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collecting the maximum possible total reward. Some of the boxes, however, are booby
trapped. If the Searcher opens a booby trapped box, the search ends and she loses all her
collected rewards. We assume the number k of booby traps is known, and we model the

Keywords: problem as a zero-sum game between the maximizing Searcher and a minimizing Hider,
Game theory where the Hider chooses k boxes to booby trap and the Searcher opens all the boxes in
Search games some hyperedge. The payoff is the total reward collected by the Searcher. This model could
Discrete optimization reflect a military operation in which a drone gathers intelligence from guarded locations,

and a booby trapped box being opened corresponds to the drone being destroyed or
incapacitated. It could also model a machine scheduling problem, in which rewards are
obtained from successfully processing jobs but the machine may crash. We solve the game
when G is a 1-uniform hypergraph (the hyperedges are all singletons), so the Searcher can
open just 1 box. When G is the complete hypergraph (containing all possible hyperedges),
we solve the game in a few cases: (1) same reward in each box, (2) K= 1, and (3) N= 4
and k= 2. The solutions to these few cases indicate that a general simple, closed form
solution to the game appears unlikely.

¥ 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following game between a Hider and a Searcher. There is a set [1] ={1,. .. N} of boxes, with box i
containing a reward of i 2 0, for / € [N]. We also make a standing assumption that, without loss of generality, 71 =- - - 2/.
The boxes are identified with the vertices of a hypergraph G .The Hider sets booby traps in k of the boxes, where 1< k<
n -1, so his strategy set is [n](k) ={H c [n]: |H| = k}. The Searcher chooses a subset S [N] of boxes to search, where Sis
the hyperedge of a hypergraph G with vertices Vand hyperedges Ec 2v.

If the Hider plays Hand the Searcher plays S the payoff R(S H) is given by

r(S), ifHnNS=g,

R(S H) =
) 0, otherwise,

where r(S) = icsli is the sum of the rewards in S.In other words, the Searcher keeps the sum of all the rewards in the
boxes she opens unless one or more of them is booby trapped, in which case, she gets nothing. If the Searcher uses a mixed
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strategy P (that is, a probability distribution over subsets S<c [n]) and the Hider uses a mixed strategy G (a probability
distribution over subsets H e [n](k)), we write the expected payoff as R(p,q). We also write R(p, H) and R(S @) if one
player uses a pure strategy while the other player uses a mixed strategy.

This game could be an appropriate model for a military scenario in which a drone is used to gather intelligence at
several locations, and /i is the expected value of the intelligence gathered at location /. A known number K of the locations
are guarded, and flying the drone near these locations would result in its incapacitation. Alternatively, the Searcher may
be collecting rewards in the form of stolen weapons or drugs from locations at which capture is possible, or the Searcher
could be a burglar stealing valuable possessions from houses in a neighborhood, some of which are monitored by security
cameras. The graph structure could correspond to geographical constraints. The case of the complete hypergraph, where
E= 2V, corresponds to no constraints on the Searcher's choice of subset. The case where E is 1-uniform, so that every
hyperedge consists of a single vertex, corresponds to the Searcher being limited to searching only one location. If E is
2-uniform, so that G is a graph, the Searcher must choose locations corresponding to the endpoints of an edge of the graph.

The game could also model a scheduling problem in which there are 1 jobs with utilities ’; which are obtained from
a successful execution of job i.For example, jobs may correspond to computer programs. A total of k of the programs are
bugged, and each bug will crash the machine so that all data is lost. The objective is to find a subset of jobs to run that
maximizes the worst-case expected utility, assuming Nature chooses which k jobs are bugged.

This work lies in the field of Ssearchgames, as discussed in [2], [3], and [5]. Search games involving objects hidden in
boxes have previously been considered in[7]and [8]. In these works, the objective of the Searcher is to minimize a total
cost of finding a given number of hidden objects. [1] consider a machine scheduling problem in which rewards are collected
from processing jobs and the machine may crash, similarly to our problem. But in their setting, each job will independently
cause the machine to fail with a given probability.

Since this is a zero-sum game, it could be solved by standard linear programming methods, but this approach would be
inefficient for large k, or if the hypergraph has a large number of hyperedges. In this work, we concentrate on two special
cases of the game, with the aim of finding concise, closed-form solutions. We first solve the case where Gis a 1-uniform
hypergraph in Section 2. In Section 3, we consider the complete hypergraph, and solve the game for three special cases: (1)
same reward in each box, (2) K= 1, and (3) N = 4, k= 2. We also give some general bounds, and make a conjecture on the
form of the optimal solution. Finally, we offer concluding remarks in Section 4.

2. Thegameon a 1-uniform hypergraph

We begin with the special case that Gis a 1-uniform hypergraph, so that every hyperedge is a singleton (though every
singleton may not be a hyperedge). In other words, the Searcher can open only 1 box, and her strategy set is simply some
subset A of the set [] of vertices. If the Searcher is restricted to boxes in A, then any Hider strategy that does not hide all
k booby traps in Ais (weakly) dominated by another Hider strategy that does. Hence, without loss of generality, we may
assume that Gis the complete 1-uniform hypergraph whose hyperedges are all the singletons. A mixed strategy for the
Searcher is a probability vector xe R" with ’}=1Xj =1, X;20for all j.

We first obtain a class of lower bounds on the value of the game, by defining a Searcher strategy for every subset of
boxes.

