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Abstract 
The recent issued 5G standard promises a comprehen-

sive service provisioning for diverse user demands. The new 
challenges posed by 5G (e.g. the ultra-low latency commu-
nication) urge the functionality deployment to offload from 
network core to edge. Besides, the various requirements of 
QoS guarantee cast by fast-varying services make the Net-
work Function Virtualization (NFV) an essential enabler of 
edge network evolution. To date, the performance challeng-
es at the newly created NFV-enabled virtual network edge 
are still unexplored. In this paper, we investigate the con-
verged virtual Radio Access Network (RAN) and Mobile 
Edge Computing (MEC) in 5G era. We first outline the solo 
virtual RAN performance. We then characterize the collo-
cate workloads (RAN and MEC, RAN and RAN) on the 
commercial off-the-shelf (COTS) edge platform. Finally, we 
provide brief cost comparison between traditional RAN and 
virtual RAN. The implications of the virtual RAN system 
will benefit future edge NFV design. 

1. Introduction 
5G is a new paradigm that enables tremendous opportu-

nities by delivering high-bandwidth and low-latency. The 
emerging 5G-enhanced applications include smart home, 
smart factory, Artificial Intelligence (AI), Augmented Reali-
ty (AR)/ Virtual Reality (VR) and autonomous driving, etc. 

In responding to the fast-varying user service require-
ments and highly mixed traffics, the 5G network exploits 
Network Function Virtualization (NFV)[1] and network 
slicing technique to enhance its functional and architectural 
viability. NFV is a novel paradigm that enables scalable and 
flexible deployment of network services on edge or cloud 
infrastructure. The NFV-based network slicing technique 
accommodates various applications with unique service 
slices that across core network and edge network. However, 
configuring service slices at the network edge will create 
new research challenges for NFV.  

The NFV at the network edge introduces new virtualiza-
tion scenario and functions compared to the traditional NFV 
scenario. A trending edge NFV scenario is the virtualized 
Radio Access Network (vRAN). The RAN system is the 
most expensive part of the mobile network and the resource 
of 80% of performance problems that affect the user experi-
ence. The 5G RAN infrastructure calls for a re-architected 
service hierarchy to deliver a more flexible and diverse ser-
vice provisioning. Compared to traditional LTE RAN, parts 

of the 5G core functions (i.e. user plane functions in the 
LTE core) and the baseband units (BBUs) are consolidated 
as 5G distributed units (DUs), where the non-real-time func-
tions are implemented as virtual network functions (VNFs) 
or containers and deployed on commodity-off-the-shelf 
(COTS) servers to provide a more scalable and cost-
effective solution compared to traditional specialized 
equipment at the cell site. Moreover, the vRAN is usually 
co-located with multi-access edge computing (MEC) work-
loads on the edge servers, such as streaming 360-degree 
video processing. Such mixed-service oriented workload 
consolidation can significantly challenge the resource man-
agement of edge NFV servers. 

The new edge workload characteristics and deployment 
manners will significantly impact the edge hardware plat-
form design. As the edge platform needs to seek the tradeoff 
between the cross-platform compatibility and the extreme 
cost-efficiency. However, though the existing work explores 
the virtualized BBU system under different RAN system 
configurations and provides initial insights on system com-
putational capacity [2]. More detailed architectural implica-
tions are still needed to better decide the hardware architec-
ture design trade-off of 5G edge NFV servers. 

