

1 **Reinforced Concrete Shear Walls Retrofitted Using Weakening and Self-Centering:**
2 **Numerical Modeling**

3 Sina Basereh¹, Pinar Okumus², Sriram Aaleti³

4 **Abstract**

5 This paper investigates a novel retrofit strategy for code-deficient reinforced concrete (RC) shear
6 walls that are vulnerable to undesirable failure modes. The strategy combines weakening by
7 partially cutting the wall base and self-centering by adding post-tensioning. RC walls in need of
8 retrofit were analyzed under lateral cyclic loading using 3-D finite element modeling. Analyses
9 were validated using test data from the literature on conventional walls that failed in flexure/shear
10 and pure shear. These analyses were used to study the retrofit strategy. A parametric study was
11 conducted to determine the working details of the retrofit method. A method was proposed to select
12 retrofit parameters preliminarily. Retrofitted and original walls were compared. The sequence in
13 which wall components failed was documented to identify changes in failure modes. Results of
14 the analyses showed that although retrofitting reduced energy dissipation capacity, flexural
15 displacements increased due to retrofit of poorly designed RC walls suffering from partial or pure
16 shear failure. Retrofit resulted in fewer cracks, less intense concrete crushing, and a delayed
17 fracture of transverse reinforcement.

18 **Author Keywords:** Slender RC wall; Code-deficient; Cyclic loading; Numerical modeling;
19 Retrofit; Weakening; Seismic; Post-tension; Shear failure.

¹ Graduate Research Assistant, Dept. of Civil, Structural, and Environmental Engineering, University at Buffalo, Buffalo, NY 14260 (corresponding author). Email: sinabase@buffalo.edu

² Associate Professor, Dept. of Civil, Structural, and Environmental Engineering, University at Buffalo, Buffalo, NY 14260. Email: pinaroku@buffalo.edu

³ Associate Professor, Dept. of Civil, Construction and Environmental Engineering, the University of Alabama, Tuscaloosa, AL 35487. Email: saaleti@eng.ua.edu

20 **Introduction**

21 Many RC buildings designed prior to ACI 318-71 (ACI 1971) have slender (height-to-length ratio
22 ≥ 2) shear walls that do not meet the requirements of the modern seismic codes (e.g., lack of well-
23 confined boundary elements). These walls may experience shear dominated failure modes:
24 diagonal tension due to the fracture of transverse reinforcement, diagonal compression prior to the
25 yielding of shear reinforcement, or sliding shear (FEMA 1998; Kam and Pampanin 2011; Wallace
26 2012). Such shear walls require seismic retrofit. ASCE 41-17 (ASCE 2017) provides procedures
27 to assess the seismic vulnerability of existing buildings using a three tiered approach: Tier 1
28 (screening phase) to Tier 3 (systematic evaluation and retrofit phase). Older buildings with shear
29 walls can be evaluated using these procedures to determine their need for retrofit.

30 Traditional retrofit strategies generally strengthen walls by adding materials. A common approach
31 is to use externally bonded steel or fiber reinforced polymer (FRP) strips or wraps. Steel strips
32 bolted onto RC walls have been shown to increase strength, stiffness and ductility (Taghdi et al.
33 2000), prevent bar buckling and control web crack widths (Christidis et al. 2016). Externally
34 bonded FRP sheets increased flexural strength and ductility when fibers are oriented vertically,
35 and increased shear strength when fibers were aligned horizontally (Khalil and Ghobarah 2005;
36 Lombard et al. 2000; Paterson and Mitchell 2003). Others retrofitted and repaired walls that have
37 already been damaged (Antoniades et al. 2003; Fiorato et al. 1983; Lefas and Kotsovos 1990).
38 Elnashai and Pinho (1998) proposed a retrofit approach by selectively intervening with stiffness,
39 strength, ductility, one at a time, to be able to optimize the global seismic response based on the
40 seismic demand or the previous damage state.

41 Traditional retrofitting methods prevent collapse but do not provide resiliency and seismic damage
42 control, potentially leaving buildings inoperable after a major seismic event due to large residual

43 displacements. The retrofit strategy investigated in this paper integrates self-centering and
44 weakening. Self-centering minimizes residual displacements. Selective weakening reduces
45 accelerations and, therefore, force demand on a system. In addition to preventing collapse, this
46 strategy can create buildings that can be reoccupied rapidly after an earthquake by minimizing
47 residual displacements and damage to RC shear walls. A short review of self-centering and
48 selectively weakened structures is provided here to explain the features of the retrofit method.

49 Self-centering is the ability of a structure to return to its original position upon unloading,
50 minimizing residual displacements. When rocking is the mechanism for self-centering, self-weight
51 or unbonded post-tensioning strands can be used to create a restoring force. Self-centering with
52 unbonded post-tensioning and sacrificial energy dissipaters have been studied for new precast
53 concrete beam-column joints and precast walls (Holden et al. 2003; Kurama 2002; Nakaki et al.
54 1999; Priestley et al. 1999; Priestley and Tao 1993; Rahman and Restrepo 2000; Restrepo and
55 Rahman 2007; Sritharan et al. 2015; Stanton et al. 1997) and for new bridge piers (Lee et al. 2007;
56 Marriott et al. 2009; Ou et al. 2007; Palermo et al. 2007; Yang and Okumus 2017). As a retrofit
57 method, rocking has been investigated for steel bridge piers (Pollino and Bruneau 2007).

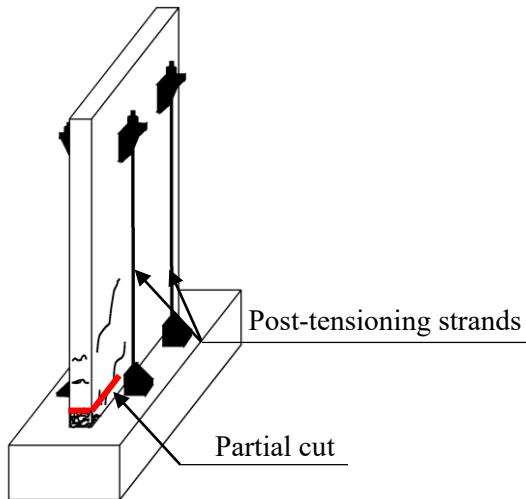
58 Energy dissipation can be provided through external or internal energy dissipation mechanisms.
59 These include O-shaped (Henry et al. 2010) or U-shaped plates for precast walls (Priestley et al.
60 1999), low yield strength, tapered vertical reinforcement between wall and foundation, and dog-
61 bone shaped mild reinforcing bars (Holden et al. 2003; Rahman and Restrepo 2000; Restrepo and
62 Rahman 2007). These systems exhibit flag-shape hysteretic behavior.

63 Weakening or selective weakening is a retrofit strategy in which elements of a structure are
64 weakened (reduction of strength or stiffness) to reduce the force demand on the system. As a trade-
65 off, displacement demand may increase (Viti et al. 2006). To accommodate the increased

66 displacement demands, achieve target performance levels and meet capacity design principles,
67 weakened systems may be supplemented by external reinforcement, plates or strands, damping
68 devices, or jacketing (Kam and Pampanin 2008; Kam and Pampanin 2010; Pampanin 2006).

69 Ireland et al. (2007) tested selectively weakened RC walls. The retrofit technique incorporated
70 vertical and horizontal wall cuts and the addition of post-tensioned strands. Unlike the study that
71 is presented in this paper, Ireland et al. (2007) had the entire wall base and all reinforcement bars
72 cut, necessitating the addition of external energy dissipaters. The retrofit resulted in higher or lower
73 strength, and smaller residual displacements.

74 The literature shows that self-centering and weakening, separately, are promising concepts. This
75 study combined these two concepts for the retrofit of code-deficient RC shear walls. Validated
76 finite element models of code-deficient shear walls were used to understand the benefits of the
77 retrofit method with varying parameters. Pre- and post-retrofit cyclic behaviors of walls were
78 compared in terms of energy dissipation, lateral strength, residual displacement, secant stiffness,
79 strain fields and failure modes.


80 **The Retrofit Strategy**

81 The strategy combines the concepts of selective weakening and self-centering. A RC wall is first
82 weakened by partially cutting its base at the foundation level, together with a selected number of
83 vertical bars. The remaining bars provide energy dissipation through yielding. To provide self-
84 centering, unbonded post-tensioned strands are added to the wall and anchored at the foundation.

85 A schematic of the retrofit strategy is shown in Fig. 1.

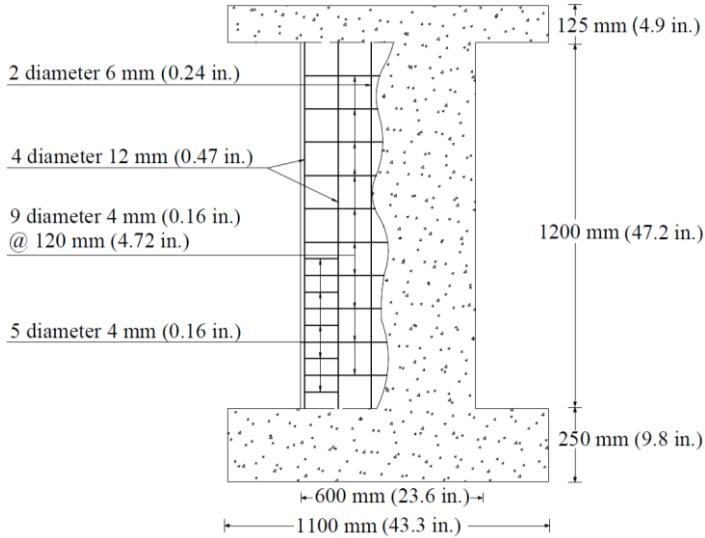
86 The effectiveness of the retrofit strategy is investigated through nonlinear finite element analysis
87 (FEA) of two walls that were known to fail under shear dominated (i.e. formation of diagonal shear
88 cracks mostly at the mid-height of the wall) or shear-flexure (core crushing) dominated failure

89 modes. Other failure modes including bond slip failure or vertical bar buckling were out of the
90 scope of this study.

