075 .441±.125 .616±.086 .622±.043 .527±.056 .505±.065 .513±.075
Wis. .714±.091 .679±.058 .529±.190 .570±.056 .433±.089 .588±.053 .585±.079 .502±.098 .461±.054 .479±.065

M2 .719±.083 .717±.072 .691±.058 .687±.122 .559±.036 .665±.056 .647 ±.040 .614±.035 .594±.079 .614±.015
M5 .524±.109 .490±.115 .407±.045 .447±.067 .299±.024 .381±.035 .376 ±.043 .301±.033 .292±.047 .333±.008
M10 .381±.014 .338±.060 .155±.072 .244±.062 .141±.020 .237±.036 .201 ±.025 .170±.011 .164±.030 .180±.006
NG1 .737±.031 .702±.044 .698±.055 .642±.075 .563±.033 .648±.043 .629 ±.019 .621±.032 .547±.040 .612±.015
NG2 .636±.083 .585±.069 .337±.096 .409±.144 .271±.039 .467±.058 .430 ±.058 .307±.020 .313±.069 .320±.012
NG3 .500±.094 .470±.050 .205±.059 .319±.065 .205±.023 .288±.040 .279 ±.035 .206±.023 .202±.019 .253±.009
Reut. .429±.031 .417±.061 .383±.054 .304±.074 .248±.022 .320±.027 .306 ±.026 .283±.030 .211±.049 .303±.006

results in Table 7. Note that PVC method can only leverage two
modalities, we did not compare our methods with PVC for multi-
modalities.

Table 1 and Table 5 reveal that for both two modal and
multiple modal datasets in two incomplete setting, SLIM/SLIM-
K almost consistently achieve the significant superior clustering
performance on either purity or NMI, except for Wisconsin on
purity. It is owing to that in SLIM/SLIM-K, the similarity matrices
are initialized with cosine similarity for more robust general-
ization, rather than task-specific similarity matrix construction
method. Besides, Table 2 and Table 6 show that SLIM/SLIM-K
also achieve the best prediction performance on all datasets. In
Table 7, it further reveals that SLIM/SLIM-K are superior than
other compare methods in real applications.

These phenomenons reveal the effectiveness of considering
the high order consistencies between different modal similarity
matrixes and the learned prediction. On the other hand, Table 3

reveals that SLIM/SLIM-K can get superior performance whether
on single modality or overall result. It is notable that SLIM-
K is better than SLIM with the complemented kernel matrix
for classification and clustering. The phenomenon indicates that
SLIM-K can learn more discriminative classifiers and cluster
learner.

4.1.2 Influence of Number of Incomplete Multi-Modal Data
In order to explore the influence of the ratio of the incomplete
modalities on performance, extensive experiments are conducted.
In this section, the parameters in each investigation are fixed as
the optimal values selected in above investigations, the λ1 and λ2

in SLIM and SLIM-K are set 1, while the ratio of the incomplete
data varies in {90%, 70%, · · · , 10%} with 20% intervals. Due to
the page limits, results on 4 datasets, i.e., Texas, Movie, News-
M2, News-NG1, and the results of NMI, purity, accuracy, and
Mirco-F1 with two incomplete setting are recorded in Fig. 2
and 3. These figures clearly show that SLIM-K achieves the



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXX 10

PER(%)
90 70 50 30 10

N
M

I

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SLIM-K
SLIM
ConveSub

PVC
MIC

(1) Texas
PER(%)

90 70 50 30 10

N
M

I

0.1

0.2

0.3

0.4

0.5 SLIM-K
SLIM
ConveSub

PVC
MIC

(2) Movie
PER(%)

90 70 50 30 10

N
M

I

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SLIM-K
SLIM

ConveSub
MIC

(3) News-M2
PER(%)

90 70 50 30 10

N
M

I

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SLIM-K
SLIM

ConveSub
MIC

(4) News-NG1

PER(%)
90 70 50 30 10

Pu
ri

ty

0.55

0.6

0.65

0.7

0.75

0.8
SLIM-K
SLIM
ConveSub

PVC
MIC

(5) Texas
PER(%)

90 70 50 30 10

Pu
ri

ty

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SLIM-K
SLIM
ConveSub

PVC
MIC

(6) Movie
PER(%)

90 70 50 30 10

Pu
ri

ty

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
SLIM-K
SLIM

ConveSub
MIC

(7) News-M2
PER(%)

90 70 50 30 10

Pu
ri

ty

0.5

0.55

0.6

0.65

0.7 SLIM-K
SLIM

ConveSub
MIC

(8) News-NG1

PER(%)
90 70 50 30 10

A
cc

ur
ac

y

0.4

0.5

0.6

0.7

0.8

0.9
SLIM-K
SLIM
WNH

RANC
MVL-IL

(9) Texas
PER(%)

