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A set of n boxes, located  on the  vertices  of a hypergraph  G, contain  known  but  different  
rewards.  A Searcher opens all  the  boxes in  some hyperedge  of G with  the  objective  of 
collecting  the  maximum  possible  total  reward.  Some of the  boxes, however,  are booby  
trapped.  If the  Searcher opens a booby  trapped  box, the  search ends and she loses all  her 
collected  rewards.  We assume the  number  k of  booby  traps is known,  and we model  the  
problem  as a zero-sum  game between  the  maximizing  Searcher and a minimizing  Hider, 
where  the  Hider  chooses k boxes  to booby  trap  and the  Searcher opens all  the  boxes in  
some hyperedge. The payoff  is the total  reward  collected  by the  Searcher. This model  could  
reflect  a military  operation  in  which  a drone  gathers intelligence  from  guarded  locations,  
and a booby  trapped  box being  opened  corresponds  to the  drone  being  destroyed  or 
incapacitated.  It  could  also model  a machine  scheduling  problem,  in  which  rewards  are 
obtained  from  successfully  processing jobs but  the  machine  may crash. We solve the  game 
when  G is a 1-uniform  hypergraph  (the  hyperedges are all  singletons),  so the  Searcher can 
open just  1 box. When  G is the  complete  hypergraph  (containing  all  possible  hyperedges), 
we solve the  game in  a few  cases: (1) same reward  in  each box, (2) k = 1, and (3) n = 4
and k = 2. The solutions  to these few  cases indicate  that  a general simple,  closed form  
solution  to the  game appears unlikely.

© 2020  Elsevier B.V. All  rights  reserved.

1. Introduction

We consider  the  following  game between  a Hider  and a Searcher. There is a set [n] ≡ { 1, . . . , n} of boxes, with  box i

containing  a reward  of r i ≥ 0, for  i  ∈ [n]. We also make a standing  assumption  that,  without  loss of generality,  r1 ≥ · · · ≥ rn . 
The boxes are identified  with  the  vertices  of a hypergraph  G . The Hider  sets booby  traps  in  k of  the  boxes, where  1 ≤ k ≤
n − 1, so his strategy  set is [n](k) ≡ { H ⊂ [n] : |H | = k}. The Searcher chooses a subset S⊂ [n] of boxes to search, where  S is 
the  hyperedge of a hypergraph  G with  vertices  V and  hyperedges E ⊂ 2V .

If the  Hider  plays H and  the  Searcher plays S , the  payoff  R(S, H) is given by

R(S, H) =
r (S), if H ∩ S= ∅,

0, otherwise,

where  r (S) ≡ i∈ S r i is the  sum of the  rewards  in  S . In other  words,  the  Searcher keeps the  sum of all  the  rewards  in  the  
boxes she opens unless one or more  of them  is booby  trapped,  in  which  case, she gets nothing.  If  the  Searcher uses a mixed  
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strategy  p (that  is, a probability  distribution  over subsets S ⊂ [n]) and the  Hider  uses a mixed  strategy  q (a probability  
distribution  over subsets H ∈ [n](k)), we write  the  expected  payoff  as R(p, q). We also write  R(p, H) and R(S, q) if  one 
player  uses a pure  strategy  while  the  other  player  uses a mixed  strategy.

This game could  be an appropriate  model  for  a military  scenario in  which  a drone  is used to gather  intelligence  at 
several locations,  and r i is the  expected  value of the  intelligence  gathered  at location  i . A known  number  k of the  locations  
are guarded, and flying  the  drone  near these locations  would  result  in  its  incapacitation.  Alternatively,  the  Searcher may 
be collecting  rewards  in  the  form  of stolen  weapons or drugs from  locations  at which  capture  is possible, or the  Searcher 
could  be a burglar  stealing  valuable  possessions from  houses in  a neighborhood,  some of which  are monitored  by security  
cameras. The graph structure  could  correspond  to geographical  constraints.  The case of the  complete  hypergraph,  where  
E = 2V , corresponds  to  no constraints  on the  Searcher’s choice of subset. The case where  E is 1-uniform,  so that  every  
hyperedge consists of a single  vertex,  corresponds  to  the  Searcher being  limited  to searching only  one location.  If E is 
2-uniform,  so that  G is a graph, the  Searcher must  choose locations  corresponding  to the  endpoints  of an edge of the  graph.

The game could  also model  a scheduling  problem  in  which  there  are n jobs with  utilities  r i which  are obtained  from  
a successful execution  of job  i . For example, jobs may correspond  to computer  programs.  A total  of k of  the  programs  are 
bugged, and each bug will  crash the  machine  so that  all  data is lost. The objective  is to  find  a subset of jobs to run  that  
maximizes  the  worst-case  expected utility,  assuming  Nature  chooses which  k jobs  are bugged.

This work  lies in  the  field  of search games, as discussed in  [2],  [3],  and [5].  Search games involving  objects  hidden  in  
boxes have previously  been considered  in [7] and [8].  In these works,  the  objective  of the  Searcher is to minimize a  total  
cost of finding  a given  number  of hidden  objects. [1] consider  a machine  scheduling  problem  in  which  rewards  are collected  
from  processing jobs and the  machine  may crash, similarly  to our  problem.  But in  their  setting,  each job  will  independently  
cause the  machine  to  fail  with  a given probability.

Since this  is a zero-sum  game, it  could  be solved by standard  linear  programming  methods,  but  this  approach would  be 
inefficient  for  large k, or if  the  hypergraph  has a large number  of hyperedges. In this  work,  we concentrate  on two  special 
cases of the  game, with  the  aim  of finding  concise, closed-form  solutions.  We first  solve the  case where  G is  a 1-uniform  
hypergraph  in  Section 2.  In Section 3,  we consider  the  complete  hypergraph,  and solve the  game for  three  special cases: (1) 
same reward  in  each box, (2) k = 1, and (3) n = 4, k = 2. We also give some general bounds, and make a conjecture  on the  
form  of the  optimal  solution.  Finally, we offer  concluding  remarks  in  Section 4.

2. The game on a 1-uniform hypergraph

We begin  with  the  special case that  G is  a 1-uniform  hypergraph,  so that  every  hyperedge  is a singleton  (though  every  
singleton  may  not  be a hyperedge).  In other  words,  the  Searcher can open only  1 box, and her strategy  set is simply  some 
subset A of  the  set [n] of vertices.  If the  Searcher is restricted  to boxes in  A, then  any Hider  strategy  that  does not  hide  all  
k booby  traps  in  A is  (weakly)  dominated  by another  Hider  strategy  that  does. Hence, without  loss of generality,  we may  
assume that  G is  the  complete  1-uniform  hypergraph  whose  hyperedges are all the  singletons.  A mixed  strategy  for  the  
Searcher is a probability  vector  x ∈ Rn with  

n
j= 1 x j = 1, x j ≥ 0 for  all  j .