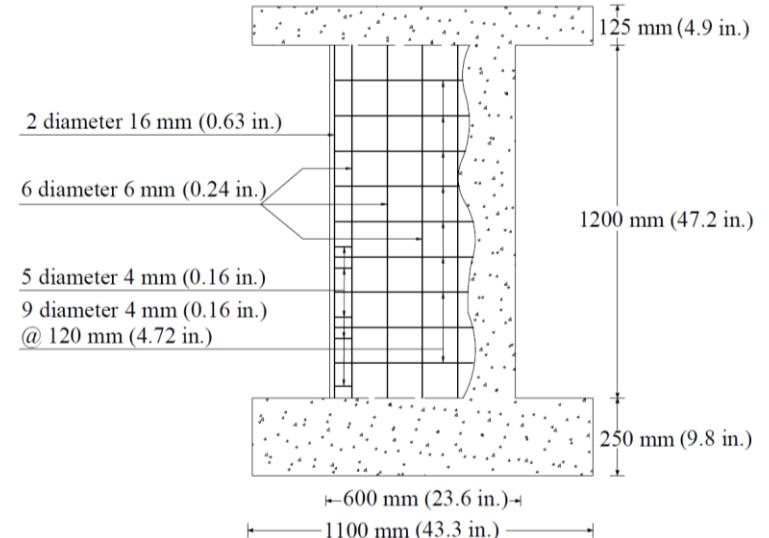
91
92 **Fig. 1.** Schematic sketch of retrofit strategy

93 **Research Significance**

94 Although concepts of weakening and self-centering on walls have been separately explored before,
95 this study is one of the very few that combines the two strategies for resilient retrofit. Previous
96 studies on retrofit with weakening and self-centering on walls were experimental (Ireland et al.
97 2007) and therefore investigated a limited number of cases or had simplified analyses under
98 monotonic loading. The present study uses detailed analyses of walls under cyclic lateral loading
99 to study various strategies including leaving a portion of vertical reinforcing bars uncut for energy
100 dissipation and cutting only part of the wall base, which have never been investigated before for
101 studies on retrofit. Existing studies (Ireland et al. 2007) used external energy dissipation methods
102 and created full cuts at wall base for fully rocking walls. In the present study, detailed finite
103 element models enable evaluation of fracture of bars, crushing of concrete, cracking across entire
104 wall height.


105 **RC Walls Used for the Analyses**

106 Two 1:2.5 scale, slender, non-code-compliant walls (named SW6 and SW5) tested under quasi-
107 static, lateral cyclic loading with 2 mm (0.08 in.) displacement increments to failure by Pilakoutas
108 and Elnashai (1995) were used for the analyses. Both walls had aspect ratio of 2 and were 60 mm
109 (2.4 in.) thick. The boundary element lengths were 110 mm (4.3 in.) and 60 mm (2.4 in.) for SW6
110 and SW5, respectively. Flexural and transverse reinforcement ratios of wall webs were greater
111 than 0.25%, as required by ACI 318-14 (ACI 2014). However, walls were not compliant with ACI
112 318-14 in terms of boundary element requirements. For the walls under consideration, the heights
113 of the special boundary elements were 10% (for SW6) and 13% (for SW5) shorter than the
114 minimum height required by ACI 318-14 (ACI 2014). The vertical confining reinforcement
115 spacing in the boundary element was 1.47 times (for SW6) and 4.40 times (for SW5) the maximum
116 spacing required by ACI 318-14 for special structural walls.


117 Laboratory tests showed that walls failed partially or fully due to shear, an undesired failure mode
118 for slender RC shear walls, making them suitable candidates for retrofit. SW6 was reported to have
119 failed due to fracture of transverse reinforcement and crushing of concrete in the boundary
120 element. The failure mode was concluded to be a combination of shear and concrete crushing
121 (flexure-shear). SW5 was reported to have failed due to the fracture of transverse reinforcement
122 and large diagonal cracks. The failure mode of SW5 was determined to be shear (Pilakoutas 1990;
123 Pilakoutas and Elnashai 1995). The walls were tested with no axial load. Fig. 2 shows the details
124 of RC walls selected for modeling.

125 **Finite Element Analysis of RC Walls**

126 RC shear walls were modeled using nonlinear FEA using a general purpose commercial FEA
127 software, LS-DYNA (LSTC 2017).

Elevation view of SW6

Elevation view of SW5

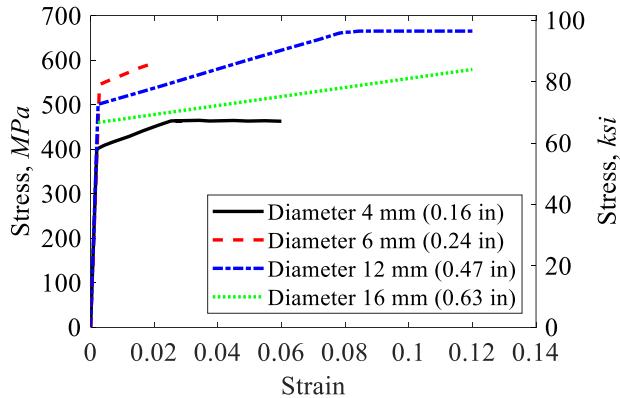
128

Fig. 2. Details of walls tested by Pilakoutas and Elnashai (1995)

129 **Concrete material model**

130 The wall concrete was modeled using the smeared crack Winfrith material model (MAT084 in LS-
 131 DYN) (Broadhouse and Neilson 1987). Input parameters were modulus of elasticity, uniaxial
 132 compressive and tensile strength, crack width at which crack-normal tensile stress becomes zero
 133 and aggregate size (Schwer 2011). For this research, modulus of elasticity and the mean tensile
 134 strength were calculated following ACI 318-14 (ACI 2014) and fib (2013), respectively.
 135 Pilakoutas and Elnashai (1995) reported that the uncracked (elastic) stiffness was far greater than
 136 the stiffness observed in the test. Pilakoutas and Elnashai (1995) attributed this difference to
 137 loading conditions, material characteristics and curing conditions. In addition, restrained shrinkage
 138 cracks can play a role in the deviation of experimental stiffness from the elastic stiffness. To
 139 address this issue in FEA, a lower bound tensile strength equal to 70% of the mean tensile strength
 140 was used in the models, considering the large variability in tensile strength and the influence of
 141 shrinkage and curing on the initial stiffness. This value allowed a match of the initiation of tensile
 142 cracking and initial stiffness of walls between FEA and test results.

143 Post peak behavior in tension was approximated as linear. The crack width corresponding to zero
144 crack-normal tensile stress is determined as $2G_f/f_t$, where G_f is the fracture energy of concrete
145 estimated by fib (2013) and f_t is the uniaxial tensile strength of concrete.
146 In compression, concrete is approximated as elastic-perfectly plastic. Strength degradation due to
147 crushing of concrete was accounted for explicitly using the element removal technique. Crushed
148 elements were eroded to capture the post-peak strength degradation of structural walls. This was
149 particularly important to simulate the behavior of SW5 that failed under shear. A principal
150 compression strain based erosion criteria, shown to be effective in simulating walls under cyclic
151 loading (Epakachi and Whittaker 2018), was utilized. Principal compression strain limit after
152 which element removal took place was calibrated to be 0.040. The foundation was modeled using
153 linear elastic concrete properties.


154 ***Reinforcing bar steel material model***

155 Steel reinforcing bars were modeled using a piecewise linear plasticity model (MAT024 in LS-
156 DYN). Steel reinforcing bar material properties tested by Pilakoutas and Elnashai (1995) were
157 used in the models (Fig. 3). Only a trilinear idealization of stress-strain relationship for steel bars
158 was reported by Pilakoutas and Elnashai (1995) and was used in this study. Modulus of elasticity
159 of all reinforcing bars was used as reported through tests: 200 GPa (29,000 ksi). Poisson's ratio
160 was taken as 0.3. The rupture of reinforcing bars was captured by defining a limit on plastic strain
161 based on the stress-strain curves for the steel rebar shown in Fig. 3. Reinforcement buckling was
162 not considered.

163 ***Post-tensioning steel material model***

164 Post-tensioning strands were modeled using cable discrete beam material (MAT071 in LS-
165 DYN), assuming elastic behavior. This assumption was validated by confirming that stresses in

166 strands did not exceed the yield strength during analyses. The modulus of elasticity of strands was
167 196,500 MPa (28,500 ksi) per ACI 318-14 (ACI 2014). Post-tensioning strands were connected to
168 the cap and foundation through rigid plates to avoid stress concentrations at anchorages.

169

170 **Fig. 3.** Stress-strain relationship of the steel bars as tested by Pilakoutas and Elnashai (1995)

171 ***Finite elements***

172 Concrete was modeled using eight node, single integration point, and continuum elements.
173 Reinforcing bars were modeled using Hughes-Liu beams elements with cross section integration
174 formulation, 4 integration points per cross section. Reinforcing bar elements were embedded in
175 concrete elements using shared nodes, assuming perfect bond between steel and concrete. Post-
176 tensioning strands were modeled using cable discrete beams that can only develop tension.
177 A smaller mesh size (10 mm (0.4 in.) x 10 mm (0.4 in.) x 15 mm (0.6 in.)) was used near the wall
178 base where significant damage was expected. Near the top of the walls, in the foundation and in
179 the cap beam, a coarser mesh (10 mm (0.4 in.) x 15 mm (0.6 in.) x 15 mm (0.6 in.)) was used. A
180 mesh sensitivity analysis showed that the mesh size was adequate. Element aspect ratios were
181 lower than 1.6 for all parts of the walls.

182 ***Loading and boundary conditions***

183 A lateral cyclic displacement was applied on the elastic cap beam above the walls following the
184 same loading protocol used in testing. All degrees of freedom on the bottom face of the foundation
185 were restrained, simulating a fixed base.

186 ***Contact***

187 For the original (pre-retrofit) walls, the walls and foundation nodes were merged together. For the
188 retrofitted walls, to simulate the partial wall base and reinforcement cut in FEA, the shared nodes
189 of concrete elements of the wall and the foundation were unmerged. Similarly, the shared nodes
190 of reinforcing bars within the wall and within foundation were also unmerged. A surface-to-
191 surface, mortar-based hard contact was defined between surfaces of the wall and the foundation.
192 The friction coefficient was assumed to be 1.0 which is within the range recommended by ACI
193 318-14 (ACI 2014).

