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Abstract—Demand forecasting factory production is of partic-
ular importance for retailers of perishable goods, as they are
produced daily with a fixed production lead time. Over- or
underestimating demand can result in loss of profits due to stock-
outs or overstock. However, demand forecasting and production
planning for perishable goods represent a significant challenge
due to factors such as high volatility, significant variation, the
dynamics of store-level product demand, and the need for L-
day ahead forecasting that allows enough time for production
planning. By collaborating with a leading perishable product
retailer, we have analyzed (1) detailed internal supply chain data,
including sales transaction records and day-end inventories, along
with (2) environmental factors, including temperature, weather
conditions and wind speed. With the aim of minimizing loss of
profit caused by inaccurate forecasting, we propose the following
three-stage hierarchical demand forecasting model that leverages
the combined data for perishable goods production planning: 1.
Identification of store-level demand patterns, 2. store clustering
for aggregated production, and 3. a recurrent dynamic network
based on a nonlinear autoregressive network with exogenous
inputs (NARX) for L-day ahead demand forecasting. Finally,
we validate the proposed approach by comparing the loss of
profits using this model with other baselines along with the
industry standard model used in the perishable goods industry.
Our proposed model successfully reduces lost profits to 3.30%
of total sales, representing a reduction of 1.71% when compared
with the industry standard production system.

Index Terms—Perishable goods; Deep learning; Hierarchical
forecasting; Production planning

I. INTRODUCTION

Recent years have the emergence worldwide of AI-powered
supply chain management systems [1], which integrate ma-
chine learning techniques and optimization algorithms that
leverage both internal supply chain internal data and ex-
ternal factors. Retailers, especially those offering perishable
consumer goods, are faced with the challenge of how to
accurately forecast product demand in order to manage their
daily operations [2]. Perishable goods are typically ordered,
produced, and delivered on a daily basis with high demand
volatility and short shelf-life. Items that have not been sold
by the end of the day result in demand waste. On the other
hand, items that are sold-out early cause demand loss. An
accurate forecasting model can help retailers of perishable
goods to reduce lost profits by increasing product availability
while limiting the day-end waste.

While the importance of accurate forecasting for daily oper-
ations is clear to managers dealing with the supply chain for
perishable goods, actually designing an accurate forecasting

model for production has remained a challenge for several
reasons. Firstly, the dynamics of product demand inevitably
give rise to high variance at individual store level. A strategy
that predicts daily demand at store level and then aggregates
the total demand tends to lead to inaccurate forecasts. Sec-
ondly, product demand relies heavily on consumers’ purchas-
ing habits as well as external factors, such as temperature
and other weather conditions. It is necessary to combine the
internal supply chain data (transactions, inventories, etc.) with
external data (meteorology reports, special events, etc.) in
order to develop a reliable forecasting model. Thirdly, the
time period from the creation of the production plan to the
time when the product is produced and delivered presents
challenges in forecasting demand for the days during this lead
time.

Recently, a number of studies have been carried out in-
vestigating the forecasting problem for factory production of
perishable goods. Most industry standard forecasting models
rely on a moving average model [3] at the individual store level
combined with adjustments from experienced store managers
[4]. However, retailers of perishable goods continue to face
major problems with demand loss and demand waste over
long-term operations. Du et al., (2013) propose a support
vector machine (SVM) forecasting system to predict demand
for perishable farm products. However, the SVM model ne-
glects the time dependencies of daily demand. Van et al.,
(2016) [5] test several regression models for promotional
demand forecasting for perishable goods. Recently, Huber
et al., (2017) proposed a cluster-based hierarchical demand
forecasting model at different organizational levels based on
an agglomerative hierarchical clustering algorithm and an
ARIMA model. However, this model is not able to support
production planning for individual products taking into ac-
count production lead time and store-level aggregation.

