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ABSTRACT

In location-based services, such as navigation and ride-hailing, it
is an essential function to match a query with Point-of-Interests
(POIs) for efficient destination retrieval. Indeed, due to the space
limit and real-time requirement, such services usually require inter-
mediate POI matching results when only partial search keywords
are typed. While there are numerous retrieval models for general
textual semantic matching, few attempts have been made for query-
POI matching by considering the integration of rich spatio-temporal
factors and dynamic user preferences. To this end, in this paper, we
develop a spatio-temporal dual graph attention network (STDGAT),
which can jointly model dynamic situational context and users’
sequential behaviors for intelligent query-POI matching. Specif-
ically, we first utilize a semantic representation block to model
semantic correlations among incomplete texts as well as various
spatio-temporal factors captured by location and time. Next, we
propose a novel dual graph attention network to capture two types
of query-POI relevance, where one models global query-POI inter-
action and another one models time-evolving user preferences on
destination POIs. Moreover, we also incorporate spatio-temporal
factors into the dual graph attention network so that the query-POI
relevance can be generalized to the sophisticated situational con-
text. After that, a pairwise fusion strategy is introduced to extract
the salient global feature representatives for both queries and POIs.
Finally, several cold-start strategies and training methods are pro-
posed to improve the matching effectiveness and training efficiency.
Extensive experiments on two real-world datasets demonstrate
the performances of our approach compared with state-of-the-art
baselines. The results show that our model achieves significant
improvement in terms of matching accuracy even with only partial
query keywords are given.
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1 INTRODUCTION

Query and Point-of-Interest (POI) matching has become an essen-
tial retrieval service in various location-based applications, e.g.,
Google Maps, Baidu Maps, and Uber. As illustrated in Figure 1,
query-POI matching aims to retrieve the destination POI from a list
of candidate POIs based on (incomplete) query keywords. Since the
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Figure 1: An illustrative example of query-POI matching on
Baidu Maps. Left side shows the matched POI candidate list
of given query, and right side depicts locations of these POIs.

retrieval result directly involves the user’s travel decision process,
accurate and predictive query-POI matching can significantly im-
prove user experience and ultimately boost the commercial benefits
for these location-based applications.
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Figure 2: Characteristics of query-POI matching records: (a) Query-POI matching uncertainty distribution; (b) Distance dis-
tribution between current location and destination POI location; (c) Temporal distribution of queries; (d) Jaccard similarity

distribution of user preference between consecutive weeks.

Despite its ubiquity and importance, only a few efforts have
been made for dedicated query-POI matching. General informa-
tion retrieval approaches usually project queries and POlIs into a
vector space [21] or link them via a probabilistic model [19] for
matching. Recently, deep learning based methods have been intro-
duced for search and retrieval systems, by learning more effective
representations for both queries and items [17, 23]. For example,
DSSM [9] maps queries and documents to the same latent semantic
space and computes the relevance for each query-document pair.
Based on DSSM, PALM [36] further models static geographical
correlations between query-POI pair. Despite their effectiveness
on general query-item matching, we argue these methods are not
sufficient enough to deliver satisfactory user experience for dy-
namic query-POI matching. The main reason is that the destination
POI of same query keywords may vary over different users under
different spatio-temporal contexts. Take the query in Figure 1 for
example, when typing “Tsinghua" on navigation apps, a college
student search at morning rush hour may intend to go to Tsinghua
Univeristy for class, while a patient search at midnight is with
higher probability to go to Beijing Tsinghua Chang Gung Hospital
for treatment.

While it is intuitively useful to incorporate spatio-temporal fac-
tors and user preference, dynamic query-POI matching is a non-
trivial task because of the following three challenges: 1) Matching
uncertainty. In practice, a POI name may correspond to multiple
POIs, according to large-scale data analysis, over a half queries
correspond to multiple POlIs, as reported in Figure 2(a). In fact,
the distribution of query-POI matching uncertainty nearly follows
the power law distribution with a = 0.56 [3]. More severely, most
query inputs are incomplete POI names, which further increases
the uncertainty of the destination POI Therefore, the first challenge
is how to reduce the matching uncertainty between (incomplete)
query keywords and POIs. 2) Situational context complicacy.
In query-POI matching, we identify strong dependencies between
the destination POI intention and the situational context [39]. For
example, as shown in Figure 2(b), for the majority queries, the
current location and destination POI location is within a relative
short distance [16]. Figure 2(c) depicts the bimodal distribution of
query-POI interactions, where most query-POI interactions hap-
pen in the morning and evening rush hours. Besides, since the
context factors may appear to be extremely high dimensional (e.g.,

locations and time), nearly a half queries are under unseen situ-
ational context (e.g., search a POI from a new location). How to
model and generalize the destination POI intention under complex
situational context is the second challenge. 3) User preference dy-
namicity. Due to the locality and temporal dependency of human
mobility [33], the intended POI is user-specific and evolving over
time [31]. For illustration, we randomly sample 5,000 anonymized
users and partition their historically clicked POIs to eight chroni-
cally ordered sets (each set represent one week data). Figure 2(d)
reports the distribution of Jaccard similarities between two con-
secutive sets of each user. As can be seen, the Jaccard similarity
of most users’ preference falls in a moderately high percentage
interval, which conveys the temporal dependent and evolving user
preference drift. As a result, it is challenging to model time-evolving
user preference from limited user historical query data.