We first  obtain  a class of lower  bounds  on the  value of the  game, by defining  a Searcher strategy  for  every  subset of 
boxes.

Lemma 1. For a subset A ⊆ [n] of boxes with  |A| ≥ k, let the Searcher strategy x ≡ xA be given by

xA
j =

λ( A)/ r j , if j ∈ A,

0, otherwise,

where λ( A) = i∈ A 1/ r i
− 1 . The strategy xA guarantees an expected payoff of at least (| A| − k)λ( A).

Proof. The expected  payoff  of the  Searcher strategy  xA against the  Hider’s  strategy  H is

R(xA, H) =
j∈ A− H

xA
j r j = | A − H | λ(A) ≥ (| A| − | H |) λ(A) = (| A| − k) λ(A),

where  the  lower  bound  is obtained  when  H ⊆ A.

Recall that  r1 ≥ r2 ≥ · · · ≥ rn . If the  Searcher is restricted  to choosing a strategy  of the  form  described  in  Lemma 1,  for  
some |A| = t ≥ k, then  it  is clear that  the  subset maximizing  (| A| − k) λ( A) is [t ] = { 1, 2, . . . , t }. For t = k, k + 1, . . . , n, define

V (t ) ≡ ( t − k)λ([ t ]), (1)

which  is the  expected  payoff  guaranteed  by choosing A = [ t ] in  Lemma 1.  Our main  result  is that,  when  G is the  complete  1-
uniform  hypergraph,  the  value of the  game is max t= k,...,n V (t ). For example, if  n = 3 and  k = 1 with  (r1, r2, r3) = ( 10, 10, 1), 
then  V (1) = 0, V (2) = 5, and V (3) = 5/ 3, so the  value of the  game is V (2) = 5 and  the  Searcher opens either  box 1 or box 
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2 each with  probability  0.5. Intuitively,  if  the  rewards  in  different  boxes are lopsided,  then  it  is better  for  the  Searcher to 
avoid those boxes with  the  lowest  rewards  altogether.  We need a lemma  before presenting  the  theorem.

Lemma 2. For t ≥ k + 1, the two  inequalities V (t ) ≥ V (t − 1) and r t ≥ V (t ) are equivalent, where V (t ) is defined in (1).

Proof. The first  inequality  is equivalent  to

t − k

1
r1

+ · · · + 1
r t

≥
t − 1 − k

1
r1

+ · · · + 1
r t− 1

Multiplying  both  denominators  on both  sides and canceling common  terms  yields

1
r1

+ · · · +
1
r t

≥ ( t − k) 1
r t

,

which  is equivalent  to r t ≥ V (t ), thus  completing  the  proof.

Theorem 3. Consider the search game with  n boxes and k booby traps played on the complete 1-uniform  hypergraph. Define

t ∗ ≡ arg max
t= k,...,n

V (t ),

where V (t ) is defined in (1). The strategy x[t ∗ ] described in Lemma 1 is optimal  for the Searcher. For the Hider, any strategy that  
distributes  the k booby traps among the boxes in [t ∗ ] in such a way that  box j  ∈ [t ∗ ] contains a booby trap  with  probability

y j ≡ 1 −
V (t ∗ )

r j

is optimal.  The value of the game is V (t ∗ ).

Proof. By Lemma 1,  the  Searcher guarantees an expected payoff  at least V (t ∗ ) by using the  strategy  x[t ∗ ] , so V (t ∗ ) is a 
lower  bound  for  the  value of the  game.

To show  that  V (t ∗ ) is also an upper  bound  for  the  value of the  game, first  note that  t ∗ ≥ k + 1, since V (k) = 0 < V (k + 1). 
In addition,  by definition  of t ∗ , we have that  V (t ∗ − 1) ≤ V (t ∗ ), which  is equivalent  to V (t ∗ ) ≤ r t ∗ by Lemma 2,  so y j ∈ [0, 1]
for  j  ∈ [t ∗ ]. One can also verify  that  t ∗

j= 1 y j = k.
If the  Hider’s  strategy  has the  property  described  in  the  theorem,  then  the  expected  payoff  against any Searcher strategy  

j  ∈ [t ∗ ] is r j (1 − y j ) = V (t ∗ ) and the  expected  payoff  against any Searcher strategy  j  /∈ [t ∗ ] is r j . By definition  of t ∗ , we have 
that  V (t ∗ ) ≥ V (t ∗ + 1), which  is equivalent  to V (t ∗ + 1) ≥ r t ∗ + 1 from  the  proof  in  Lemma 2.  Combining  two  inequalities  
yields  that  V (t ∗ ) ≥ V (t ∗ + 1) ≥ r t ∗ + 1 . In other  words,  opening  box j  /∈ [t ∗ ] results  in  payoff  r j ≤ r t ∗ + 1 ≤ V (t ∗ ). Consequently, 
V (t ∗ ) is an upper  bound  for  the  value of the  game, which  completes  the  proof.

There are many  Hider  strategies  that  will  give rise to the  property  required  in  Theorem 3;  that  is, the  Hider  distributes  k

booby  traps  in  t ∗ boxes in  such a way that  box j  ∈ [t ∗ ] contains  a booby  trap  with  probability  y j ∈ [0, 1], where  
t ∗
j= 1 y j =

k. One way  to implement  such a Hider  strategy  can be found  in  Definition  2.1 in  [4].  Partition  the  interval  [0, k] into  
subintervals  of lengths  y1, . . . , yt ∗ . Generate θ from  the  uniform  distribution  in  [0, 1] and select the  k boxes  corresponding  
to the  k subintervals  containing  the  points  θ , θ + 1, . . . , θ + (k − 1). By construction,  the  Hider  will  choose exactly  k boxes  
to put  booby  traps, and box i will  contain  a booby trap  with  probability  y i , for  i  ∈ [t ∗ ].

In the  special case where  all  the  rewards  are equal, we have V (t ) = ( t − k)/ t , which  is maximized  at V (n) = ( n − k)/ n. 
The Searcher’s optimal  strategy  is to open each box with  probability  1/ n, and any Hider  strategy  that  puts  a booby trap  in  
each box with  the  same probability  k/ n is  optimal—such  as choosing every  subset of k boxes  with  probability  1/ n

k .
In another  special case when  k = n − 1, we have V (n − 1) = 0, so the  value of the  game is V (n) = ( n − (n − 1))λ([ n]) =

( n
j= 1 1/ r j )− 1 . The Searcher’s optimal  strategy  is to  open box j with  probability  λ([n])/ r j , for  j  ∈ [n] . The Hider’s  optimal  

strategy  needs to  put  a booby  trap  in  box j with  probability  1 − ( n − ( n − 1))λ([ n])/ r j . Because the  Hider  has n − 1 booby  
traps, the  only  strategy  that  meets this  requirement  is for  the  Hider  to leave box j free of booby trap  with  probability  
λ([n])/ r j , for  j  ∈ [n].

