2019 IEEE 37th International Conference on Computer Design (ICCD)

Architectural and Cost Implications of the 5SG Edge NFV Systems

Jianda Wang
Electrical and Computer Engi-
neering Department

The University of Texas at Dallas

jxw174930@utdallas.edu

Abstract

The recent issued 5G standard promises a comprehen-
sive service provisioning for diverse user demands. The new
challenges posed by 5G (e.g. the ultra-low latency commu-
nication) urge the functionality deployment to offload from
network core to edge. Besides, the various requirements of
QoS guarantee cast by fast-varying services make the Net-
work Function Virtualization (NFV) an essential enabler of
edge network evolution. To date, the performance challeng-
es at the newly created NFV-enabled virtual network edge
are still unexplored. In this paper, we investigate the con-
verged virtual Radio Access Network (RAN) and Mobile
Edge Computing (MEC) in 5G era. We first outline the solo
virtual RAN performance. We then characterize the collo-
cate workloads (RAN and MEC, RAN and RAN) on the
commercial off-the-shelf (COTS) edge platform. Finally, we
provide brief cost comparison between traditional RAN and
virtual RAN. The implications of the virtual RAN system
will benefit future edge NFV design.

1. Introduction

5G is a new paradigm that enables tremendous opportu-
nities by delivering high-bandwidth and low-latency. The
emerging 5G-enhanced applications include smart home,
smart factory, Artificial Intelligence (Al), Augmented Reali-
ty (AR)/ Virtual Reality (VR) and autonomous driving, etc.

In responding to the fast-varying user service require-
ments and highly mixed traffics, the 5G network exploits
Network Function Virtualization (NFV)[1] and network
slicing technique to enhance its functional and architectural
viability. NFV is a novel paradigm that enables scalable and
flexible deployment of network services on edge or cloud
infrastructure. The NFV-based network slicing technique
accommodates various applications with unique service
slices that across core network and edge network. However,
configuring service slices at the network edge will create
new research challenges for NFV.

The NFV at the network edge introduces new virtualiza-
tion scenario and functions compared to the traditional NFV
scenario. A trending edge NFV scenario is the virtualized
Radio Access Network (VRAN). The RAN system is the
most expensive part of the mobile network and the resource
of 80% of performance problems that affect the user experi-
ence. The 5G RAN infrastructure calls for a re-architected
service hierarchy to deliver a more flexible and diverse ser-
vice provisioning. Compared to traditional LTE RAN, parts

Yang Hu
Electrical and Computer Engi-
neering Department

The University of Texas at Dallas

Yang.Hu4@utdallas.edu

of the 5G core functions (i.e. user plane functions in the
LTE core) and the baseband units (BBUs) are consolidated
as 5@ distributed units (DUs), where the non-real-time func-
tions are implemented as virtual network functions (VNFs)
or containers and deployed on commodity-off-the-shelf
(COTS) servers to provide a more scalable and cost-
effective solution compared to traditional specialized
equipment at the cell site. Moreover, the VRAN is usually
co-located with multi-access edge computing (MEC) work-
loads on the edge servers, such as streaming 360-degree
video processing. Such mixed-service oriented workload
consolidation can significantly challenge the resource man-
agement of edge NFV servers.

The new edge workload characteristics and deployment
manners will significantly impact the edge hardware plat-
form design. As the edge platform needs to seek the tradeoff
between the cross-platform compatibility and the extreme
cost-efficiency. However, though the existing work explores
the virtualized BBU system under different RAN system
configurations and provides initial insights on system com-
putational capacity [2]. More detailed architectural implica-
tions are still needed to better decide the hardware architec-
ture design trade-off of 5G edge NFV servers.

In this paper, we build a test framework of containerized
5G RAN and MEC. We collect the architectural characteris-
tics of key RAN components and MEC applications on the
5G edge cloud platform. Our experiments demonstrate the
following implications: (1) The RAN system is a CPU-
intensive application, while its memory footprint is trivial.
(2) The main performance bottleneck for RAN system is
most Backend Bound. The optimization for Backend Bound
is necessary to achieve better RAN performance. (3) In
RAN system, turbo decoding module consumes majority
part of CPU. The turbo decoding module should be highly
optimized or it is suggested to implement by a hardware
accelerator. (4) The co-running of RAN system and MEC
application will slow down the MEC processing by 24% ~
100%. However, the RAN system itself is not seriously af-
fected when co-running with our chosen MEC applications.
(5) The co-running of a RAN system with other RAN sys-
tem will cause interference for each other. Even the occa-
sionally resource confliction of RAN systems will destroy
the RAN applications. It is suggested to binding multiple
RANS to separated cores inside a server. (6) Compared to
the current 4G RAN, the utilization of virtualized RAN can
decrease the expenditure by 30% ~ 80% for the same band-

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00086

594

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

5G central cloud

LTE central node

:

' '

LTE edge node =~ “rooeeeemeeoeees 5G edge cloud

i i 56 Core UP

""""""""""""
3 MEC

' Cell site ‘ ' ‘ 5G cell site

(A) Mobile Broadband (B) Self-driving

Figure 1. RAN architecture revolution from LTE to 5G.

(C) Mission-critical loT

width supporting. Considering utilizing MEC in access cell
site, the decreasing percentage will be around 60% ~ 75%.

2. Background

To meet the rigorous requirements of bandwidth and la-
tency, 5G needs a new network architecture that scales to
device and traffic densities far beyond current LTE net-
works. As the most performance-critical part in the transport
network, the traditional LTE radio access network (RAN)
will be re-architected by combining parts of the core func-
tions and edge computational capabilities. This will transfer
the centralized RAN to a heterogeneous edge cloud. Ac-
cording to various service requirements of applications, the
cloud-native function modules could be flexibly spawned
and deployed on container-enabled central cloud, edge
cloud, and cell site.