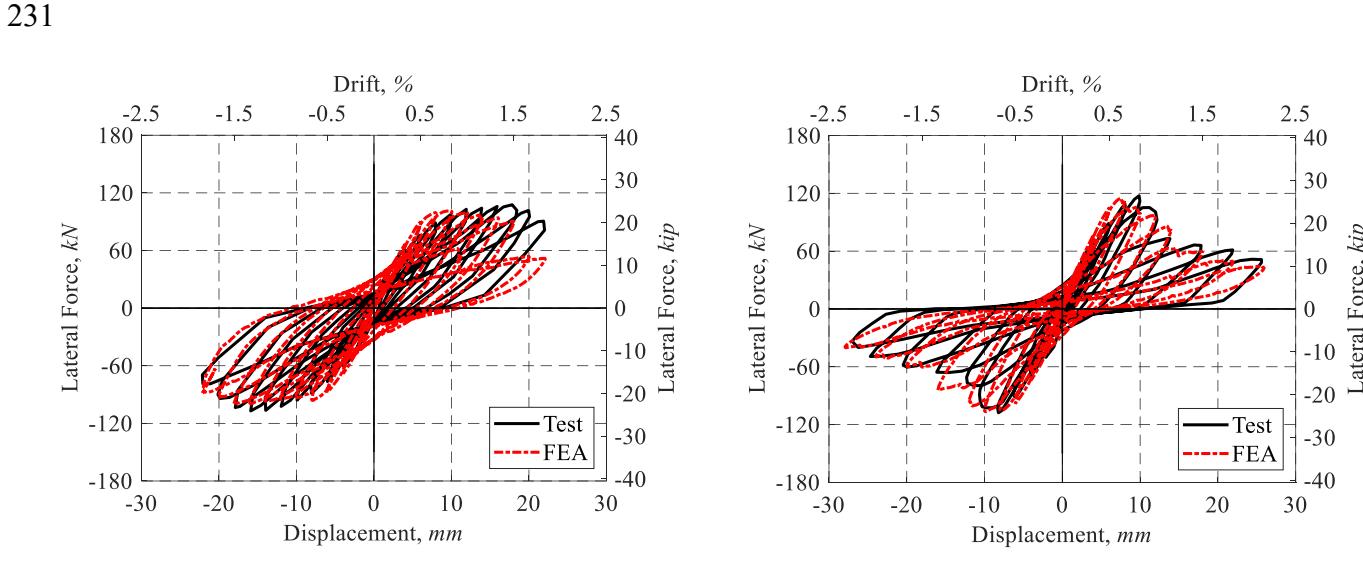
194 **Comparison of FEA and Test Results of Original Walls**

195 Load-displacement results obtained from the FEA and testing were compared to validate FEA. As
196 described earlier, material properties used in the FEA were obtained through tests, ACI 318 or fib
197 Model Code provisions (ACI 2014; fib 2013). The only properties that required calibration were
198 the concrete tensile strength, and the concrete principal compression strain after which element
199 removal was activated. In reporting results throughout the paper, unless otherwise indicated, all
200 results are reported as the average values of interest in the positive and negative displacement
201 directions.

202 ***Comparison of FEA and test results for wall SW6***

203 Wall SW6 was reported to have failed under a combination of shear and flexure. Force-
204 displacement diagrams for SW6 predicted by the FEA and measured by testing are compared in
205 Fig. 4(a). In general, there is an acceptable agreement between the FEA and test results in terms

206 of stiffness and strength. After the ninth loading cycle (1.67% lateral drift ratio), strength predicted
207 by the FEA was up to 22% lower than the one measured by testing. The difference is explained by
208 the fact that a vertical web bar fracture was predicted by the FEA at this cycle but was not observed
209 in testing. The fracture in the FEA may have been caused by the trilinear idealization of steel
210 stress-strain behavior. It may also have been caused by the inherent variation in steel material
211 properties between test coupons and the reinforcement used in the walls, since the bar fractured in
212 the FEA was the 6 mm (0.24 in.) diameter bar with significantly lower ultimate strain than other
213 bars from the coupon tests (Fig. 3). FEA underestimated the pinching effects and over-estimated
214 energy dissipation particularly at larger displacement cycles. This is also attributed to the tri-linear
215 approximation used in modeling steel reinforcement stress-strain behavior.


216 ***Comparison of FEA and test results for wall SW5***

217 Wall SW5 was reported to have failed under shear during testing. Force-displacement diagrams
218 predicted by FEA and measured by tests are shown in Fig. 4(b) for wall SW5. There is an
219 acceptable agreement between FEA and test data in terms of strength and stiffness. For the last
220 two cycles (drift ratios of 1.8% and 2.2%), the strength, residual displacement and energy
221 dissipation were under-estimated by FEA. The maximum error in strength was 20% and was
222 deemed acceptable given uncertainties in material properties and specimen geometry.
223 Overall, finite element models captured the failure mechanism, damage states, displacements at
224 which bar yielding and fracture occurred with reasonable accuracy as compared to the
225 experimentally reported ones. Table 1 compares first yielding, first fracture of vertical reinforcing
226 bars and fracture of transverse reinforcing bars obtained from the FEA with the experimental
227 observations for walls SW6 and SW5. The events of interest happened within the same cycle or a

228 cycle earlier in the FEA when compared to experimental testing, except vertical reinforcing bar
 229 fracture in SW6, where FEA predicted failure while it was not observed in testing.

230 **Table 1.** Failure sequence comparison

Wall	Vertical bar yielding	Vertical bar fracture	Transverse bar fracture
SW6 (Test)	0.33%-0.50% drift	None reported	1.33%-1.50% drift
SW6 (FE model)	0.33%-0.50% drift	1.50%-1.67% drift	1.33%-1.50% drift
SW5 (Test)	0.50%-0.67% drift	None reported	1.17%-1.33% drift
SW5 (FE model)	0.33%-0.50% drift	No fracture	0.83%-1.00% drift

232 **Fig. 4.** Comparison of force-displacement from FEA and tests for SW6 (a) and SW5 (b)

233 **Preliminary Selection of Retrofit Parameters**

234 The proposed retrofit strategy is composed of two steps: Step 1) weakening of walls by cutting a
 235 number of vertical bars and partially cutting the wall base at the foundation interface, and Step 2)
 236 self-centering by adding unbonded post-tension strands. The retrofit parameters include the

237 amount of mild steel reinforcement to be cut, length of the cut, amount of post-tensioning force
238 and confinement details.

239 The amount of reinforcement to be cut, as part of weakening strategy, can be determined based on
240 the desired level of strength and stiffness reduction, desired self-centering ability and by practical
241 considerations. For example, for walls SW6 and SW5, cutting only the outermost single layer of
242 reinforcement bars resulted in 56% and 26% of the original wall reinforcement (as shown by the
243 sketch in Fig. 5(a)). Wall base was cut from the wall edge to halfway between the cut and uncut
244 vertical rebar. Kurama (2002) recommended that for post-tensioned rocking walls in high seismic
245 regions, vertical reinforcement should be at least 50% of the one in an equivalent emulative wall.
246 Designers may follow this recommendation where possible. Wall SW6 satisfied the
247 recommendation by Kurama (2002). Wall SW5 did not follow this recommendation with 26% of
248 the original reinforcement amount. For this case, the amount of initial post-tensioning force can
249 be selected considering energy dissipation using the minimum required relative-energy dissipation
250 ratio of ACI ITG-5.2-09 (ACI 2009).

251 The amount of post-tensioning was studied as a variable in this paper for SW6 and SW5. The
252 following simplified procedure can also be used to determine the initial post-tension amount, given
253 a desired wall base cut length and a desired amount of strength recovery: 1) Axial load-moment
254 (P-M) interaction curves are built for original and weakened walls. 2) Based on the desired lateral
255 moment strength recovery amount, the required axial load for the weakened wall is calculated from
256 the P-M interaction curve. This axial load is approximately the amount of post-tensioning when
257 the wall is reaching its moment capacity (when strands are elongated). 3) To identify the initial
258 post-tensioning amount needed, increase in the length of strands is determined by calculating
259 rotation and curvature across the wall height. Initial post-tensioning force is determined by

260 subtracting this increase in post-tensioning force from the force determined from the P-M
261 interaction curve. Note that the post-tensioning tendons are designed to remain elastic at the design
262 drift.

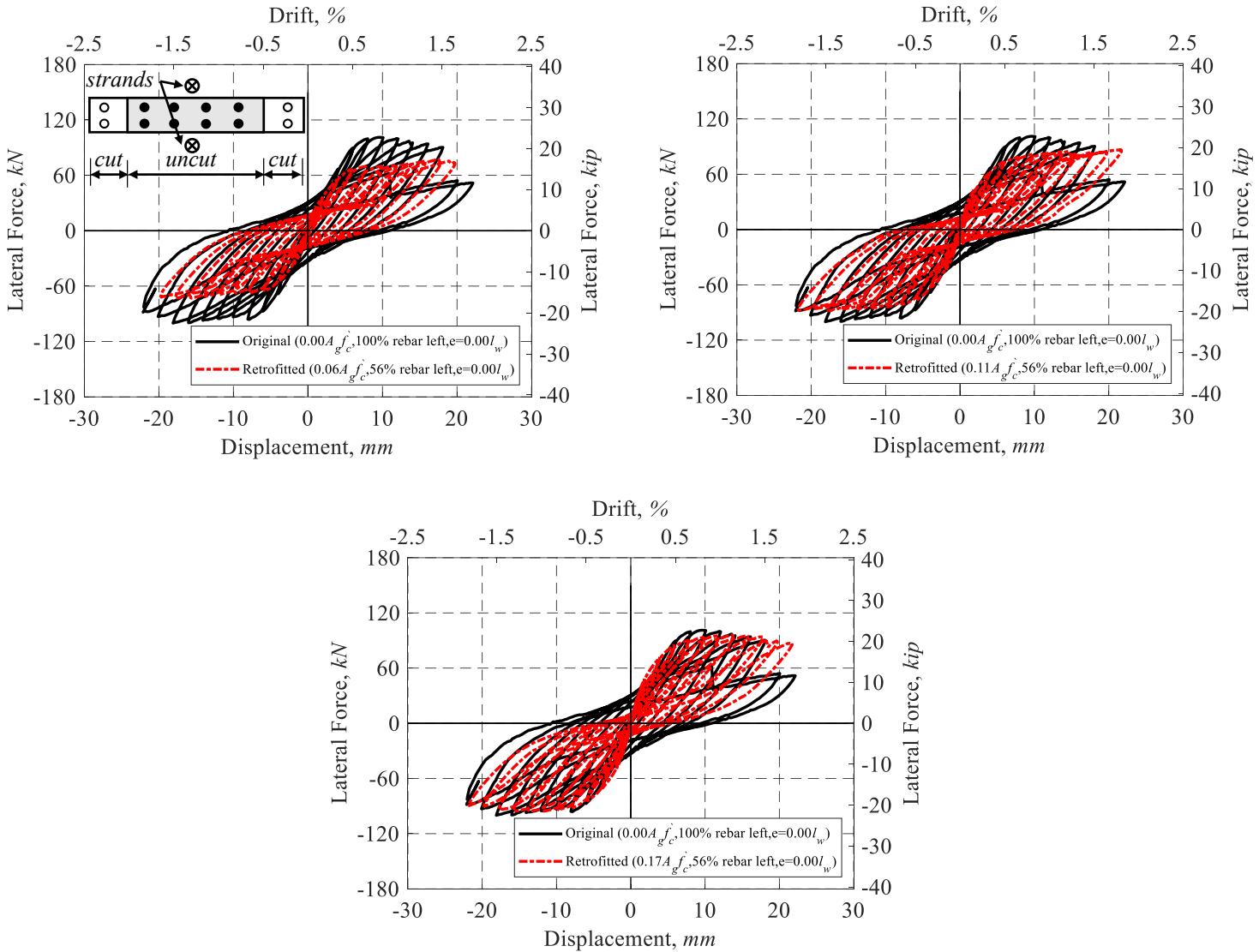
263 **FEA Results of the Retrofitted Walls**

264 For both walls (SW6 and SW5), the effects of cutting the wall base on strength, stiffness, energy
265 dissipation and residual displacements were studied. Wall base was cut so that one outermost pair
266 of reinforcement on each side of the wall was cut. This resulted in 56% (SW6) and 26% (SW5) of
267 the reinforcement and 67% (SW6) and 86% (SW5) of the wall base length to be left uncut.