The emergence of multi-source big data and well- organized
internal supply chain data has enabled a new paradigm that
can enhance demand forecasting for the production of per-
ishable goods. This has allowed us to exploit internal supply
chain data (transactions, inventories, etc.) and external data
(meteorology reports, special events, etc.) to develop a new
hierarchical demand forecasting model. Specifically, we first
analyze store-level demand patterns from product demand time
series and their sensitivity to external factors. A KMeans
clustering algorithm is then used to aggregate stores with
similar patterns to produce an aggregated production plan.
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Finally, a recurrent dynamic network based on a nonlinear
autoregressive network with exogenous inputs (NARX) can
be developed for L−day ahead demand forecasting that can
meet the requirements of production lead time. Finally, we
conduct extensive experiments on a real-world data set in
collaboration with a leading Chinese retailer of perishable
goods. Our proposed method successfully reduces profit loss to
3.30% of total sales, representing a reduction of 1.71% when
compared with the industry standard production system.

The remainder of this paper is organized as follows. Section
II provides the context and defines the problem of demand
forecasting for production of perishable goods. After that,
Section III examines the methodologies used to reveal de-
mand patterns, store aggregation, and demand forecasting
models. The results of the experiment are reported in Section
IV demonstrating the superior performance of the proposed
model. Finally, Section V summarizes some related work and
Section VI briefly summarizes our contributions.

II. PROBLEM

In this section, we set out the notations and definitions that
appear throughout this paper. We then define the prediction
problem for factory production of perishable goods.

A. Notation and Definitions

Notation Definitions
L Production lead time
T Evaluation time period
t Next t day forecasting, t = 1, 2, ..., L
s ∈ S Set of all retail stores
Ck k-th set of retailer stores,

⋃
k Ck = S,

r ∈ R Set of store keeping units
Its,r Day-end inventory for item r in store s on day t

yts,r Sales of item r in store s on day t

wt Weather condition on day t
f t Temperature on day t
vt Wind speed on day t
yti Actual total demand of product i on day t
ŷti Predicted total demand of product i on day t
λi unit profit loss due to product waste of product i
ηi unit profit loss due to demand loss of product i

Definition 1 (Store hierarchy): A 3-level store hierarchy is
shown in Figure 1. It starts from the roof representing all the
stores S that are supplied by the same factory. The first level
is made up of different clusters of stores Ck, k = 1, 2, ..., n.
Typically, stores in the same cluster are located in similar
urban functional zones and the demand in these stores displays
similar sensitivity to external factors. The leaves represent the
individual stores.

In order to provide forecasting analysis for factory produc-
tion planning, analysis can be conducted at the roof level
by analyzing the total demand of all retailer stores directly.
The production planning systems currently in use rely on
forecasting for individual retail stores at the leaf level, and
then aggregate the estimated demand to determine factory pro-
duction. Our proposed alternative, which we can call hierarchy
aggregation, first clusters together stores with similar demand

Fig. 1. Hierarchical structure for retail stores

patterns and then conducts forecasting analysis at the cluster
level before aggregating the total demand of all clusters.

Definition 2 (Product demand): The product demand yts,r is
defined as the amount of product r that can be sold in store s
on day t when the supply is sufficient. In some cases, product
r is sold-out before the end of the day. Here we estimate the
unrecorded demand when the store is out-of-stock by using
the 1-Nearest-Neighbor predictor that utilizes historical sales
data when the supply is sufficient during the day [3].

Definition 3 (Production lead time): Production lead time L
is defined as the number of days a factory needs to complete
its production plan. The production lead time for different
products is set to be 3 days. To better decide the production
volume for the t-th day, it is necessary to forecast the following
L days.

Definition 4 (Profit loss): In real-world production planning,
if the retailer forecasts a demand greater than the actual
consumption, there is a risk that the left-over product will be
wasted. If the forecast result is less than the actual demand, it
may cause a demand loss. The combined product waste and
demand loss due to inaccurate forecasting together as profit
loss. Formally, the profit loss for product i on day T + t is
defined as follows:

Fi,t =
∑

T

λimax(ŷT+t
i − yT+t

i , 0)+ ηimax(yT+t
i − ŷT+t

i , 0)

where the first term represents the wastage of product i on
day T + t leveraged by the cost per unit of product wasted λi.
The second term represents the demand loss leveraged by the
product price ηi.