We show three typical cases of network function place-
ment corresponding to the specific applications in Figure 1.
For the mobile broadband service slices with round-trip de-
lay tolerance is around 10ms, the 5G core control-plane
functions and user-plane functions are collocated at the cen-
tral cloud, while the 5G distributed unit (DU, the analogy to
the eNodeB in LTE) is deployed on edge cloud servers. In
the autonomous driving case with the round-trip latency
guarantee is within 5ms, the 5G core data-plane functions
will be deployed in edge cloud. And the edge cloud servers
also host MEC platform to process latency-sensitive appli-
cations. For the industrial mission-critical IoT applications
(e.g. robot motion control), the ultra-low-latency demand
(<1ms) may even require host MEC on cell site.

3. Characterization Methodology

In this section, we first introduce our containerized edge
cloud testbed, which is based on open-source virtualized
RAN framework OpenAirlnterface (OAI) and MEC
Benchmarks. We then describe our experimental setup.

3.1 Experimental Platform Overview

We choose the OpenAirlnterface (OAI) [3] as the RAN
framework and conduct necessary function split to mimic a
real 5G RAN system. OALI is the most complete open-source
RAN experimentation and prototyping platform created by
EURECOM. The OAI platform includes a full software

595

Central Cloud

9

Edge Cloud

Cloud native eNB
(Cencoding] [CRC

Rate DCl
matching

scrambling] (20|
<=L
=[=(2

Modulation
Ctrl. chanl
PHY proc. [RRC
i %
l /Docker]

l / Docker]
COTS server m} €ors server m
ethernet

Figure 2. Typical RAN architecture for the Downlink Path

Cloud
native
MEC

w)
%]

implementation of mobile cellular systems compliant with
3GPP standards in C under realtime Linux optimized for
x86. For the 3GPP Access-Stratum, OAI provides standard-
compliant implementations of PHY, MAC, RLC, PDCP and
RRC, spanning the entire protocol stack from the physical to
networking layer, for both eNodeB and UE. For the core
network, the OAI provides standard-compliant implementa-
tions of a subset of 3GPP EPC components such as the
Serving Gateway (S-GW), the Packet Data Network Gate-
way (P-GW), the Mobility Management Entity (MME), and
the Home Subscriber Server (HSS). Fig. 2 shows a typical
downlink path and the key network functions in OAI edge
and core networks, note that both eNodeB and core func-
tions are hosted in containers.

We select video benchmarks from PARSEC [4] to mimic
our video processing based MEC applications. PARSEC
includes emerging applications in system applications which
mimic large-scale multithreaded industrial programs. We
host selected PARSEC applications as containers.

3.2 Experimental Setup

Hardware Platform As shown in Figure 2, the experi-
mental testbed consists of one/two units of Commodity-Off-
The-Shelf (COTS) UE, one unit of OAI eNodeB Remote
Unit (RU), one unit of eNodeB Distributed Unit (DU) and
one unit of EPC. We use two sets of Intel Core machines
(Core i7-8700 @ 3.20GHz 16GB RAM, and W2195 @
2.30GHz, 128GB RAM) for eNodeB DU and RU, Intel
Xeon machine (E5405 @ 2.00GHz 4G RAM) for EPC and
Huawei Honor 8 as our UE. The testbed is implemented
with a real RF front-end (Ettus B210 USRP).

Software Platform The eNodeB version we use is
branch 2018 w25. For EPC, we use the developer branch.
The Operation system used for both machines is Ubuntu
16.04. All the experiments were conducted with the same
eNodeB configuration, namely FDD with 5 MHz bandwidth
in band 7. We use Intel VTune Amplifier [5] to profile ar-
chitectural data of key network functions as illustrated in
Figure 2. All the applications are implemented in a docker
container environment. The docker version we use is
18.09.1.

4. Understanding the Architecture Implica-
tions of Edge RAN system

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

In this section, we characterize architectural information
of the solo-run eNodeB Distributed Unit (DU). We first
profile the CPU and Memory Usage for the overall Distrib-
uted Unit (DU). We then evaluate the DU’s submodules’
CPU utilization and their micro-architectural characteristics.
We demonstrate several key learning that are drawn from
our detailed architectural profiling. We reason about the
interesting findings and provide a platform setup guideline
for modern edge NFV workloads.

4.1 CPU and Memory Usage of eNodeB

Figure 3 and Figure 4 illustrate the CPU Utilization of
the overall OpenAirInterface eNodeB in both uplink and
downlink under 3 traffic types: (1) UDP - increasing band-
width while maintaining the same packet size (using default
packet size). (2) UDP — decreasing the packet size while
maintaining the same bandwidth. (3) TCP - increasing
bandwidth while maintaining the same packet size (using
default packet size). We choose 10Mbps for downlink and
5Mbps for uplink. We observe that the CPU Utilization in-
creases with the increase of UE’s packet per second (pps).
Meanwhile, the memory usage always stays around
0.928GB regardless of the trend of the UE’s alters, which
illustrates that the eNodeB Distributed Unit is a computa-
tion-intensive application. Besides, the uplink per Mbps
CPU utilization is two times to the downlink per Mbps CPU
utilization since the uplink decoding algorithm is much
more complicated compared to the downlink encoding algo-
rithm.

—=— UDP CPU—&—TCP CPU
UDP Mem—+—TCP Mem

—=— UDP CPU—&—TCP CPU
UDP Mem—#*— TCP Mem

—

2M oM 10M 14M

Downlink Bandwidth(Mbps)

Figure 3. CPU/Memory Usage vs. UDP/TCP Bandwidth

—a—UDP CPU —4&— UDP Mem

*.