In this paper, we build a test framework of containerized 
5G RAN and MEC. We collect the architectural characteris-
tics of key RAN components and MEC applications on the 
5G edge cloud platform. Our experiments demonstrate the 
following implications: (1) The RAN system is a CPU-
intensive application, while its memory footprint is trivial. 
(2) The main performance bottleneck for RAN system is 
most Backend Bound. The optimization for Backend Bound 
is necessary to achieve better RAN performance. (3) In 
RAN system, turbo decoding module consumes majority 
part of CPU. The turbo decoding module should be highly 
optimized or it is suggested to implement by a hardware 
accelerator. (4) The co-running of RAN system and MEC 
application will slow down the MEC processing by 24% ~ 
100%. However, the RAN system itself is not seriously af-
fected when co-running with our chosen MEC applications. 
(5) The co-running of a RAN system with other RAN sys-
tem will cause interference for each other. Even the occa-
sionally resource confliction of RAN systems will destroy 
the RAN applications. It is suggested to binding multiple 
RANs to separated cores inside a server. (6) Compared to 
the current 4G RAN, the utilization of virtualized RAN can 
decrease the expenditure by 30% ~ 80% for the same band-
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width supporting. Considering utilizing MEC in access cell 
site, the decreasing percentage will be around 60% ~ 75%.  
2. Background 

To meet the rigorous requirements of bandwidth and la-
tency, 5G needs a new network architecture that scales to 
device and traffic densities far beyond current LTE net-
works. As the most performance-critical part in the transport 
network, the traditional LTE radio access network (RAN) 
will be re-architected by combining parts of the core func-
tions and edge computational capabilities. This will transfer 
the centralized RAN to a heterogeneous edge cloud. Ac-
cording to various service requirements of applications, the 
cloud-native function modules could be flexibly spawned 
and deployed on container-enabled central cloud, edge 
cloud, and cell site. 

 We show three typical cases of network function place-
ment corresponding to the specific applications in Figure 1. 
For the mobile broadband service slices with round-trip de-
lay tolerance is around 10ms, the 5G core control-plane 
functions and user-plane functions are collocated at the cen-
tral cloud, while the 5G distributed unit (DU, the analogy to 
the eNodeB in LTE) is deployed on edge cloud servers. In 
the autonomous driving case with the round-trip latency 
guarantee is within 5ms, the 5G core data-plane functions 
will be deployed in edge cloud. And the edge cloud servers 
also host MEC platform to process latency-sensitive appli-
cations. For the industrial mission-critical IoT applications 
(e.g. robot motion control), the ultra-low-latency demand 
(<1ms) may even require host MEC on cell site. 
3. Characterization Methodology 
    In this section, we first introduce our containerized edge 
cloud testbed, which is based on open-source virtualized 
RAN framework OpenAirInterface (OAI) and MEC 
Benchmarks. We then describe our experimental setup. 

3.1 Experimental Platform Overview 
We choose the OpenAirInterface (OAI) [3] as the RAN 

framework and conduct necessary function split to mimic a 
real 5G RAN system. OAI is the most complete open-source 
RAN experimentation and prototyping platform created by 
EURECOM. The OAI platform includes a full software 

implementation of mobile cellular systems compliant with 
3GPP standards in C under realtime Linux optimized for 
x86. For the 3GPP Access-Stratum, OAI provides standard-
compliant implementations of PHY, MAC, RLC, PDCP and 
RRC, spanning the entire protocol stack from the physical to 
networking layer, for both eNodeB and UE. For the core 
network, the OAI provides standard-compliant implementa-
tions of a subset of 3GPP EPC components such as the 
Serving Gateway (S-GW), the Packet Data Network Gate-
way (P-GW), the Mobility Management Entity (MME), and 
the Home Subscriber Server (HSS). Fig. 2 shows a typical 
downlink path and the key network functions in OAI edge 
and core networks, note that both eNodeB and core func-
tions are hosted in containers. 

We select video benchmarks from PARSEC [4] to mimic 
our video processing based MEC applications. PARSEC 
includes emerging applications in system applications which 
mimic large-scale multithreaded industrial programs. We 
host selected PARSEC applications as containers.  
3.2 Experimental Setup 

Hardware Platform As shown in Figure 2, the experi-
mental testbed consists of one/two units of Commodity-Off-
The-Shelf (COTS) UE, one unit of OAI eNodeB Remote 
Unit (RU), one unit of eNodeB Distributed Unit (DU) and 
one unit of EPC. We use two sets of Intel Core machines 
(Core i7-8700 @ 3.20GHz  16GB RAM, and W2195 @ 
2.30GHz, 128GB RAM) for eNodeB DU and RU, Intel 
Xeon machine (E5405 @ 2.00GHz 4G RAM) for EPC and 
Huawei Honor 8 as our UE. The testbed is implemented 
with a real RF front-end (Ettus B210 USRP). 