3. The game on the complete hypergraph

This section  concerns the  extreme  case where  G is  the  complete  (non-uniform)  hypergraph,  so that  a Searcher strategy  
is any S ⊂ [n] . Note that  if  k = n − 1, the  Searcher should  open only  1 box, so the  structure  of the  hypergraph  becomes 
irrelevant;  the  solution  presented  in  Section 2 is  also optimal.

For the  case of complete  hypergraph,  we present  the  solution  to the  three  special cases: (1) equal rewards  in  each box;  
(2) k = 1, and (3) n = 4, k = 2. We then  give some general bounds  on the  value of the  game, and make a conjecture  on the  
optimal  solution  based on our  findings.
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3.1. The case with  equal rewards

We begin  our  analysis with  the  special case where  all  the  rewards  are equal, which  we set to 1 without  loss of generality.

Theorem 4. Consider the search game on the complete hypergraph with  r j = 1 for  j  ∈ [n], so this game is characterized by only the 
number of boxes n and the number of booby traps k. The Hider’s optimal  strategy is to choose some H ∈ [n](k) uniformly  at random. 
The Searcher’s optimal  strategy is to open m∗ = n− k

k+ 1
boxes at random. In particular,  m∗ = 1 if  k ≥ n− 1

2
. The value of the game is 

given by

U(n, k) ≡
n− m∗

k
m∗

n
k

.

Proof. By symmetry,  it  is optimal  for  the  Hider  to choose uniformly  at random  between  all  his pure  strategies.
Because each box contains  the  same reward,  the  Searcher’s decision  reduces to  the  number  of boxes she opens. Write  

F(m) for  the  expected  reward  when  the  Searcher opens m boxes at random,  and the  booby  trap  is located  in  some arbitrary  
set of k boxes. We calculate  F(m) by considering  the  Searcher’s m boxes  to  be fixed  and supposing  that  a randomly  chosen 
set of k boxes  are booby  trapped.  The Searcher gets a reward  of m if  none of the  boxes she has chosen are booby trapped;  
otherwise  she gets nothing.  Hence,

F(m) =
n− m

k
m

n
k

. (2)

The ratio  F(m + 1)/ F(m) is given by

F(m + 1)

F(m) =
(n − k − m)(m + 1)

(n − m)m
.

Therefore, F(m + 1) ≤ F(m) if  and only  if

m ≥
n − k

k + 1
.

It  follows  that  F(m) is maximized  at m∗ = ( n − k)/( k + 1) . The value of the  game is F(m∗ ), as given in  the  statement  of 
the  theorem.

Note that  if  θ ≡ k/ n ≤ 1/ 2 is  held  constant,  and n and  k tend  to  ∞ , then  the  optimal  search strategy  in  the  limit  is to 
open m∗ = ( 1 − θ )/θ boxes, which  is independent  of n. The same result  is obtained  independently  in  Example 2.1c in  [9]
with  a dynamic  programming  formulation.  Writing  F(m) as

F(m) =
n − k

n

 
n − k − 1

n − 1
· · ·

n − k − m + 1
n − m + 1

m,

we can verify  that  the  value of the  game in  the  limit  is

lim
n→∞

F(m∗ ) = m∗ (1 − θ) m∗ .

One can interpret  (1 − θ) m∗
as the  probability  that  none of the  m∗ boxes opened by the  Hider  contains  a booby  trap  in  the  

limit  as n →∞ .
Suppose now  that  k is  held  constant  and let  n → ∞ . In the  limit,  the  optimal  number  of boxes to open tends to infinity,  

and so does the  value of the  game. To calculate  the  proportion  of the  total  reward  n the  Searcher can obtain,  we write  out  
the  probability  

n− m∗
k

/ n
k from (2) that  none of the  Searcher’s boxes are booby  trapped  as

k− 1

i= 0

1 −
m∗

n − i
, (3)

where  m∗ = ( n − k)/( k + 1) . Because

n − k

k + 1
≤ m∗ <

n − k

k + 1
+ 1 =

n + 1
k + 1

,

the  probability  in  (3) satisfies  the  bounds
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k− 1

i= 0

1 −
n+ 1
n− i

k + 1
<

k− 1

i= 0

1 −
m∗

n − i
≤

k− 1

i= 0

1 −
n− k
n− i

k + 1
.

Since the  upper  bound  and the  lower  bound  approach  to the  same limit  as n → ∞ , we can conclude  that

lim
n→∞

k− 1

i= 0

1 −
m∗

n − i
= 1 −

1
k + 1

k

.

Hence, in  the  limit  as n →∞ , the  ratio  of the  value of the  game to the  total  reward  n is

lim
n→∞

U(n, k)

n
=

1
k + 1

1 −
1

k + 1

k

. (4)

3.2. The case with  k = 1 booby trap

We now  consider  the  special case in  which  the  Hider  has only  k = 1 booby  trap.  Recall that  a Searcher’s pure  strategy  
is S ⊂ [n] . In order  to  present  an optimal  strategy  for  the  Searcher, define  S∗ ⊂ [n] to be a subset of boxes that  minimizes  
|r (S) − r ( S̄)|, where  S̄ denotes the  complement  of S .

We state and prove  optimal  strategies  for  the  game in  the  case k = 1. Let R0 = n
i= 1 r i .

Theorem 5. Consider the search game on the complete hypergraph with  k = 1. Let S∗ ⊂ [ n] be a subset of boxes that  minimizes 
|r (S) − r ( S̄)|. It  is optimal  for the Searcher to choose S∗ with  probability

p(S∗ ) =
r ( S̄∗ )

R0
;

otherwise choose S̄∗ . It is optimal  for the Hider to put the booby trap  in box i with  probability  qi = r i / R0 , for i  ∈ [n] . The value V of  
the game is

V =
r (S∗ ) r ( S̄∗ )

R0
.

Proof. Suppose the  Searcher uses the  strategy  p and  that  the  booby trap  is in  some box j . If j  ∈ S∗ , the  expected  payoff  is

p( S̄∗ ) r ( S̄∗ ) =
r (S∗ ) r ( S̄∗ )

R0
.