To tackle the above challenges, we propose the Spatio-temporal
Dual Graph Attention Network (STDGAT) for intelligent query-POI
matching. First, we introduce a semantic representation block that
projects sparse query words, POI names as well as multiple spatio-
temporal factors into a unified latent space. After that, we propose
a dual graph attention network to collaboratively model query-
POI relevance. Specifically, the generic query-POI graph attention
captures the global query-POI correlation from the bipartite graph
connecting all queries and POIs. While the user-specific graph atten-
tion captures the time-evolving user preference on destination POIs
from the bipartite graph structure connecting user-specific queries
and POlIs. Spatio-temporal factors such as geographical location
and time slot are also incorporated to generalize the query-POI rel-
evance modeling under unseen situational contexts. Furthermore,
a pairwise neuron fusion method fuses learned representations
through a feed-forward neural network. Last but not least, STDGAT
adopts a simple yet effective strategy to handle cold start problems
for new users, queries and POIs.

Our contributions are summarized as follows:

e We propose a novel framework for intelligent query-POI
matching. By collaboratively incorporating various textual
information and situational contexts, our framework is capa-
ble of matching incomplete queries and POIs by considering
dynamic situational context.

e We develop a novel dual graph attention network to model
query-POI relevance from both the generic perspective and



the user-specific perspective, with consideration of the so-
phisticated situational context.

e We address the cold start problem in query-POI matching
and propose several training techniques to improve matching
effectiveness and training efficiency.

o We evaluate STDGAT on two real-world datasets, the results
demonstrate the effectiveness of our approach compared
with six state-of-the-art baselines.

2 PRELIMINARIES AND PROBLEM
STATEMENT

In this section, we first introduce some important notations and
definitions, then formally define the query-POI matching problem.
Notations frequently used in this paper are listed in Table 1.

Table 1: Table of notations.
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Notations Description
mn The number of queries and POIs.
Q.P The sets of all queries and all POIs.

q=q9k).q€Q
p=p.pnc),peP
lq = {Ing, lat, }

lp = {Ingz, laty}
U= {uu,..., un}

A query is a 2-tuple: location Ig, query word gk.
A POl s a triplet: location /5, POI name pn, and POI category c.

The location of query g is represented by longitude Ing; and latitude lat;.

The location of POI p is represented by longitude Ingz and latitude lat,.
The set of all users.

mq = {u,7,q,p} A map search query event.

G The generic query-POI graph.

Gt The user-specific query-POI graph for user u at the ¢-th time period.
g The geographical embedding for a query-POI pair.

T The time slot/hour zone.

Xo, Xp The semantic representations of queries and POIs.

XQ, Xp The generic embeddings of queries and POIs.

XQ, Xp The user-specific embeddings of queries and POls.

Xo+, Xp The ultimate embedding matrices of queries and POIs respectively.

Let u denote an individual user, 7 denote a timestamp. We de-
fine the map query g € Q as a 2-tuple (Ig, gk), where I is the
location of query, gk is the query keyword, and define the Point-of-
Interest (POI) p € P as a 3-tuple (Ip, pn, c), where I, is the location
of POI, pn is the POI name, and c is the category of p. Further-
more, the location [, e.g., I and [, is represented by a geographical
coordinate (Ing, lat).

DEFINITION 1. Map query event. A map query event is defined
as a 4-tuple mq = {u, 7, q, p}, such that a user u issues a map query q
at time slot 7, and clicks on a candidate POI p.

Note that given a map query, there may exist multiple POI can-
didates and a user may click on multiple different POIs, which
will generate multiple map query events for each click on different
POIs. Given a set of map queries Q = {q1,92,- - -,qn} and a set of
POIs P = {p1,p2,- - -, pm}, we construct two query-POI interaction
graphs as follow. Specifically, given a map query event mgq, we call
the click action as a query-POI interaction.

DEFINITION 2. Generic query-POI graph is defined as G8 =
(V, E), where g is the generic symbol, V. = QUP and E is a set of edges,
indicating all query-POI interactions. Formally, we define e;j € E as

1,
eij = 0

where freq(v;,v;) is the overall frequency of query-POI interactions
between queryv; € Q and POIvj € P, § is a threshold.

v; € Q,vj € P, freq(vi,vj) > 6 ()
s 1

otherwise
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Figure 3: Framework overview.

In practice, § filters out low-frequency query-POI interactions,
which will induce minor discrepancy among vertex representations
since most of the frequencies fall in a small range of value [32].
Note that the generic query-POI graph is an unweighted, undirected
bipartite graph.

DEFINITION 3. User-specific query-POI graph is defined as
G,,; = (V,E), where s is the user-specific symbol, E is a set of edges
among V = Qu; U Py, indicating query-POI interactions made by
user u in the time-period t. Formally, we define e;j € E ase;j =
frequt(vi,vj), where freqy+(vi,vj) is the frequency of query-POI
interactions between query v; € Qy ¢ and POlvj € Py ;.

Note that for each distinct user, there exists a corresponding
user-specific query-POI graph. The user-specific query-POI graph
models the user’s preference in recent map query behaviors. Slightly
different from the generic query-POI graph, a user-specific query-
POI graph is a weighted, undirected bipartite graph. We preserve
the edge weight to ease the subsequent learning process of user
preference and therefore alleviate the data sparsity problem in each
user-specific graph.

PrOBLEM 1. Query-POI matching problem. Given a map query
q made by user u at time slot T and location I, we aim to estimate
the most relevant POI p that the user may click through based on
historical map query events.

3 FRAMEWORK OVERVIEW

Figure 3 shows the overall framework of STDGAT. It consists of
five components, i.e., the Semantic representation block, the Generic
query-POI graph attention network block, the User-specific query-POI
graph attention network block, the Pairwise neural fusion block, and
the Output block.