Lemma1l.ForasubsetA c [n] of boxeswith |A| 2 k, let the Searcherstrategy x = x be given by

a_ A1, e A

/ 0, otherwise,

where A(A) = icA 1/r; ~'. Thestrategy x* guaranteesan expectedpayoff of at least (A= KA(A).

Proof. The expected payoff of the Searcher strategy x! against the Hider's strategy His
A A
R(x", H) = X{rj=|A=H|AA) 2 (1A - |H]) A(A) = (1A - k) A(A),
jeA-H

where the lower bound is obtained when H € A.

Recall that r'1 2 o 2 - - - 2Fp. If the Searcher is restricted to choosing a strategy of the form described in Lemma 1, for
some |A| = t = k, then it is clear that the subset maximizing (JA|—- K)A(A) is [t]={1,2,---1}. Fort =k, k+ 1,. .. p, define
v(t) = (t - KAL), M

which is the expected payoff guaranteed by choosing A =[] in Lemma 1. Our main result is that, when G is the complete 1-
uniform hypergraph, the value of the game is max¢=«,....n V(t). For example, if = 3 and k= 1 with (rq,ror3) = (10, 10, 1),
then V(1) =0, V(2) = 5, and V(3) = 5/3, so the value of the game is V(2) = 5 and the Searcher opens either box 1 or box
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2 each with probability 0.5. Intuitively, if the rewards in different boxes are lopsided, then it is better for the Searcher to
avoid those boxes with the lowest rewards altogether. We need a lemma before presenting the theorem.

Lemma2.Fort > k + 1, the two inequalities V(t) > V(t — 1) andr; > V(t) are equivalent, where V (t) is defined in (1).

Proof. The first inequality is equivalent to
t—k t-1-k
>

1 1 1
LI T LR L T
> Tt r Ty

Multiplying both denominators on both sides and canceling common terms yields
1 1 1
— 42 (t-k)—,
r re I

which is equivalent to I't 2 V(t), thus completing the proof.

Theoreni3. Considerthe searchgame with n boxesand k booby traps played on the complete 1-uniform hypergraph. Define

where V(t) is defined in (1). The strategy '] describedin Lemma 1 is optimal for the Searcher.For the Hider, any strategy that
distributes the k booby traps among the boxesin [t*] in sucha way that box j e [t*] contains a booby trap with probability

- v(t)

r

j = :
j
is optimal. Thevalue of the gameis V/(t*).

Proof. By Lemma 1, the Searcher guarantees an expected payoff at least v(t) by using the strategy x[t*], so V(t*) is a
lower bound for the value of the game.

To show that V(t*) is also an upper bound for the value of the game, first note that t* = k+ 1, since V(k)=0< V(k+1).
In addition, by definition of t*, we have that V(t* = 1) < V(t*), which is equivalent to V(t*) < I+ by Lemma 2, so ¥; € [0, 1]
for j € [t*]. One can also verify that [,=1 Yji=k.

If the Hider's strategy has the property described in the theorem, then the expected payoff against any Searcher strategy
jelt]isrj(1-yj) = V(t*) and the expected payoff against any Searcher strategy J & [t*] is Ij. By definiton of t*, we have
that V(t*) = V(t* + 1), which is equivalent to V(t* + 1) 2 rpyq from the proof in Lemma 2. Combining two inequalities
yields that V(t*) = V(t* + 1) 2 rt+4 4. In other words, opening box Jj & [t*] results in payoff rj < Ity 4 < V(t*). Consequently,
V(t*) is an upper bound for the value of the game, which completes the proof.

There are many Hider strategies that will give rise to the property required in Theorem 3; that is, the Hider distril?utes k
booby traps in t* boxes in such a way that box J € [t*] contains a booby trap with probability ¥; e [0, 1], where 3-:1 yj=
k. One way to implement such a Hider strategy can be found in Definition 2.1 in [4]. Partiton the interval [0.K] into
subintervals of lengths Y1, - - - ¥t-. Generate 0 from the uniform distribution in [0: 1] and select the k boxes corresponding
to the k subintervals containing the points 0.0+1,...0+ (k- 1). By construction, the Hider will choose exactly k boxes
to put booby traps, and box / will contain a booby trap with probability Vi, for i e [t*].

In the special case where all the rewards are equal, we have V(t) = (t — k)/t which is maximized at V(n)=(n- k)/n.
The Searcher’s optimal strategy is to open each box with probability 1/n, and any Hider strategy that puts a booby trap in
each box with the same probability k/nis optimal—such as choosing every subset of k boxes with probability 1/ Z .

In another special case when k=1 - 1, we have V(n - 1) = 0, so the value of the game is V(n) = (n— (n - 1))A([n]) =
( ’}:1 1/r;)=". The Searcher's optimal strategy is to open box Jj with probability A([n])/r}, for j € [N]. The Hiders optimal
strategy needs to put a booby trap in box J with probability 1- (7 - (n - 1))A([Nn])/ ;. Becausethe Hider has N — 1 booby
traps, the only strategy that meets this requirement is for the Hider to leave box Jj free of booby trap with probability
AInY/rj, for je[n].

3. Thegameon thecompletéhypergraph

This section concerns the extreme case where G is the complete (non-uniform) hypergraph, so that a Searcher strategy
is any Sc [N]. Note that if K= n— 1, the Searcher should open only 1 box, so the structure of the hypergraph becomes
irrelevant; the solution presented in Section 2 is also optimal.

