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Abstract 
In responding to the fast-varying user service require-

ments and highly mixed traffics, the 5G network exploits 
Network Function Virtualization (NFV) and network slicing 
to enhance its functional and architectural viability. With the 
new service provisioning requirements posed by 5G (e.g. 
the ultra-low latency and massive machine-type communi-
cation) urge the functionality deployment to offload from 
the network core to edge, the various demands of QoS guar-
antee cast by the diverse services make the NFV an essential 
enabler of edge network evolution. However, the newly 
created performance challenges at the network edge are still 
unexplored. In this paper, we investigate the converged 
RAN and MEC architecture in the 5G era. Specifically, we 
characterize the collocated cloud-native workloads (RAN 
and MEC) on the COTS edge platform and provide the ar-
chitectural implication which will benefit the future edge 
architecture design. 

1. Introduction 
The recently issued 5G standard promises a surge in 

network bandwidth and an explosion in the number of con-
nected devices. This communication revolution will enable 
consolidated service provisioning of many killer applica-
tions in addition to traditional voice and data communica-
tion, such as AI, AR/VR, and autonomous driving, etc. 

In responding to the fast-varying user service require-
ments and highly mixed traffics, the 5G network exploits 
Network Function Virtualization (NFV) and network slicing 
to enhance its functional and architectural viability. NFV is 
a novel paradigm that enables scalable and flexible deploy-
ment of network services on edge or cloud infrastructure.  

To date, most of the existing NFV research focuses on 
the core network to provide a better data plane and control 
plane performance. With the new service provisioning re-
quirements posed by 5G (the ultra-low latency and massive 
machine-type communication) urge the functionalities of-
fload from the network core to edge, the various demands of 
QoS guarantee cast by the diverse services make the NFV 
an essential enabler of edge network evolution. The NFV-
based network slicing technique enables unique service slic-
es that are customized for various applications such as IoT, 

automated cars, streaming 360-degree videos, etc. However, 
this will create new research challenges at the network edge. 

First, the NFV at the network edge involves a new virtu-
alization scenario and functions compared to the traditional 
NFV scenario. A trending edge NFV scenario is the virtual-
ized Radio Access Network (vRAN). The RAN system is 
the most expensive part of the mobile network and the re-
source of 80% of performance problems that affect the user 
experience. The 5G RAN infrastructure calls for a re-
architected service hierarchy to deliver a more flexible and 
diverse service provisioning. Compared to traditional LTE 
RAN, parts of the 5G core functions (i.e. user-plane func-
tions in the LTE core) and the baseband units (BBUs) are 
consolidated as 5G distributed units (DUs), where the non-
real-time functions are implemented as virtual network 
functions (VNFs) or containers and deployed on commodi-
ty-off-the-shelf (COTS) servers to provide a more scalable 
and cost-effective solution compared to traditional special-
ized equipment at the cell site. Moreover, the vRAN is usu-
ally co-located with multi-access edge computing (MEC) 
workloads on the edge servers, such as streaming 360-
degree video processing. Such mixed-service oriented work-
load consolidation can significantly challenge the resource 
management of edge NFV servers. 

Second, the recent trend to adopt cloud-native applica-
tion deployment in telco clouds brings an unexplored envi-
ronment to edge NFV. The cloud-native environment de-
ploys containerized applications as a loosely-coupled sys-
tem (often implemented as microservices) with optimized 
orchestration and resource utilization to deliver extreme 
simplicity, scalability, and resilience. The cloud-native ser-
vice inherently fits the 5G edge use cases such as vRAN and 
MEC considering the heterogeneous platforms at the edge 
and the differentiated service requirements. For example, 
various 5G services are delivered as differentiated network 
slices with specific network function host requirements. The 
phone slice only needs to host DU at edge servers, while 
hosting all other 5G core, IMS server, and WAN optimizers 
on the central cloud. While the mission-critical slices such 
as autonomous driving need all DU, user-plane 5G core, and 
V2X services to be hosted on edge servers. The cloud-native 
technology enables an effortless deployment, operation, and 
management of containerized 5G applications regardless of 
the edge location and heterogeneous hardware platform type.  
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Understanding the new edge workloads and emerging 
deployment manners will significantly impact the design of 
edge hardware platform. As the edge platform needs to seek 
the tradeoff between the cross-platform compatibility and 
the extreme energy and cost-efficiency. However, though 
existing work explores the virtualized BBU system under 
different RAN system configurations and provides initial 
insights on system computational capacity, more detailed 
architectural implications are still needed to better decide 
the architecture tradeoff of 5G edge cloud servers. Our goal 
is to provide first-hand characterization experiences. 