*-

Memory Usage(GB)

LY am 5M ™

Uplink Bandwidth(Mbps)

—s—UDP CPU —4&— UDP Mem

o

3% “ :/ 4 oy o, A/' 0s®
Raow o 08 o L 8 %
% 25% - 06 % 06 @
£ oo 2 3
S 5% 04 > 04 >
2 o o
% 1::;: 0.2 é 0.2 é
0% 0.0 0% 0.0
10248 5128 2568 1288 10248 512B 2568 1288
Downlink Packetsize(Bytes) Uplink Packetsize(Bytes)
Figure 4. CPU/Memory Usage with UDP Packetsize
4.2 CPU Utilization for OAI eNodeB sub-modules

Figure 5, Figure 6 and Figure 7 show the CPU Utiliza-
tion of sub-modules inside OpenAirInterface eNodeB for
UDP traffics with different bandwidth/packet sizes and TCP
traffics with different bandwidth. We observe that the layer
2 modules (PDCP, RLC, MAC) are less CPU-consuming

compared to the physical layer modules (Encod-
ing/Decoding, Rate Matching/Dematching, Scrambling/
Descrambling and Modulation/Demodulation) in both

downlink and uplink directions under all cases. This indi-
cates that the layer 2 modules are not constrained by CPU
resource. More attention needs to be paid into the physical

O
—s=— CPU Utilization—— IPC []Retiring[__|Frontend[___ | Bad Speculation[| Backend %
100% I — 1 e - | = 9¢
=i L= 8.8
8 0% HE |- = e
£ Bim 6F
3 60% || Fi 58
T 40% [|t . NN ‘e
}9 o """" - =l 4 A | = g-_E
20% | Hataa| |/ Lt HE Pl
0% L e S v S v vt v e e A e A R v e A T e A T e e T
S=222 | 2222 (2222|2222 | 2222|2222 | 2222|2222 | 2222 (=2=2=2=2 O
NGS3 | NDOF |NGRY | W05 |NGSY |NoSy [N65Y |NGR3 | N65Y (NERY
RLC MAC DCI CRC Encoding Rate Scrambling I Modulation Control PHY Proc.
Matching Channel -
Figure 5a. CPU Utilization and Microarchitecture value for Downlink UDP Bandwidth
O
—s— CPU Utilization—— IPC [|Retiring[__]Frontend[| Bad Speculation] | Backend &
100% — — — — 30 g
» 80% " L 9
2 60% i /] 0E
5 =HEE P/ 5
O, m] 152
5 40% L 103
g L L L A s 5
0% T ? T O D
S22 | S2=2=22 | 2222 (2222|2222 | 222212222 %
MO~ MW~ MW~ — MO~ MW N~ — MmO~ — MW~
PDCP RLC MAC DCI CRC Decoding Rate Descrambling Demodulation Control PHY_Proc.
Dematching Channel

Figure 5b. CPU Utilization and Microarchitecture value for Uplink UDP Bandwidth

596

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

O
—=— CPU Utilization——IPC [| Retiring[___] Frontend[_] Bad Speculation] | Backend g
o
100% = = = = = =E 9 5
] — = T | 8
$ 80% —E j# 78
o L Il - H 6 &
& 60% L = {ar] ! Ll 55
T 40% [Al LA » a . [‘3‘ ‘;:vj'
E 20% L:— |t el A ? %
0% T o2
agpe|oqne|268e| 2928|3088 |9088 2888|2888]2888]3488] &
Sp8Y | 888 | So&N | S08Y | D588 |S08Y | 8085 | S588 | S08% | 854S
RLC MAC DCI CRC Encoding Rate Scrambling | Modulation Control
B PHY_Proc.
Matching Channel
Figure 6a. CPU Utilization and Microarchitecture value for Downlink UDP Packetsize
—=— CPU Utjlization——IPC [| Retiring[___] Frontend[| Bad Speculation[| Backend e
100% — = = = e 30 ©
7] = L — — 2 %
3 80% = | HH H 5 ©
° L I = = 20 X
& 6% i = <
— 15 ©
T 40% = 108
2 20% . 5 g
0 F e s e e PP | |l RNy]
0% F ey AR Tt T T T et T T T T T T Ty 0 3
oOono | 000 | ooon |ooon | ooon | onon | o0oon | oonom z
< N © O < N © © < N © © I N © 0 < N © O < N © O < N © © < N © ©
NN | A-ON [NN | NN || A-ON [NN | A-ON [A= O (@]
OLAN v O LN« O 0N «— OWLAN v OWLAN v« O N O N~ O LN
PDCP RLC MAC Dl CRC Decoding Rate Descrambling Demodulation ~ Control PHY_Proc.
Dematching Channel -
Figure 6b. CPU Utilization and Microarchitecture value for Uplink UDP Packetsize
—=— CPU Utilizaton——IPC [] Retiring[___] Frontend[___| Bad Speculation| | Backend g
100% D — - - S S - S 93
2 80% = i ¢s
8 A LE H 6 R
&S 6% ||] I HL | P
T 40% m Aaria - foif o A = H 42
L2 20% JIve N Lt |4 / L™ TN H 2 2
-y peaod IR Iy - 15
0% T 0 3
=222 | 2222|2222 2222|2222 | 2222 | 2222|2222 |1 2222 o
NOQI | NOQY [NOQF | NOQF | NOQF | NOQFY NOQT [NOQF | NOQF o
MAC el CRC Encoding Rate Scrambling | Modulation |~ €ontrol | ppy proc.
Matching Channel
Figure 7a. CPU Utilization and Microarchitecture value for Downlink TCP Bandwidth
—=— CPU Utilization——IPC [] Retiring[___ | Frontend[___ | Bad Speculation| | Backend 2
100% e e e 30 D
2 80%] o1 LA 25 3
8 = L i 20 &
6 60% [=t
o 40% I 1 B
5 40% =1
S 09 d 10§
= 20% alla 5 5
S e | gl eI EAACTE o 3
=233 (22=22|12222 |1 2222|2222 (2221222212222 |2 o
MO~ MO N~ — MO N~ - MU~ - MO N~ MO~ - MWON~ —MWUN~ -~ o
PDCP RLC MAC Dal CRC Decoding Rate oocrambling Demodulation CONtrol ' PHY_Proc.