Similarly,  if  j  ∈ S̄∗ , the  expected  payoff  is the  same. Therefore, V ≥ r (S∗ )r ( S̄∗ )/ R0 .
On the  other  hand, suppose the  Hider  uses the  strategy  q. If the  Searcher opens some subset S of  boxes, then  the  

expected  payoff  is

r (S)

i∈ S̄

qi =
r ( S̄) r (S)

R0
.

The numerator  in  the  preceding  is equal to

r (S) r ( S̄) = r (S)( R0 − r (S)) = − r (S) −
R0

2

2

+
R2

0
4

= −
(r (S) − r ( S̄))2

4
+

R2
0

4
,

which  is maximized  by taking  S= S∗ by definition  of S∗ . In other  words,  the  Hider’s  strategy  q guarantees  that  the  expected  
payoff  (for  the  Searcher) is at most  r (S∗ )r ( S̄∗ )/ R0 , so V ≤ r (S∗ )r ( S̄∗ )/ R0 . The result  follows.

In the  case that  the  rewards  are integers, the  problem  of finding  such a subset S∗ to minimize  |r (S) − r ( S̄)| is the  
optimization  version  of the  number partitioning  problem, which  is the  problem  of deciding  whether  a multiset  of positive  
integers  can be partitioned  into  two  sets such that  the  sum of the  integers  in  each set is equal. This problem  is NP-hard, so 
that  finding  the  value of the  search game with  k = 1 is  also NP-hard. There are, however,  efficient  algorithms  to solve the  
problem  in  practice  [6].

Note that  the  value of the  game for  k = 1 is  R0/ 4, if  and only  if  the  boxes can be partitioned  into  two  subsets of equal 
total  reward.  It  is tempting  to  conjecture  that  in  general, the  value of the  game is R0/( k + 1)2 , if  and only  if  the  boxes 
can be partitioned  into  k + 1 subsets  of equal total  rewards.  This conjecture,  however, is not  true,  as can be seen from  the  
simple  example  with  n = 6 and  k = 2 when  all  the  rewards  are equal to 1. By Theorem 4,  the  value of the  game is 4/ 5, but  
R0/( k + 1)2 = 6/ 32 . Nevertheless, the  quantity  R0/( k + 1)2 is a lower  bound  for  the  value of the  game, because the  Searcher 
can choose one of the  k + 1 subsets  uniformly  at random,  and receive an expected  payoff  of R0/( k + 1) with  probability  at 
least 1/( k + 1).
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3.3. The case with  n = 4 boxes and k = 2 booby traps

This section  presents the  solution  to  the  game with  n = 4 boxes  and k = 2 booby  traps. The Hider  chooses two  boxes to 
place the  booby traps, so he has 4

2 = 6 pure  strategies. The Searcher would  want  to  open at most  n − k = 4 − 2 = 2 boxes, 
so she has 10 viable  pure  strategies, including  4

1 = 4 pure  strategies  that  open just  1 box, and 4
2 = 6 pure  strategies that  

open 2 boxes. While  one can compute  the  value V and optimal  strategy  of each player  by a linear  program,  we will  show  
that  the  optimal  mixed  strategy  for  the  Searcher is one of the  following  three  types:

1. Strategy A involves  4 active pure  strategies:  {1}, {2}, {3}, {4}. Specifically, the  Searcher opens just  1 box, and chooses 
box i with  probability

p i =
1/ r i

1/ r1 + 1/ r2 + 1/ r3 + 1/ r4
, i = 1, 2, 3, 4.

Regardless of which  two  boxes contain  booby traps, strategy  A produces  the  same expected  payoff

V A ≡
2

1
r1

+ 1
r2

+ 1
r3

+ 1
r4

. (5)

Intuitively,  strategy  A works  well  if  r1 , r2, r3, r4 are comparable.
2. Strategy B involves  3 active  pure  strategies:  {1}, {2}, and {3, 4}. Specifically,  the  Searcher opens box i , for  i  = 1, 2, with  

probability

p i =
1/ r i

1/ r1 + 1/ r2 + 1/( r3 + r4)
, i = 1, 2,

or opens both  boxes 3 and 4 with  probability

p34 =
1/( r3 + r4)

1/ r1 + 1/ r2 + 1/( r3 + r4)
.

Regardless of which  two  boxes contain  booby traps, strategy  B guarantees an expected  payoff  at least

VB ≡
1

1
r1

+ 1
r2

+ 1
r3+ r4

. (6)

Intuitively,  strategy  B works  well  if  r3 + r4 is comparable  to r1 and r2 .
3. Strategy C involves  6 pure  strategies:  {1}, {2}, {3}, {1, 4}, {2, 4}, {3, 4}. Specifically, the  Searcher opens box i , for  i  =

1, 2, 3, with  probability

p i =
1/ r i

1
r1

+ 1
r2

+ 1
r3

+ 1
r1+ r4

+ 1
r2+ r4

+ 1
r3+ r4

or opens both  boxes i and 4, for  i  = 1, 2, 3, with  probability

p i4 =
1/( r i + r4)

1
r1

+ 1
r2

+ 1
r3

+ 1
r1+ r4

+ 1
r2+ r4

+ 1
r3+ r4

.

Regardless of which  two  boxes contain  booty  traps, strategy  C produces  the  same expected  payoff

VC ≡
2

1
r1

+ 1
r2

+ 1
r3

+ 1
r1+ r4

+ 1
r2+ r4

+ 1
r3+ r4

. (7)

Intuitively,  strategy  C works  well  if  r4 is much  smaller  than  the  reward  in  each of the  other  three  boxes.

The main  result  in  this  section  is the  following  theorem.

Theorem 6. One of the three strategies A, B, C is optimal  for the Searcher. The value of the game is

V = max {V A, VB, VC},

where V A, VB, and VC are defined in (5), (6), and (7), respectively.
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The proof  of this  theorem  is lengthy,  and we will  present  the  three  cases separately. Before doing  so, we first  offer  some 
discussion  to shed light  on these three  strategies. With  some algebra, one can see that  V A ≥ VB if  and only  if

1
r1

+
1
r2

≥
1
r3

+
1
r4

−
2

r3 + r4
; (8)

and V A ≥ VC if  and only  if

1
r4

≤
1

r1 + r4
+

1
r2 + r4

+
1

r3 + r4
; (9)

and VB ≥ VC if  and only  if

1
r1

+
1
r2

+
1

r3 + r4
≤

1
r3

+
1

r1 + r4
+

1
r2 + r4

. (10)

Strategy A treats  each box equally. For Strategy A to work  well,  r1 and r2 cannot  be too  large compared  with  r3 and r4
(seen in  (8)),  and r4 cannot  be too  small  (seen in  (9)). In other  words,  the  four  rewards  need to be somewhat  comparable.  
Strategy B combines  the  two  boxes with  smaller  rewards  together,  and treats  the  problem  as if  there  were  only  3 boxes. 
For Strategy B to work  well,  r3 and r4 need to  be substantially  smaller  than  r1 and r2 (seen in  (8)), and r3 needs to be 
somewhat  closer to  r4 rather  than  to r2 (seen in  (10)).  Strategy C treats  box 4—the one with  the  smallest  reward—as a small  
add-on  to one of the  other  three  boxes. For Strategy C to work  well,  r4 needs to be small  enough  (seen in  (9)),  and r1 , r2, r3
need to  be somewhat  close together  (seen in  (10)).