In this paper, we build a test framework of 5G RAN and 
MEC based on cloud-native technology. We collect the ar-
chitectural characteristics of key network components and 
MEC applications on the 5G edge cloud platform. Our ex-
periments demonstrate the following implications: (1) The 
RAN system is a CPU consuming application, while the 
usage of memory is trivial. (2) The main micro-architectural 
bottleneck for the RAN system is caused by its Backend 
Bound, the optimization for Backend Bound is necessary to 
get better RAN performance. (3) In the RAN system, the 
turbo decoding module consumes the majority part of the 
CPU, it should be further optimized or offloaded to a hard-
ware accelerator. (4) The co-running of the RAN system 
and MEC application will slow down the video processing 
based MEC applications by 24% ~ 100%. However, the 
RAN performance is not seriously affected when co-running 
with our chosen MEC applications. 
2. Related Work 
Edge NFV: Network Virtualization Networks (NFV) has 
received substantial attention from the research community 
in recent years with both academia and industry recognizing 
its benefits on operational mobile networks. Although most 
of the work highlights the NFV process on core networks 
[1-9], there are still several NFV projects [10-13] proposed 
at the side of radio access networks and network edge. 
While the scope of the above-mentioned works includes the 
RAN virtualization and network slicing realization, none of 
them provide an architectural characterization of a virtual-
ized RAN system, particularly as a cloud-native container-
ized form. Moreover, no existing work has explored the co-

located vRAN and MEC systems from an architectural per-
spective.  
RAN Characterization: In the last few years, several 
works [14-19] provide the performance analysis and study 
on the vRAN system. [15, 17] introduces the concepts and 
architecture of the vRAN system. [15] validates two MAC 
schedulers and analyzes the vRAN system, in terms of 
memory occupancy and execution time. [17] performs thor-
ough profiling of OAI, in terms of execution time, on the 
user plane data flow. A recent work [23] explores the sys-
tem computational requirements of vBBU on a cloud RAN 
testbed. However, none of the existing work has provided a 
comprehensive architectural behavior characterization for 
the vRAN framework. To the best of knowledge, our work is 
the first one that explores the architectural implications of 
the colocation of cloud-native vRAN and MEC.   
3. System Architecture of 5G Edge Cloud 

In this section, we first describe the evolution of RAN ar-
chitecture and discuss several network function deployment 
cases. We then introduce our cloud-native edge cloud 
testbed based on open-source virtualized RAN framework 
OpenAirInterface (OAI) [10] and MEC Benchmark PAR-
SEC [22].  
3.1 The Architecture of 5G RAN 

To meet the rigorous requirements of bandwidth and la-
tency, 5G needs a new network architecture that scales to 
device and traffic densities far beyond current LTE net-
works. As the most performance-critical part in the transport 
network, the traditional LTE radio access network (RAN) 
will be re-architected by combining part of the core func-
tions and edge computational capabilities. This will transfer 
the centralized RAN to a heterogeneous edge cloud. Ac-
cording to various service requirements of applications, the 
cloud-native function modules could be flexibly spawned 
and deployed on the container-enabled central cloud, edge 
cloud, and cell site.  

 We show three typical cases of network function place-
ment corresponding to the specific application in Figure 1. 
For the mobile broadband service slices with roundtrip de-
lay tolerance is around 10ms, the 5G core control-plane 
functions and user-plane functions are collocated at the cen-
tral cloud, while the 5G distributed unit (DU, an analogy to 
the eNodeB in LTE) is deployed on edge cloud servers. For 
the autonomous driving case with the roundtrip latency 
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Figure 1. RAN architecture evolution from LTE to 5G. 
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guarantee is within 5ms, the 5G core data-plane functions 
will be deployed in edge cloud. And the edge cloud servers 
also host the MEC platform to process latency-sensitive 
applications. For the industrial mission-critical IoT applica-
tions (e.g. robot motion control), the ultra-low-latency de-
mand (<1ms) may even require host MEC on cell site. 
3.2 Experimental Platform Overview 

We choose the OpenAirInterface (OAI) as the RAN 
framework and conduct necessary function split to mimic a 
real 5G RAN system.  