268 Self-centering was added to the weakened walls through post-tensioning strands. A parametric
269 study was conducted to understand the effects of the level of initial post-tensioning force and the
270 location of post-tensioning strands on the wall behavior and to identify the details of promising
271 retrofit schemes. The initial post-tension force was varied as $0.25F_{py}$, $0.50F_{py}$, and $0.75F_{py}$, where
272 F_{py} denotes the yield strength of the post-tensioning strands taken as 90% of the ultimate strength
273 per ACI 318-14 (ACI 2014). The cross-sectional area of each strand was 92.9 mm^2 (0.144 in^2).
274 Post-tension strand area was not a parameter, as strands did not reach their yield strength in this
275 study. For cases with one strand on each side of the wall, concentrically placed along the length of
276 the wall, this led to the initial post-tensioning force levels of $0.06A_gf'_c$, $0.11A_gf'_c$ and $0.17A_gf'_c$ for
277 wall SW6 and correspond to $0.07A_gf'_c$, $0.14A_gf'_c$ and $0.20A_gf'_c$ for wall SW5. Here, A_g is the cross
278 sectional area of walls, f'_c is the concrete compressive strength, and $A_gf'_c$ is the wall axial load
279 capacity.

280 The location (eccentricity and number) of strands was varied by placing two strands on each side
281 of the wall eccentrically across the length of the wall. Three different eccentricities with respect to
282 the mid-length of wall were investigated: $0.00l_w$, $0.10l_w$, and $0.29l_w$, where l_w is the wall length.

283 When investigating eccentricity, the initial post-tensioning stress was kept at $0.25F_{py}$ on each of
284 the two strands on each side of the wall.

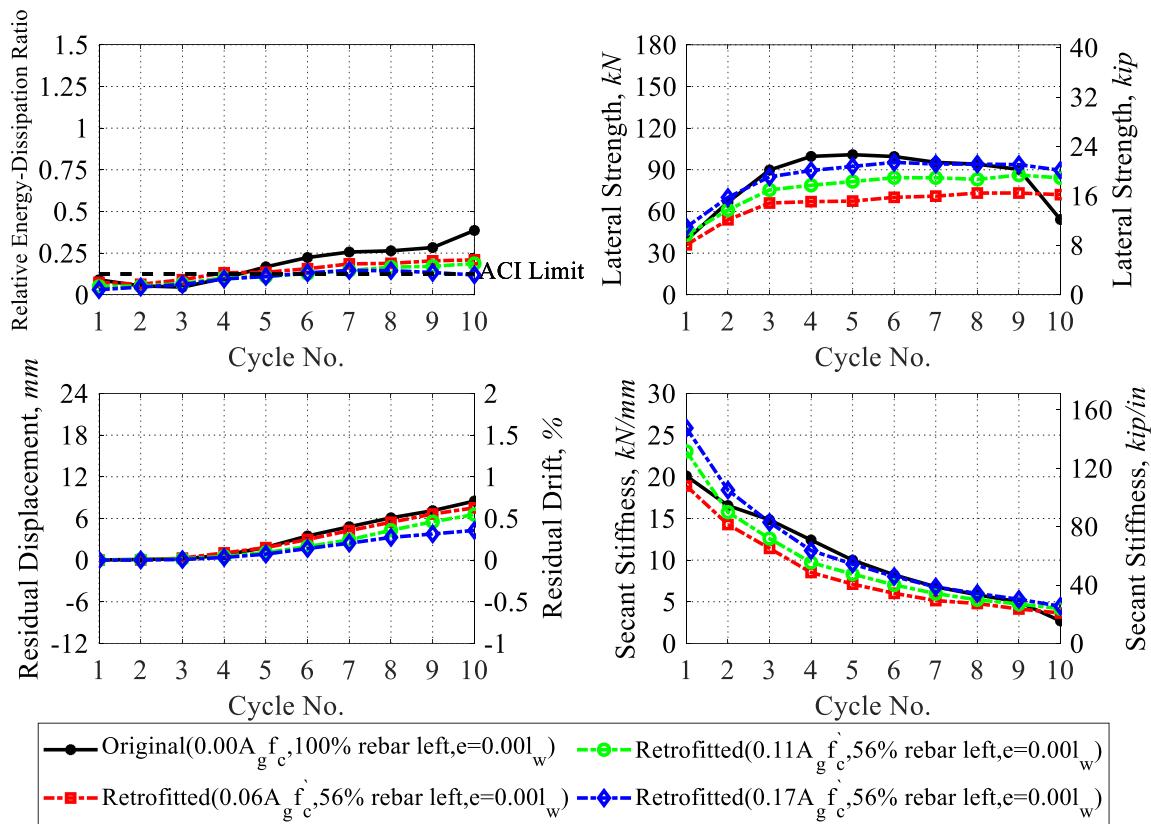

285 The FEA results of retrofitted walls and original walls were compared in terms of load-
286 displacement curves. Results were also compared in terms of four criteria: relative energy-
287 dissipation ratio, lateral strength, residual displacement and secant stiffness per cycle. Relative
288 energy-dissipation ratio per cycle was calculated using the ratio of the area under the closed loops
289 of the force-displacement diagrams for each cycle of loading to the area of the circumscribing
290 parallelograms generated from the initial stiffness of the wall. ACI ITG-5.2-09 (ACI ITG 2009)
291 requires unbonded post-tensioned walls to have a minimum relative energy-dissipation ratio of
292 0.125. Residual displacement was calculated as the displacement upon unloading when the lateral
293 force drops to zero. Secant stiffness was calculated as the lateral force at the maximum
294 displacement in each cycle divided by the maximum imposed displacement in the associated cycle.
295 It should be noted that maximum force may not always occur at the maximum displacement when
296 using this definition of secant stiffness. Finally, crack patterns and principal strain contour plots
297 of walls of retrofitted and original walls were compared to understand failure modes.

298 ***Retrofit for wall SW6***

299 Fig. 5 compares the hysteretic behavior of the original and the retrofitted wall for varying post-
300 tensioning forces applied at $0.00l_w$ eccentricity. Fig. 6 compares the original and retrofitted walls
301 in terms of energy dissipation, lateral strength, residual displacement and secant stiffness.
302 Post-tensioning at $0.06A_{gf'}c$, $0.11A_{gf'}c$ and $0.17A_{gf'}c$ was shown to result in 68%, 95% and 98% of
303 the lateral strength of the original wall, on average, respectively, partially or fully recovering the
304 strength loss due to weakening. The initial post-tensioning force needed to restore SW6 strength
305 to 95% of the original capacity can also be predicted by the preliminary analysis method described

306 earlier. FEA and preliminary analysis predictions were within 24% of each other. This error in the
 307 preliminary analysis is deemed acceptable.

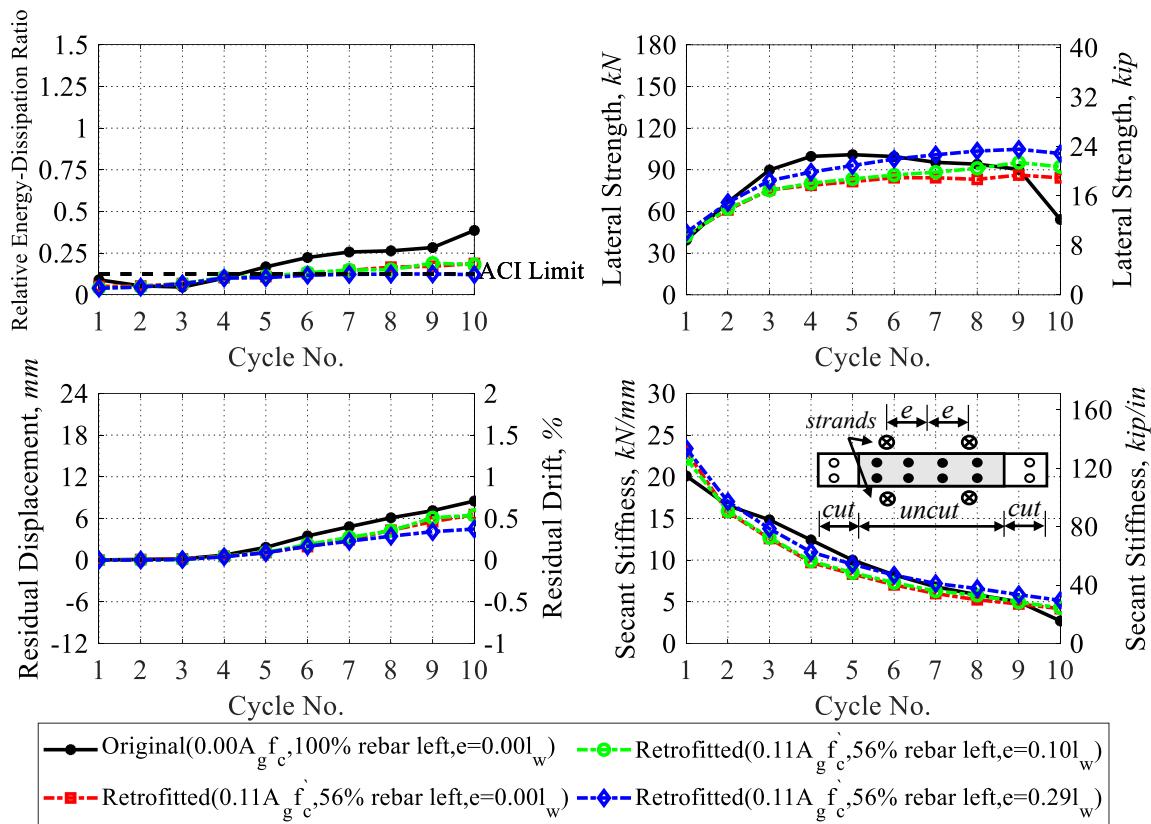
308 In general, residual displacements decreased since strands can provide self-centering at the wall
 309 base.



310 **Fig. 5.** Comparison of force-displacement of the original and retrofitted SW6 for varying post-tension
 311 levels.

312 For the varying post-tension forces applied concentrically, the average of the residual displacement
 313 ratio of the retrofitted wall to the original wall ranged between 1.23 and 0.57. The increase in

314 residual displacements was caused by the effects of weakening overcoming the effects of smaller
 315 amount of post-tension on residual displacements. However, this increase occurred at very small
 316 drifts (i.e., the first 3 cycles in which the drift is less than 0.5%) and is not significant to the overall
 317 behavior of the walls.