Dematching Channel

Figure 7b. CPU Utilization and Microarchitecture value for Uplink TCP Bandwidth

layer modules.

Figure 5, Figure 6 and Figure 7 also illustrate that the
CPU utilization of different modules inside eNodeB alter
greatly in uplink and downlink direction. For the downlink,
the CPU consumptions are evenly distributed among the
modules. For the Uplink, turbo decoding consumes the most
of the CPU. The CPU utilization of all other modules is neg-
ligible compared to the turbo decoding. This result agrees
with the studies on the Radio Access Network sub-module

behaviors in [6]. The Turbo decoding module should be
highly optimized or this module is suggested to offloaded to
a hardware accelerator.

Besides, from Figure 5, Figure 6 and Figure 7 we ob-
serve that the CPU Ultilization increases when the band-
width goes up or the packet size goes down. The reason for
this is that the total pps goes up when we increase the
bandwidth or decrease the packet size in the experiment.

597

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

Table 1. Downlink Main Functions in Wimpy Node

Downlink F Retirin Memorv Bound Core Bound
sub block interleaving turbo 2.9 13.6 14.9
threeonnlte turho encoder 304 30.5 343
cre24 152 48.5 364

Node

Core Bound
23.8

13

8.5

25.8

114

32.6

Table 2. Uplink Main Functions in Wimpy

Uplink Functions Retiring
50.8

68

38.1
66.9
58.8

26.7

Memory Bound
23.8
14.9
50.7
8
28.5
35.7

phy_threegpplte_turbo_decoderl6
sub_block_deinterleaving
ulsch_decoding

_mm_sub_spil6

_mm_max_epil6
cre24

Moreover, we observe that the maximum bandwidth for
TCP is slightly smaller compared to the UDP. Under Re-
source Block 25, the maximum bandwidth for TCP is
around 7m for uplink and 15m for downlink. The maximum
bandwidth for UDP is around 8m for uplink and 16m for
downlink. The reason for this is probably that the TCP
needs to send ACK which leads to smaller available maxi-
mum bandwidth. The trend for CPU consumption for each
module of UDP and TCP are similar to each other.

4.3 Instructions Execution

Instruction per cycle (IPC) is a fundamental performance
metric, which is used to measure instruction-level parallel-
ism. There are four micro-architectural metrics relates to the
IPC — Retiring, Bad Speculation, Frontend Bound and
Backend Bound in Intel VTunes [7]. A high percentage of
retiring usually means a high IPC value of an application.
The high percentage of the other three categories will hurt
the retiring, which will lead to low IPC. A thorough analysis
of Frontend Bound, Bad Speculation and Backend Bound
would help us locate the hotspot of an application and pro-
vide optimization direction for further development.

Figure 5, Figure 6 and Figure 7 show IPC values of the
modules inside OAI eNodeB. For the downlink cases, we
can see that the IPC value for modules DCI, Rate Matching,
Scrambling and Modulation are near to 4, which is almost
the ideal value. The IPC values for Control Channel are
around 2.7, which is also acceptable. The Turbo Encoding
module’s IPC value is around 1.8, which suggests potential
optimizations to improve the performance. For the uplink,
we observe that the IPC values for all the modules are
around 2, which means the headroom still exists to get bet-
ter performance of each module in eNodeB uplink direction.
Detailed analysis of microarchitecture bottleneck is given in
section 4.4. Figure 5, Figure 6 and Figure 7 also provide the
Retiring percentage of modules inside OAI eNodeB, we
note that Retiring correlates well with IPC value, high retir-
ing value always means high IPC.

4.4 Frontend Bound, Bad Speculation and
Backend Bound Behavior

Figure 5, Figure 6 and Figure 7 also show the cycle
breakdown for the submodules of DU. Frontend Bound de-
notes that instruction-fetch stall will prevent core from mak-
ing forward progress due to lack of instructions. Bad Specu-

598

Table 4. Downlink Main Functions in Beefy Node

Core Bound
44.2
60.2
86.2

Downlink Functions Retiring
55.8
40 0

13.8 0
Table 5. Uplink Main Functions in Beefy Node

Uplink Functions
phy_threegpplte turbo_decoder16
sub_block_deinterleaving
ulsch_decoding
_mm_sub_spil6
_mm_max_epil6
crc24

Memory Bound

sub_block_interleaving_turbo 0
threegpplte_turbo_encoder

crc24

Core Bound
375
324
52.8
43.9
43.5
56.5

Retiring
622
67.6
45.7
56.6
522
435

Memory Bound

Table 3. Cache Size and Frequency in Wimpy and Beefy Node

Wimpy Node Beefy Node
LI cache 384KB 1152KB
L2 cache 1536KB 18432KB
L3 cache 12288KB 25344KB
Frequency 3.2GHz 2.3GHz

lation reflects slots wasted due to incorrect speculations.
Backend Bound illustrates that no uops are being delivered
at the issue pipeline, due to lack of required resources in the
Backend. We can see that across all the modules, the
Frontend Bound and Bad Speculation overheads are negli-
gible. The main stall of DU application is concentrated at
Backend Bound, which means the optimization for Backend
part is necessary for DU application. For the most CPU
consuming module - turbo decoding, we observe that the
Backend Bound is around 45%, which is the main reason
causing the low IPC for the turbo decoding.