Software Platform The eNodeB version we use is 
branch 2018_w25. For EPC, we use the developer branch. 
The Operation system used for both machines is Ubuntu 
16.04. All the experiments were conducted with the same 
eNodeB configuration, namely FDD with 5 MHz bandwidth 
in band 7. We use Intel VTune Amplifier [5] to profile ar-
chitectural data of key network functions as illustrated in 
Figure 2. All the applications are implemented in a docker 
container environment. The docker version we use is 
18.09.1.  
4. Understanding the Architecture Implica-
tions of Edge RAN system 
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Figure 1. RAN architecture revolution from LTE to 5G. 
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In this section, we characterize architectural information 
of the solo-run eNodeB Distributed Unit (DU). We first 
profile the CPU and Memory Usage for the overall Distrib-
uted Unit (DU). We then evaluate the DU’s submodules’ 
CPU utilization and their micro-architectural characteristics. 
We demonstrate several key learning that are drawn from 
our detailed architectural profiling. We reason about the 
interesting findings and provide a platform setup guideline 
for modern edge NFV workloads.  

4.1 CPU and Memory Usage of eNodeB 
Figure 3 and Figure 4 illustrate the CPU Utilization of 

the overall OpenAirInterface eNodeB in both uplink and 
downlink under 3 traffic types: (1) UDP - increasing band-
width while maintaining the same packet size (using default 
packet size). (2) UDP – decreasing the packet size while 
maintaining the same bandwidth. (3) TCP – increasing 
bandwidth while maintaining the same packet size (using 
default packet size). We choose 10Mbps for downlink and 
5Mbps for uplink. We observe that the CPU Utilization in-
creases with the increase of UE’s packet per second (pps). 
Meanwhile, the memory usage always stays around 
0.928GB regardless of the trend of the UE’s alters, which 
illustrates that the eNodeB Distributed Unit is a computa-
tion-intensive application. Besides, the uplink per Mbps 
CPU utilization is two times to the downlink per Mbps CPU 
utilization since the uplink decoding algorithm is much 
more complicated compared to the downlink encoding algo-
rithm.  

4.2 CPU Utilization for OAI eNodeB sub-modules 
Figure 5, Figure 6 and Figure 7 show the CPU Utiliza-

tion of sub-modules inside OpenAirInterface eNodeB for 
UDP traffics with different bandwidth/packet sizes and TCP 
traffics with different bandwidth. We observe that the layer 
2 modules (PDCP, RLC, MAC) are less CPU-consuming 
compared to the physical layer modules (Encod-
ing/Decoding, Rate Matching/Dematching, Scrambling/ 
Descrambling and Modulation/Demodulation) in both 
downlink and uplink directions under all cases. This indi-
cates that the layer 2 modules are not constrained by CPU 
resource. More attention needs to be paid into the physical 
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     Figure 3. CPU/Memory Usage vs. UDP/TCP Bandwidth 
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Figure 4. CPU/Memory Usage with UDP Packetsize 
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Figure 5a. CPU Utilization and Microarchitecture value for Downlink UDP Bandwidth 
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Figure 5b. CPU Utilization and Microarchitecture value for Uplink UDP Bandwidth 
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layer modules. 
Figure 5, Figure 6 and Figure 7 also illustrate that the 

CPU utilization of different modules inside eNodeB alter 
greatly in uplink and downlink direction. For the downlink, 
the CPU consumptions are evenly distributed among the 
modules. For the Uplink, turbo decoding consumes the most 
of the CPU. The CPU utilization of all other modules is neg-
ligible compared to the turbo decoding. This result agrees 
with the studies on the Radio Access Network sub-module 

behaviors in [6]. The Turbo decoding module should be 
highly optimized or this module is suggested to offloaded to 
a hardware accelerator. 