For the case of complete hypergraph, we present the solution to the three special cases: (1) equal rewards in each box;
(2) k=1, and (3) N= 4, k= 2. We then give some general bounds on the value of the game, and make a conjecture on the
optimal solution based on our findings.
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3.1. Thecasewith equal rewards
We begin our analysis with the special case where all the rewards are equal, which we set to 1 without loss of generality.

Theoremd. Considerthe searchgame on the complete hypergraph with r; = 1 for j e [n], sothis game is characterized by only the
number of boxesn and the number of booby traps k. The Hider’s optimal strategy is to choosesome H < [n](k) uniformly at random.

The Searcher’soptimal strategy is to open m* = % boxesat random. In particular, m* = 1 jf k 2 ”‘2_1 The value of the game is
given by
n- km m*
u(n, ke 77—
k

Proof. By symmetry, it is optimal for the Hider to choose uniformly at random between all his pure strategies.

Because each box contains the same reward, the Searcher’s decision reduces to the number of boxes she opens. Write
F(m) for the expected reward when the Searcher opens m boxes at random, and the booby trap is located in some arbitrary
set of k boxes. We calculate F(m) by considering the Searcher's m boxes to be fixed and supposing that a randomly chosen
set of k boxes are booby trapped. The Searcher gets a reward of mif none of the boxes she has chosen are booby trapped;
otherwise she gets nothing. Hence,

n—km m
F(m) = — (2)
K
The ratio F(m + 1)/ F(m) is given by

F(m+1) (n—k-m)(m+ 1)
F(m) ~ (n-=m)m ’

Therefore, F(m + 1) < F(m) if and only if
n-k
> .
k+ 1
It follows that F(m) is maximized at m* = (n- K/(k + 1) . The value of the game is F(m*), as given in the statement of
the theorem.

Note that if 8=k/n< 1/2is held constant, and nand ktend to « , then the optimal search strategy in the limit is to
open M* =( 1-0)/8 boxes, which is independent of n. The same result is obtained independently in Example 2.1cin [9]
with a dynamic programming formulation. Writing F(m) as

n-k n-—k-1 n—-k-m+ 1

F(m): m,
n n-1 n—m+ 1

we can verify that the value of the game in the limit is
fim F(m*)=m"(1-6)"".

One can interpret (1- G)m* as the probability that none of the M* boxes opened by the Hider contains a booby trap in the
limit as N —w

Suppose now that kis held constant and let 7 -« . In the limit, the optimal number of boxes to open tends to infinity,
and so does the value of the game. To calculate the proportion of the total reward nthe Searcher can obtain, we write out
the probability n_km' / Z from (2) that none of the Searcher’s boxes are booby trapped as

i=0
where m* =( n- k)/(k+ 1) . Because

n-k n-k n+ 1
sm* < +1= )
k+ 1 k+ 1 K+ 1

the probability in (3) satisfies the bounds



T. Lidbetter, K.Y. Lin / Theoretical Computer Science 821 (2020) 57-70 61

k-1 n-
< - n=T1

) k+ 1 ) n—i , K+ 1
i=Q i=Q =0

Since the upper bound and the lower bound approach to the same limit asm - « , we can conclude that

k-1 m* 1 k
e A
i=0
Hence, in the limit as " -« | the ratio of the value of the game to the total reward 1 is
LN N k_ “
N0 n k+ 1 k+ 1

3.2. Thecasewith k = 1 pooby trap

We now consider the special case in which the Hider has only k= 1 booby trap. Recall that a Searcher’s pure strategy
is Sc [n].In order to present an optimal strategy for the Searcher, define S* € [N] to be a subset of boxes that minimizes
[r(S) = r(S)|, where S denotes the complement of S .

We state and prove optimal strategies for the game in the casek = 1. Let Ry = 7:1 rj.

Theorem_s_Considerthe search game on the complete hypergraph with k = 1, Let S* c [n] be a subset of boxes that minimizes
|r(S) = r(S)|. It is optimal for the Searcherto chooseS* with probability

r(s)

Ry’
otherwise chooseS*. It is optimal for the Hider to put the booby trap in box i with probability q; = ri/ Ry, for i e [n]- Thevalue V of
the gameis

_ r(s)r(s)
=R

p(S*) =

Proof. Suppose the Searcher uses the strategy p and that the booby trap is in some box j.If j € S, the expected payoff is
r(s)r(s)
Ro
Similarly, if j € S, the expected payoff is the same. Therefore, V 2 r(S)r(S)/ Ry.
On the other hand, suppose the Hider uses the strategy q. If the Searcher opens some subset S of boxes, then the
expected payoff is
r(9r(s
(s gqi= ——.
_ Ry
icS

p(§*)r(§*)=

The numerator in the preceding is equal to

R2 (r() -r(9)2 R
+ 2=-_——7 = + 2

4 4 4
which is maximized by taking S= S by definition of S*.In other words, the Hider's strategy g guarantees that the expected
payoff (for the Searcher) is at most r(S)r(S')/ Ry, so V < r(S)r(S')/ Ry. The result follows.