We further investigate the source of Backend Bound by
dividing it into two separate metrics: Memory Bound and
Core Bound. Memory Bound manifests with execution units
getting starved after a short while. Core Bound manifests
either with short execution starvation periods or with sub-
optimal execution ports utilization. Table 1 and Table 2
show CPU consumption dominant functions in the main
modules. We can find the root cause of non-uniform
Backend Bound. Memory Bound and Core Bound both suf-
fer from the current RAN system. Memory Bound can be
mitigated by simply increasing the cache size of the server,
or by leveraging memory which can control the mapping of
instruction and data storage for each core. Moreover, since
the RAN system processing proceeds in continuous phases,
providing buffers for data communication from one phase to
another will probably mitigate the Memory Bound. Core
Bound can be mitigated with the better code generation, e.g.,
avoiding dependent arithmetic operations in a sequence, or
better vectorization organization of OpenAirlnterface sys-
tem. Furthermore, since the RAN system involves much on
the complex number operations; perhaps leverage specific
instruction function units for complex operations will pro-
mote the core performance for RAN system.

We further deploy the DU on alternative high-end COTS
server platform (W2195 @ 2.30GHz, 128GB RAM) with
higher cache size to investigate if the Backend bound over-
heads could be mitigated. Table 3 compares the cache size

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

Thread 1[__] Thread 4

[Thread 1[__] Thread 4

1L

Normalized Runtime

wll

Normallzed Runtime

o
°

10M ™

BandWIdth(Mbps BandW|dth Mbps)

(a) Downlink+vips (b) Uplink+vips

g 20 [Thread 1] Thread 4 g 25 [Thread 1] Thread 4
'*g i ‘g 20
o s
e 3
N El 1.0
g 08 g 05
S S
Z 00k } 1 1 + Z 00k
M M 10M 14M
Bandwidth(Mbps) BandW|dth Mbps
(c) Downlink+x264 (d) Uplink+x264

Figure 8. The Influence of edge computing applications’ runtime when co-running with eNodeB DU

and CPU frequency of the wimpy server and the beefy serv-
er.

Table 4 and Table 5 show the memory-bound and core
bound details of CPU consumption dominant functions in
eNodeB on the beefy server. We observe that the memory-
bound is significantly mitigated because of the larger cache
resources. However, the Core Bound overhead deteriorates
on the beefy server. The reason for this is probably due to
the frequency reduction of the server. The frequency reduc-
tion may lead to longer execution starvation and worse port
utilization, which results in the higher Core Bound in beefy
server environment. The counteracts of lower Memory
Bound and higher Core Bound makes the overall Backend
performance stay similar to the wimpy server platform.

5. Understanding the Architecture Implica-
tions of Co-location Edge systems

In this section, we start evaluating the performance of
Distributed Unite (DU) and edge computing application
when co-running them together on the same cores. We then
leverage multiple VRANSs on the same cores and show up
the behavior.

5.1 Co-location of RAN and MEC Application

We begin with the evaluation of the performance for
edge computing applications when co-running with eNodeB
based DU. Furthermore, we demonstrate the performance of
eNodeB when sharing the same cores with edge computing
applications.

We select video processing related applications as our
benchmarks since most of today’s edge computing utiliza-
tions are concentrated on video processing. We choose vips
and x264 from PARSEC. The workload information is
shown in Table 6. Vips is an image processing library and
x264 is an application for encoding video streams in the
H.264 compression format. We first co-run edge computing
applications and eNodeB DU with various traffic bandwidth
on the same cores and report the edge computing applica-
tions’ processing time. Figure 8 shows the normalized pro-
cessing time of MEC applications. With the bandwidth go-
ing up for eNodeB, the edge computing applications require
more time on completing the same-volume workload. The
prolonged processing time is between 24% (when the
bandwidth is 2M) to 100% (when the bandwidth is 14M).
The reason for the longer processing time is that the
eNodeB DU utilizes more CPU with the bandwidth increas-

599

Table 6. Edge Computing Applications

Information Workload
vips Image processing Image 18K*18K pixels
x264 Video encoding 25fps 640*360 pixels

ing, which constraints the available CPU for edge compu-
ting application.

Furthermore, we evaluate the eNodeB Distribute Unit
performance when it is co-running with edge computing
applications. To our surprise, the performance of eNodeB
does not degrade even though it is sharing the same core
with the edge computing applications. Figure 9 shows typi-
cal performance for main modules inside eNodeB during the
co-running, we find that the performance is almost the same
compared with the solo eNodeB running situation (Figure 5).
We observe that the PARSEC applications and eNodeB
efficiently utilize the given cores. The utilization goes up to
100% for the leveraged cores. However, when we increase
the bandwidth for the eNodeB, the CPU utilization of
eNodeB goes up to the same level as the level without the
co-running. The available CPU Utilization of PARSEC edge
computing is constrained by eNodeB application during co-
running.

Our speculation is that the CPU resource for eNodeB
does not achieve its upper bound. All containers’ default
CPU-shares value is 1024, since the saturated traffic of
eNodeB only consumes 45% of the CPU, it does not
achieve its maximum available 50% CPU ratio when co-
running with the edge computing application container.

In order to consolidate our speculation, we deploy 3 con-
tainers in an additional experiment. We create two contain-
ers for edge computing applications, with the CPU-share
value 1024 and 256 respectively. We create a third container
for eNodeB with the CPU-share value 128. Our expectation
is that the CPU distribution ratio among the applications
should be around 8:2:1. The CPU utilization for eNodeB
should not exceed 20% when co-running with the other two
applications.