OAI is the most complete open-source RAN experimenta-
tion and prototyping platform created by EURECOM. The 
OAI platform includes a full software implementation of 
mobile cellular systems compliant with 3GPP standards in C 
under realtime Linux optimized for x86. For the 3GPP Ac-
cess-Stratum, OAI provides standard-compliant implemen-
tations of PHY, MAC, RLC, PDCP and RRC, spanning the 
entire protocol stack from the physical to networking layer, 
for both eNodeB and User Equipment (UE). For the core 
network, the OAI provides standard-compliant implementa-
tions of a subset of 3GPP Evolved Packer Core (EPC) com-
ponents such as the Serving Gateway (S-GW), the Packet 
Data Network Gateway (P-GW), the Mobility Management 
Entity (MME), and the Home Subscriber Server (HSS). Fig. 
2 shows a typical downlink path and the key network func-
tions in OAI edge and core networks, note that both eNodeB 
and core functions are hosted in containers. 

We select PARSEC to mimic our video processing based 
MEC applications. PARSEC is a benchmark suite for stud-
ies of Chip-multiprocessors. PARSEC includes emerging 
applications in system applications that mimic large-scale 
multithreaded industrial programs. All the PARSEC appli-
cations are leveraged in containers. 
3.3 Experimental Platform Setup 

As shown in Figure 2, the experimental testbed consists 
of one/two units of Commercial-Off-The-Shelf (COTS) UE, 
one unit of OAI eNodeB Remote Unit (RU), one unit of 
eNodeB Distributed Unit (DU) and one unit of EPC. We use 
Intel Core machines (Core i7-8700 @ 3.20GHz 16GB RAM) 
for eNB DU and RU, Intel Xeon machine (E5405 @ 
2.00GHz 4G RAM) for EPC and Huawei Honor 8 as our 
UE. The eNB version we use is branch 2018_w25. For EPC, 
we use the develop branch. The Operation system used for 
both machines is Ubuntu 16.04. The testbed is implemented 
with a real RF front-end (Ettus B210 USRP). All the exper-
iments were conducted with the same eNodeB configuration, 
namely FDD with 5 MHz bandwidth in band 7. We use Intel 
VTune Amplifier [24] to profile architectural data of key 
network functions as illustrated in Figure 2. All the applica-
tions are implemented in the Docker container environment. 
The docker version we use is 18.09.1. 
4. Understanding the Architecture Implica-
tions of Edge NFV Workloads 

In this section, we demonstrate several key learnings that 
are drawn from our detailed architectural profiling. We start 

by characterizing the solo-run eNodeB Distributed Unit 
(DU). Then, we evaluate the performance of DU and edge 
computing applications when co-running them together on 
the same cores. We reason about the interesting findings and 
provide a platform setup guideline for cloud-native edge 
NFV workloads.  

4.1 CPU and Memory Usage of eNB 
Figure 3 and Figure 4 illustrate the CPU utilization of 

the whole the OpenAirInterface eNodeB in both uplink and 
downlink under 3 traffic types: (1) UDP - increasing band-
width while maintaining the same packet size. (using default 
packet size). (2) TCP – increasing bandwidth while main-
taining the same packet size. (using default packet size) (3) 
UDP – decreasing the packet size while maintaining the 
same bandwidth. We choose 10Mb/s for downlink and 5 
MB/s for uplink. We observe that the CPU utilization in-
creases with the increase of UE’s packet per second (pps). 
Meanwhile, the memory usage always stays around 
0.928GB regardless of the trend of the UE’s pps, which il-
lustrated that the eNodeB Distributed Unit is a computation-
intensive application. Besides, the uplink per Mbps CPU 
utilization is 2 times to the downlink per Mbps CPU utiliza-
tion.  
4.2 CPU utilization for OAI eNodeB Sub-modules 

Figure 5 and Figure 6 show the CPU utilization of sub-
modules inside OpenAirInterface eNodeB for UDP traffics 
with different bandwidth and packet sizes. We observe that 
the layer 2 modules (PDCP, RLC, MAC) are less CPU-
consuming compared to the physical layer modules (Encod-
ing/Decoding, Rate Matching/Dematching, Scrambling/ 
Descrambling and Modulation/Demodulation) in both 
downlink and uplink directions under all cases. This indi-
cates that the layer 2 modules are not constrained by CPU 
resource. More attention needs to be paid into the physical 
layer modules. 