Given a set of map query events, the Semantic representation
block first generates low dimensional embedding vectors for five
types of input elements, including: 1) tokenized queries, 2) tokenized
POlIs, 3) geographical locations, 4) time slots, and 5) anonymized
user IDs. Then, the Generic query-POI graph attention network block
and the User-specific query-POI graph attention network block gen-
erate the generalized geographical aware and user-specific tempo-
ral aware representation embeddings based on the generic query-
POI graph and the user-specific query-POI graph, respectively. Af-
ter that, for each query-POI pair, the Pairwise neural fusion block
fuses their corresponding generalized and user-specific representa-
tion embeddings. Finally, the Output block computes the matching
scores between each query and corresponding candidate POIs.

4 METHODOLOGY

In this section, we introduce each component of STDGAT in detail.

4.1 Semantic representation

As shown in Figure 3, for each map query event, we first extract five
types of input features (i.e., query words, POI names, geographical
locations, time slots, and users). The semantic representation block
projects high dimensional categorical features into low dimensional
dense vectors, which preserves latent semantic correlations among
input features. Note that these input features are treated as model
input. Rather than training a separate embedding model such as
word2vec [18], we adopt a convolutional neural network (CNN)
[13] for dimension reduction, the semantic representation block is
optimized with other components simultaneously, along with the
supervision of the query-POI matching task.

For queries and POIs, we split each query words and POI names
into tokenized characters and words [15, 38], transform each char-
acter and word into randomly-initiated vectors, and finalize the em-
beddings of queries and POIs with these term-level vectors through
CNN. Conceptually, the character-level representation conserves
inherent connections of incomplete query words and POI names,
while the word-level representation captures semantic correlations
among queries and POIs under various contexts. The textual se-
mantic embedding produced by CNN operation is shared by both
query and POI, which enhances the matching accuracy between
incomplete/full query keyword and POI name.

Then, we extract the current location {Ingi, lat; } of the user, the
destination POI location {Ings, laty} of clicked POL, and time slot 7
in each map query event. All locations are projected to a set of grid-
based regions [25] and encoded into randomly-initiated encoded
vectors. Instead of simply embedding each longitude and latitude,
for each location, we further incorporate their neighboring region
longitude embeddings and latitude embeddings to capture local
dependencies and mitigate the boundary conflicts [36]. Specifically,
we derive the embedding of a given longitude/latitude ¢; as follow:

¢! = wis1i1 + wii + Wir1dis1, (2

where ¢; is the embedding of current longitude/latitude, ¢;_1 and
$i+1 are its neighboring longitude/latitude embeddings, ¢ is the up-
dated embedding for ¢;, w;—1, w; and wj. are learnable parameters.
Then, we apply the convolution operation to derive the geographi-
cal embedding from the aggregated embeddings of longitude and

latitude. In this way, the geographical information in each map
query event is projected to a d-dimensional dense vector. Similarly,
for time slot 7, we first map it into predefined time slots, then project
it into a d-dimensional vector by incorporating its neighboring time
slot embeddings.

For each user, we first partition POIs into h predefined POI cate-
gories (e.g., residential, transport, education, etc.), and divide the
whole day into 24 time slots. Then, we generate a hx24-dimensional
vector for each user, where the i X j-th dimension is the portion of
the user’s clicks on the i-th category POIs in the j-th time slot. Fi-
nally, we feed the user vector into a fully connected layer to obtain
the d-dimensional user embedding. Note that the user embeddings
of the same user in different map query events are identical.

4.2 Dual graph attention network

Then we introduce the dual graph attention network, which cap-
tures pairwise correlation among queries and POIs based on both
the generic query-POI graph and the user-specific query-POI graph.
In past years, graph neural network (GNN) [12] has shown its
superiority on processing non-Euclidean correlated graph struc-
tures [26, 28, 40]. In a word, for each vertex (i.e., query or POI), GNN
applies aggregation and transformation operation on its neighbors
to obtain new representations. Since the correlation of neighboring
vertex may vary non-linearly, we adopt the graph attention network
(GAT) [24], an attention based variant of GNN to capture correla-
tions among queries and POIs in same latent space. Specifically, we
propose the generic query-POI graph attention operation as well
as the user-specific query-POI graph attention operation to capture
the query-POI relevance from their corresponding graph structures.
Additionally, we incorporate spatiotemporal dynamics from the se-
mantic representation block into the dual graph attention network
to guide the optimization of the attention coefficient. In this way,
the learned representations of queries and POIs capture generic
and user-specific query-POI relevance and are generalizable under
dynamic situational context.

4.2.1 Generic query-POI graph attention. Based on learned seman-
tic representations, we first introduce the generic query-POI graph
attention operation, which captures the global relevance among
queries and POIs. Consider the semantic representations of query
q and POI p, we update the representation vectors based on the
generic query-POI graph G# as follow:

Xo = © AR(GEYWECXp + b), 3)

X; = A" (GEHW X +D), (4)
where XQ and X are the generic embeddings of queries and POIs.

o is the activation function. W9 and WP are respectively weight
matrices for queries Q and POIs P, b is the bias. A2(G8) and AP (GS)
are proximity matrices derived from an attention mechanism based
on the generic graph G8, by incorporating the geographical influ-
ence. Each agp € A9(GE) and agq € AP (G8) are defined as:

L Attn8(xg, Xp, egp, go) )
a» Zuup €N(vq) A”ng(xqs Xuy» €quyps go)
Attn8(xXp, Xg, €qp, GU
agq - ( p>Xq> €qp> 9 ) (6)

Evuq €N(vp) Attng(xp, Xug> Cugps go) ’



where gv is the geographical embedding for the corresponding
query-POI pair. For a given edge eqp, Xq, Xp, Xu, and x,, are the
input embeddings of node v4, node v, and their 1-hop neighbours
vu, € N(vg), vu, € N(vp), respectively. Attn8(") is the attention
function defined as:

Attn8(a, b, c,d) = LeakyRelu(Wap.(Wap(a || b) ® Wee) || Wad),  (7)

where W3, Wype, We, W; denote learnable weighted matrices.
Specifically, the weighted matrix W, represents weighted matrix
of a after combined with b, W, stands for the joint weighted
matrix of a, b, and c. The weighted matrix W, is used to adjust
the edge weight of edge egp, and Wy is denoted as the weighted
matrix to measure the geographical influence. ® and || represent
the element-wise multiplication operation and concatenation op-
eration, respectively. Note that for any query-POI pair, both static
semantic similarities and geographical correlations in generic query-
POI attention operation jointly determine the query-POI attention

weights agp and agq.

4.2.2  User-specific query-POI graph attention. Besides the global
correlation, the relevance among queries and POIs is also user-
dependent and temporal-aware. We further introduce the user-
specific query-POI graph attention operation to model the time-
evolving user preference.

Similar to the generic query-POI graph attention operation, a
graph attention operation can be applied on each user-specific
query-POI graph to learn different attention weights to measure
the relevance of query-POI pair w.r.t. different users. Consider a set
of user-specific query-POI graphs, {Gu -1+ Gy p—tr}> Where tr
is the number of involved time periods. We further incorporate tem-
poral influence to model dynamic user preferences under different
time periods. Inspired by successful applications of autoregressive
moving average (ARMA) principle [27] on processing sequential
graphs [14], we describe the linear temporal correlations between
current POIs and previous click sequences from the following two
aspects: (1) AR(#1) considers linear dependency between current
destination POI and historical sequential query-POl interactions. (2)
MA(t2) measures the effects of white noise, i.e., external variations
that is only seen indirectly, via regression based on user’s historical
sequential query-POI interactions.

Xpur = ZXPMZ,+ZE i ®)

Xour = ZXQMZ +Z£ " )

where XPuT and X 4 ue are learned user-specific representation

vectors of POIs and querles made by user u in the time slot 7 at the
t — i-th time period. s stands for the matrix at i-step ahead of't,
which is generated from white noise. In addition, Z;, Zl’ are the i-th
weight matrices. The first term in both Equation 8 and Equation 9
serves as autoregressive factor to take the sequential influence from
past self terms into account, while the second one acts as moving
average function by absorbing the effects from contextual noise.
To further improve model interpretability and non-linear tem-
poral dependency, we propose the user-specific graph attention
operation by extending Equation 8 and Equation 9 from two aspects.

Due to space limit, we explain the devised learning process of POIs
below, the learning process of queries is identical.

For the first aspect, we replace the white noise term to represen-
tations of corresponding queries and POls,

Xpur = Attn®(u, 7, Xp,), (10)
t

T
where Attn®(x,y,z) = sof tmax(%z) is the attention function that

collaboratively quantifies the influence of user attribute and time
slot onto the query-POI embeddings. d is denoted as the dimension
of representation vector, and Xp, represents the semantic represen-
tations of user’s searched POlIs at time period ¢.

For the second aspect, we define a sequential graph embedding
function to model the temporal dependency of current query-POI
interaction with previous query-POI interactions. Specifically, we
first devise the white noise term with the corresponding POI repre-
sentation vectors,

Ki-1
Y) = Z Y(ADY Wi + Xpur Zo. (11)

Since Ay is the adjacent matrix that reflects the connectivity among
nodes, Yr(As) = A’f records the k-path reachable nodes and is
utilized to compute a k-neighbour (or k-scale) influence effect for
a given node. Kj is the kernel scale of neighborhood which is
taken into account. Zy and Wi, k € [1, K; — 1] are weight matrices.
Compared with the white noise, the hidden state Y memorizes the
representations of POIs in previous steps. Then, the 1-step ahead
predicted embedding of POI can be obtained as follow,

Ky—1
XP,“;T Y/ + Z Uk A,)XP,, 7, (12)
where K3 is another kernel scale ofneighborhood. Zi k € [1,Kp—-1]

is denoted as weight matrix. Moreover, Yt 51 and Xpur are respec-
1

tively regarded as the hidden state and output state of predicted
personalized t-th POI embedding at time slot 7. Finally, as shown
in Figure 3, a temporal convolution operation is applied on a set of
predicted POI embeddings:

X = Corw(XPur ,XPuT ,...,Xpﬂ), (13)

pur t-tr t=tr+l

where Conu(-) is the convolution operation on the sequence of
1-step forward predicted POI embeddings. Such convolution op-
eration captures the non-linear dependency of current query-POI
interactions on previous query-POI interactions, which further en-
hances the matching performance by incorporating user’s historical
preference. Overall, the sequential graph embedding function is a
combination of Equation 11, 12, and 13.