318 Relative energy-dissipation ratio of the retrofitted walls was smaller than the one of the original
 319 walls under all initial post-tension force levels, due to the reduced residual displacements or lateral
 320 strength. The increase in the initial post-tensioning force from $0.06A_g f'_c$ to $0.17A_g f'_c$ resulted in a
 321 reduction in relative energy-dissipation ratio per cycle from 95% to 66% of the original wall, on
 322 average across all loading cycles.

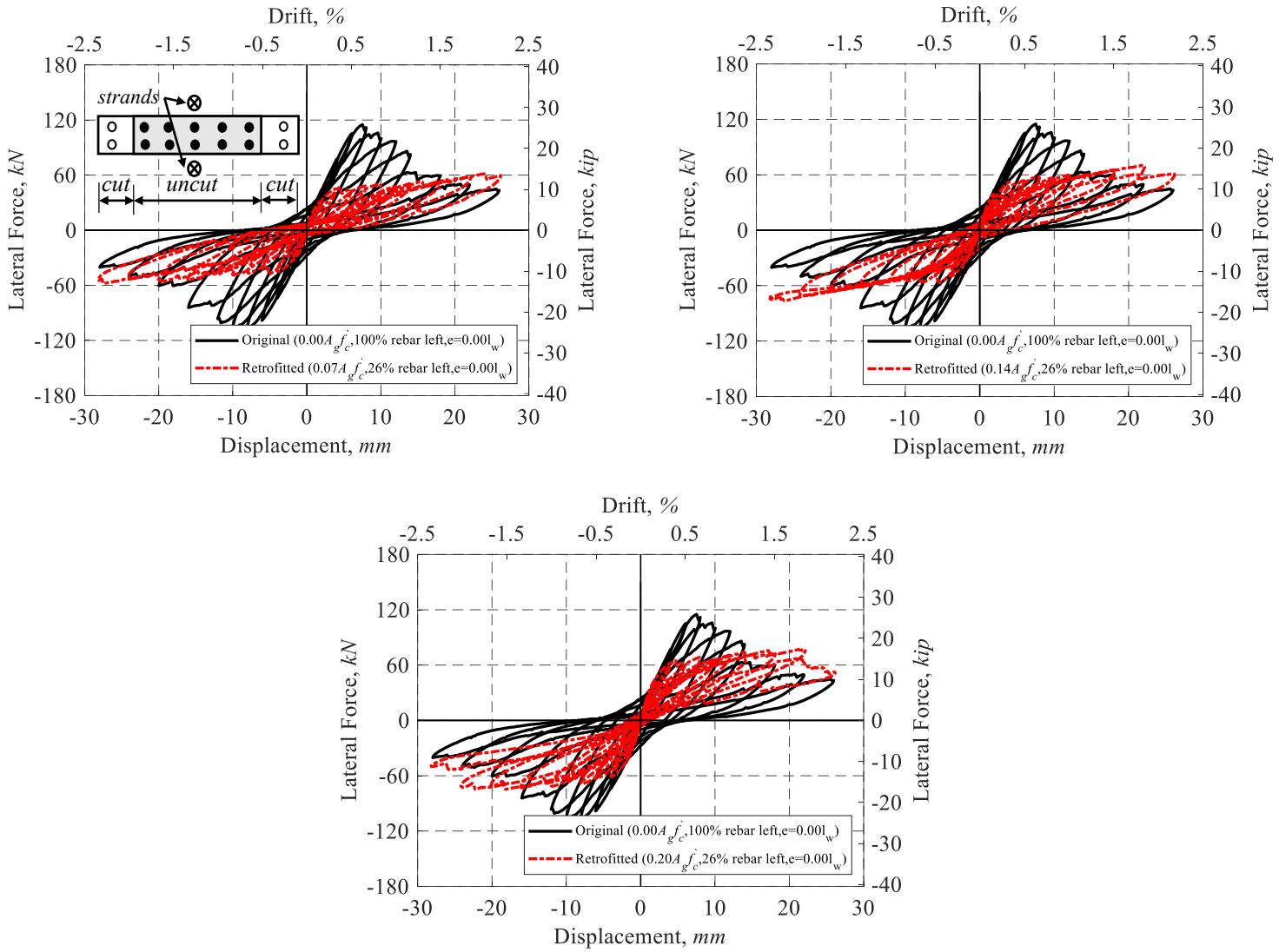
323

324 **Fig. 6.** Comparison of relative energy-dissipation ratio, lateral strength, residual displacement and secant
 325 stiffness per cycle for the original and retrofitted SW6 for varying post-tension levels.

326 The secant stiffness was entirely recovered by the addition of post-tensioning, due to the increase
 327 in strength. The secant stiffness grew with increasing post-tension force levels. The initial post-
 328 tensioning of $0.11A_g f_c$ was considered for the rest of the study as a level of post-tensioning force
 329 that can recover loss of strength due to weakening and that can reasonably balance energy
 330 dissipation and residual displacements. This enabled a comparison of an original and retrofitted
 331 wall with similar strengths and stiffness but different expected failure mechanisms.
 332 Fig. 7 shows the effect of location of post-tensioning strands in terms of relative energy-dissipation
 333 ratio, lateral strength, residual displacement and secant stiffness per cycle. The eccentricity, e , is
 334 also shown on the sketch.

335

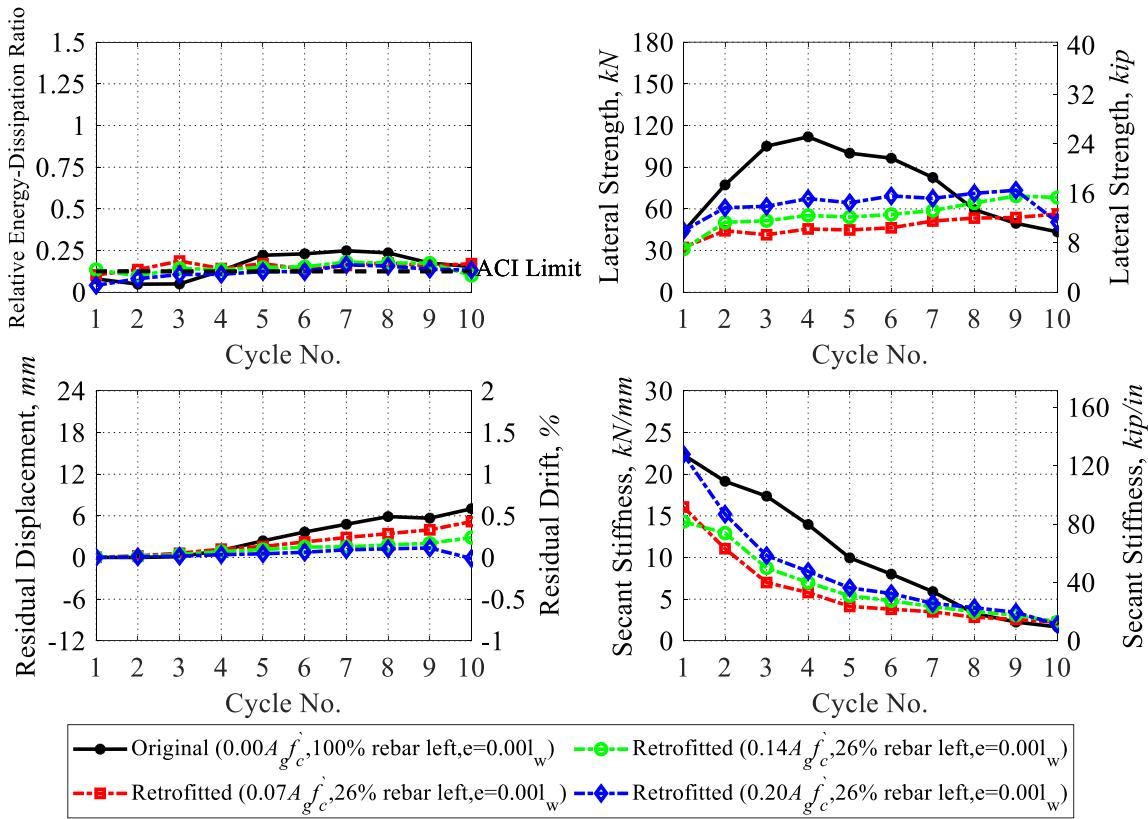
336 **Fig. 7.** Effect of location of post-tensioning strands in terms of relative energy-dissipation ratio, lateral
 337 strength, residual displacement and secant stiffness for SW6


338 Placing post-tensioning strands with the eccentricities of $0.00l_w$, $0.10l_w$ and $0.29l_w$ yielded
339 retrofitted walls with 95%, 100%, and 110% of the lateral strength of the original wall,
340 respectively. The other criteria of interest were not sensitive to the location of post-tensioning
341 strands. Based on these results, strands were decided to be placed concentrically. This placement
342 also helps control stresses and post-tension losses in strands under lateral displacements.

343 ***Retrofit for wall SW5***

344 For new construction, the toes of self-centering walls need to be confined well to prevent premature
345 crushing of the toe (ACI ITG 2009; Kurama 2002). Addition of post tensioning to SW5 caused
346 more than 40% of the elements near the wall toes to crush and erode. Analysis stopped after 0.67%
347 drift due to a 63% drop in strength. To prevent the premature failure of concrete in the compression
348 zone, the retrofit strategy includes confinement of wall toes, when needed (i.e. for all analyses
349 conducted on retrofitted SW5). For SW5, a C-shaped steel plate with a thickness of 6.35 mm (0.25
350 in) and yield strength of 413.7 MPa (60 ksi) was placed across the cut portion of the wall base.
351 The steel confinement plate was selected such that it remained elastic during the loading history.
352 The steel confinement plate was modeled using 8-node, single integration point, continuum
353 elements and was connected to the concrete elements of the wall and the foundation with surface-
354 to-surface contact.