Besides, from Figure 5, Figure 6 and Figure 7 we ob-
serve that the CPU Utilization increases when the band-
width goes up or the packet size goes down. The reason for 
this is that the total pps goes up when we increase the 
bandwidth or decrease the packet size in the experiment.  

PDCP RLC MAC DCI CRC Encoding Rate 
Matching

Scrambling Modulation Control 
Channel

PHY_Proc.

2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M

0%

20%

40%

60%

80%

100%

To
ta

l C
yc

le
s

 Retiring  Frontend  Bad Speculation  Backend

0
1
2
3
4
5
6
7
8
9

 CPU Utilization  IPC

C
P

U
 U

til
iz

at
io

n(
%

) a
nd

 IP
C

 
Figure 7a. CPU Utilization and Microarchitecture value for Downlink TCP Bandwidth 
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Figure 7b. CPU Utilization and Microarchitecture value for Uplink TCP Bandwidth 
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Figure 6a. CPU Utilization and Microarchitecture value for Downlink UDP Packetsize 
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Figure 6b. CPU Utilization and Microarchitecture value for Uplink UDP Packetsize 

597

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore.  Restrictions apply. 



Moreover, we observe that the maximum bandwidth for 
TCP is slightly smaller compared to the UDP. Under Re-
source Block 25, the maximum bandwidth for TCP is 
around 7m for uplink and 15m for downlink. The maximum 
bandwidth for UDP is around 8m for uplink and 16m for 
downlink. The reason for this is probably that the TCP 
needs to send ACK which leads to smaller available maxi-
mum bandwidth. The trend for CPU consumption for each 
module of UDP and TCP are similar to each other. 
4.3 Instructions Execution 

Instruction per cycle (IPC) is a fundamental performance 
metric, which is used to measure instruction-level parallel-
ism. There are four micro-architectural metrics relates to the 
IPC – Retiring, Bad Speculation, Frontend Bound and 
Backend Bound in Intel VTunes [7]. A high percentage of 
retiring usually means a high IPC value of an application. 
The high percentage of the other three categories will hurt 
the retiring, which will lead to low IPC. A thorough analysis 
of Frontend Bound, Bad Speculation and Backend Bound 
would help us locate the hotspot of an application and pro-
vide optimization direction for further development.  

Figure 5, Figure 6 and Figure 7 show IPC values of the 
modules inside OAI eNodeB. For the downlink cases, we 
can see that the IPC value for modules DCI, Rate Matching, 
Scrambling and Modulation are near to 4, which is almost 
the ideal value. The IPC values for Control Channel are 
around 2.7, which is also acceptable. The Turbo Encoding 
module’s IPC value is around 1.8, which suggests potential 
optimizations to improve the performance. For the uplink, 
we observe that the IPC values for all the modules are 
around 2, which means the headroom still exists to get bet-
ter performance of each module in eNodeB uplink direction. 
Detailed analysis of microarchitecture bottleneck is given in 
section 4.4. Figure 5, Figure 6 and Figure 7 also provide the 
Retiring percentage of modules inside OAI eNodeB, we 
note that Retiring correlates well with IPC value, high retir-
ing value always means high IPC.  
4.4 Frontend Bound, Bad Speculation and 
Backend Bound Behavior 

Figure 5, Figure 6 and Figure 7 also show the cycle 
breakdown for the submodules of DU. Frontend Bound de-
notes that instruction-fetch stall will prevent core from mak-
ing forward progress due to lack of instructions. Bad Specu-

lation reflects slots wasted due to incorrect speculations. 
Backend Bound illustrates that no uops are being delivered 
at the issue pipeline, due to lack of required resources in the 
Backend. We can see that across all the modules, the 
Frontend Bound and Bad Speculation overheads are negli-
gible. The main stall of DU application is concentrated at 
Backend Bound, which means the optimization for Backend 
part is necessary for DU application. For the most CPU 
consuming module - turbo decoding, we observe that the 
Backend Bound is around 45%, which is the main reason 
causing the low IPC for the turbo decoding. 