We next  present  the  proof  of Theorem 6 in  three  sections, starting  with  the  easiest case. The challenge in  each of the  
three  proofs  is to show  that  the  Hider  has a mixed  strategy  to  guarantee the  payoff  to be no more  than  the  corresponding  
payoff  guaranteed  by the  Searcher’s mixed  strategy.

3.3.1. Optimality  of Strategy C

Theorem 7. Strategy C is optimal  for the Searcher and the value of the game is VC if and only if

1
r1 + r4

+
1

r2 + r4
+

1
r3 + r4

≤
1
r4

, (11)

and

1
r1

+
1
r2

+
1

r3 + r4
≥

1
r3

+
1

r1 + r4
+

1
r2 + r4

. (12)

Proof. If strategy  C is optimal  for  the  Searcher, then  VC ≥ V A, which  is equivalent  to (11), and VC ≥ VB, which  is equivalent  
to (12). Therefore, (11) and  (12) are  necessary conditions.

We next  prove  (11) and  (12) are  sufficient  conditions.  Since the  Searcher can use strategy  C to guarantee an expected  
payoff  VC, it  remains  to show  that  the  Hider  has a mixed  strategy  to guarantee an expected  payoff  no more  than  VC. Let 
qi j denote  the  probability  that  the  Hider  hides the  2 booby traps  in  boxes i and j , and let

q12 =
VC

r3 + r4
, q13 =

VC

r2 + r4
, q23 =

VC

r1 + r4
,

q14 = 1 −
VC

r2 + r4
−

VC

r3 + r4
−

VC

r1
,

q24 = 1 −
VC

r1 + r4
−

VC

r3 + r4
−

VC

r2
,

q34 = 1 −
VC

r1 + r4
−

VC

r2 + r4
−

VC

r3
.

First, we show  that  the  preceding  is indeed  a legitimate  mixed  strategy  for  the  Hider. Using the  definition  in  (7), one can 
verity  that  1≤ i< j≤ 4 qi j = 1. In addition,  0 ≤ q23 ≤ q13 ≤ q12 ≤ 1 and  q34 ≤ q24 ≤ q14 ≤ 1, because r1 ≥ r2 ≥ r3 ≥ r4 . Finally, 
we see that  q34 ≥ 0, due to  (12).

Next, we show  that  the  Hider  guarantees an expected  payoff  no more  than  VC regardless of what  the  Searcher does. 
Consider 4 cases.

1. If the  Searcher opens {1, 4}, then  the  expected  payoff  is

(r1 + r4)q23 = VC.

A similar  argument  leads to  the  same conclusion  if  the  Searcher opens {2, 4} or {3, 4}.
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2. If the  Searcher opens {1},  then  the  expected  payoff  is

r1(q23 + q24 + q34) = VC.

A similar  argument  leads to the  same conclusion  if  the  Searcher opens {2}  or {3}.
3. If the  Searcher opens {4},  then  the  expected  payoff  is

r4(q12 + q23 + q13) = r4
1

r1 + r4
+

1
r2 + r4

+
1

r3 + r4
VC ≤ VC,

where  the  inequality  follows  from  (11).
4. If the  Searcher opens {1, 2}, then  the  expected  payoff  is

(r1 + r2)q34 = ( r1 + r2) 1
r1

+
1
r2

+
1

r3 + r4
−

1
r3

−
1

r1 + r4
−

1
r2 + r4

VC

2

To show  that  the  preceding  is no more  than  VC, compute

(r1 + r2) 1
r1

+
1
r2

+
1

r3 + r4
−

1
r3

−
1

r1 + r4
−

1
r2 + r4

= ( r1 + r2)
r4

r1(r1 + r4) +
r4

r2(r2 + r4) −
r4

r3(r3 + r4)

=
r4

r1 + r4
+

r4
r2 + r4

+
r1r4

r2(r2 + r4) −
r1r4

r3(r3 + r4) +
r2r4

r1(r1 + r4) −
r2r4

r3(r3 + r4)

≤
r4

r1 + r4
+

r4
r2 + r4

+
r1r4

r1(r1 + r4)
+

r2r4
r2(r2 + r4)

= 2
r4

r1 + r4
+

r4
r2 + r4

≤ 2 1 −
r4

r3 + r4
≤ 2,

where  the  first  inequality  follows  from  q14 ≥ 0 and  q24 ≥ 0, and the  second inequality  follows  from  (11). A similar  
argument  leads to the  same conclusion  if  the  Searcher opens {2, 3} or {1, 3}.

The proof  is complete.

3.3.2. Optimality  of Strategy B

Theorem 8. Strategy B is optimal  for the Searcher and the value of the game is VB if and only if

1
r1

+
1
r2

≤
1
r3

+
1
r4

−
2

r3 + r4
(13)

and

1
r1

+
1
r2

+
1

r3 + r4
≤

1
r3

+
1

r1 + r4
+

1
r2 + r4

. (14)

Proof. If strategy  B is optimal  for  the  Searcher, then  VB ≥ V A, which  is equivalent  to (13), and VB ≥ VC, which  is equivalent  
to (14). Therefore, (13) and  (14) are  necessary conditions.

We next  prove (13) and  (14) are  sufficient  conditions.  Since the  Searcher can use strategy  B to guarantee  an expected  
payoff  at least VB, it  remains  to  show  that  the  Hider  has a mixed  strategy  to guarantee an expected payoff  no more  than  
VB. Let qi j denote  the  probability  that  the  Hider  hides the  2 booby traps  in  boxes i and j , and require

q12 =
VB

r3 + r4
, (15)

q34 = 0, (16)

q23 + q24 + q34 =
VB

r1
, (17)

q13 + q14 + q34 =
VB

r2
. (18)
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These constraints  ensure that  1≤ i< j≤ 4 qi j = 1, and guarantee an expected  payoff  no more  than  VB if  the  Searcher uses 
pure  strategies  {3, 4}, {1, 2}, {1},  and {2}.