B. Problem Description

Given a set of historical transaction records, store inventory
levels, and meteorological reports, the demand forecasting
problem for product production can be stated as follows: to
predict the total demand of all stores supplied by the same
factory with a lead time of L, with the objective of minimizing
the total loss of profit due to forecasting inaccuracy.

As mentioned in Definition 1 above, there are three funda-
mentally different approaches to production plan forecasting:
leaf-level production planning, roof-level production planning,
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Fig. 2. Framework overview.

and hierarchy aggregation production planning. Leaf-level pro-
duction planning forecasts the product demand at store-level
and aggregates the predicted demand for production. This is
the strategy currently employed by most of the leading retailers
in China. Roof-level production planning works by directly
predicting the total demand of the retail stores in a given
region. The third approach, hierarchy production planning, first
aggregates stores with similar demand patterns into groups
and then predicts the total demand of these store clusters. The
production plan is drawn up to meet the total demand of all
clusters of stores.

C. Framework Overview

Figure 2 shows the framework of our proposed approach,
consisting of three distinct phases: identification of store-level
demand patterns, store aggregation, and hierarchical demand
forecasting for production planning.
Identification of Demand Patterns. Demand patterns can be
divided into two categories: time series demand patterns and
demand sensitivity to environmental factors. We first analyze
the store-level transaction history of a product in order to
extract its time series demand pattern, which describes the
product demand repeating purchase, weekly purchase period,
and demand trend. Then the weather reports for each time slot
can be leveraged for environmental factor pattern analysis.
Here we implement a single LSTM unit to show demand
sensitivity to environmental factors [6].
Store Aggregation. Store aggregation uses the store-level
demand patterns as input, and aims to group the stores with
similar patterns together, thereby forecasting product demand
at a cluster level. Here we implement a KMeans clustering
algorithm to identify clusters of stores. As a result, the
demands of stores grouped into a cluster are aggregated into
our forecast targets. The individual store level forecast and
roof node level forecast are two special cases of K = |S| and
K = 1 respectively.
Hierarchical Demand Forecasting Finally, we are able to
predict the total demand of a cluster of stores based on a

dynamic recurrent neural network with externals for L− day
ahead forecasting, with a loss function defined as the profit
loss.

III. METHODOLOGY

In this section, we first consider the methodologies used in
the above framework, including for the identification of store-
level demand patterns and store aggregation. We then look at
the hierarchical demand prediction model based on a nonlinear
autoregressive network with exogenous inputs (NARX).

A. Store-level Demand Patterns Discovery

Time Series Demand Pattern. Motivated by time series
pattern discovery [7], here we use daily product demand of
one week, defined in 2 to represent the store-level time series
demand pattern. Formally, the time series demand pattern of
product r at store s (XTs,r) is defined as follows:

XTs,r = (ȳ1s,r, ȳ
2
s,r, ..., ȳ

7
s,r)

where ȳks,r is the average demand on the k − th day of the
week.
External factors Sensitivity Analysis. Here we use wind
speed, temperature, and weather conditions as our external
factors E. First we train a neural network with historical data
for the past month and then calculate the XE sensitivity (y rate
of change) of change E based on each factor plus or minus 5
percent variation. Here we assume that y changes �y is linear
when the factors variation �x is small.

B. Stores Aggregation

The current production planning approach employed by our
industry partners uses sales forecasting at store level without
store aggregation. As a result, the forecast suffers from serious
demand variance at the individual store level. We propose a
KMeans clustering algorithm to aggregate stores according to
their time series demand patterns and demand sensitivity to
external factors as revealed in Section III-A.