We further investigate the source of Backend Bound by 
dividing it into two separate metrics: Memory Bound and 
Core Bound. Memory Bound manifests with execution units 
getting starved after a short while. Core Bound manifests 
either with short execution starvation periods or with sub-
optimal execution ports utilization. Table 1 and Table 2 
show CPU consumption dominant functions in the main 
modules. We can find the root cause of non-uniform 
Backend Bound. Memory Bound and Core Bound both suf-
fer from the current RAN system. Memory Bound can be 
mitigated by simply increasing the cache size of the server, 
or by leveraging memory which can control the mapping of 
instruction and data storage for each core. Moreover, since 
the RAN system processing proceeds in continuous phases, 
providing buffers for data communication from one phase to 
another will probably mitigate the Memory Bound. Core 
Bound can be mitigated with the better code generation, e.g., 
avoiding dependent arithmetic operations in a sequence, or 
better vectorization organization of OpenAirInterface sys-
tem. Furthermore, since the RAN system involves much on 
the complex number operations; perhaps leverage specific 
instruction function units for complex operations will pro-
mote the core performance for RAN system. 

We further deploy the DU on alternative high-end COTS 
server platform (W2195 @ 2.30GHz, 128GB RAM) with 
higher cache size to investigate if the Backend bound over-
heads could be mitigated. Table 3 compares the cache size 

Table 1. Downlink Main Functions in Wimpy Node 

Downlink Functions Retiring Memory Bound Core Bound
 sub block interleaving turbo 72.9 13.6 14.9
threegpplte turbo encoder 30.4 30.5 34.3
crc24 15.2 48.5 36.4

Table 2. Uplink Main Functions in Wimpy Node 
Uplink Functions Retiring Memory Bound Core Bound 
phy_threegpplte_turbo_decoder16 50.8 23.8 23.8 
sub_block_deinterleaving 68 14.9 13 
ulsch_decoding 38.1 50.7 8.5 
_mm_sub_spi16 66.9 8 25.8 
  _mm_max_epi16 58.8 28.5 11.4 
   crc24 26.7 35.7 32.6 

Table 4. Downlink Main Functions in Beefy Node 
Downlink Functions Retiring Memory Bound Core Bound 
 sub_block_interleaving_turbo 55.8 0 44.2 
 threegpplte_turbo_encoder 40 0 60.2 
 crc24 13.8 0 86.2 

Table 5. Uplink Main Functions in Beefy Node 
Uplink Functions Retiring Memory Bound Core Bound 
phy_threegpplte_turbo_decoder16 62.2 0 37.5 
sub_block_deinterleaving 67.6 0 32.4 
ulsch_decoding 45.7 0 52.8 
_mm_sub_spi16 56.6 0 43.9 
  _mm_max_epi16 52.2 0 43.5 
   crc24 43.5 0 56.5 

Table 3. Cache Size and Frequency in Wimpy and Beefy Node 

Wimpy Node Beefy Node
L1 cache 384KB 1152KB
L2 cache 1536KB 18432KB
L3 cache 12288KB 25344KB
Frequency 3.2GHz 2.3GHz
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and CPU frequency of the wimpy server and the beefy serv-
er. 

Table 4 and Table 5 show the memory-bound and core 
bound details of CPU consumption dominant functions in 
eNodeB on the beefy server. We observe that the memory-
bound is significantly mitigated because of the larger cache 
resources. However, the Core Bound overhead deteriorates 
on the beefy server. The reason for this is probably due to 
the frequency reduction of the server. The frequency reduc-
tion may lead to longer execution starvation and worse port 
utilization, which results in the higher Core Bound in beefy 
server environment. The counteracts of lower Memory 
Bound and higher Core Bound makes the overall Backend 
performance stay similar to the wimpy server platform.   
5. Understanding the Architecture Implica-
tions of Co-location Edge systems  
     In this section, we start evaluating the performance of 
Distributed Unite (DU) and edge computing application 
when co-running them together on the same cores. We then 
leverage multiple vRANs on the same cores and show up 
the behavior. 