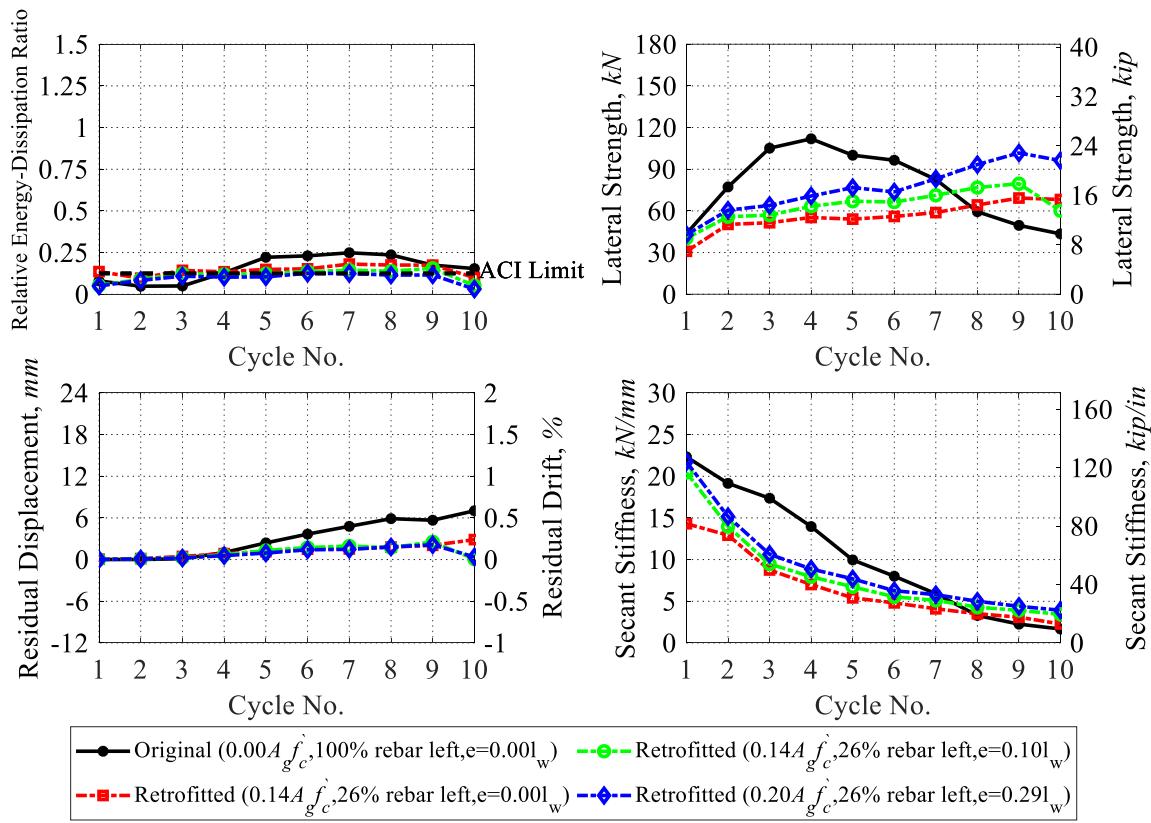
355 Fig. 8 shows the force-displacement diagram of the retrofitted wall with varying post-tensioning
356 forces. Fig. 9 compares the original and retrofitted walls in terms of the criteria of interest. Similar
357 to SW6, for SW5, the addition of post-tension increased the strength of the weakened wall. By
358 post-tensioning strands to $0.07A_{gf}'c$, $0.14A_{gf}'c$ and $0.20A_{gf}'c$, the retrofitted wall had 69%, 82% and
359 90% of the lateral strength of the original wall, on average, respectively. When the initial post-
360 tensioning force in SW5 that leads the strength to be 82% of the original capacity was predicted


361 by the preliminary analysis described earlier, the prediction was within 23% of the FEA prediction.
 362 This is an acceptable level of error for preliminary analysis.

363 **Fig. 8.** Comparison of force-displacement of the original and retrofitted SW5 for varying post-tension
 364 levels
 365 Post-tensioning decreased residual displacements in weakened walls, a conclusion drawn earlier
 366 for SW6. For the levels of post-tensioning considered in the parametric study, the average residual
 367 displacement ratio of the retrofitted wall to the original wall ranged between 1.32 and 0.38. The

368 increase in residual displacements occurred at very small drifts (i.e. less than 0.5%) and is not
 369 significant to the overall behavior of the walls.

370 Relative energy-dissipation ratio in the retrofitted wall was between 92% (with post-tensioning
 371 equal to $0.20A_g f_c$) and 120% (with post-tensioning equal to $0.14A_g f_c$) of that of the original wall,
 372 on average. However, from the fifth cycle to end, the relative energy-dissipation ratio of the
 373 retrofitted wall was less than the original wall, yet satisfying ACI ITG-5.2-09. Lower energy
 374 dissipation at high post-tension levels was due to earlier concrete crushing, followed by a higher
 375 post-tension loss, compared to the low post-tension levels.



376

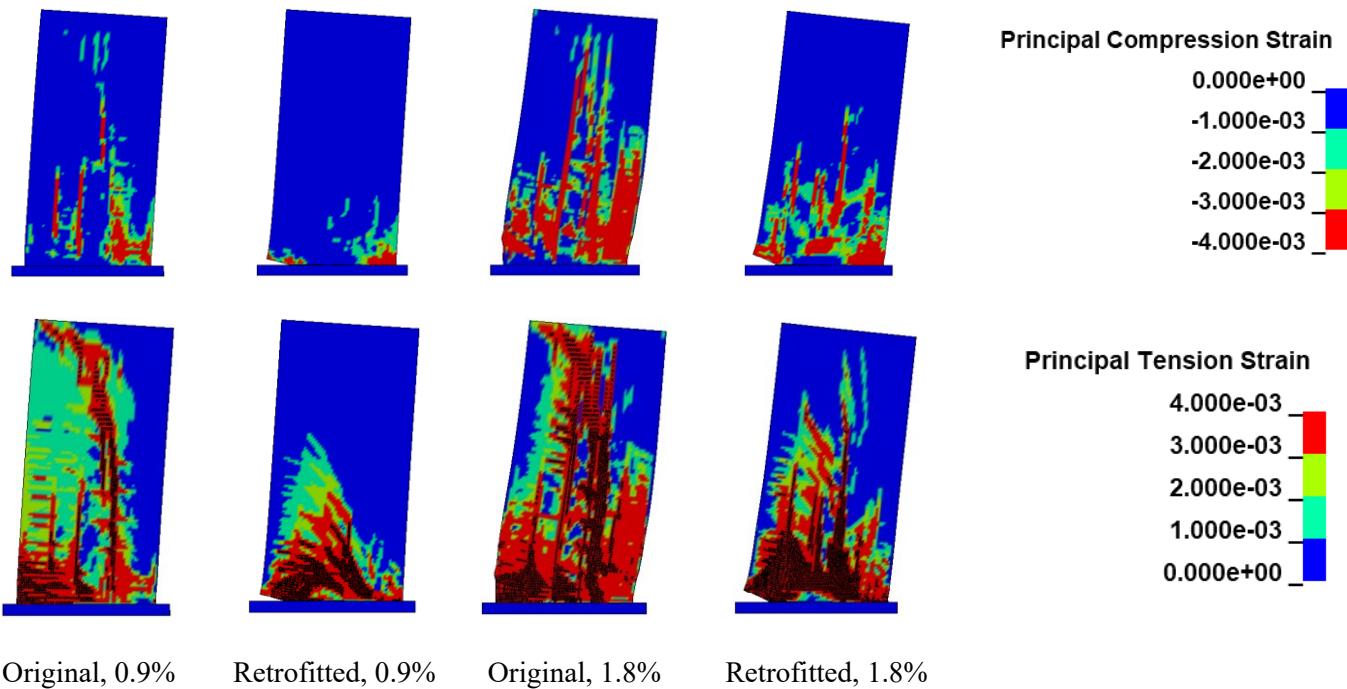
377 **Fig. 9.** Comparison of energy dissipation, lateral strength, residual displacement and secant stiffness per
 378 cycle for the original and retrofitted SW5 for varying post-tension levels.

379 The secant stiffness of the retrofitted walls varied between 69% and 89% of the original wall with
 380 increasing post-tensioning forces. Based on these results, and its balancing effects on strength and

381 residual displacement, $0.14A_g f_c$ of post-tensioning was selected to be used for the retrofit of SW5.
 382 This allowed a comparison of the failure mechanism of the original wall to the retrofitted wall with
 383 a smaller strength and stiffness.
 384 Fig. 10 shows a comparison of relative energy-dissipation ratio, lateral strength, residual
 385 displacement, and secant stiffness for the walls retrofitted with varying post-tension eccentricities.
 386 Similar to SW6, lateral strength was the criterion most sensitive to eccentricity of post-tensioning.
 387 Concentrating post-tensioning strands at $0.00l_w$, $0.10l_w$ and $0.29l_w$ enabled the system to reach 82%,
 388 93% and 113% of the lateral strength of the original wall, respectively.

389

390 **Fig. 10.** Effect of location of post-tensioning strands in terms of energy dissipation, lateral strength,
 391 residual displacement and secant stiffness for SW5

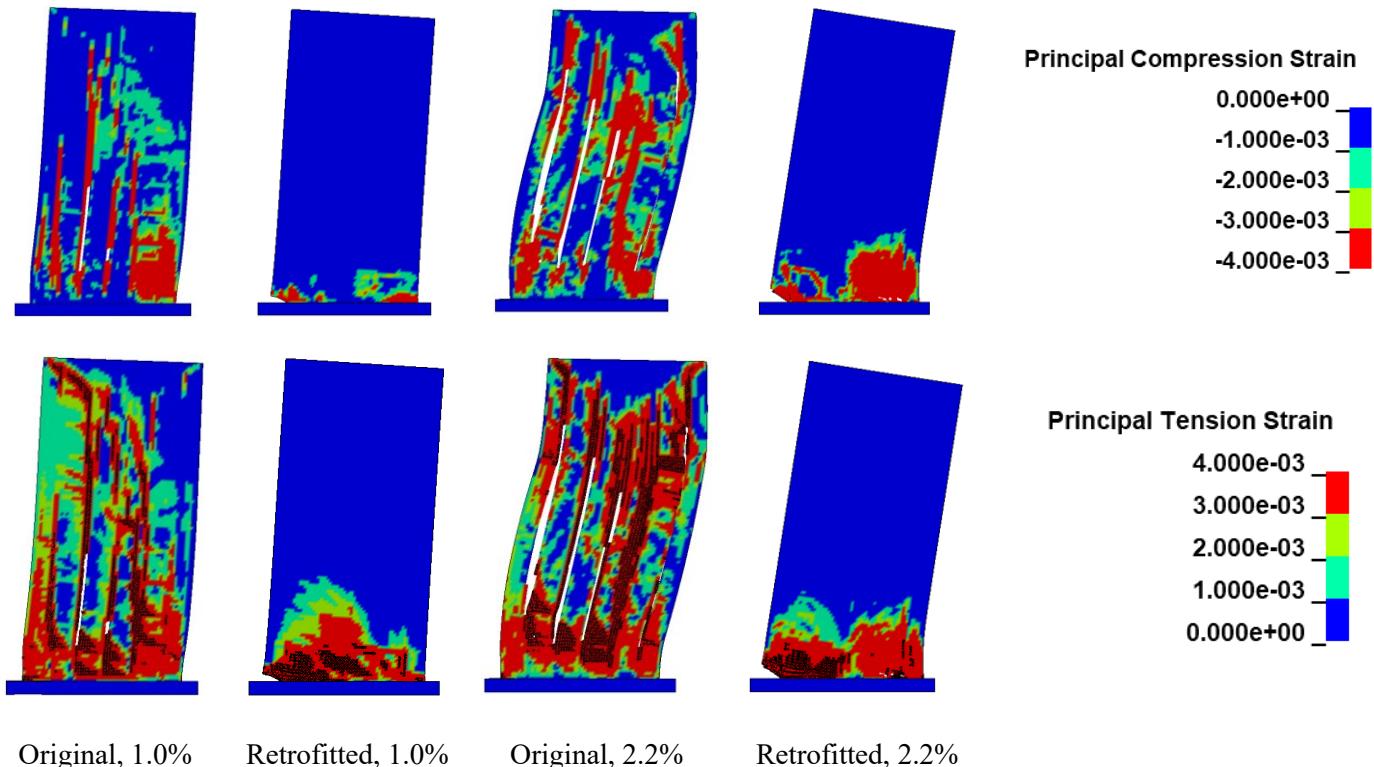

392 **Failure Modes of Original and Retrofitted Walls**

393 To understand failure modes, the followings were compared for the original and retrofitted walls:
394 1) contour plots of principal compression strains, tension strains and crack patterns; 2) failure
395 sequence of wall components. Strain contours are presented at the drift ratios when the walls were
396 reported to have failed, and at approximately half the failure drift ratio (closer to a design
397 earthquake displacement). Strain contour plots and crack maps also provide information on the
398 expected damage state and spread of damage, which can be indicators of reparability and seismic
399 resiliency. Failure sequence of wall components is an indicator for failure modes.