Starting with the store time series patterns XT , and external
patterns sensitivity XE as input, we first randomly initialize
k points as the cluster centers. Then the distance DS(k, j),
defined by Expression 1, is calculated between each retail store
j and each clustering center k. Finally, we partition each point
to the cluster center with the nearest distance to complete a
cycle. We recalculate the cluster center of the stores of the
same label until the cluster centers do not change.

DS(k, j) = (1− Cor(k, j)) +Dis(k, j)

Cor(k, j) =
Cov(XTk, XTj)√
V ar[XTk]V ar[XTj ]

Dis(k, j) =
N∑

i

(XEki −XEji)
2

(1)

Figure 3 shows the with store distribution in Hangzhou City
and the aggregated result for product Yoghurt. The different
colors represent different clusters, while the larger the dot size,
the more stores there are in a cluster. 200 retail stores that
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Fig. 3. The cluster of stores for product Yoghurt

selling the product are grouped into 5 clusters. The aggregated
results and the cluster center characteristics show that stores
located near residential areas (Cluster 5) and business areas
(Cluster 4) have a high demand patterns that are highly
sensitive to weekdays and weekends, while being less affected
less by the external factors. Stores located near the West Lake
or other famous attractions in Cluster 2 have a high sensitivity
to external factors. Stores in Cluster 1, that are located far
away from the central business areas, have low sensitivity
to external factors. Others, including the stores located near
subway stations in the central business district, have a clear
time series demand pattern and a high sensitivity to external
factors and are grouped in cluster 3.

C. Sales Forecasting

We propose a nonlinear autoregressive network with exoge-
nous inputs (NARX) to forecast the sales demand based on
the features extracted. This is a powerful class of models that
has been demonstrated to be well-suited to modeling nonlinear
systems and especially time series. Learning is more effective
in NARX networks than in the other neural networks and con-
vergence is much faster. [8]. Moreover, they outperform other
widely used prediction algorithms for our sales distribution
forecasting with significantly improved accuracy. We utilize
the notation h represents the current time of the network, nu

and ny denote delays to the input and output, S is the number
of neurons in the hidden layer, f is the activation function of
hidden layer neurons and the fM−1 is a linear function of the
output neuron. The details of the M-layer feedforward network
are summarized below:
Layer Input. Since the features are from different factors and
have different ranges, they are normalized within [0,1] ranges
by mapping x = x−xmin

xmax−xmin
in order to prevent the simulated

neurons from being driven too far into saturation [9]. The
input-output relationship at the moment of h + 1 is shown
as follows:

ni(h+ 1) =

nu∑

i=1

wjiu(h− i) +

ny∑

j=1

wjiy(h− j) + bh+1
i (2)

Layer Output. The output in layer k + 1 is mapped from ni

using a linear function:

y (h+ 1) = Φ (ni(h+ 1)) (3)

The output layer is a linear layer for the regression problem
of sales forecasting and the final output aM is tsd (continues
variable).
Training Algorithm. The training task is to learn the as-
sociations between our training set of input-output pairs
{(Y1, u1), (y1, u2), ..., (Yh, uh)} which aims to minimize the
profit loss Fi caused by inaccurate forecasting as defined in
Definition 4.

The Levenberg-Marquardt algorithm has been shown to be
the fastest tool for training moderate-sized feedforward neural
networks with the sum of squared error objective is applied
for parameter training in our study [10], [11]. Moreover, a
testing set is used to monitor validation error without affecting
training parameters during the training process. When the
neural network begins to overfit, the validation error will begin
to rise. Our optimal training parameters are chosen at the time
with the minimum validation error [12], [13].

IV. EXPERIMENT

A. Datasets

We use the supply chain data for retail stores in the cities
of Hangzhou and Wenzhou, and the meteorological records
from October 2016 to December 2018 in order to conduct
model training and evaluation. The data for the previous year
is used for training, and the evaluation is conducted as a rolling
forecast for the next 3 months. A statistical summary for the
data is provided in Table II. The experiments were conducted
on a server with 24 Core CPU (Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz) and 120GB Memory.
Supply Chain Data. We use a complete set of supply chain
data, including factory production volume, store-level day-end
inventory, and product sales transactions. A total of 1500 retail
stores from three major cities and 100 products are included
in our research.
Meteorological Records. The meteorological report data con-
sists of hourly weather reports, including time, weather condi-
tions, temperature and wind speed, which are publicly avail-
able from Weather Underground1. The missing meteorological
data is generated according to the preceding hourly recorded
weather report and the missing wind speed is estimated using
the average value of its previous and next reports.