However, the result of the experiment shows that the
CPU utilization for eNodeB still cannot be constrained. For
saturated traffic, the CPU Ultilization of eNodeB goes up to
45%, which is the same value when we leverage the
eNodeB alone in the given core. The CPU-share for the two
edge computing application works as what we expect. The

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

[Retiring [] Frontend
[1Bad Speculation | Backend

= # s
E 2
T T L
=
Y

LI S S R s e s .
= = = =
© S N ©

—=— CPU Utilization
——|PC

@

100

80

60

I
AN
9

40

Total Cycles

20

o
CPU Utilization(%) and IPC

0

L s

= =
N ©

%
T
S
I

Encoding

T
s =
N ©

10M
14M
10M+
14M
10M
14M

Rate
Matching

DCl

Scrambling | Modulation

Figure 9a. CPU Utilization and Microarchitecture value for
Downlink UDP with vips

CPU Utilization ratio for them is 4:1. Our further specula-
tion is that there may exist inherited priority inside eNodeB
and edge computing applications. The eNodeB’s CPU Utili-
zation should be constrained when co-running with another
eNodeB since they have same level priority. We outline the
performances of co-running eNodeB Distributed Unit under
multiple cases in section 5.2.

5.2 Co-location of RAN and RAN Application

This section we illustrate the behavior of eNodeB Dis-
tributed Unit when it is co-running with other eNodeB Dis-
tributed Unit.

Figure 10 provides the experiment setup. Since we only
have one USRP B210 board, we set OAI simulators as our
co-runner with real USRP B210 board. The eNodeB is sepa-
rated as Distributed Unit (DU) and Remote Unit (RU). The
simulations’ traffic is generated at RU end. In order to satu-
rate the CPU, we create 2DUs with 2RUs under simulation
mode as our co-runner.

We bind RAN (eNodeB DU) with a real board in core 1
of the server. We bind cores for OAI simulators under 3
cores sharing types: (1). The OAI simulators are bound to
core 1, which is the same core with real board RAN. One
core cannot sufficiently support simulators and real board
RAN simultaneously. (2) The OAI simulators are bound to
core 0 and 1. Under this situation, the simulator partially
shares cores with real board RAN. The total cores are suffi-
cient to support both OAI simulator and real RAN theoreti-
cally. (3) The OAI simulators are bound to core 0 and 2, in
which case the simulators are completely separated with the
real board RAN. The simulators and real RAN are provided
with sufficient resources they required.

In case (1), we firstly start up real board RAN system
and then we trigger the OAI simulators. The RAN system
works smoothly when the simulators are not started up.
When the simulators come in, the real board RAN is com-
pletely stuck by the simulators. We observe that the packet
processing time violates the real-time bound inserted in the
RAN system since the CPU resource is constrained. In case
(2), since the simulations are bound to 2 cores, the OAI
simulators utilize the cores dynamically. The total utiliza-
tion of 2 cores for simulator stays the same but the utiliza-
tion for each core is not stable, the CPU utilization swings
between two cores. We firstly start the real board RAN and
then we trigger OAI simulators. When the OAI simulators

600

—=—CPU Utilization ~ [__] Retiring [Frontend
——|PC [_1Bad Speculation] Backend
100% — —— I I g
: 7l HEE
b, 8% [/ . ©
° 0%
S, 60% = - £
S /1 LI 55
T 40% K
8 / L o8
20% 5 D
e ol s >
0% o—— U U relely T 0y
=== =2 === = === =2 === = === =2
- M v~ - M L~ - ™M v N~ - ™ o0~ - MO u ~
DCI Decoding Rate X Descrambling | pemodulation
Dematching

Figure 9b. CPU Utilization and Microarchitecture value for
Uplink UDP with vips

come in, we find that the OAI simulators and RAN system
work properly if the CPU resources of two systems do not
exhaust any of the cores. However, the RAN and OAI sim-
ulator will be stuck when any of CPU cores is exhausted. In
case (3), the real board RAN and OAI simulators since both
of the systems are provided with sufficient CPU resources.

From the experiment, we can conclude that (1) For real-
time systems like RAN, sufficient resources are obligated.
The system will be stuck if it cannot get its required re-
sources. (2) For real-time applications, it is essential to set
up applications in separate cores. The occasional resource
deficiency under resources sharing policy will destroy the
running applications (3) The real-time applications can co-
run with the non-real-time applications such as vips and
x264. The non-real-time applications do not compete re-
sources with real-time applications. The co-running of real-
time and non-real-time applications can promote resources
utilization efficiency.

6. Edge Infrastructure Cost Analysis

This section we firstly provide a cost comparison be-
tween traditional RAN and virtualized RAN. Furthermore,
we estimate the cost of the RAN system with MEC applica-
tions under traditional and virtualized RAN infrastructure.

Traditional RAN: Traditional RAN utilizes vendor-
specific hardware device to support radio access network.
To date, the maximum transmission rate one RAN can sup-
port is around 300Mbps [8], [9]. The cell site does not have
to support the maximum traffic volume. Based on the traffic
volume requirement of an area, the total traffic volume one
RAN needs to support alters greatly, which causes the price
variation for specific RAN. In this paper, we categorize the
traffic volume as 4 levels: Sparse (50M), Normal (100M),
Dense (200M) and Ultra Dense (300M). Since there is no
open-source price for BBU equipment, we use approximate
price for each RAN based on the report [10]. The price for
the RAN under each level is shown in Figure 11. We as-
sume the price of RAN in the report is for maximum traffic
volume 300M and the price of RAN is proportional to its
supported traffic volume. Figure 11 presents the price for
traditional RAN.

Virtualized RAN: Virtualization is the trend for the
RAN infrastructure. Typical server price can be found in the
link [11]. From the experiments we observe that the CPU

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

i UE1 i
Smartph
UE2
Hll Simulator
N ues
Hll Simulator

Figure 10. RAN co-running with RAN setup

Core Network 1

Core Network 2

Core Network 3

Server 3 Server 2 Server 1

consumption for downlink is around 1.5% per Mbps. The
required core number can be calculated accordingly, e.g., to
support 300Mbps bandwidth, the total CPU utilization will
be 450%, which means that a 6 cores server is recommend-
ed. We show up the vVRAN price under the 4 levels traffic
volume in Figure 11. From Figure 11, we observe that
VRAN decrease the expenditure from 30% to 80% com-
pared with the traditional RAN.