4.3 Pairwise neural fusion and ranking

We further propose a pairwise neural fusion block to ensemble both
generic and user-specific effects and feed the combined represen-
tation to the relevance ranking block. Specifically, we employ a
dual-tower structure to extract the salient global feature representa-
tives for both queries and POIs. The learned generic representations
of POIs X5 and queries XQ~, along with user-specific representations
of POIs Xpur and queries XQW are fused through two different



neural networks [29]:

Xpe = ¢ 98 Kpur | Xp)), (14)
Xgr = 50 26L Xur | X)), (15)
g0 = oW x+b)s€[1,S], (16)
920 = o(W2x+b)s € [15), (17)

where || is the vector concatenation operation. o is the sigmoid
activation function. ¢F, gbsQ € R%*ds-1 denote the neural networks
for POIs and queries on the s-th layer respectively, in which W7,
WSQ € R%*ds-1 denote weight matrices of POIs and queries, bY,
bsQ € R%*4s gre bias vectors of POIs and queries.

After that, we employ the simple yet effective cosine similarity
to calculate the relevance between the query and the POI candidate,

Xo-Xpr

I Xo- Il Xp- [I°
Finally, we rank each POI candidate based on the computed

scores and return the ranked list as the matching result. The refined

query embeddings Q* and POI embeddings P* can also be used for
future query-POI matching.

S(Q, P) = cos(Xg+, Xp+) = (18)

4.4 Handling cold start problem

In this subsection, we discuss the cold-start issue in query-POI
matching. Based on the node type, the cold start problem can be
categorized into three classes, namely new users, new queries, and
new POls.

For cold start users, STDGAT can naturally handle new com-
ing users solely based on the generic query-POI graph and the
situational context. For cold start queries, we propose a two-step
K-nearest neighbors (KNN) based approach to generate a corre-
sponding representation that contains both semantic and situational
context information. First, we generate the semantic representa-
tion of the new query based on character and word level semantic
embeddings, and retrieve top-k semantically similar queries in the
generic query-POI graph according to the Pearson Correlation [1]:

n

™ = X)(yi - 9)
VE G =0 i~ 9)

where x = (x1,x2,...,xp) and y = (y1,y2,...,yn) are query se-
mantic embeddings, ¥ = % Z?zl xj, and § = % Z;’zl yi. Second, we
aggregate the learned query representation from STDGAT through
a linear averaging function as the final representation of the cold
start query. For cold start POIs, we apply a similar method for cold

start queries, but restrict the KNN neighbors to existing POIs.

PearSim(x,y) = , (19)

5 TRAINING AND OPTIMIZATION

In this section, we introduce the training techniques to improve
the model training process.

First, STDGAT aims to minimize the error of predicted similarity
score [36] obtained from Equation 18.

To further improve the discriminative power, we employ nega-
tive sampling [4] for training set augmentation. For each query-POI
pair, let {P]: } denote a clicked positive sample, we randomly select

four unclicked POIs {P, '} as negative samples, and move the em-
beddings of query away from the ones of POL Then, given a query,
the probability of a POI to be clicked is calculated by

01 = —log [ | Pr(P*|Q), (20)
Q.p*

exp(S(Q, P))

Pr(P = .
rPIQ) Zpepyuip;y exp(SQ.P))

(21)

Additionally, a L1 regularizer is applied to avoid overfitting by
constraining the parameter space to be sparse. Since we observe
most queries are correlated with a small range of POIs and have
no interactions with the rest, we further downscale and segment
the generic query-POI graph into multiple independent query-POI
subgraphs. In this way, the computational complexity of the regular-
ization loss is reduced from O(N?) to O(Kn?), where K is the number
of subgraphs and n < N. However, since we need to calculate the
gradient of regularization over every query and POI node in the
subgraph, the computation complexity still remains high. Inspired
by the success of mini-batch regularization [6] that constrains the
embedding parameters of users and item nodes with their neighbor
nodes, we define the approximated mini-graph user-based version
of the L1 regularization as follow,

02= 2(2 Q1 Xge 1+ 25 11 Xpe D), (22)
P

geGuelU Q

where G represents the collection of independent query-POI sub-
graphs. Overall, the optimization objective function is defined as

0 =01 +10,, (23)

where A is the hyper-parameter controls the importance of the L1
regularizer.

6 DISCUSSIONS

In this section, we discuss model deployment issues as well as the
key insight and limitations of STDGAT.

6.1 Model deployment

It is crucial to provide efficient and scalable online matching service
to users. In our scenario, the online service can be partitioned into
the offline phase and the online phase. In the offline phase, all map
query events are stored in an offline data warehouse, and the model
is trained and updated daily. To exclude seasonal user preference
and situational context change, we define a two-month sliding
window for training data selection. In the online phase, we employ
BRPC!, a scalable web service framework used throughout Baidu
for online service. Once the model training is finished, the model is
duplicated to multiple data centers in different regions to reduce the
network latency from different geographical locations and balance
the workload. In the online phase, the model takes 67.11MB memory
space, and the averaged matching latency is 1.99ms.

!https://github.com/apache/incubator-brpc



6.2 Model insights and limitations

STDGAT captures pairwise correlations among queries and POIs
based on both generic query-POI graph and user-specific query-
POI graph. Specifically, given a query, the generic query-POI graph
attention assigns larger weights to POI candidates that have strong
semantic similarity as well as follow the global situational context
distribution. Such generic attention measures the relations among
queries and POIs from a global perspective. On the other hand,
in the user-specific graph, the weights assigned by user-specific
attention capture users’ time-varying preferences. For each time pe-
riod, it quantifies the query-POI correlation with user information
and temporal information. Besides, the sequential graph embed-
ding function that consists of ARMA-based model and convolution
operations simultaneously captures the higher-order temporal cor-
relations among the query-POI pair. Since current model is updated
by day, as a result, the model may exclude short-term user pref-
erence (e.g., in-session user interest [10]) and unexpected event
influence, which we left as future work.