_ 2
H(9r(5) = r(S(Ry - 1(S) == () - %

In the case that the rewards are integers, the problem of finding such a subset S' to minimize |r(S) - r(S)| is the
optimization version of the number partitioning problem, which is the problem of deciding whether a multiset of positive
integers can be partitioned into two sets such that the sum of the integers in each set is equal. This problem is NP-hard, so
that finding the value of the search game with k= 1is also NP-hard. There are, however, efficient algorithms to solve the
problem in practice [6].

Note that the value of the game for k= 1is Ry/ 4, if and only if the boxes can be partitioned into two subsets of equal
total reward. It is tempting to conjecture that in general, the value of the game is Ro/(k+ 1)?, if and only if the boxes
can be partitioned into K+ 1 subsets of equal total rewards. This conjecture, however, is not true, as can be seen from the
simple example with 7= 6and K= 2 when all the rewards are equal to 1. By Theorem 4, the value of the game is 4/5, but
Ry/(k+ 1)%2 = 6/32. Nevertheless, the quantity Ro/(k+ 1)? is a lower bound for the value of the game, because the Searcher
can ch?(ose or}e of the K+ 1 subsets uniformly at random, and receive an expected payoff of Ro/(k+ 1) with probability at
least 1/(k+ 1).
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3.3. Thecasewith n = 4 poxesand k = 2 pooby traps

This section presents the solution to the game with N = 4 boxes and K = 2 booby traps. The Hider chooses two boxes to
place the booby traps, so he has ‘2‘ = 6 pure strategies. The Searcher would want to open at most 7 — k= 4 - 2 = 2 boxes,

so she has 10 viable pure strategies, including ‘1‘ = 4 pure strategies that open just 1 box, and g = 6 pure strategies that
open 2 boxes. While one can compute the value V' and optimal strategy of each player by a linear program, we will show
that the optimal mixed strategy for the Searcher is one of the following three types:

1. Strategy A involves 4 active pure strategies: {1}, {2}, {3}, {4}. Specifically, the Searcher opens just 1 box, and chooses
box i with probability
171

’ I= ’ ’ 7 .
1ry+ 1/ry+ 1/rg+ 1/1, 1234

pi =
Regardless of which two boxes contain booby traps, strategy A produces the same expected payoff

Vps — . (5)

Intuitively, strategy A works well if 'y, ro, I'3; Iy are comparable.
2. Strategy B involves 3 active pure strategies: {1}, {2}, and {3, 4}. Specifically, the Searcher opens box i, for i = 1,2, with
probability

1/r;

P = s i=1,2,
bi 1ry+ 1/ry+ 1/(rg+1,) 12

or opens both boxes 3 and 4 with probability

1(rz+ry)
1ri+ Ay + 1ry+1,)

P34 =

Regardless of which two boxes contain booby traps, strategy B guarantees an expected payoff at least

Vg —— . (6)
ntnt e
Intuitively, strategy B works well if '3 + I'4 is comparable to 'y and I;.
3. Strategy C involves 6 pure strategies: {1}, {2}, {3}, {1, 4}, {2 4}, {3, 4}. Specifically, the Searcher opens box i, for i =
1, 2, 3, with probability

1/1;
pi =
1 1 1 1 1 1
ﬁ+ E+ G+ Ti+ry, + T+ry, Ta+7y,

or opens both boxes i and 4, for i = 1,2, 3, with probability
1(ri+14)

14 L4 14 1 i

7
L S S
r1 rz r3 r1+r4 r2+f4 f3+f4

Pig =

Regardless of which two boxes contain booty traps, strategy C produces the same expected payoff

2
Ves .

€= T, i; 14 T, )
r1 rz f3 r1+r4 f2+f4 r3+r4

Intuitively, strategy C works well if 74 is much smaller than the reward in each of the other three boxes.
The main result in this section is the following theorem.

Theoren®.Oneof the three strategies A, B, Cis optimal for the Searcher.The value of the game is

V = max{Va, Vs, Vc},

where V », Vg, and V¢ are defined in (5), (6), and (7), respectively.
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The proof of this theorem is lengthy, and we will present the three cases separately. Before doing so, we first offer some
discussion to shed light on these three strategies. With some algebra, one can see that Va2 Vg if and only if

e ; ®)

and Va2 V¢ if and only if
1 1 1 1
— + + :
Fg Tyt Ty Ty+T, T340,

and VB2 Vc if and only if

1 1 1 1 1 1
—+ —+ <+ +

< . (10)
L O O N P P N S

Strategy A treats each box equally. For Strategy A to work well, 1 and ', cannot be too large compared with 3 and 4
(seen in (8)), and 4 cannot be too small (seen in (9)). In other words, the four rewards need to be somewhat comparable.
Strategy B combines the two boxes with smaller rewards together, and treats the problem as if there were only 3 boxes.
For Strategy B to work well, '3 and r'4 need to be substantially smaller than 7'y and ', (seen in (8)), and 'z needs to be
somewhat closer to 74 rather than to I'; (seen in (10)). Strategy C treats box 4—the one with the smallest reward—as a small
add-on to one of the other three boxes. For Strategy C to work well, 4 needs to be small enough (seenin (9)), and 4,72, 13
need to be somewhat close together (seen in (10)).

We next present the proof of Theorem 6in three sections, starting with the easiest case. The challenge in each of the
three proofs is to show that the Hider has a mixed strategy to guarantee the payoff to be no more than the corresponding
payoff guaranteed by the Searcher's mixed strategy.