   
     Figure 3. CPU/Memory Usage vs. UDP/TCP Bandwidth 

 
Figure 4. CPU/Memory Usage with UDP Packet size 
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Figure 5 and Figure 6 also illustrate that the CPU utiliza-
tion of different modules inside eNodeB alters greatly in 
uplink and downlink direction. For the downlink, the CPU 
consumptions are evenly distributed among the modules. 
For the Uplink, Turbo decoding consumes most of the CPU. 
The CPU utilization of all other modules is negligible com-
pared to the Turbo decoding. This result agrees with the 
studies on the Radio Access Network sub-module behaviors 
in the work [21]. The turbo decoding module should be 
highly optimized or this module is suggested to implement 
by a hardware accelerator. 

Besides, from Figure 5 and Figure 6 we observe that the 
CPU utilization increases when the bandwidth goes up or 
the packet size goes down. The reason for this is that the 
total pps goes up when we increase the bandwidth or de-
crease the packet size in the experiment.  

Moreover, we observe that the maximum bandwidth for 
TCP is slightly smaller compared to the UDP. Under Re-
source Block=25, the maximum bandwidth for TCP is 
around 7m for uplink and 15m for downlink. The maximum 
bandwidth for UDP is around 8m for uplink and 16m for 
downlink. The reason for this is probably that the TCP 
needs to send ACK which leads to the smaller usable maxi-
mum bandwidth. The trend for CPU consumption for each 
module of UDP and TCP is similar to each other.  
4.3 Instructions Execution 

Instruction per cycle (IPC) is a fundamental performance 
metric indicating the average number of instructions execut-
ed for each clock cycle, which is used to measure instruc-
tion-level parallelism. There are four micro-architectural 
metrics relate to the IPC – Retiring, Bad Speculation, 
Frontend Bound and Backend Bound [20]. The high per-
centage of retiring usually means the high IPC value of an 

 
Figure 5a. CPU utilization and microarchitecture value for downlink UDP bandwidth 

 
Figure 5b. CPU utilization and microarchitecture value for uplink UDP bandwidth 

 
Figure 6a. CPU utilization and microarchitecture value for downlink UDP packet size 

Figure 6b. CPU utilization and microarchitecture value for uplink UDP packet size 
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application. The high percentage of the other three catego-
ries will hurt the retiring, which will lead to low IPC. A 
thorough analysis of Frontend Bound, Bad Speculation and 
Backend Bound would help us to locate the hotspot of an 
application and provide optimization direction for further 
development.  

Figure 5 and Figure 6 show IPC of the modules inside 
OAI eNodeB. For the downlink cases, we can see that the 
IPC value for modules DCI, Rate Matching, Scrambling and 
Modulation are near to 4, which is almost the ideal value. 
The IPC values for Control Channel are around 2.7, which 
is also acceptable. The Turbo Encoding module’s IPC value 
is around 1.8, which suggests potential optimizations to im-
prove the performance. For the uplink, we observe that the 
IPC values for all the modules are around 2, which means 
the headroom still exists to get better performance of each 
module in eNodeB uplink direction. Analysis of the micro-
architecture bottleneck is given in section 4.4. Figure 5 and 
Figure 6 also provides the Retiring percentage of modules 
inside OAI eNB, we note that Retiring correlates well with 
IPC value, high retiring value always means a high IPC.  
4.4 Frontend Bound, Bad Speculation and 
Backend Bound Behavior Analysis 

Figure 5 and Figure 6 also show the cycle breakdown for 
the submodules of DU. Front-end Bound denotes that in-
struction-fetch stall will prevent the car from making for-
ward progress due to lack of instructions. Bad Speculation 
reflects slots wasted due to incorrect speculations. Backend 
Bound illustrates that no uops are being delivered at the 
issue pipeline, due to lack of required resources in the 
backend. We can see that across all the modules, the 
Frontend Bound and Bad Speculation overheads are negli-
gible. The main stall of the DU application is concentrated 
at Backend Bound, which means the optimization for the 
Backend part is necessary for DU application. For the most 
CPU consuming module - turbo decoding, we observe that 
the Backend Bound is around 45%, which is the main rea-

son causing the low IPC for the turbo decoding.  
We further investigate the source of Backend Bound by 