5.1 Co-location of RAN and MEC Application 
We begin with the evaluation of the performance for 

edge computing applications when co-running with eNodeB 
based DU. Furthermore, we demonstrate the performance of 
eNodeB when sharing the same cores with edge computing 
applications. 

We select video processing related applications as our 
benchmarks since most of today’s edge computing utiliza-
tions are concentrated on video processing. We choose vips 
and x264 from PARSEC. The workload information is 
shown in Table 6. Vips is an image processing library and 
x264 is an application for encoding video streams in the 
H.264 compression format. We first co-run edge computing 
applications and eNodeB DU with various traffic bandwidth 
on the same cores and report the edge computing applica-
tions’ processing time. Figure 8 shows the normalized pro-
cessing time of MEC applications. With the bandwidth go-
ing up for eNodeB, the edge computing applications require 
more time on completing the same-volume workload. The 
prolonged processing time is between 24% (when the 
bandwidth is 2M) to 100% (when the bandwidth is 14M). 
The reason for the longer processing time is that the 
eNodeB DU utilizes more CPU with the bandwidth increas-

ing, which constraints the available CPU for edge compu-
ting application. 

Furthermore, we evaluate the eNodeB Distribute Unit 
performance when it is co-running with edge computing 
applications. To our surprise, the performance of eNodeB 
does not degrade even though it is sharing the same core 
with the edge computing applications. Figure 9 shows typi-
cal performance for main modules inside eNodeB during the 
co-running, we find that the performance is almost the same 
compared with the solo eNodeB running situation (Figure 5). 
We observe that the PARSEC applications and eNodeB 
efficiently utilize the given cores. The utilization goes up to 
100% for the leveraged cores. However, when we increase 
the bandwidth for the eNodeB, the CPU utilization of 
eNodeB goes up to the same level as the level without the 
co-running. The available CPU Utilization of PARSEC edge 
computing is constrained by eNodeB application during co-
running. 

Our speculation is that the CPU resource for eNodeB 
does not achieve its upper bound. All containers’ default 
CPU-shares value is 1024, since the saturated traffic of 
eNodeB only consumes 45% of the CPU, it does not 
achieve its maximum available 50% CPU ratio when co-
running with the edge computing application container. 

In order to consolidate our speculation, we deploy 3 con-
tainers in an additional experiment. We create two contain-
ers for edge computing applications, with the CPU-share 
value 1024 and 256 respectively. We create a third container 
for eNodeB with the CPU-share value 128. Our expectation 
is that the CPU distribution ratio among the applications 
should be around 8:2:1. The CPU utilization for eNodeB 
should not exceed 20% when co-running with the other two 
applications. 

However, the result of the experiment shows that the 
CPU utilization for eNodeB still cannot be constrained. For 
saturated traffic, the CPU Utilization of eNodeB goes up to 
45%, which is the same value when we leverage the 
eNodeB alone in the given core. The CPU-share for the two 
edge computing application works as what we expect. The 

Table 6. Edge Computing Applications 

 Information Workload 

vips Image processing Image 18K*18K pixels 

x264 Video encoding 25fps 640*360 pixels 
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Figure 8. The Influence of edge computing applications’ runtime when co-running with eNodeB DU 
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CPU Utilization ratio for them is 4:1. Our further specula-
tion is that there may exist inherited priority inside eNodeB 
and edge computing applications. The eNodeB’s CPU Utili-
zation should be constrained when co-running with another 
eNodeB since they have same level priority. We outline the 
performances of co-running eNodeB Distributed Unit under 
multiple cases in section 5.2.  
5.2 Co-location of RAN and RAN Application 

This section we illustrate the behavior of eNodeB Dis-
tributed Unit when it is co-running with other eNodeB Dis-
tributed Unit. 