3.3.1. Optimality of Strategy C

Theoreni?.Strategy Cis optimal for the Searcherand the value of the gameis V¢ if and only if

1 1 1 1
+ + <, (1)
Fy+ry, Ty+l, Tg4l, I,

and
1 1 1 1 1 1
+ + > + +

> . (12)
ry Iy Tg+Tl4 T3 Tq+74 Ty+T1,

Proof. If strategy Cis optimal for the Searcher,then Vc 2 V4, which is equivalent to (11), and Yc 2= VB, which is equivalent
to (12). Therefore, (11) and (12) are necessary conditions.

We next prove (11)and (12) are sufficient conditions. Since the Searcher can use strategy C to guarantee an expected
payoff Vc, it remains to show that the Hider has a mixed strategy to guarantee an expected payoff no more than Vc. Let
Gij denote the probability that the Hider hides the 2 booby traps in boxes / and j,and let

Ve Ve Ve
2 ry+ry 3 ry+ 1y 923 ry+r,
Ve Ve Ve
Ju=1- - - ,
ry+Tl, Tg+ly Iy
Ve Ve Ve
Qoq = 1-— - - ,
ry+ 7T, TIa+0, I
Ve Ve Ve
q34 = 1 -

ry+ry o+ 1y rs

First, we show that the preceding is indeed a legitimate mixed strategy for the Hider. Using the definition in (7), one can
verity that 1gi<jz49ij= 1. In addition, 0= Q3 =< Gi3 =2 < 1and 34 < G4 < G14 = 1, because 1 2 I'; 2 I'3 2 4. Finally,
we see that G34 2 0, due to (12).

Next, we show that the Hider guarantees an expected payoff no more than Vc regardless of what the Searcher does.
Consider 4 cases.

1. If the Searcher opens {1: 4}, then the expected payoff is

(ry+ ry)a,s = Ve

A similar argument leads to the same conclusion if the Searcher opens {2: 4} or {3, 4}.
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2. If the Searcher opens {1}, then the expected payoff is

r1(dy + Gog + G34) = Ve

A similar argument leads to the same conclusion if the Searcher opens {2} or {3}.
3. If the Searcher opens {4}, then the expected payoff is
1 1 1

rg(Qip + dyg + Qq3) =1y + + Ves Ve,
T 4T, Tp+0, Ta+1,

where the inequality follows from (11).
4. If the Searcher opens {1, 2}, then the expected payoff is
1 1 1 1 1 Ve

1
(ri+r)qau=(ri+ry)) —+ —+ - —- - —
1 ¥ 12034 1+ 73
ry Iy Ig+Ty Ty Ti+lg To+7, 2

To show that the preceding is no more than V¢, compute

IR S N B N B B

ry rg+1ry rs ry+ry ro+ 1y

(T4 1) Iy Iy Iy
= 1+ 71 + —
r(ro+ry)  ry(ro+ry) ry(ry+ry)
o ry g ryfy Ioly Iofy
= + + - -
Fi+rg Ty+70, ro(ry+ 1) r3(rs+ry) ro(ro+ry)  ry(rs+ry)
r r r,r ror
< 4 4 114 2l4
Fo+ry o+, rq(re+r,) ry(ry+ry)
r r
_ 4, 4
Fi+r, T+ 1y
r
<2 1- 2 <2
ry+ Iy

where the first inequality follows from Q444 2 Oand Q4 2 0, and the second inequality follows from (11). A similar
argument leads to the same conclusion if the Searcher opens {2; 3} or {1, 3}.

The proof is complete.

3.3.2. Optimality of Strategy B

Theoren8. Strategy Bis optimal for the Searcherand the value of the game is Vg if and only if

1 1 1 1 2
L (13)
I [y Iy Iy I3+1,
and
1 1 1 1 1 1
—+ —+ < —+ +

: (14)
ry Iy T4y I3 Ty+T, Tyt 0y
Proof. If strategy B is optimal for the Searcher,then Vs> Va, which is equivalent to (13), and V82 V¢, which is equivalent
to (14). Therefore, (13) and (14) are necessary conditions.

We next prove (13) and (14)are sufficient conditions. Since the Searcher can use strategy B to guarantee an expected
payoff at least Vg, it remains to show that the Hider has a mixed strategy to guarantee an expected payoff no more than
V. Let Gij denote the probability that the Hider hides the 2 booby traps in boxes i and j,and require

Vg
Qip = Pt r4’ (15)
Q34 = 0, (16)
Vg
Qo3 + Qg + Q3g = P (17)
)
Vg

Qi3+ Qg + Q3 =

|
—
—
o
-
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These constraints ensure that 1<i< j<49ij= 1, and guarantee an expected payoff no more than Vg if the Searcher uses
pure strategies {3; 4}, {1, 2}, {1}, and {2}.