90 70 50 30 10

A
cc

ur
ac

y

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
SLIM-K
SLIM
WNH

RANC
MVL-IL

(10) Movie
PER(%)

90 70 50 30 10

A
cc

ur
ac

y

0.5

0.6

0.7

0.8

0.9

1 SLIM-K
SLIM
WNH

RANC
MVL-IL

(11) News-M2
PER(%)

90 70 50 30 10

A
cc

ur
ac

y

0.5

0.6

0.7

0.8

0.9

1
SLIM-K
SLIM
WNH

RANC
MVL-IL

(12) News-NG1

PER(%)
90 70 50 30 10

M
ir

co
-F

1

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
SLIM-K
SLIM
WNH

RANC
MVL-IL

(13) Texas
PER(%)

90 70 50 30 10

M
ir

co
-F

1

0.08

0.1

0.12

0.14

0.16

0.18

0.2 SLIM-K
SLIM
WNH

RANC
MVL-IL

(14) Movie
PER(%)

90 70 50 30 10

M
ir

co
-F

1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
SLIM-K
SLIM
WNH

RANC
MVL-IL

(15) News-M2
PER(%)

90 70 50 30 10
M

ir
co

-F
1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
SLIM-K
SLIM
WNH

RANC
MVL-IL

(16) News-NG1

Fig. 3. The NMI, Purity, Accuracy, Mirco-F1 results of the Texas, Movie, News-M2, News-NG1 with missing modalities randomly. PER (partial
example ratio) is the ratio of incomplete examples.
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Fig. 5. Objective function value convergence and corresponding classi-
fication performance (Accuracy, F1) vs. number of iterations.

competitive on almost all datasets except purity on News-NG1
dataset. We also find that SLIM-K achieves superiorities from high
incomplete ratio, and SLIM-K increases faster when incomplete
ratio decreases.

4.1.3 Empirical Investigation on Convergence

To investigate the convergence empirically, the objective function
value, i.e., the value of Eq. 7 and the classification performance

in each iteration are recorded. Due to the page limits, we plot
results of only 2 datasets in Fig. 5. It clearly reveals that the
objective function value decreases as the iterations increase,
and the classification performance becomes stable after several
iterations on different datasets. Moreover, additional experiments
result indicates that our methodes converge very fast, i.e., on most
datasets, SLIM-K converges after 10 rounds.

4.1.4 Investigation on Stability of Parameter

In order to explore the influence of parameters λ1 and λ2, more
experiments are conducted. We first fix the λ1 while tuning λ2

in {10−5, 10−4, · · · , 104, 105}, then we fix the λ2 while tuning
λ1 in {10−5, 10−4, · · · , 104, 105}, and record the average per-
formance in Fig. 4. Due to the page limits, we only list 2 datasets
for verification, i.e., Movie, News-M2. These figures show that
SLIM-K achieves a stable performance on each dataset except
accuracy with large λ1, i.e., (a) and (e) in Fig. 4, which indicates
the insensitivity of SLIM-K to parameters.
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Fig. 4. Influence of the parameters λ1, λ2 on the 2 datasets, i.e., Movie, News-M2, the ratio of the multiple incomplete modal data is 90%.

TABLE 7
Clustering/Classification comparison results (mean and std.) of SLIM and SLIM-K with both compared methods on real-world incomplete datasets.

Data Purity ↑ NMI ↑
SLIM-K SLIM ConvexSub PVC MIC SLIM-K SLIM ConvexSub PVC MIC

3S. .880±.020 .858±.014 .282±.009 - .389±.019 .849±.026 .801±.019 .236±.010 N/A .401±.019
WKG .673±.019 .669 ±.054 .543±.008 .565 ±.011 .532 ±.009 .149±.050 .098 ±.052 .041 ±.028 .016±.006 .021 ±.005

Data Accuracy ↑ F1 ↑
SLIM-K SLIM WNH RANC MVL-IL SLIM-K SLIM WNH RANC MVL-IL

3S. .850±.025 .828±.040 .735±.083 .546±.144 .263±.044 .849±.029 .854±.014 .608±.100 .424±.031 .337±.019
WKG .673±.022 .678 ±.042 .647±.155 .648 ±.019 .470 ±.028 .739±.017 .711 ±.029 .674 ±.095 .626±.009 .630 ±.043

5 CONCLUSION

This paper focuses on the issues of incomplete multi-modal
learning, which extends our preliminary research [30]. Previ-
ous mainstream solutions alleviated the affections of incomplete
modal issues via utilizing the intrinsic information from the data
structures or prediction consistencies among multiple modalities.
A few of multi-modal learning methods consider making use of
the complementary information from extrinsic data, and thus form
transductive solutions. In this paper, we proposed novel semi-
supervised incomplete multi-modal approach, with more extrinsic
information exploited from unlabeled data, and yielded an induc-
tive learner which consequently can be applied in general multi-
modal circumstances. With the complemented kernel matrix,
SLIM-K can get higher performance. Therefore, SLIM and SLIM-
K can be easily adopted to either classification or clustering tasks.
Experimental evaluations on real-world applications demonstrate
the superiority of our proposed method.