The Hider  also needs to ensure an expected  payoff  no more  than  VB if  the  Searcher uses either  {3} or {4}, so we need 
to require

q12 + q14 + q24 ≤
VB

r3
, (19)

q12 + q13 + q23 ≤
VB

r4
; (20)

and if  the  Searcher uses {1, 3}, {2, 3}, {2, 4}, or {1, 4}, so we also need to  require

q24 ≤
VB

r1 + r3
, (21)

q14 ≤
VB

r2 + r3
, (22)

q13 ≤
VB

r2 + r4
, (23)

q23 ≤
VB

r1 + r4
. (24)

To complete  the  proof,  we need to show  that  there  exists a feasible nonnegative  solution  to  qi j, 1 ≤ i  < j  ≤ 4 subject  to the  
constraints  in  (15) through  (24).

To proceed, write
q13
VB

= x,
q23
VB

= y, (25)

and use (16) in  (17) and  (18) to  obtain

q24
VB

=
1
r1

− y,
q14
VB

=
1
r2

− x. (26)

To ensure q13 , q23 , q14 , q24 ≥ 0, we need that

0 ≤ x ≤
1
r2

, 0 ≤ y ≤
1
r1

. (27)

Next, substitute (25) and  (26) into  (19)–(24) to  rewrite  the  6 inequalities  constraints  in  terms  of x and  y. Constraints  
(19) and  (20) together  become

1
r1

+
1
r2

−
1
r3

+
1

r3 + r4
≤ x + y ≤

1
r4

−
1

r3 + r4
. (28)

Constraints  (22) and  (23) together  become

1
r2

−
1

r2 + r3
≤ x ≤

1
r2 + r4

, (29)

and constraints  (21) and  (24) together  become

1
r1

−
1

r1 + r3
≤ y ≤

1
r1 + r4

. (30)

Because constraints  (29) and  (30) make  constraint  (27) redundant,  it  remains  to show  that  there  exists a feasible solution  
to x and  y subject  to constraints  (28), (29), and (30).

First, note that  in  each of (28), (29), and (30), the  unknown’s  upper  bound  is greater  than  or equal to its  lower  bound.  
The feasibility  of x + y in  (28) follows  directly  from  (13). The feasibility  of x in  (29) follows  from  r2 ≥ r3 ≥ r4 , and the  
feasibility  of (30) follows  from  r1 ≥ r3 ≥ r4 .

To complete  the  proof,  we need to show  that  the  sum between  the  upper  bound  (lower  bound,  respectively)  of x in  (29)
and the  upper  bound  (lower  bound,  respectively)  of y in  (30) is  greater  than  or equal to the  lower  bound  (upper  bound,  
respectively)  of x + y in  (28).

The first  claim  follows  directly  from  (14). The second claim  states that

1
r2

−
1

r2 + r3
+

1
r1

−
1

r1 + r3
≤

1
r4

−
1

r3 + r4
.
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To prove it,  start  with  the  left-hand  side to obtain

r3
1

r2(r2 + r3)
+

1
r1(r1 + r3)

≤ r3
1

r2(r2 + r4)
+

1
r1(r1 + r4)

≤ r3
1

r3(r3 + r4)

≤ r3
1

r4(r3 + r4)

=
1
r4

−
1

r3 + r4
,

where  the  first  and third  inequalities  are due to r3 ≥ r4 , and the  second inequality  is due to (14). Consequently, we have 
proved  that  there  exists a feasible solution  to x and  y that  satisfy  constraints  (28), (29), and (30). In other  words,  we have 
proved  that  there  exists a feasible solution  to  q13 , q14 , q23 , q24 that  satisfy  the  constraints  in  (17) through  (24). Therefore, we 
have shown  that  the  Hider  has a mixed  strategy  that  guarantees the  Searcher no more  V B, which  completes  the  proof.

3.3.3. Optimality  of Strategy A
We begin  with  two  lemmas.

Lemma 9. If r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0, and (8) holds, then

1
r i

+
1
r j

≥
1
rk

+
1
r l

−
2

rk + r l
,

where i , j , k, l is any permutation  of {1, 2, 3, 4}.

Proof. Rewriting  (8) as

1
r1

+
1
r2

+
1

r3 + r4
≥

1
r3

+
1
r4

−
1

r3 + r4
.

Because r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0, with  some algebra one can verify  that  any other  permutation  will  make the  left-hand  side of 
the  preceding  larger  and the  right-hand  side of the  preceding  smaller, so the  inequality  still  holds.

Lemma 10. If r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0, and (9) holds, then

1
r l

≤
1

r i + r l
+

1
r j + r l

+
1

rk + r l
,

where i , j , k, l is any permutation  of {1, 2, 3, 4}.

Proof. Multiplying  by r4(r1 + r4)(r2 + r4)(r3 + r4) on both  sides of (9) and  canceling  out  common  terms,  we obtain

r1r2r3 ≤ (( r1 + r2 + r3 + r4) + r4) r2
4 .

Because r4 is the  smallest,  it  is clear that  any other  permutation  will  make the  left-hand  side of the  preceding  smaller  and 
the  right-hand  side of the  preceding  larger, so the  inequality  still  holds.

We are now  ready for  the  main  result  in  this  subsection.

Theorem 11. Strategy A is optimal  for the Searcher and the value of the game is VA if and only if

1
r1

+
1
r2

≥
1
r3

+
1
r4

−
2

r3 + r4
, (31)

and

1
r4

≤
1

r1 + r4
+

1
r2 + r4

+
1

r3 + r4
, (32)
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Proof. If strategy  A is optimal  for  the  Searcher, then  V A ≥ VB, which  is equivalent  to (31), and V A ≥ VC, which  is equivalent  
to (32). Therefore, (31) and  (32) are  necessary conditions.

We next  prove  (31) and  (32) are  sufficient  conditions.  Since the  Searcher can use strategy  A to  guarantee an expected  
payoff  at least V A, it  remains  to  show  that  the  Hider  has a mixed  strategy  to  guarantee an expected payoff  no more  than  
V A. Let qi j denote  the  probability  that  the  Hider  hides the  2 booby traps  in  boxes i and j , with  probability  qi j ≥ 0 and  

1≤ i< j≤ 4 qi j = 1. In particular,  we  will  show  that  the  Hider  has a feasible mixed  strategy  to achieve an expected  payoff  
exactly  V A if  the  Searcher opens any one box, and guarantees an expected  payoff  no more  than  V A if  the  Searcher opens 
any two  boxes. In other  words,  we claim  that  there  exists a feasible solution  to

1≤ i< j≤ 4

qi j = 1, qi j ≥ 0, for 1 ≤ i < j ≤ 4

(q23 + q24 + q34)r1 = V A, q12(r3 + r4) ≤ V A,

(q13 + q14 + q34)r2 = V A, q13(r2 + r4) ≤ V A,

(q12 + q14 + q24)r3 = V A, q14(r2 + r3) ≤ V A,

(q12 + q13 + q23)r4 = V A, q23(r1 + r4) ≤ V A,

q24(r1 + r3) ≤ V A,

q34(r1 + r2) ≤ V A.