The Hider also needs to ensure an expected payoff no more than Vs if the Searcher uses either {3} or {4}, so we need
to require

Vg
Qo+ Qqq + Qg < ) (19)
3
Vg
G2+ G13+ A3 € —; (20)
4
and if the Searcher uses {1. 3}, {2 3}, {2, 4}, or {1, 4}, so we also need to require
Qoy < Ve 1)
#Erwr
Vg
< ,
Qyq < 1, (22)
Vg
Qi3 = ' (23)
ro+ 1y
Vg
< .
23 A, (24)

To complete the proof, we need to show that there exists a feasible nonnegative solution to gij, 1< i < j < 4 subject to the
constraints in (15) through (24).
To proceed, write

and use (16)in (17)and (18)to obtain

Ay _ 1 s _ 1
= _ =Y, = _— =X
VB I'1 y VB r2 (26)

To ensure G413, 23, 414,24 =2 0, we need that

0sx< 1, o0sys

,2 27)

\
=

Next, substitute (25) and (26) into (19)-(24)to rewrite the 6 inequalities constraints in terms of xand y. Constraints
(19) and (20) together become

1 1 1 1 1 1
L SX+ys - : (28)
ry Iy Iy I3+, ry I3+,

Constraints (22) and (23) together become
1 1 1
- < x< , (29)
ry Iy+r3 Fy+ 1y

and constraints (21) and (24) together become
1 1 1
1 <ys . (30)
ry r{+r3 ry+1,

Because constraints (29) and (30) make constraint (27) redundant, it remains to show that there exists a feasible solution
to xand y subject to constraints (28), (29), and (30).

First, note that in each of (28), (29), and (30), the unknown’s upper bound is greater than or equal to its lower bound.
The feasibility of X+ yin (28) follows directly from (13). The feasibility of xin (29) follows from Iy 2 I3 2 Iy, and the
feasibility of (30) follows from Iy 23214,

To complete the proof, we need to show that the sum between the upper bound (lower bound, respectively) of xin (29)
and the upper bound (lower bound, respectively) of yin (30)is greater than or equal to the lower bound (upper bound,
respectively) of X+ yin (28).

The first claim follows directly from (14). The second claim states that

1 1 1 1 1 1

- + - IR

ry ro+ 14 rq r{+ry Iy rs+ 1y
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To prove it, start with the left-hand side to obtain

1 1 1 1
+ <r +
ro(ro+r3)  rq(ri+rs) 8 ro(ro+ 1)  rq(ry+ry)

1

ra(rs+ry)
1

< -

ra(rs+ry)
1 _ 1

ry r3+r,

where the first and third inequalities are due to I's =2 'y, and the second inequality is due to (14). Consequently, we have
proved that there exists a feasible solution to xand ythat satisfy constraints (28), (29), and (30). In other words, we have
proved that there exists a feasible solution to G43: G145 423, 924 that satisfy the constraints in (17) through (24). Therefore, we
have shown that the Hider has a mixed strategy that guarantees the Searcher no more Vg, which completes the proof.

3.3.3. Optimality of Strategy A
We begin with two lemmas.

Lemma9./fry = r,2r32r,2 0,and(8) holds, then

1 1
—+ >
r.

1 1 2
— o+ -
ri j Iy ry re+ 1y

where i, j, k, | is any permutation 0f{1, 2,3, 4}

Proof. Rewriting (8) as

1 1 1 1 1 1
+ > + — -

—_t — > _— — -
ry Iy I3+1, rq Iy Ig+1y
Becausel1 2 I, 2 '3 2 ry 2 0, with some algebra one can verify that any other permutation will make the left-hand side of
the preceding larger and the right-hand side of the preceding smaller, so the inequality still holds.
Lemma10./fry > r, > ry > ry 2 0,and (9) holds, then

1 1 1 1

— + +

< ’
ry ri+r, f/'+l'l re+ 1y

where i, j, k, | is any permutation of{1, 2,3, 4}

Proof. Multiplying by 74(ry + ry)(ry + rg)(rs + r4) on both sides of (9) and canceling out common terms, we obtain

FATala S ((T1+ Ta+ T3+ Ty) + )12

Because 4 is the smallest, it is clear that any other permutation will make the left-hand side of the preceding smaller and
the right-hand side of the preceding larger, so the inequality still holds.

We are now ready for the main result in this subsection.

Theorenm1.Strategy A is optimal for the Searcherand the value of the gameis V 5 if and only if

1 1 1 1 2
—+ —2 —+ — - , (31)
r ry fg Iy Iz3+10,

and

1 1 1 1
— + + ’
Iy ry+ 1y o+ 1y rs+ 1,
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Proof. If strategy A is optimal for the Searcher,then Va2 Vg, which is equivalent to (31), and Va2 V¢, which is equivalent
to (32). Therefore, (31) and (32) are necessary conditions.

We next prove (31)and (32) are sufficient conditions. Since the Searcher can use strategy A to guarantee an expected
payoff at least V4, it remains to show that the Hider has a mixed strategy to guarantee an expected payoff no more than
V. Let Gij denote the probability that the Hider hides the 2 booby traps in boxes / and J, with probability ij = 0 and

1<i<j<49ij = 1. In particular, we will show that the Hider has a feasible mixed strategy to achieve an expected payoff
exactly Va if the Searcher opens any one box, and guarantees an expected payoff no more than Va if the Searcher opens
any two boxes. In other words, we claim that there exists a feasible solution to

qij= 1, gij= 0, for1<i<j<4
1<i<j<4
(A5 + Qo4 + G3)'1 = Va, Quo(rg +14) < Va,
(913 + Gqa + Gg)ra = Va, Qu3(rp + 14) < Va,

Qig(ry+ 13) S Va
Uo3(ry + 1) S Va
Goa(ry +13) < Va,

Gaq(ry + 13) < Va.