APPENDIX A
COMPARISON WITH DIFFERENT FEATURE EMBED-
DING

It is notable that the Citeseer and Cora datasets are graph datasets,
while in this paper, following [13], we only use the primitive

features of these two datasets. To explore effectiveness of the
feature embedding designed for special raw data, i.e., graph
convolution network for the graph datasets, we conduct more
experiments comparing with the state-of-the-art semi-supervised
GCN style methods: GCN [31] and MixHop [32]. GCN utilized
the convolutional networks for graph data considering the structure
information on each hidden layer, MixHop learned a general
class of neighborhood mixing relationships with specific sparsity
regularization, and achieved the top results on these datasets.
Similarly, in each split, we randomly select 10% to 90% of
examples with incomplete modalities, with 20% as interval, and
the remains are complete instances. Note that we use the GCN
feature embedding as the input for our methods, and the results
are recorded in Table 8, Table 9, Table 10 and Table 11. The
results reveal that with more discriminative feature embedding, the
clustering/classification performances of SLIM and SLIM-K are
better than primitive features, while are worse than the MixHop
method on some criteria, especially in the case of low missing
rates, i.e., 10%, 30%, 50%. This is because MixHop can better
consider the neighbor relationships in the case of lower missing
rate, while SLIM/SLIM-K simply use linear kernel to represent the
neighbor relationships between instances. On the other hand, GCN
methods can learn more discriminative features by using end-to-
end deep network, while our methods concentrate on building
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TABLE 8
Clustering/Classification comparison results of SLIM and SLIM-K with

GCN style methods on Citeseer dataset.

Ratio Purity ↑ NMI ↑
SLIM-K SLIM GCN SLIM-K SLIM GCN

10% .833±.009.829±.007.785±.008.610±.015.605±.012.532±.015
30% .823±.011.820±.012.774±.010.594±.019.589±.019.515±.014
50% .825±.010.828±.005.773±.008.596±.015.600±.011.511±.010
70% .828±.006.825±.004.773±.007.598±.010.594±.006.509±.009
90% .824±.107.818±.073.764±.003.592±.101.585±.071.497±.007

Ratio Accuracy ↑ F1 ↑
SLIM-K SLIM GCN SLIM-K SLIM GCN

10% .719±.012.712±.011.709±.007.566±.016.560±.016.552±.012
30% .706±.010.697±.014.694±.012.547±.016.539±.020.532±.017
50% .693±.009.686±.013.687±.010.534±.011.525±.015.526±.013
70% .682±.011.677±.011.674±.013.516±.014.511±.015.506±.019
90% .678±.015.667±.092.664±.019.510±.017.503±.017.500±.023

TABLE 9
Clustering/Classification comparison results of SLIM and SLIM-K with

GCN style methods on Citeseer dataset.

Ratio Purity ↑ NMI ↑
SLIM-K SLIM mixhop SLIM-K SLIM mixhop

10% .765±.012.801±.008.743±.013.500±.019.553±.012.469±.016
30% .739±.009.776±.009.689±.015.475±.013.515±.015.404±.019
50% .697±.017.678±.035.630±.010.434±.013.409±.039.354±.013
70% .652±.015.609±.032.552±.012.377±.017.359±.034.315±.023
90% .551±.014.480±.018.387±.013.282±.026.218±.022.143±.027

Ratio Accuracy ↑ F1 ↑
SLIM-K SLIM mixhop SLIM-K SLIM mixhop

10% .575±.035.647±.028.652±.016.396±.033.473±.034.481±.022
30% .592±.021.603±.019.604±.015.408±.022.419±.020.422±.016
50% .542±.040.540±.022.537±.021.363±.037.359±.017.356±.017
70% .476±.031.465±.037.454±.015.319±.021.317±.015.305±.009
90% .406±.029.367±.015.341±.008.280±.013.277±.011.268±.016

predictors with given feature representations. On the contrary, in
the case of high missing ratio, we have achieved better results by
using the complementarity and consistency among the modalities.
Actually, how to expand SLIM and SLIM-K on specific data
structures is an interesting future research direction.
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