7 EXPERIMENTS

In this section, we conduct extensive experiments on two real-world
large-scale datasets to evaluate: (1) overall performance of STDGAT,
(2) parameter sensitivity, (3) influence of query incompleteness, and
(4) performance on handling cold start problem.

7.1 Experimental setup

Data description. We use two real-world large-scale datasets, Bei-
jing and Shanghai, to evaluate our model. All data are randomly
sampled from 60 consecutive days in 2019. The averaged length of
POI names are 10.23 and 10.36, respectively. We chronologically
order each dataset, split the training set and validation set by 80%
and 10%, and left the rest as the test set.

Implementation details. We use the PaddlePaddle platform to
implement STDGAT. All locations are projected to 1,000x1, 000 grid,
and all timestamps are projected to 24 time slots. The dimension
of all representation vectors d is fixed to 64, and we use 1-layer
CNN and 1-layer neural network in semantic representation block.
We set the regularization coefficient A = 0.001, the learning rate to
0.001, the length of time period T to 1 (day), the number of time
periods tr to 5, the slope in the LeakyRelu activation function to
0.2, weight coefficient y to 0.4. The kernel scale Kj and K are set
to 2 and 4, respectively. We employ a three-layer fully-connected
neural network in the pairwise neural fusion block, and the number
of neurons in each layer is 128, 64, 32, respectively. The threshold
¢ in the user-specific graph is set to 3.

Baseline algorithms. We compare our full approach with two
statistical methods, four deep neural network based methods, and
three variants of STDGAT.

o Frequency-based matching is a statistical method based
on the query-POI interaction frequency. Specifically, given a
query, we rank the POIs based on the query-POI co-occurrence
(i.e., number of clicks of the POI candidate).

¢ Distance-based matching is another statistical method
based on the distance between POI location and query loca-
tion. Specifically, given a query, we rank the POI candidates
based on their distance with the underlying query location.

e DSSM [9] is a widely used semantic matching model. A deep
neural network is employed to predict the relevance between
keywords and documents. In our experiments, for all DSSM
based models, we treat POIs as documents and queries as
keywords. We fine-tune all parameters based on settings in
the original paper.

o C-DSSM [22] extends DSSM by adding extra convolutional-
pooling layers to extract sentence-level features from n-gram
word representations.

o LSTM-DSSM [20] incorporates LSTM [8] with DSSM to
capture the temporal effect for semantic matching.

e PALM [36] proposes an attention-based neural network to
incorporate semantic similarity and geographical correlation
to quantify the query-POI relevance. Similarly, we fine-tune
the parameters based on the default settings in original paper.

e STDGAT-B is the basic version of STDGAT, without con-
sidering the situational context factors and user attributes
during the learning process.

o STDGAT-St is a variant of STDGAT without the user-specific
query-POI graph attention block in learning and prediction.

e STDGAT-Dy is another variant of STDGAT, but it excludes
the generic query-POI graph attention block.

Evaluation metrics. We adopt Hits@k [30] and NDCG@k [11]

for evaluation. For Hits@k, it computes what percentage of POIs
among the top — k matched POIs based on queries has been clicked
by a given user,
Pyq N Ry q(k)
- %
where P, 4 is a set of clicked POIs based on query g for a user u,
and Ry, 4(k) records the top-k matched POIs based on query g for
user u. For NDCG@k, it takes both relevance score and the orders
of all potential destination POIs into account and demonstrates the
ranking quality of matching list,

Hits@k = (24)

1 M zreli -1
NDCG@k = —— >, ———, 25
@ IDCG ; log(1 + i) (25)
where IDCG stands for the maximum possible DCG for a given
POI recommendation list, and we set rel; as 1 if the POI at position
i is clicked and 0 otherwise. M denotes the number of correctly
recommended POIs.

7.2 Overall performance

We evaluate the overall performance of our model as well as all
baselines on Beijing and Shanghai Datasets. Specifically, we use
Hits@3, Hits@5, Hits@10, NDCG@3, NDCG@5, NDCG@10.
All results are reported in Table 2. As can be seen, STDGAT
achieves the best performance compared with all baselines on both
datasets using all metrics (all the p-values between our model and
each baseline are much smaller than 0.05, indicating the statis-
tical significance of improvements). Specifically, we average the
improvements on both datasets, and STDGAT outperforms the
state-of-the-art baseline, PALM, by (0.0621, 0.0643, 0.0493, 0.0644,
0.0526, 0.0336) in terms of six metrics. In addition, we observe the
advance of STDGAT reduces when we evaluate on a larger k. For
example, STDGAT achieves 0.0486 improvement compared with
PALM on Hit@3 on Beijing, whereas the improvement reduces to



Table 2: Overall performance.