(@2 + G1g + Qa)r3= Va
(A2 + Qi3 + Gp3)ry = Va,

To proceed, write X = G34/Va and ¥ = G4/ Va4, and use the first 5 equality constraints (in the left column) to solve
i/ Vain terms of xand yfor 1< i< j< 4 Usedjj= 0to obtain lower bounds for gi;/ Va, for 1< i< j< 4, and the last 6
inequality constraints (in the right column) to obtain their upper bounds. The results are summarized below.

1 (*F P} 1 1 1 1 1
— 2 —Z=X+ - —— = —4+ —+ — 20,
(rs+ 1)~ Va 2 ry Iy rg Iy4
S S N L L I Y
(rp,+r,)  Va 2 ry ry g T4
v G T A s,
(ro+r3) Va2 1y Iy g Iy

1 Q3

> 22 = -X=-y20,
(ry+ry)  Va 1y

1 Q24
> 2 =y>y,
(ry+7r3) Vg

1 q34=XZO

> =t
(ri+ry)  Va

Rewrite the preceding in terms of x, y, and X+ y, to get the following.

1
0< X< , (33)
ry+ry
1 1 1 1 1 1 1 1 1 1
-— - — - — 4+ —+ — £X% - - —+ — (34)
2 ry Iy Iy I, ra+ry, 2 Iy Iy I3 I4
1
0 y< , (35)
ryo+rg
1 1 1 1 1 1 1 1 1 1 1
-— ——4+ ——- —+ — SYy< - -+ — - —+ — (36)
2 ry Iy I3 Iy Fo+ly 2 Iy Ty I3 Iy4
1 1 1
— - SX+ys —, (37)
ry ri+ry ry
11 1 1 1 1 1 1 1 1 1
- —+ —+ —= — - SX+ys - —+ —+ —— — (38)
2 Iy Iy ry Iy ro+ Iy 2 Iy Iy Iy I,

It then remains to show that there exists a feasible solution to x and ythat satisfies these six linear constraints.

First, we claim there exists a feasible solution to xthat satisfies the two constraints (33) and (34). The larger lower
bound for xis clearly 0, since I'1 2 I, 2 rz 2 ry. While it is not clear which of the two upper bounds for xis smaller, one
can verify that both are nonnegative, due to (31). With a similar argument, there exists a feasible solution to ythat satisfies
(35) and (36), due to (31) and Lemma 9.
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Second, there exists a feasible solution to X+ Y that satisfies (37) and (38), because each of the two upper bounds is
greater than or equal to each of the two lower bounds, due to (31) and Lemma 9.

To complete the proof, we need to show that the sum between the upper bound (lower bound, respectively) of X implied
by (33) and (34) and the upper bound (lower bound, respectively) of ¥ implied by (35) and (36)is greater than or equal to
the lower bound (upper bound, respectively) of X+ ¥ implied by (37) and (38).

From (33), (34), (35), and (36), the lower bound is 0 for X and ¥, so we need to check the right-hand sides of (37) and
(38) are both nonnegative. The part concerning (37)is trivial, and the part concerning (38) follows because

1 1 1 1 1 1 1
+ +

|
+
|
+
|
\Y
\Y

ry ry rs ry+1r, o+ 1y rg+1ry Iy

where the second inequality follows from (32).

Finally, we need to show that the sum between the upper bound of X implied by (33)and (34)and the upper bound
of ¥ implied by (35)and (36)is greater than or equal to the lower bound of X+ ¥ implied by (37)and (38). We do so by
showing that the sum of either upper bound of xin (33)or (34), and either upper bound of yin (35)or (36), is greater
than or equal to either lower bound of X+ yin (37)or (38). There are thus 8 inequalities to verify. For example, from (33),
(35), (37), we need to show that

1 1 1 1

\

2 ’
r{+r, ry+rs rq ry+1ry

which follows from (32) and Lemma 10. Using (32) and Lemma 10, we can also verify the corresponding inequality involving
(33), (36), (38), and that involving (34), (36), (38), and that involving (34), (35), (37).
We next verify the corresponding inequality involving (33), (35), (38), which requires
1 1 1 1 1 1 1 1
> + +

-+ > _ -,
Fy+ry i+l 2 Iy Iy Iz T4 fo+ I3
which is equivalent to

2 + 2 1 1 1 1 2
ry+ry Iy+1rg ry ry Iy Iy ro+ Iy

\

|

+

|

+

|

|

|

|
=)
L

Starting from the right-hand side to get

1 1 2 1 1 1 1 1 1
_t — - — 4+ — - — < —+ — 4+ — - —
ry rs ro+ 1y ry ry ry Iy rq ry
2 2
= +
ry+ry ry+ry
2 2
< +

ki
ry+1r, r{+ry

where the first inequality follows from (31) and Lemma 9, and the last inequality follows from r{ =7, and 'y 2 I'3.

We can go through the same procedure to verify the corresponding inequality involving (33), (36), (37), and that involv-
ing (34), (35), (37), and that involving (34), (36), (38). Each of these three inequalities has the same form as in (39), with
the bracket on the right-hand side having three positive terms and 1 negative term. The key to establish the inequality is
to apply Lemma 9to the two positive terms with the largest indices among the three positive terms; for example, to prove
(39) we pick 2 and I3 to apply Lemma 9.

Because there exists feasible solution to x and ythat satisfies constraints (33)-(38), we have shown that the Hider has a
mixed strategy that guarantees an expected payoff no more than Va, which completes the proof.