Figure 10 provides the experiment setup. Since we only 
have one USRP B210 board, we set OAI simulators as our 
co-runner with real USRP B210 board. The eNodeB is sepa-
rated as Distributed Unit (DU) and Remote Unit (RU). The 
simulations’ traffic is generated at RU end. In order to satu-
rate the CPU, we create 2DUs with 2RUs under simulation 
mode as our co-runner. 

We bind RAN (eNodeB DU) with a real board in core 1 
of the server. We bind cores for OAI simulators under 3 
cores sharing types: (1). The OAI simulators are bound to 
core 1, which is the same core with real board RAN. One 
core cannot sufficiently support simulators and real board 
RAN simultaneously.  (2) The OAI simulators are bound to 
core 0 and 1. Under this situation, the simulator partially 
shares cores with real board RAN. The total cores are suffi-
cient to support both OAI simulator and real RAN theoreti-
cally. (3) The OAI simulators are bound to core 0 and 2, in 
which case the simulators are completely separated with the 
real board RAN. The simulators and real RAN are provided 
with sufficient resources they required.  

In case (1), we firstly start up real board RAN system 
and then we trigger the OAI simulators. The RAN system 
works smoothly when the simulators are not started up. 
When the simulators come in, the real board RAN is com-
pletely stuck by the simulators. We observe that the packet 
processing time violates the real-time bound inserted in the 
RAN system since the CPU resource is constrained. In case 
(2), since the simulations are bound to 2 cores, the OAI 
simulators utilize the cores dynamically. The total utiliza-
tion of 2 cores for simulator stays the same but the utiliza-
tion for each core is not stable, the CPU utilization swings 
between two cores. We firstly start the real board RAN and 
then we trigger OAI simulators. When the OAI simulators 

come in, we find that the OAI simulators and RAN system 
work properly if the CPU resources of two systems do not 
exhaust any of the cores.  However, the RAN and OAI sim-
ulator will be stuck when any of CPU cores is exhausted. In 
case (3), the real board RAN and OAI simulators since both 
of the systems are provided with sufficient CPU resources. 

From the experiment, we can conclude that (1) For real-
time systems like RAN, sufficient resources are obligated. 
The system will be stuck if it cannot get its required re-
sources. (2) For real-time applications, it is essential to set 
up applications in separate cores. The occasional resource 
deficiency under resources sharing policy will destroy the 
running applications (3) The real-time applications can co-
run with the non-real-time applications such as vips and 
x264. The non-real-time applications do not compete re-
sources with real-time applications. The co-running of real-
time and non-real-time applications can promote resources 
utilization efficiency. 
6. Edge Infrastructure Cost Analysis 

This section we firstly provide a cost comparison be-
tween traditional RAN and virtualized RAN. Furthermore, 
we estimate the cost of the RAN system with MEC applica-
tions under traditional and virtualized RAN infrastructure. 

Traditional RAN: Traditional RAN utilizes vendor-
specific hardware device to support radio access network. 
To date, the maximum transmission rate one RAN can sup-
port is around 300Mbps [8], [9]. The cell site does not have 
to support the maximum traffic volume. Based on the traffic 
volume requirement of an area, the total traffic volume one 
RAN needs to support alters greatly, which causes the price 
variation for specific RAN. In this paper, we categorize the 
traffic volume as 4 levels: Sparse (50M), Normal (100M), 
Dense (200M) and Ultra Dense (300M). Since there is no 
open-source price for BBU equipment, we use approximate 
price for each RAN based on the report [10]. The price for 
the RAN under each level is shown in Figure 11. We as-
sume the price of RAN in the report is for maximum traffic 
volume 300M and the price of RAN is proportional to its 
supported traffic volume. Figure 11 presents the price for 
traditional RAN. 