dividing it into two separate metrics: Memory Bound and 
Core Bound. Memory Bound manifests with execution units 
getting starved after a short while. Core Bound manifests 
either with short execution starvation periods or with sub-
optimal execution ports utilization. Table 1 and 2 show the 
Memory Bound and Core Bound details of CPU consump-
tion dominant functions in the main modules. We can find 
the root cause of non-uniform Backend Bound. Memory 
Bound and Core Bound both suffer for the current RAN sys-
tem. Memory Bound can be mitigated by increasing the 
cache size of the server.  Core Bound can be mitigated with 
better code generation, e.g., avoiding dependent arithmetic 
operations in a sequence; A compiler with better instruction 
scheduling; Or better vectorization organization for 
OpenAirInterface system. 
4.5 eNodeB Performance on Beefy Server 

We further deploy the DU on an alternative high-end 
COTS server platform with higher cache size to investigate 
if the backend bound overheads could be mitigated. Table 3 
compares the cache size and CPU frequency of the wimpy 
server and the beefy server. The beefy server we use for DU 
is the Intel Xeon machine (W2195 @ 2.30GHz, 128GB 
RAM). The compared wimpy server is original Intel Core 
machines (Core i7-8700 @ 3.20GHz 16GB RAM) 

Table 4 and Table 5 show the memory bound and core 
bound details of CPU consumption dominant functions in 
eNodeB on the beefy server. We observe that the memory 
bound is significantly mitigated because of the larger cache 
resources. However, the Core Bound overhead deteriorates 
on the beefy server. The reason for this is probably due to 
the frequency reduction of the server. The frequency reduc-
tion may lead to longer execution starvation and worse port 
utilization, which results in the higher Core Bound beefy in 
the server environment. The counteracts of lower Memory 
Bound and higher Core Bound makes the overall backend 
performance stay similar to the wimpy server platform.  

Table 4. Downlink Main Functions in Beefy Node 
Downlink Functions Retiring Memory Bound Core Bound 
 sub_block_interleaving_turbo 55.8 0 44.2 
 threegpplte_turbo_encoder 40 0 60.2 
 crc24 13.8 0 86.2 

Table 5. Uplink Main Functions in Beefy Node 
Uplink Functions Retiring Memory Bound Core Bound 
phy_threegpplte_turbo_decoder16 62.2 0 37.5 
sub_block_deinterleaving 67.6 0 32.4 
ulsch_decoding 45.7 0 52.8 
_mm_sub_spi16 56.6 0 43.9 
  _mm_max_epi16 52.2 0 43.5 
   crc24 43.5 0 56.5 

Table 6. Edge Computing Applications 

 Information Workload 

vips Image processing Image 18K*18K pixels 

x264 Video encoding 25fps 640*360 pixels 

Table 1. Downlink Main Functions in Wimpy Node 

Downlink Functions Retiring Memory Bound Core Bound
 sub block interleaving turbo 72.9 13.6 14.9
threegpplte turbo encoder 30.4 30.5 34.3
crc24 15.2 48.5 36.4

Table 2. Uplink Main Functions in Wimpy Node 
Uplink Functions Retiring Memory Bound Core Bound 
phy_threegpplte_turbo_decoder16 50.8 23.8 23.8 
sub_block_deinterleaving 68 14.9 13 
ulsch_decoding 38.1 50.7 8.5 
_mm_sub_spi16 66.9 8 25.8 
  _mm_max_epi16 58.8 28.5 11.4 
   crc24 26.7 35.7 32.6 

Table 3. Cache Size and Frequency in Wimpy and Beefy Node 

 Wimpy Server Beefy Server
L1 cache 384KB 1152KB
L2 cache 1536KB 18432KB
L3 cache 12288KB 25344KB
Frequency 3.2GHz 2.3GHz

Table 1. Downlink Main Functions in Wimpy Node 

Downlink Functions Retiring Memory Bound Core Bound
 sub block interleaving turbo 72.9 13.6 14.9
 threegpplte turbo encoder 30.4 30.5 34.3
crc24 15.2 48.5 36.4

Table 2. Uplink Main Functions in Wimpy Node 
Uplink Functions Retiring Memory Bound Core Bound 
phy_threegpplte_turbo_decoder16 50.8 23.8 23.8 
sub_block_deinterleaving 68 14.9 13 
ulsch_decoding 38.1 50.7 8.5 
_mm_sub_spi16 66.9 8 25.8 
  _mm_max_epi16 58.8 28.5 11.4 
   crc24 26.7 35.7 32.6 
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4.6 Co-location of RAN and MEC Application 
In this section, we begin with the evaluation of the per-

formance for edge computing applications when co-running 
with eNodeB based DU. Furthermore, we demonstrate the 
performance of eNodeB when sharing the same cores with 
edge computing applications. 