400 For comparisons, the area of reinforcement left uncut and the post-tension levels were the ones
401 identified as optimal based on the comparisons presented previously. These were 56% of uncut
402 reinforcement and concentrically placed post-tension equal to $0.11A_gf_c$ for SW6, and 26% of uncut
403 reinforcement and concentrically placed post-tension equal to $0.14A_gf_c$ for SW5.

404 ***Strain contours and crack patterns***

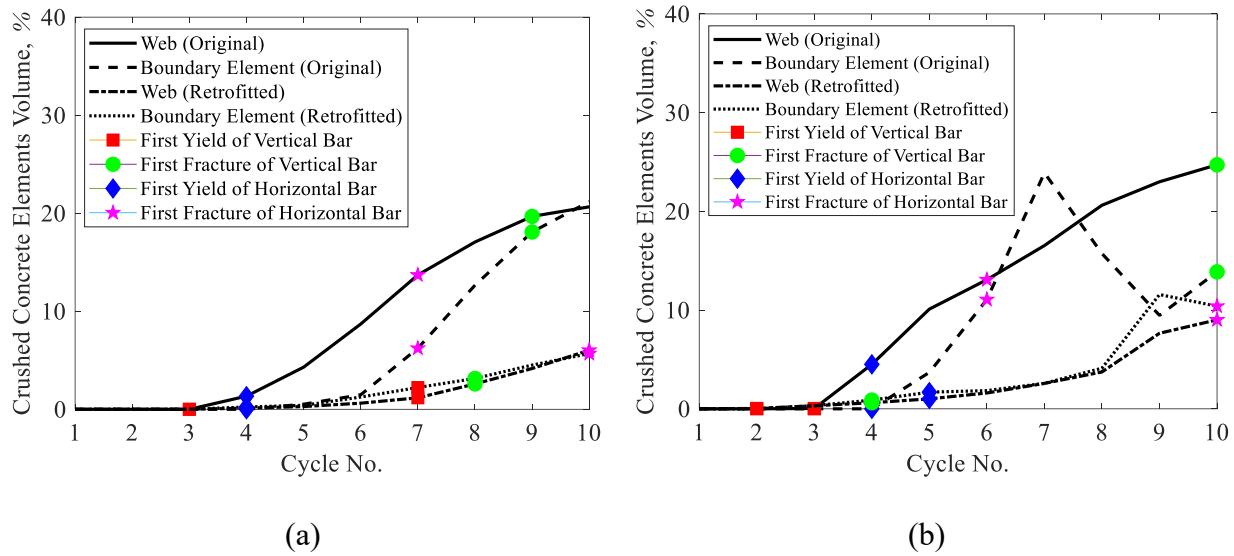
405 Fig. 11 shows the principal compression and tension strain contours together with crack patterns
406 at drift ratios of 0.9% and 1.8% (drift ratio at the failure of the original wall) for the retrofitted and
407 the original wall for SW6. Principal compression strains show that fewer concrete elements
408 crushed in a smaller area for the retrofitted wall than the original wall, and these elements
409 concentrated near the weakened section (wall base). Principal tensile strain contours together with
410 the crack patterns show that cracking is less intense and concentrated near the weakened section
411 for the retrofitted wall as compared to the original wall.


412 **Fig. 11.** Principal compression and tension strain contours for the original and retrofitted SW6 at different
413 drift ratios.

414 Fig. 12 shows principal compression and tension strain contours together with crack patterns at
415 drift ratios of 1.0% and 2.2% (drift ratio at the failure of the original wall) for the original and
416 retrofitted walls for SW5. White regions in contour plots indicate removal of concrete elements
417 due to crushing. The conclusions are the same as the ones drawn for SW6.

418 ***Failure sequence of wall components***

419 Important events leading to the failure of the walls are considered to be the first yielding of a
420 vertical bar in flexure, the first fracture of a vertical reinforcing bar in flexure, the first yielding of
421 a transverse reinforcing bar, the first fracture of a transverse reinforcing bar in shear and crushing
422 of concrete. In order to provide a quantitative means of comparison for concrete crushing, the
423 volumetric percentage of crushed concrete finite elements (i.e., elements reaching the principal
424 compression strain of 0.003 (for SW6, SW5) for unconfined concrete, and 0.0078 (for SW6) and
425 0.0065 (for SW5) for confined concrete, respectively) was recorded. Strains associated with the


426 crushing of confined concrete were extracted from Pilakoutas and Elnashai (1995). Fig. 13
427 summarizes the failure sequence of wall components for the original and the retrofitted walls.

428 **Fig. 12.** Principal compression and tension strain contours for the original and retrofitted SW5 at different
429 drift ratios.

430 For SW6, the first flexural yield of flexure reinforcement was delayed from the third (drift ratio of
431 0.33% to 0.50%) to the seventh (drift ratio of 1.00% to 1.18%) loading cycle due to retrofit. The
432 retrofit allowed the first stirrup fracture to be delayed to the last loading cycle. On the other hand,
433 the first flexure reinforcement fractured earlier for the retrofitted wall because the reinforcing bar
434 with the diameter of 6 mm (0.24 in.) had very little ductility compared to the other bars (Fig. 3).
435 The outermost layer of reinforcement in the original wall (12 mm (0.47 in.)) had a much higher
436 ductility than this bar, delaying fracture. The volumetric percentage of crushed concrete elements
437 in the boundary region was considerably less in the retrofitted wall than that of original wall,
438 showing the efficiency of the retrofit method in limiting damage in terms of concrete crushing.

439 For SW5, the retrofit caused the first flexural reinforcing bar to yield and fracture earlier than it
 440 did for the original wall. This can be explained by the fact that the vertical rebar with the diameter
 441 of 16 mm (0.63 in.) was cut for the retrofit, leaving the lowest ductility 6 mm diameter (0.24 in.)
 442 bars (Fig. 3) to be the closest to the highest tension side. Conversely, the first stirrup fractured
 443 during the seventh cycle of loading in the original wall, while for the retrofitted wall, no bar
 444 fracture was observed, indicating a shift away from a shear dominated failure. The volumetric
 445 percentage of the crushed concrete in the web decreased from 24% to 10% in the retrofitted wall.

446 **Fig. 13.** Failure sequence for SW6 (a) and SW5 (b)

447 **Summary and Conclusions**

448 Concepts of self-centering developed for newly built, flexure-dominant RC shear walls have been
 449 extended to a retrofit strategy in this study. This retrofit strategy combined weakening through a
 450 wall base cut and self-centering through unbonded post-tension strands. Unlike newly built self-
 451 centering walls that are designed for flexure failures, the retrofit strategy focused on poorly
 452 designed shear walls that are expected to have partial (flexure-compression through core crushing)
 453 or full shear (diagonal cracks near wall mid-height) failures. Some of the conclusions of this study
 454 were consistent with the ones of studies on newly built self-centering walls.

455 The retrofit was evaluated through validated FEA for RC shear walls with outdated seismic design
456 details. Two slender, non-code compliant shear walls were analyzed before and after retrofit. The
457 conclusions drawn from the analyses are as follows:

- 458 • An acceptable correlation was achieved between FEA and test results. Two parameters that
459 required calibration were the concrete tensile strength and strain of concrete after which
460 element removal was activated. The other input parameters were as obtained from testing
461 or as specified by design codes.
- 462 • Adding post-tensioning to walls enabled the recovery of the loss of strength and secant
463 stiffness caused by weakening. Strength and secant stiffness of the retrofitted walls were
464 69% to 98% and 69% to 100% of the original walls, respectively. The retrofit method with
465 two distinct steps (base cut and post-tensioning), that have the opposite effects on strength
466 and secant stiffness, allows engineers to tailor strength and self-centering to their needs.
- 467 • Although compared to the original walls, the retrofit strategy decreased energy dissipation,
468 the reduced energy dissipation was shown to be sufficient per ACI ITG-5.2-09 (ACI ITG
469 2009). Residual displacements were also reduced by the retrofit. Applying post-tensioning
470 beyond 11% to 14% of the axial load capacity of the walls did not reduce the residual
471 displacements further and is not recommended.
- 472 • The increase of post-tensioning force increased lateral strength. However, high post-
473 tension also increases concrete crushing. For this reason, post-tension levels recommended
474 were identified to be between 11% and 14% of the axial capacity of the walls. Steel
475 confinement provided at the weakened edges of the wall was shown to be effective in
476 delaying concrete crushing and is recommended.

477 • A simplified approach to estimate the amount of initial post-tensioning force, for a given
478 base length cut and desired strength after retrofit, was proposed for preliminary design.

479 • Eccentricity of post-tensioning strands across the length of the walls did not alter secant
480 stiffness, residual displacements, or energy dissipation considerably and increased strength
481 in small amounts. For these reasons, concentric post-tensioning is recommended.

482 • The retrofit decreased the spread of cracking over the walls. Cracks became concentrated
483 near the weakened section by the base of the wall. There were no shear cracks across the
484 height of the walls after retrofit, beyond the wall base.

485 • The retrofit decreased the number of crushed concrete elements in both boundary regions
486 and web of the walls. Overall, the contour plots of principal tension and compression
487 strains indicated that the damage was confined to the base of the wall, and flexural yielding
488 had a higher contribution to the failure mode.

489 • Fracture of the transverse reinforcement is delayed by the retrofit, indicating that the shear
490 contribution to failure decreased. For the walls selected from the literature, vertical bars in
491 flexure of the retrofitted walls ruptured earlier than they did for the original walls. This
492 may be due to the insufficient ductility of the uncut rebar used in these specific walls or
493 the fact that the flexural contribution to failure was increased.