Algorithm Beijing Shanghai
& Hits@3 Hits@5 Hits@10 NDCG@3 NDCG@5 NDCG@10 p-value |Hits@3 Hits@5 Hits@10 NDCG@3 NDCG@5 NDCG@10 p-value
Frequency-based search | 0.2938 0.4593  0.5809 0.2685 0.3893 0.4749 5.76e-18 | 0.2863 0.4474 0.5796 0.2732 0.4145 0.5193 6.19e-17
Distance-based search | 0.2492 03670  0.4399  0.2283 0.3115 03669  1.76e-18| 0.2294 0.2974 0.3659  0.2122 0.2658 0.3148  3.26e-20
DSSM 0.6016  0.6889  0.7337 0.5982 0.6687 0.7024 6.77e-8 | 0.6217 0.7039  0.7475 0.6169 0.6851 0.6928 9.43e-7
C-DSSM 0.6243 0.6910 0.7647  0.6134 0.6705 0.7293  4.02e-5 | 0.6384 0.7292 0.7789  0.6255 0.7090 0.7535  6.57e-7
LSTM-DSSM 0.6441 0.7311  0.7860 0.6317 0.7025 0.7436 3.23e-9 | 0.6145 0.7371 0.7883 0.6236 0.7114 0.7562 1.92e-8
PALM 0.6743 0.7382 0.8251  0.6685 0.7022 0.7653  5.57e-4 | 0.6588 0.7531 0.8046  0.6327 0.7295 0.7689  1.55e-9
STDGAT-B 0.5973  0.6691  0.7231 0.5772 0.6219 0.6689 8.62e-13| 0.6153 0.6970  0.7332 0.5939 0.6668 0.6921 4.05e-12
STDGAT-St 0.6377 0.7186  0.7795  0.6211 0.6729 0.7157  4.61e-6 | 0.6422 0.7690  0.7709  0.6313 0.7249 0.7467  1.58e-6
STDGAT-Dy 0.6573  0.7524  0.8026 0.6397 0.7244 0.7590 2.76e-7 | 0.6854 0.7792  0.8125 0.6672 0.7482 0.7643 7.54e-5
STDGAT 0.7229 0.8038 0.8646 0.7034  0.7733 0.8042 - 0.7343 0.8161 0.8537 0.7266  0.7635 0.7971 -
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Figure 4: Parameter sensitivity on Beijing,.

0.0395 on Hit@10. This makes sense because most of the correctly
predicted POIs are placed in the front ranks, which demonstrates
the high quality of the matching list. Moreover, we observe signif-
icant improvement by applying neural network based models on
query-POI matching problem, which demonstrates the effectiveness
of deep learning models. As Table 2 shows, the performances of
both STDGAT-St and STDGAT-Dy are better than our basic model
STDGAT-B, but STDGAT-St performs slightly worse than STDGAT-
Dy, which indicates the user’s unique search preference has more
impacts than geographical correlations on the POI selection. Finally,
our full approach STDGAT outperforms STDGAT-B, STDGAT-St,
ADGA-Dy by (0.1223, 0.1269, 0.1310, 0.1295, 0.1241, 0.1202), (0.0887,
0.0662, 0.0840, 0.0889, 0.0695, 0.0694) and (0.0573, 0.0442, 0.0516,
0.0795, 0.0321, 0.0390) respectively in average. Indeed, the intro-
duction of geographical information, time slot, and user preference
does exert positive influences on query-POI matching.

7.3 Parameter sensitivity

Then we report the parameter sensitivity of STDGAT on Beijing
dataset, including the representation vector dimension d, the learn-
ing rate Ir, the regularization coefficient A, and kernel scales K1 and
K3. The results on Shanghai are similar, and we omit them due to
space limit.

First, we vary the representation vector dimension d from 16 to
256. As shown in Figure 4(a), we observe a performance improve-
ment when we increase d from 16 to 64 and performance degrade
when we further increase d from 64 to 256. These results illustrate
64 dimension representation vector is powerful enough to capture
semantic information.

Second, we vary the learning rate Ir from 0.0001 to 10. As shown
in Figure 4(b), the performance is relatively stable when Ir is smaller
than 0.01, and we observe consistent performance degradation

when [r increases from 0.01 to 10, probably because large learning
rate results in divergent weight update, which may oscillate the
model performance.

Third, we vary the regularization coefficient A from 0.0001 to 1.
The results are reported in Figure 4(c). As can be seen, the model
achieves optimal performance when set A = 0.001, and the per-
formance degrades with 1 is either too small or too large. One
possible reason is that if the interference of the regularization term
is negligible, it will make little contribution to the performance. In
contrast, if too much attention is paid to regularization terms, the
model performance will be underestimated.

Fourth, we evaluate the impact of scales K; and K3. As shown in
Figure 4(d), we vary Kj from 1 to 3 and K3 from 1 to 6. Overall, the
performance reaches optimal when we set K1 = 2 and K = 4. We
observe remarkable performance degradation when we increase or
decrease K1 and K».

7.4 Influence of query incompleteness

We further compare the effectiveness of STDGAT and existing
baselines on handling incomplete queries. The average lengths of
POI name in Beijing and Shanghai datasets are 10.23 and 10.36,
whereas the average lengths of query keywords are only 5.12 and
5.03, respectively. Specifically, we partition each dataset into subsets
according to the percentage of query completeness. The results on
Hits@3 are shown in Figure 5.

As can be seen, STDGAT achieves the best performance com-
pared with all baselines on all subsets of different percentages
of query completeness. Specifically, the performance of STDGAT
more than doubles two statistical methods (Frequency-based and
Distance-based search) and greatly outperforms the results of DSSM-
based models by (0.0851, 0.0726, 0.0840, 0.0821, 0.1069) for different
query length percentages. Such results validate our expectation
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Figure 5: Influence of query incompleteness.

that incorporating textual semantics, pairwise activity relevance,
and time-evolving user preference does have positive influences on
incomplete query-POI matching. Look into more details, the per-
formances of Frequency-based and Distance-based search models
remain low (between 0.0772 and 0.2709) mainly because traditional
methods have become incompatible with query-based POI predic-
tion when the query keyword is ambiguous. Similarly, while the
family of deep structured semantic models (DSSM) has managed
to generate a series of appropriate semantic representatives for
latent semantics from a query-POI pair, the incomplete query phys-
ically blurs the previously obvious semantic patterns. Furthermore,
DSSM-based models overlook factors from non-semantic domains
such as user preference and situational context, thus the scores
are relatively lower than PALM and STDGAT. In contrast, PALM
preserves the semantic similarity and geographical correlation,
therefore performs relatively better among other baselines.