RAN with MEC: In order to support ultra-low latency
applications and mitigate the traffic volume for the core
network, MEC will be widely used in the near future. Tradi-
tional RAN requests the additional COTS server to support
MEC applications while the VRAN can support the MEC
applications with its extra resources inside COTS server. To
the best of our knowledge, there is no open-source data on
servers’ average CPU utilization for MEC. The data we can
find is Google’s cloud CPU utilization estimation [12], the
Google cloud’s CPU utilization is between 30% ~ 50%.
MEC workloads are not completely the same with the work-
loads in the data center today, there is the trend that utilizes
MEC to implement traditional data center missions [13],
[14]. For this reason, we leverage the data in [12] as MEC
CPU utilization value. We assume that at most 50% of each
core can be utilized by RAN workload. Besides, extra 20%
CPU resource is provided as redundant. E.g., for bandwidth
300Mbps, 450% CPU utilization is required for RAN. We
assume MEC workloads utilize 50% of each core so that
450% CPU utilization is required by MEC. The total is
900%. Given 20% redundant resource, the total CPU utiliza-
tion of the server is 1080%. Thus a 12 core server is rec-
ommended to handle the RAN and MEC workloads. For
traditional RAN, the total site expenditure is its BBU device
price plus a 4 cores server price. Figure 12 presents the price
comparison for traditional RAN and vVRAN with MEC. We
observe that the expenditure of VRAN with MEC is 60% ~
75% lower compared with the traditional RAN.

7. Related Work

Edge NFV: Network Virtualization Networks (NFV)
has received substantial attention from the research commu-
nity in recent years with both academia and industry recog-
nizing its benefits on operational mobile networks. Alt-
hough most of the work highlights the NFV process on core
networks [15], [16], [25], [17]-[24], there are still several
NFV projects [3], [26]-[28] proposed at the edge network.
While the scope of the above-mentioned work includes the

[_1BBU Unit

[vBBU Unit

b= Cores number for vBBU
20000

[__1BBU Unit with MEC

[C—1vBBU Unit with MEC

== Cores number for vBBU with MEC
25000

20000 15000

@ 15000
Q 10000

Core number
Price ($)

5000

=

50M

S = N w & o o ~
Cores number for vBBU

4
4
8
§10m0 6
4
2
o

il ™

50M

1

100M | 200M

Bandwidth(Mbps)

100M 200M 300M 300M

Bandwidth(Mbps)
Figure 11. BBU&VBBU prices Figure 12. BBU&vBBU MEC prices

RAN virtualization and network slicing realization, none of
them provide a detailed architectural characterization of

virtualized RAN system, particularly as cloud-native con-

tainerized form. Moreover, no existing work has explored
the co-located VRAN and MEC system from an architectural

perspective.

RAN Characterization: In the last few years, several
works [29]-[34] provide the performance analysis and study
on the VRAN system. [30], [31] introduce the concepts and
architecture of the vVRAN system. [30] validates two MAC
schedulers and analyzes the VRAN system, in terms of
memory occupancy and execution time. [31] performs thor-
ough profiling of OAIL in terms of execution time, on the
user plane data flow. A recent work [2] explores the system
computational requirements of vBBU on a cloud RAN
testbed. However, none of the existing work has provided a
comprehensive architectural behavior characterization for
VRAN framework. To the best of knowledge, our work is the
first one that explores the architectural implications of the

co-location of cloud native vVRAN and MEC.
8. Acknowledgments

We thank all the anonymous reviewers for invaluable
and insightful comments to make this paper better. This
work is supported in part by NSF grant CCF-1822985. The

corresponding author is Yang Hu.
9. Conclusion

In this paper, a comprehensive workload characteriza-

tion is presented for virtual RAN and edge computing.

Based on our characterization work, the main bottleneck for
the virtual RAN is its Backend Bound. Besides, when the
RAN is co-running with the edge computing applications,
the edge computing applications are slowed down by the
RAN system. However, the performance of the RAN is not
affected by our chosen edge computing applications. When
the RAN is co-running with RAN, they will interfere with
each other. Finally, we show up that virtual RAN will de-
crease the expenditure on both solo RAN build up and RAN

with MEC build up compared with traditional RAN

References

[1] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High
Performance and Flexible Networking Using Virtualization on

Commodity Platforms,” Proc. 11th USENIX Symp. Networked

601

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

(4]

[3]

(6]

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

Syst. Des. Implement. (NSDI 14), vol. 12, no. 1, pp. 445458,
2014.

T. X. Tran, A. Younis, and D. Pompili, “Understanding the
Computational Requirements of Virtualized Baseband Units
Using a Programmable Cloud Radio Access Network Testbed,”
in 2017 IEEE International Conference on Autonomic Computing
(ICAC), 2017, pp. 221-226.

N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp,
and C. Bonnet, “OpenAirInterface: A Flexible Platform for 5G
Research,” ACM SIGCOMM Comput. Commun. Rev., 2014.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural
implications,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2008, pp.
72-81.

“Intel® VTune™ Amplifier XE,” in Power and Performance in
Enterprise Systems, 2015.

V. Venkataramani, A. Kulkarni, T. Mitra, and L.-S. Peh,
“SPECTRUM: a software defined predictable many-core
architecture for LTE baseband processing,” 2019.

A. Yasin, “A Top-Down method for performance analysis and
counters architecture,” in ISPASS 2014 - IEEE International
Symposium on Performance Analysis of Systems and Software,
2014.