494 • Overall, the results showed that retrofit strategy can reduce the contribution of shear to the
495 global response of code-deficient RC walls.

496 Baseline walls investigated in this study did not have any axial load, consistent with the walls for
497 which test data was available. Although this study targeted walls that do not carry significant
498 gravity loads (FEMA building type C2 according to FEMA 454 (FEMA 2006)), lack of axial load

499 is a limitation of the study. Addition of axial load to walls may change the response of the
500 retrofitted walls, in ways similar to the impact of additional post tensioning.

501 This study only investigated the impacts of retrofit on the behavior of isolated wall components.
502 When considering this retrofit technique, the impact of changes in wall behavior on the
503 surrounding structural and non-structural elements should also be checked, particularly for
504 displacement and energy dissipation demands of these elements. System analyses were out of the
505 scope of this paper.

506 **Acknowledgements**

507 This material is based upon work supported by the National Science Foundation under Grant No.
508 1663063. Any opinions, findings, and conclusions or recommendations expressed in this material
509 are those of the authors and do not necessarily reflect the views of the National Science
510 Foundation.

511 **References**

512 ACI (American Concrete Institute). (1971). "Building code requirements for reinforced concrete"
513 Farmington Hills, MI.

514 ACI (American Concrete Institute). (2014). "Building code requirements for structural concrete
515 (aci 318-14): Commentary on building code requirements for structural concrete (aci 318r-
516 14)" *ACI 318-14*, Farmington Hills, MI.

517 ACI ITG (American Concrete Institute). (2009). "Requirements for design of a special unbonded
518 post-tensioned precast shear wall satisfying aci itg-5.1 and commentary" *ACI ITG-5.2-09*,
519 Farmington Hills, MI.

520 Antoniades, K. K., Salonikios, T. N., and Kappos, A. J. (2003). "Cyclic tests on seismically
521 damaged reinforced concrete walls strengthened using fiber-reinforced polymer
522 reinforcement." *ACI Struct J*, 100(4), 510-518.

523 ASCE (American Society of Civil Engineers). (2017). "Seismic evaluation and retrofit of existing
524 buildings: Asce/sei, 41-17" Reston, VA.

525 Broadhouse, B. J., and Neilson, A. J. (1987). "Modelling reinforced concrete structures in dyna3d."
526 *Rep. AEEW-M-2465*, UKAEA Atomic Energy Establishment, U.K.

527 Christidis, K. I., Vougioukas, E., and Trezos, K. G. (2016). "Strengthening of non-conforming rc
528 shear walls using different steel configurations." *Eng. Struct.*, 124, 258-268.

529 Elnashai, A. S., and Pinho, R. (1998). "Repair and retrofitting of rc walls using selective
530 techniques." *J. Earthq. Eng.*, 2(4), 525-568.

531 Epackachi, S., and Whittaker, A. S. (2018). "A validated numerical model for predicting the in-
532 plane seismic response of lightly reinforced, low-aspect ratio reinforced concrete shear
533 walls." *Eng. Struct.*, 168, 589-611.

534 FEMA (Federal Emergency Management Agency). (1998). "Fema 306: Evaluation of earthquake
535 damaged concrete and masonry wall buildings: Basic procedures manual" Redwood City,
536 CA.

537 FEMA (Federal Emergency Management Agency). (2006). "Fema 454: Designing for
538 earthquakes: A manual for architects" US Department of Homeland Security, Washington,
539 DC.

540 fib (federation internationale du beton). (2013). "Fib model code for concrete structures 2010"
541 Fiorato, A. E., Oesterle, R. G., and Corley, W. G. (1983). "Behavior of earthquake resistant
542 structural walls before and after repair." *J. Proc.*, 80, 403-413.

543 Henry, R. S., Aaleti, S., Sritharan, S., and Ingham, J. M. (2010). "Concept and finite-element
544 modeling of new steel shear connectors for self-centering wall systems." *J. Eng. Mech.*,
545 136(2), 220-229.

546 Holden, T., Restrepo, J., and Mander, J. B. (2003). "Seismic performance of precast reinforced
547 and prestressed concrete walls." *J. Struct. Eng.*, 10.1061/(ASCE)0733-
548 9445(2003)129:3(286), 286-296.

549 Ireland, M., Pampanin, S., and Bull, D. "Experimental investigations of a selective weakening
550 approach for the seismic retrofit of rc walls." *Proc., New Zeal. Soc. Earthquake Eng. 2007*
551 *Annual Conf.*

552 Kam, W., and Pampanin, S. "Selective weakening techniques for retrofit of existing reinforced
553 concrete structures." *Proc., 14th World Conf. on Earthquake Engineering (14WCEE)*.

554 Kam, W., and Pampanin, S. (2010). "Experimental and numerical validation of selective
555 weakening retrofit for existing non-ductile rc frames." *Improving the seismic performance*
556 *of existing buildings and other structures*, 706-720.

557 Kam, W. Y., and Pampanin, S. (2011). "The seismic performance of rc buildings in the 22 february
558 2011 christchurch earthquake." *Struct Concrete*, 12(4), 223-233.

559 Khalil, A., and Ghobarah, A. (2005). "Behaviour of rehabilitated structural walls." *J. Earthq. Eng.*,
560 9(3), 371-391.

561 Kurama, Y. (2002). "Hybrid post-tensioned precast concrete walls for use in seismic regions." *PCI*
562 *J.*, 47, 36-59.

563 Lee, W., Jeong, H., Billington, S., Mahin, S., and Salkai, J. "Post-tensioned structural concrete
564 bridge piers with self-centering characteristics." *Proc., Structural Engineering Research*
565 *Frontiers Session of the 2007 Structures Congress*.

566 Lefas, I., and Kotsovos, M. (1990). "Strength and deformation characteristics of reinforced
567 concrete walls under load reversals." *Struct. J.*, 87(6).

568 Lombard, J., Lau, D. T., Humar, J. L., Foo, S., and Cheung, M. S. "Seismic strengthening and
569 repair of reinforced concrete shear walls." *Proc., 12th World Conf. on Earthquake
570 Engineering*, 1-8.

571 LSTC. 2017. Ls-dyna keyword user's manual, version 971 R 9.0, Livermore, CA, Livermore
572 Software Technology Corporation.

573 Marriott, D., Pampanin, S., and Palermo, A. (2009). "Quasi-static and pseudo-dynamic testing of
574 unbonded post-tensioned rocking bridge piers with external replaceable dissipaters."
575 *Earthq. Eng. Struct. D.*, 38(3), 331-354.

576 Nakaki, S., Stanton, J., and Sritharan, S. (1999). "Overview of the presss five-story precast test
577 building." *PCI J.*, 44, 26-39.

578 Ou, Y.-C., Chiewanichakorn, M., Aref, A. J., and Lee, G. C. (2007). "Seismic performance of
579 segmental precast unbonded posttensioned concrete bridge columns." *J. Struct. Eng.*,
580 10.1061/(ASCE)0733-9445(2007)133:11(1636), 1636-1647.

581 Palermo, A., Pampanin, S., and Marriott, D. (2007). "Design, modeling, and experimental response
582 of seismic resistant bridge piers with posttensioned dissipating connections." *J. Struct.
583 Eng.*, 10.1061/(ASCE)0733-9445(2007)133:11(1648), 1648-1661.

584 Pampanin, S. (2006). "Controversial aspects in seismic assessment and retrofit of structures in
585 modern times: Understanding and implementing lessons from ancient heritage." *New Zeal.
586 Soc. Earthquake Eng.*, 120-133.

587 Paterson, J., and Mitchell, D. (2003). "Seismic retrofit of shear walls with headed bars and carbon
588 fiber wrap." *J. Struct. Eng.*, 10.1061/(ASCE)0733-9445(2003)129:5(606), 606-614.

589 Pilakoutas, K. (1990). "Earthquake resistant design of reinforced concrete walls." PhD thesis,
590 Univ. of London, London.

591 Pilakoutas, K., and Elnashai, A. (1995). "Cyclic behavior of reinforced concrete cantilever walls,
592 part i: Experimental results." *ACI Struct J*, 92(3), 271-281.

593 Pollino, M., and Bruneau, M. (2007). "Seismic retrofit of bridge steel truss piers using a controlled
594 rocking approach." *J. Bridge Eng.*, 10.1061/(ASCE)1084-0702(2007)12:5(600), 600-610.

595 Priestley, M. N., Sritharan, S., Conley, J. R., and Pampanin, S. (1999). "Preliminary results and
596 conclusions from the presss five-story precast concrete test building." *PCI J.*, 44(6), 42-67.

597 Priestley, M. N., and Tao, J. R. (1993). "Seismic response of precast prestressed concrete frames
598 with partially debonded tendons." *PCI J.*, 38(1), 58-69.

599 Rahman, A. M., and Restrepo, J. I. (2000). "Earthquake resistant precast concrete buildings:
600 Seismic performance of cantilever walls prestressed using unbonded tendons." University
601 of Canterbury, Christchurch, New Zeland

602 Restrepo, J. I., and Rahman, A. (2007). "Seismic performance of self-centering structural walls
603 incorporating energy dissipators." *J. Struct. Eng.*, 10.1061/(ASCE)0733-
604 9445(2007)133:11(1560), 1560-1570.

605 Schwer, L. "The winfrith concrete model: Beauty or beast? Insights into the winfrith concrete
606 model." *Proc., 8th European LS-DYNA Users Conf.*, 23-24.

607 Sritharan, S., Aaleti, S., Henry, R. S., Liu, K.-Y., and Tsai, K.-C. (2015). "Precast concrete wall
608 with end columns (prewec) for earthquake resistant design." *Earthq. Eng. Struct. D.*,
609 44(12), 2075-2092.

610 Stanton, J., C. Stone, W., and Cheok, G. (1997). "A hybrid reinforced precast frame for seismic
611 regions." *PCI J.*, 42, 20-23.

612 Taghdi, M., Bruneau, M., and Saatcioglu, M. (2000). "Seismic retrofitting of low-rise masonry
613 and concrete walls using steel strips." *J. Struct. Eng.*, 10.1061/(ASCE)0733-
614 9445(2000)126:9(1017), 1017-1025.

615 Viti, S., Cimellaro, G. P., and Reinhorn, A. M. (2006). "Retrofit of a hospital through strength
616 reduction and enhanced damping." *Smart Struct. Syst.*, 2(4), 339-355.

617 Wallace, J. W. (2012). "Behavior, design, and modeling of structural walls and coupling beams—
618 lessons from recent laboratory tests and earthquakes." *Int. J. Concr. Struct. M.*, 6(1), 3-18.

619 Yang, C., and Okumus, P. (2017). "Ultrahigh-performance concrete for posttensioned precast
620 bridge piers for seismic resilience." *J. Struct. Eng.*, 10.1061/(ASCE)ST.1943-
621 541X.0001906, 04017161.