7.5 Handling cold start problem

Finally, we evaluate the performance of STDGAT on handling the
cold start problem. For three classes of cold start problems, we
randomly remove 5% vertices (i.e., users, queries, and POIs, respec-
tively) and their corresponding map query events from the Beijing
dataset. The results of Hits@3 on removed records are reported
in Table 3. As can be seen, the performances on records with cold
start users, cold start queries, and cold start POIs are marginally
worse than those on records with existing users, queries, and POIs.
However, the performance of STDGAT on cold start records is still
significantly better than all baselines. We observe the influence
of unseen users is the largest, which is because the user-specific
query-POI graph attention is not applicable. On the other hand,
however, the above observations also validate the effectiveness of
the user-specific query-POI graph attention.

Table 3: Hits@3 performance on handling cold-start prob-
lems on Beijing.

Algorithm New user New POI New query p-value
Frequency-based search 0.3143 0.3414 0.3355 3.26e-14
Distance-based search 0.2857 0.3043 0.3158 1.23e-16
DSSM 0.3389 0.3576 0.4259 5.02e-8
C-DSSM 0.3537 0.3820 0.4097 3.41e-8
LSTM-DSSM 0.3807 0.4265 0.4465 2.85e-7
PALM 0.3902 0.3899 0.4635 1.78e-5
STGDAT 0.4023 0.4347 0.4728 -

8 RELATED WORK

Deep learning based semantic matching. In recent years, deep
learning has demonstrated its effectiveness in learning higher-order

features for various information retrieval tasks 7, 9, 17, 20, 22, 36].
Among them, the DSSM [9], its extensions (C-DSSM [22], LSTM-
DSSM [20] and latest PALM are the most related to our work. DSSM
uses a deep neural network architecture to map a bag of letter-
trigrams from search queries and documents to low-dimensional
semantic embeddings. The conditional likelihood of clicks among
query-item pairs is computed as the cosine similarity of their cor-
responding embeddings. However, bag-of-words representations
cannot keep the contextual structure and long-term contextual in-
fluence within the query or documents. Subsequently, C-DSSM and
LSTM-DSSM are proposed to bridge the research gap accordingly.
In order to compensate the limitations brought by one-sided se-
mantic source, PALM introduces external geographical information
with semantic similarity for measuring query-POI relevance. It uses
pre-generated word embeddings to present four types of variables
(POI name, POl address, geographical location and query word), and
stacks multiple convolutional and self-attention layers to capture
query-POI correlations for matching. Compared with our approach,
the above approaches have two major limitations: (1) they only
capture static representations and structures of queries and items,
therefore take the risk of losing important situational context for
query-POI matching. (2) they ignore the effects of time-evolving
user preference in the query-POI relevance learning.

Graph neural network. GNN has shown its power on mod-
eling non-Euclidean graph structures [12]. Specifically, GCN [5]
learns node representations by considering their neighbor nodes
through a predefined aggregation function. GAT [24] only explicitly
sets the adjacent matrix and employs the attention mechanism to
learn the edge weights automatically. Recently, GNN based mod-
els have been proposed to tackle various problems, such as social
recommendation [6], user behaviour modeling [37], and spatiotem-
poral forecasting [35]. For relevance matching, Zhang et al. [34]
adopt GAT to capture structural information for both query and
documents to obtain better representations, Wang et al. [26] employ
GCN for cross-modal language-to-vision matching. Different from
the above works, to the best of our knowledge, we first apply GAT
to the query-POI matching problem.

Dual paradigm. In real-world life, the essence of the dual para-
digm inspires the dual structural design in many tasks. For exam-
ple, DELF [2] learns static embeddings for both users and items
in recommendation systems. DANSER [29] proposes a dual graph
attention network to model social effects in recommendation tasks.
DGCN [40] uses a dual structural to ensure the global and local
consistency in the semi-supervised learning of graph-structured
data. MDAL [28] utilizes the dual effects of label and content infor-
mation for structural knowledge learning. In this paper, we follow
the dual paradigm and propose a novel dual GAT architecture to
jointly learn the generic and user-specific correlations between
queries and POIs under complex situational contexts.

9 CONCLUSION

In this paper, we proposed STDGAT, user preference and situa-
tional context aware intelligent query-POI matching framework.
Our contributions lie in four aspects. First, we collaboratively mod-
eled different textual information (i.e., queries and POI names)
and situational contexts (i.e., geographical location, time informa-
tion, and user) when quantifying the query-POI similarity. Second,



we investigated the inherent interactions among dynamic spatio-
temporal factors and proposed a dual graph attention network to
capture query-POI relevance from both generic perspective and
user-specific perspective. Specifically, the generic graph attention
captures global query-POI correlation, while the user-specific graph
attention captures the time-evolving user preference on destina-
tion POIs. Third, we addressed the cold start problem in query-POI
matching task, and introduced several training techniques to im-
prove matching effectiveness and training efficiency. Finally, we
conducted extensive experiments on two real-world map search
query datasets to evaluate the model, and the experimental results
demonstrate that the performance of STDGAT significantly outper-
forms six baselines.
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