B. Baselines

• Industry Standard(IS): The Industry Standard model is
currently employed by the production planning depart-
ments of leading retailers of perishable goods in China.
The planner takes a historical moving average as its refer-
ence, with further consideration given to meteorological
conditions, holidays, events, and other external factors
they think may affect total demand.

1https://www.wunderground.com
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TABLE I
DETAILS OF THE DATASETS

Data Source Hangzhou Wenzhou
Time Span 10/1/2016 - 12/31/2018

Sales
Data

# of stores 337 502
# of articles 99 98
# of trade(million) 115.64 223.01
Shelf-life(day) [1,14] [1,30]

External
Factors

Holidays 79 day 79 day
Weather conditions 12 types 6 types
Temperature(oC) [2, 37] [5, 38]
Wind speed(mph) [0.6, 5.6] [0.5, 6.3]

• Random Forest (RF) [14]: RF fits a number of decision
trees on various samples of the original dataset and
uses the averaged results for forecasting and over-fitting
control.

• ARIMAX [15]: The ARIMAX model is an ARIMA
model with additional explanatory variables. The ARIMA
part consists of autoregressive (AR) and moving average
(MA) components. In this paper, we set the parameters
of ARIMA model (p,d,q) = (7,0,1) which can get the
performance is optimal.

• Sequence to Sequence (Seq2Seq) [16]: Sequence to
sequence learning has been successfully implemented in
many tasks, including machine translation and demand
forecasting. The Seq2Seq used in our experiment has 64
hidden units, a learning rate set at 0.01 and an input
sequence length set at 56.

C. Evaluation metrics

We use total Sales normalized Demand Loss (SDL), De-
mand Waste (SDW), and Mean Profit Loss (SMPL) to evaluate
the performances of our method and baselines for next t day
sales forecasting, t = 1, 2, 3:

SDL+t
i =

1

N

N∑

i

∑

T

λimax(ŷT+t
i − yT+t

i , 0)

SDW+t
i =

1

N

N∑

i

∑

T

ηimax(yT+t
i − ŷT+t

i , 0)

SMPLT+t
i = SDL+t

i + SDW+t
i

(4)

where T represents the evaluation time period.

D. Experiment Setup

The experiments consist of three stages: sales forecasting
for individual stores, sales forecasting at roof node level, and
aggregate sales forecasting in a region and aggregate produc-
tion. The first stage deals with the comparative accuracy of
the different methods at individual store level, with the aim of
testing how localized demand patterns can affect forecasting.
The second stage involves testing the forecasting results at the
roof level of a whole city. Finally, a comparison of accuracy for

the entire set of sales forecasts between the sum of individual
stores and the aggregate method can be evaluated. This stage
will prove the effectiveness of our aggregation production
strategy. For all stages, we use the same evaluation metrics
and steps for rolling forecasting. We use outputs T + 3 sales
forecasting results for a 3-day lead time factory production
plan, and evaluate the performance.

E. Experiment Results

Table II is a detailed performance evaluation including
demand loss, demand waste and profit loss of the different
sales forecasting models. This shows that our proposed model
achieves the best performance over these three evaluation
metrics. It can help reduce the profit loss to a level of 3.30%
for T +3 forecasting, which is a considerable reduction from
the industry standard system.