Virtualized RAN: Virtualization is the trend for the 
RAN infrastructure. Typical server price can be found in the 
link [11]. From the experiments we observe that the CPU 
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consumption for downlink is around 1.5% per Mbps. The 
required core number can be calculated accordingly, e.g., to 
support 300Mbps bandwidth, the total CPU utilization will 
be 450%, which means that a 6 cores server is recommend-
ed. We show up the vRAN price under the 4 levels traffic 
volume in Figure 11. From Figure 11, we observe that 
vRAN decrease the expenditure from 30% to 80% com-
pared with the traditional RAN.  

RAN with MEC: In order to support ultra-low latency 
applications and mitigate the traffic volume for the core 
network, MEC will be widely used in the near future. Tradi-
tional RAN requests the additional COTS server to support 
MEC applications while the vRAN can support the MEC 
applications with its extra resources inside COTS server. To 
the best of our knowledge, there is no open-source data on 
servers’ average CPU utilization for MEC. The data we can 
find is Google’s cloud CPU utilization estimation [12], the 
Google cloud’s CPU utilization is between 30% ~ 50%. 
MEC workloads are not completely the same with the work-
loads in the data center today, there is the trend that utilizes 
MEC to implement traditional data center missions [13], 
[14]. For this reason, we leverage the data in [12] as MEC 
CPU utilization value. We assume that at most 50% of each 
core can be utilized by RAN workload. Besides, extra 20% 
CPU resource is provided as redundant. E.g., for bandwidth 
300Mbps, 450% CPU utilization is required for RAN. We 
assume MEC workloads utilize 50% of each core so that 
450% CPU utilization is required by MEC. The total is 
900%. Given 20% redundant resource, the total CPU utiliza-
tion of the server is 1080%. Thus a 12 core server is rec-
ommended to handle the RAN and MEC workloads. For 
traditional RAN, the total site expenditure is its BBU device 
price plus a 4 cores server price. Figure 12 presents the price 
comparison for traditional RAN and vRAN with MEC. We 
observe that the expenditure of vRAN with MEC is 60% ~ 
75% lower compared with the traditional RAN. 
7. Related Work 

Edge NFV: Network Virtualization Networks (NFV) 
has received substantial attention from the research commu-
nity in recent years with both academia and industry recog-
nizing its benefits on operational mobile networks. Alt-
hough most of the work highlights the NFV process on core 
networks [15], [16], [25], [17]–[24], there are still several 
NFV projects [3], [26]–[28] proposed at the edge network. 
While the scope of the above-mentioned work includes the 

RAN virtualization and network slicing realization, none of 
them provide a detailed architectural characterization of 
virtualized RAN system, particularly as cloud-native con-
tainerized form. Moreover, no existing work has explored 
the co-located vRAN and MEC system from an architectural 
perspective. 

RAN Characterization: In the last few years, several 
works [29]–[34] provide the performance analysis and study 
on the vRAN system. [30], [31] introduce the concepts and 
architecture of the vRAN system. [30] validates two MAC 
schedulers and analyzes the vRAN system, in terms of 
memory occupancy and execution time. [31] performs thor-
ough profiling of OAI, in terms of execution time, on the 
user plane data flow. A recent work [2] explores the system 
computational requirements of vBBU on a cloud RAN 
testbed. However, none of the existing work has provided a 
comprehensive architectural behavior characterization for 
vRAN framework. To the best of knowledge, our work is the 
first one that explores the architectural implications of the 
co-location of cloud native vRAN and MEC.  
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9. Conclusion 

In this paper, a comprehensive workload characteriza-
tion is presented for virtual RAN and edge computing. 
Based on our characterization work, the main bottleneck for 
the virtual RAN is its Backend Bound. Besides, when the 
RAN is co-running with the edge computing applications, 
the edge computing applications are slowed down by the 
RAN system. However, the performance of the RAN is not 
affected by our chosen edge computing applications. When 
the RAN is co-running with RAN, they will interfere with 
each other. Finally, we show up that virtual RAN will de-
crease the expenditure on both solo RAN build up and RAN 
with MEC build up compared with traditional RAN 
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