To proceed, write  x = q34 / V A and y = q24 / V A, and use the  first  5 equality  constraints  (in  the  left  column)  to solve 
qi j/ V A in  terms  of x and  y for  1 ≤ i  < j  ≤ 4. Use qi j ≥ 0 to  obtain  lower  bounds  for  qi j/ V A, for  1 ≤ i  < j  ≤ 4, and the  last 6 
inequality  constraints  (in  the  right  column)  to obtain  their  upper  bounds. The results  are summarized  below.

1
(r3 + r4) ≥

q12
V A

= x +
1
2

−
1
r1

−
1
r2

+
1
r3

+
1
r4

≥ 0,

1
(r2 + r4)

≥
q13
V A

= y +
1
2

−
1
r1

+
1
r2

−
1
r3

+
1
r4

≥ 0,

1
(r2 + r3)

≥
q14
V A

=
1
2

1
r1

+
1
r2

+
1
r3

−
1
r4

− x − y ≥ 0,

1
(r1 + r4) ≥

q23
V A

=
1
r1

− x − y ≥ 0,

1
(r1 + r3) ≥

q24
V A

= y ≥ 0,

1
(r1 + r2)

≥
q34
V A

= x ≥ 0.

Rewrite  the  preceding  in  terms  of x, y, and x + y, to get the  following.

0 ≤ x ≤
1

r1 + r2
, (33)

−
1
2

−
1
r1

−
1
r2

+
1
r3

+
1
r4

≤ x ≤
1

r3 + r4
−

1
2

−
1
r1

−
1
r2

+
1
r3

+
1
r4

, (34)

0 ≤ y ≤
1

r1 + r3
, (35)

−
1
2

−
1
r1

+
1
r2

−
1
r3

+
1
r4

≤ y ≤
1

r2 + r4
−

1
2

−
1
r1

+
1
r2

−
1
r3

+
1
r4

, (36)

1
r1

−
1

r1 + r4
≤ x + y ≤

1
r1

, (37)

1
2

1
r1

+
1
r2

+
1
r3

−
1
r4

−
1

r2 + r3
≤ x + y ≤

1
2

1
r1

+
1
r2

+
1
r3

−
1
r4

. (38)

It  then  remains  to  show  that  there  exists a feasible solution  to  x and  y that  satisfies these six linear  constraints.
First, we claim  there  exists a feasible solution  to x that  satisfies the  two  constraints  (33) and (34). The larger  lower  

bound  for  x is  clearly  0, since r1 ≥ r2 ≥ r3 ≥ r4 . While  it  is not  clear which  of the  two  upper  bounds  for  x is  smaller, one 
can verify  that  both  are nonnegative,  due to  (31). With  a similar  argument,  there  exists a feasible solution  to y that  satisfies 
(35) and  (36), due to (31) and  Lemma 9.
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Second, there  exists a feasible solution  to  x + y that  satisfies (37) and  (38), because each of the  two  upper  bounds  is 
greater  than  or equal to each of the  two  lower  bounds, due to  (31) and  Lemma 9.

To complete  the  proof,  we need to show  that  the  sum between  the  upper  bound  (lower  bound,  respectively)  of x implied  
by (33) and  (34) and  the  upper  bound  (lower  bound,  respectively)  of y implied  by (35) and  (36) is  greater  than  or equal to 
the  lower  bound  (upper  bound,  respectively)  of x + y implied  by (37) and  (38).

From (33), (34), (35), and (36), the  lower  bound  is 0 for  x and y , so we need to check the  right-hand  sides of (37) and  
(38) are  both  nonnegative.  The part  concerning  (37) is  trivial,  and the  part  concerning  (38) follows  because

1
r1

+
1
r2

+
1
r3

≥
1

r1 + r4
+

1
r2 + r4

+
1

r3 + r4
≥

1
r4

,

where  the  second inequality  follows  from  (32).
Finally, we need to show  that  the  sum  between  the  upper  bound  of x implied  by (33) and  (34) and  the  upper  bound  

of y implied  by (35) and  (36) is  greater  than  or equal to  the  lower  bound  of x + y implied  by (37) and  (38). We do so by 
showing  that  the  sum of either  upper  bound  of x in  (33) or  (34), and either  upper  bound  of y in  (35) or  (36), is greater  
than  or equal to either  lower  bound  of x + y in  (37) or  (38). There are thus  8 inequalities  to verify.  For example,  from  (33), 
(35), (37), we need to  show  that

1
r1 + r2

+
1

r1 + r3
≥

1
r1

−
1

r1 + r4
,

which  follows  from  (32) and  Lemma 10.  Using (32) and  Lemma 10,  we can also verify  the  corresponding  inequality  involving  
(33), (36), (38), and that  involving  (34), (36), (38), and that  involving  (34), (35), (37).

We next  verify  the  corresponding  inequality  involving  (33), (35), (38), which  requires

1
r1 + r2

+
1

r1 + r3
≥

1
2

1
r1

+
1
r2

+
1
r3

−
1
r4

−
1

r2 + r3
,

which  is equivalent  to

2
r1 + r2

+
2

r1 + r3
≥

1
r1

+
1
r2

+
1
r3

−
1
r4

−
2

r2 + r3
. (39)

Starting  from  the  right-hand  side to  get

1
r2

+
1
r3

−
2

r2 + r3
+

1
r1

−
1
r4

≤
1
r1

+
1
r4

+
1
r1

−
1
r4

=
2

r1 + r1
+

2
r1 + r1

≤
2

r1 + r2
+

2
r1 + r3

,

where  the  first  inequality  follows  from  (31) and  Lemma 9,  and the  last inequality  follows  from  r1 ≥ r2 and r1 ≥ r3 .
We can go through  the  same procedure  to verify  the  corresponding  inequality  involving  (33), (36), (37), and that  involv-

ing  (34), (35), (37), and that  involving  (34), (36), (38). Each of these three  inequalities  has the  same form  as in  (39), with  
the  bracket  on the  right-hand  side having  three  positive  terms  and 1 negative  term.  The key to establish  the  inequality  is 
to apply  Lemma 9 to  the  two  positive  terms  with  the  largest indices  among  the  three  positive  terms;  for  example, to prove 
(39) we  pick  r2 and r3 to apply  Lemma 9.

Because there  exists feasible solution  to x and  y that  satisfies constraints  (33)–(38),  we have shown  that  the  Hider  has a 
mixed  strategy  that  guarantees an expected  payoff  no more  than  V A, which  completes  the  proof.