3.4. Generalbounds

Here we give some general bounds on the value of the game, starting with an upper bound and a lower bound that are
close to each other when nis large and the rewards are small.

Propositiom 2.(Upper bound) Thevalue V of the game on the complete hypergraph satisfies

ve Foo o 1 ' 40
T k+ 1 kv 1 (40)
where Ry = [, ;.
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Proof. First assume all the rewards are integers. If we define a new game by replacing a box of reward I with two boxes
of reward 1 and Iy with 'y + ' = I'| then the value of the game can only increase, because any Searcher strategy in the
original game can also be used in the new game. With a similar argument, we can replace each box / with ’; boxes each
containing a reward of 1, resulting in a new game with equal rewards of 1, whose value is at least as great as the original
game. The value of the new game is equal to U(Ry, k), as defined in Theorem 4. Observe that by further replacing each box
with { new boxes each containing a reward of 1/t, we obtain a game whose value u(t Ry, k)/t is no smaller than that of the
original game. Therefore, the value of the original game is bounded above by

U(t Ry, k) U(tRy, k) Ry gk
im ———— = Ry lim = -
t s t tm tR, K+ 1 K+ 1

where the last equality follows from (4).

If the rewards are all rational numbers, then we can obtain an equivalent game with integer rewards by multiplying
them all by a common denominator d. All the payoffs in the resulting game will be larger by a factor of d, and therefore so
will the value of the game and the parameter Ry. As a consequence, the left- and right-hand sides of (40) will both be larger
by a factor of d, so the inequality still holds. If the rewards are real numbers, then they can be approximated arbitrarily
closely to rational numbers, so that the left- and right-hand sides of (40) are also approximated arbitrarily closely, and the
bound still holds.

Propositiom 3.(Lower bound) Thevalue V of the game on the complete hypergraph satisfies

k

R r(k
ve o g ] (WU (41)
K+ 1 K+ 1 Ry
where Ry = {_ riandr([k]) = i.‘=1r,-.

Proof. Consider a Searcher strategy with which each box is independently opened with probability 1/(k+ 1). For a given
Hider strategy H e [n](k), the probability that none of the boxes in His opened is (1- 1/(k+ 1))k I the Searcher does not
open any box in H,her expected payoff is r(H/(k+ 1), if she opens any boxes in H, her payoff is zero. Therefore, with
such strategy the Searcher’s expected payoff is

1% r(H)

Lo k+ 1

The preceding in minimized when r(H) is maximized; that is, for H = [K]. In this case,the expected payoff is the right-hand
side of (41).

It is worth pointing out that, among all the Searcher strategies that open each box independently at random with some
given probability p, the one that guarantees the greatest expected payoff is given by P = Y(k+ 1), namely the strategy of
Proposition 13. This claim can be verified via elementary calculus. The bounds in (40) and (41) are close when I ([K])/ Ry is
close to zero. In particular, the bounds are asymptotically equal for constant k, as - « , if all the rewards are all o(n). In
this case, the Searcher strategy that opens each box independently with probability (k+ 1) is asymptotically optimal.

Note that all the optimal Searcher strategies presented in this paper share the same form: the Searcher chooses each
hyperedge Swith probability 0, or with probability proportional to 1/r(S). This observation gives rise to a set of lower
bounds on the value, generalizing the Searcher strategy from Lemma 1.

Propositiomn 4.Considerthe searchgame playedon an arbitrary hypergraph, and let S= {S;,. .. S} beasetof hyperedges.Consider
the Searcherstrategy p that choosesS; with probability p( S; )=xr( Sj), where

1
3-=11/f(5j)

This strategy guaranteesan expectedpayoff of at leastmA, where

A=A(S)=

m=m(S)= min |{SjeS:SinH=a}|
Hg[n](k)
is the minimal—over all possible Hider strategies—numberof hyperedgesin S that contain no booby traps.

Proof. For a given Hider strategy H, let A= {Sje S: Sjn H = }| be the set of hyperedges in S that contain no booby
traps. By definition of m, we have |A| 2 m. Hence, the expected payoff against His
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R(p,H)= p(9r(S)=  ArzmA
ScA ScA

which completes the proof.

If Sis a partition of [1], then the minimal number of hyperedges that contain no booby traps is m(S) = t - k, and
Proposition 14 implies  that the value is at least (t - KA(S).
Based on the solutions to special casespresented in this paper, we make a conjecture on the Searcher’s optimal strategy.

Conjecturd 5.Considerthe booby trap searchgame played on a hypergraph. There exists an optimal Searcherstrategy with which
each hyperedgewill not be chosenat all, or will be chosenwith probability inversely proportional to the sum of the rewards on that
hyperedge.In other words, the Searchercan achieveoptimality by choosingthe bestsubsetof hyperedgesand using the mixed strategy
describedin Proposition 14.

4. Conclusion

This paper presents a new search game on a hypergraph between a Searcher and a Hider. The Searcher wants to collect
maximum reward but has to avoid booby traps planted by the Hider. We present the solutions to a few special cases,based
on which we make a conjecture about the form of the solution in general.

Two of the special cases presented in this paper involve the Searcher opening just one box, or opening any number of
boxes. A relevant and practical situation may restrict the Searcher to opening a certain fixed number of boxes. If the booby
trap only partially injures the Searcher but does not incapacitate her, then we can consider a model extension that allows
the Searcher to keep going until she encounters a certain number of booby traps.
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