TABLE II
DETAILED PERFORMANCE COMPARISON

Aggregate Type Model SDL SDW SMPL
Gap(Roof) IS 1.53% 8.49% 5.01%

Roof
node at
city level

RF 3.57% 5.59% 4.58%
Seq2Seq 4.07% 12.4% 8.24%
ARIMA 3.52% 7.17% 5.34%
NARX 3.64% 4.79% 4.22%

Individual
store

RF 2.38% 6.99% 4.69%
Seq2Seq 2.91% 9.97% 6.44%
ARIMA 0.38% 11.28% 5.83%
NARX 2.32% 5.30% 3.81%

Aggregate
forecasting

RF 3.12% 5.8% 4.46%
Seq2Seq 5.26% 6.45% 5.86%
ARIMA 3.37% 7.61% 5.49%
NARX 2.90% 3.70% 3.30%

V. RELATED

Identification of Demand Patterns. Many researchers focus
on the identification of demand patterns for store keeping units
for retailers. Jakob, etl (2017) [17] propose a list of promotion
patterns, such as price discounting, featured promotions and
shelf displays. Sanjita, etl. (2014) [18] focus on the demand
bullwhip effect and its time series seasonality and stationary
patterns. Vijayalakshmi and Bernard (2013) [19] investigate
time series trends and seasonal and irregular demand patterns.
Nari and Diane (2015) further considers the internal demand
patterns, such as promotions, price reduction, stock outs,
and external factors (e.g. weather, holidays). However, the
identification of these patterns is mainly based on statistics. A
model-based method of identifying demand pattern and aiming
to aggregate retail stores with similar patterns to minimize
demand variance needs to be carefully studied.
Sales Forecasting Complex temporal series forecasting for
retail sales has attracted substantial academic attention and
seen the application of multiple methods. The literature mainly
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focuses on two sets of problems. The first deals with sales
forecasting for individual retail stores [1,2]. Du, et al., (2013)
proposes a support vector machine (SVM) forecasting system
for demand forecasting for perishable farm products. Van, et
al., (2016) [5] test several regression models for promotional
demand forecasting for perishable goods. Recently, Huber,
et al., (2017) proposed a cluster-based hierarchical demand
forecasting approach at different organizational levels based
on an agglomerative hierarchical clustering algorithm and an
ARIMA model. Others apply machine learning techniques,
such as deep neural networks (DNN) [20], to predict sales
volumes for specific products without any regional concept. As
trends at the level of individual retail stores are not that strong,
these methods achieve good performance but do not take full
advantage of the temporal information. These approaches are
not equipped to deal with regional forecasting with seasonal
patterns.

Another group focuses on sales forecasting for regional
retail sales, called aggregate forecasting [21]. This differs
from the study at the individual store level, because this
approach first groups stores at region or city level, and then
conducts forecasting at this level only. However, this strategy
relies on a good store aggregation method to lower the store-
level demand variance while maintaining a high sensitivity to
external factors.

VI. CONCLUSION

In this paper, we have developed a hierarchical demand
forecasting model for factory production of perishable goods.
Specifically, we first identified time series demand patterns
and the degree of demand sensitivity to external factors at
the individual store level. We then grouped together stores
with similar demand patterns and sensitivity to generate our
aggregation production forecast. Then, a dynamic recurrent
neural network was used for aggregated demand forecasting.
Various evaluation metrics including demand loss, demand
waste, and profit loss were utilized. We compared three differ-
ent forecasting strategies: individual store demand forecasting
and aggregation, roof node demand forecasting for stores
over a large region, and finally our proposed aggregation
forecasting model. Finally, extensive experiments using the
detailed internal supply chain data from the largest perishable
goods retailer in Zhejiang Province (China) demonstrated the
advantages of our approach. Our proposed method was able
to reduce lost profits to 3.30% of total sales, representing
a reduction of 1.71% reduction from the industry standard
production system.

This work has some limitations that require future research.
Firstly, we have focused on the forecasting element of an
aggregation production plan. An inventory model with a daily
production limit should be integrated for a more thorough
evaluation. Another study is proposed to explore the effects
of major events, such as street or school closures. Here we
have presented only one complete data set from the retailer’s
internal data. However, our proposed model can easily be
expanded to consider other external factors.
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