3.4. General bounds

Here we give some general bounds  on the  value of the  game, starting  with  an upper  bound  and a lower  bound  that  are 
close to  each other  when  n is  large and the  rewards  are small.

Proposition 12. (Upper bound) The value V of  the game on the complete hypergraph satisfies

V ≤
R0

k + 1
1 −

1
k + 1

k

, (40)

where R0 = n
i= 1 r i .
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Proof. First assume all  the  rewards  are integers.  If we define  a new  game by replacing  a box of reward  r with  two  boxes 
of reward  r1 and r2 with  r1 + r2 = r , then  the  value of the  game can only  increase, because any Searcher strategy  in  the  
original  game can also be used in  the  new  game. With  a similar  argument,  we can replace each box i with  r i boxes each 
containing  a reward  of 1, resulting  in  a new  game with  equal rewards  of 1, whose  value is at least as great as the  original  
game. The value of the  new  game is equal to U(R0 , k), as defined  in  Theorem 4.  Observe that  by further  replacing  each box 
with  t new  boxes each containing  a reward  of 1/ t , we obtain  a game whose  value U(t R0, k)/ t is no smaller  than  that  of the  
original  game. Therefore, the  value of the  original  game is bounded  above by

lim
t→∞

U(t R0, k)

t
= R0 lim

t→∞

U (t R0, k)

t R0
=

R0
k + 1

1 −
1

k + 1

k

,

where  the  last equality  follows  from  (4).
If the  rewards  are all  rational  numbers,  then  we can obtain  an equivalent  game with  integer  rewards  by multiplying  

them  all  by a common  denominator  d. All  the  payoffs  in  the  resulting  game will  be larger  by a factor  of d, and therefore  so 
will  the  value of the  game and the  parameter  R0 . As a consequence, the  left- and  right-hand  sides of (40) will  both  be larger  
by a factor  of d, so the  inequality  still  holds. If  the  rewards  are real numbers,  then  they  can be approximated  arbitrarily  
closely to  rational  numbers,  so that  the  left- and  right-hand  sides of (40) are  also approximated  arbitrarily  closely, and the  
bound  still  holds.

Proposition 13. (Lower bound) The value V of  the game on the complete hypergraph satisfies

V ≥
R0

k + 1
1 −

1
k + 1

k

1 −
r ([k])

R0
, (41)

where R0 = n
i= 1 r i and r ([k]) = k

i= 1 r i .

Proof. Consider a Searcher strategy  with  which  each box is independently  opened with  probability  1/( k + 1). For a given 
Hider  strategy  H ∈ [n](k) , the  probability  that  none of the  boxes in  H is  opened is (1 − 1/( k + 1))k . If the  Searcher does not  
open any box in  H , her expected  payoff  is r ( H̄)/( k + 1); if  she opens any boxes in  H , her payoff  is zero. Therefore, with  
such strategy  the  Searcher’s expected  payoff  is

1 −
1

k + 1

k r ( H̄)

k + 1
.

The preceding  in  minimized  when  r (H) is maximized;  that  is, for  H = [ k]. In this  case, the  expected payoff  is the  right-hand  
side of (41).

It  is worth  pointing  out  that,  among  all  the  Searcher strategies  that  open each box independently  at random  with  some 
given probability  p, the  one that  guarantees the  greatest expected  payoff  is given by p = 1/( k + 1), namely  the  strategy  of 
Proposition 13.  This claim  can be verified  via elementary  calculus. The bounds  in (40) and (41) are  close when  r ([k])/ R0 is 
close to zero. In particular,  the  bounds  are asymptotically  equal for  constant  k, as n → ∞ , if  all  the  rewards  are all  o(n). In 
this  case, the  Searcher strategy  that  opens each box independently  with  probability  1/( k + 1) is asymptotically  optimal.

Note that  all  the  optimal  Searcher strategies  presented  in  this  paper share the  same form:  the  Searcher chooses each 
hyperedge S with  probability  0, or with  probability  proportional  to 1/ r (S). This observation  gives rise to  a set of lower  
bounds  on the  value, generalizing  the  Searcher strategy  from  Lemma 1.

Proposition 14. Consider the search game played on an arbitrary  hypergraph, and let S = { S1, . . . , St } be a set of hyperedges. Consider 
the Searcher strategy p that  chooses Sj with  probability  p(Sj ) = λ/ r (Sj ), where

λ ≡ λ( S) ≡
1

t
j= 1 1/ r (Sj )

.

This strategy guarantees an expected payoff of at least mλ , where

m ≡ m(S) ≡ min
H∈[n](k)

|{Sj ∈ S : Sj ∩ H = ∅}|

is the minimal—over all possible Hider strategies—number of hyperedges in S that  contain no booby traps.

Proof. For a given Hider  strategy  H , let  A  = { Sj ∈ S : Sj ∩ H = ∅}| be the  set of hyperedges in  S that  contain  no booby 
traps. By definition  of m, we have |A | ≥ m. Hence, the  expected  payoff  against H is
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R(p, H) =
S∈A

p(S)r (S) =
S∈A

λ ≥ mλ,

which  completes  the  proof.

If S is a partition  of [n] , then  the  minimal  number  of hyperedges that  contain  no booby traps  is m(S) = t − k, and 
Proposition 14 implies  that  the  value is at least (t − k)λ(S).

Based on the  solutions  to special cases presented  in  this  paper, we make a conjecture  on the  Searcher’s optimal  strategy.

Conjecture 15. Consider the booby trap  search game played on a hypergraph. There exists an optimal  Searcher strategy with  which  
each hyperedge will  not be chosen at all, or will  be chosen with  probability  inversely proportional  to the sum of the rewards on that  
hyperedge. In other words, the Searcher can achieve optimality  by choosing the best subset of hyperedges and using the mixed strategy 
described in Proposition 14.

4. Conclusion

This paper presents a new  search game on a hypergraph  between  a Searcher and a Hider. The Searcher wants  to collect  
maximum  reward  but  has to avoid  booby  traps  planted  by the  Hider. We present  the  solutions  to a few  special cases, based 
on which  we make a conjecture  about  the  form  of the  solution  in  general.

Two of the  special cases presented  in  this  paper involve  the  Searcher opening  just  one box, or opening  any number  of 
boxes. A relevant  and practical  situation  may restrict  the  Searcher to opening  a certain  fixed  number  of boxes. If the  booby 
trap  only  partially  injures  the  Searcher but  does not  incapacitate  her, then  we can consider  a model  extension  that  allows  
the  Searcher to keep going until  she encounters  a certain  number  of booby  traps.
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