We choose video processing related applications as our 
MEC applications since most of today’s edge computing 
utilizations are concentrated on video processing. We 
choose vips and x264 from the PARSEC benchmark. The 
workload information is shown in Table 6. Vips is an image 
processing library and x264 is an application for encoding 
video streams in the H.264 compression format. We first co-
run edge computing applications and eNodeB DU with var-
ious traffic bandwidth on the same cores and report the edge 
computing applications’ processing time. Figure 7 shows 
the normalized processing time of MEC applications. With 
the bandwidth going up for eNodeB, the edge computing 
applications require more time on completing the same-
volume workload. The prolonged processing time is be-
tween 24% (when the bandwidth is 2M) to 100% (when the 
bandwidth is 14M). The reason for the longer processing 
time is that the eNodeB DU utilizes more CPU with the 
bandwidth increasing, which constraints the available CPU 
for edge computing application. 

Furthermore, we evaluate the eNodeB Distribute Unit 
performance when it is co-running with edge computing 
applications. To our surprise, the performance of eNodeB 
does not degrade even though it is sharing the same core 
with the edge computing applications. Figure 8 shows typi-
cal performance for main modules inside eNodeB during the 
co-running, we find that the performance is almost the same 

compared with the solo eNodeB running situation. (Figure 5)  
We observe that the PARSEC applications and eNodeB 
efficiently utilize the given cores. The utilization goes up to 
100% for the leveraged cores. However, when we increase 
the bandwidth for the eNodeB, the CPU utilization of 
eNodeB goes up to the same level as the level without the 
co-running. The available CPU utilization of PARSEC edge 
computing is constrained by eNodeB application during co-
running. 

We speculate that the CPU resource for eNodeB does 
not achieve its upper bound. All containers’ default cpu-
shares value is 1024, since the saturated traffic of eNodeB 
only consumes 45% of the CPU, it does not achieve its max-
imum available 50% CPU ratio when co-running with the 
edge computing application container. 

To consolidate our speculation, we deploy 3 containers 
in an additional experiment. We create two containers for 
edge computing applications, with the cpu-share value 1024 
and 256 respectively. We create the third container for 
eNodeB with the cpu-share value 128. Our expectation is 
that the CPU distribution ratio among the applications 
should be around 8:2:1. The CPU utilization for eNodeB 
should not exceed 20% when co-running with the other two 
applications. 

However, the result of the experiment shows that the 
CPU utilization for eNodeB still cannot be constrained. For 
saturated traffic, the CPU utilization of eNodeB goes up to 
45%, which is the same value when we leverage the 
eNodeB alone in the given core. The cpu-share for the two 
edge computing application works as what we expect. The 
CPU utilization ratio for them is 4:1. Our further speculation 
is that there may exist inherited priority inside eNodeB and 
edge computing applications. The eNodeB’s CPU utiliza-

                    
               (a) Downlink+vips                              (b) Uplink+vips                               (c) Downlink+x264                          (d) Uplink+x264 

Figure 7. The Influence of edge computing applications’ runtime when co-running with eNodeB DU
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Figure 8b. CPU utilization and Microarchitecture value for 

Uplink UDP with vips 
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Figure 8a. CPU utilization and Microarchitecture value for 
Downlink UDP with vips 
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tion should be constrained when co-running with another 
eNodeB since they have the same level priority. However, 
since we only have one USRPb210 card at the time, this 
experiment has to remain in the future. 
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6. Conclusion 

We outline a comprehensive workload characterization 
for virtual eNodeB and edge computing in this paper. Ac-
cording to our workload characterization work, the main 
bottleneck for the virtual eNodeB is its Backend Bound; the 
optimization should be the focus on its memory utilization 
and core port utilization. Besides, when the eNodeB is co-
running with the edge computing applications, the edge 
computing applications are slowed down by the eNodeB 
application. However, the performance of the eNodeB is not 
affected by our chosen edge computing applications.  
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