K. Watanabe and M. Machida, “Outdoor LTE infrastructure
equipment (eNodeB),” Fujitsu Sci. Tech. J., 2012.

S. M. Sonia Rathi, Nisha Malik, Nidhi Chahal, “Throughput for
TDD and FDD 4 G LTE Systems,” Int. J. Innov. Technol. Explor.
Eng.,2014.

“https://www.fiercewireless.com/wireless/mavenir-wants-to-
replace-proprietary-baseband-unit-x86-and-software.”
“https://www.dell.com/en-us/work/shop/workstations-isv-

certified-dell/sf/precision-desktops?appliedRefinements=14602.”
P. Garraghan, P. Townend, and J. Xu, “An analysis of the server

characteristics and resource utilization in Google cloud,” in
Proceedings of the IEEE International Conference on Cloud
Engineering, IC2E 2013,2013.

Q. Cui et al., “Stochastic Online Learning for Mobile Edge
Computing: Learning from Changes,” I[EEE Commun. Mag.,
2019.

J. W. Chengcheng Zhao, Mianxiong Dong, Kaoru Ota, JianHua
Li, “Edge-MapReduce-Based Intelligent Information-Centric
ToV: Cognitive Route Planning,” IEEE Access, 2019.

C. Guo et al., “SecondNet: A data center network virtualization
architecture with bandwidth guarantees,” in Proceedings of the
6th International Conference on Emerging Networking
Experiments and Technologies, Co-NEXT'10, 2010.

T. Koponen et al., “Network Virtualization in Multi-tenant
Datacenters,” Proc. 11th USENIX Symp. Networked Syst. Des.
Implement. (NSDI 14), pp. 203-216, 2014.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

602

M. R. Sama, X. An, Q. Wei, and S. Beker, “Reshaping the
Mobile core network via function decomposition and network
slicing for the 5G era,” in 2016 [EEE Wireless Communications
and Networking Conference Workshops, WCNCW 2016, 2016.
R. Ravindran, A. Chakraborti, S. O. Amin, A. Azgin, and G.
Wang, “5G-ICN: Delivering ICN Services over 5G Using
Network Slicing,” IEEE Commun. Mag., 2017.

M. Bagaa, T. Taleb, A. Laghrissi, A. Ksentini, and H. Flinck,
“Coalitional game for the creation of efficient virtual core
network slices in 5G mobile systems,” in IEEE Journal on
Selected Areas in Communications, 2018.

B. Chatras, U. S. Tsang Kwong, and N. Bihannic, “NFV enabling
network slicing for 5G,” in Proceedings of the 2017 20th
Conference on Innovations in Clouds, Internet and Networks,
ICIN 2017,2017.

Y. Hu, M. Song, and T. Li, “Towards ‘Full Containerization’ in
Containerized Network Function Virtualization,” in Proceedings
of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems,
2017, pp. 467-481.

Y. Huand T. Li, “Towards Efficient Server Architecture for
Virtualized Network Function Deployment: Implications and
Implementations,” in Proceedings of the 49th International
Symposium on Microarchitecture - MICRO-49, 2016.

Y. Hu and T. Li, “Enabling Efficient Network Service Function
Chain Deployment on Heterogeneous Server Platform,” in 2018
IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018.

S. G. Kulkarni et al., “Nfvnice: Dynamic backpressure and
scheduling for NFV service chains,” in SIGCOMM 2017 -
Proceedings of the 2017 Conference of the ACM Special Interest
Group on Data Communication, 2017.

K. Suo, Y. Zhao, W. Chen, and J. Rao, “An Analysis and
Empirical Study of Container Networks,” in Proceedings - IEEE
INFOCOM, 2018.

A. Virdis, G. Stea, and G. Nardini, “SimuLTE - A modular
system-level simulator for LTE/LTE-A networks based on
OMNeT+,” in SIMULTECH 2014 - Proceedings of the 4th
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, 2014.

W. Z. Qinghua Zheng, Haipeng Du, Junke Li, “Open-LTE: An
Open LTE Simulator For Mobile Video Streaming,” 2014 IEEE
Int. Conf. Multimed. Expo Work.,2014.

L. Zhang et al., “Characterizing and Orchestrating NFV-ready
Servers for Efficient Edge Data Processing,” in Proceedings of
the International Symposium on Quality of Service, 2019, pp.
22:1--22:10.

A. Virdis, N. Tardella, G. Stea, and D. Sabella, ‘“Performance
Analysis of OpenAirInterface System Emulation,” in
Proceedings - 2015 International Conference on Future Internet
of Things and Cloud, FiCloud 2015 and 2015 International
Conference on Open and Big Data, OBD 2015, 2015.

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

[30] C.Y. Yeoh, M. H. Mokhtar, A. A. A. Rahman, and A. K.
Samingan, “Performance study of LTE experimental testbed
using OpenAirInterface,” in International Conference on
Advanced Communication Technology, ICACT, 2016.

[31] Po-Chiang Lin and Sheng-Lun Huang, “Performance Profiling of
Cloud Radio Access Networks using OpenAirInterface,” 4sia-
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA
ASC), 2019.

[32] Q. Zheng et al., “WiBench: An open source kernel suite for
benchmarking wireless systems,” in Proceedings - 2013 IEEE
International Symposium on Workload Characterization, IISWC
2013,2013.

[33] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P.
Serrano, C. Cano, and D. J. Leith, “srsLTE: An open-source
platform for LTE evolution and experimentation,” in
Proceedings of the Annual International Conference on Mobile
Computing and Networking, MOBICOM, 2016.

[34] O. Neji, N. Chendeb, O. Chabbouh, N. Agoulmine, and S. Ben
Rejeb, “Experience deploying a 5G C-RAN virtualized
experimental setup using OpenAirInterface,” in 2017 IEEE 17th
International Conference on Ubiquitous Wireless Broadband,
ICUWB 2017 - Proceedings, 2018.

603

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:02:38 UTC from IEEE Xplore. Restrictions apply.

