

Characterizing and Understanding the Architectural Implications of Cloud-
native Edge NFV Workloads

Jianda Wang
Electrical and Computer Engi-

neering Department
The University of Texas at Dallas

jxw174930@utdallas.edu

Yang Hu
Electrical and Computer Engi-

neering Department
The University of Texas at Dallas

Yang.Hu4@utdallas.edu

Abstract
In responding to the fast-varying user service require-

ments and highly mixed traffics, the 5G network exploits
Network Function Virtualization (NFV) and network slicing
to enhance its functional and architectural viability. With the
new service provisioning requirements posed by 5G (e.g.
the ultra-low latency and massive machine-type communi-
cation) urge the functionality deployment to offload from
the network core to edge, the various demands of QoS guar-
antee cast by the diverse services make the NFV an essential
enabler of edge network evolution. However, the newly
created performance challenges at the network edge are still
unexplored. In this paper, we investigate the converged
RAN and MEC architecture in the 5G era. Specifically, we
characterize the collocated cloud-native workloads (RAN
and MEC) on the COTS edge platform and provide the ar-
chitectural implication which will benefit the future edge
architecture design.

1. Introduction
The recently issued 5G standard promises a surge in

network bandwidth and an explosion in the number of con-
nected devices. This communication revolution will enable
consolidated service provisioning of many killer applica-
tions in addition to traditional voice and data communica-
tion, such as AI, AR/VR, and autonomous driving, etc.

In responding to the fast-varying user service require-
ments and highly mixed traffics, the 5G network exploits
Network Function Virtualization (NFV) and network slicing
to enhance its functional and architectural viability. NFV is
a novel paradigm that enables scalable and flexible deploy-
ment of network services on edge or cloud infrastructure.

To date, most of the existing NFV research focuses on
the core network to provide a better data plane and control
plane performance. With the new service provisioning re-
quirements posed by 5G (the ultra-low latency and massive
machine-type communication) urge the functionalities of-
fload from the network core to edge, the various demands of
QoS guarantee cast by the diverse services make the NFV
an essential enabler of edge network evolution. The NFV-
based network slicing technique enables unique service slic-
es that are customized for various applications such as IoT,

automated cars, streaming 360-degree videos, etc. However,
this will create new research challenges at the network edge.

First, the NFV at the network edge involves a new virtu-
alization scenario and functions compared to the traditional
NFV scenario. A trending edge NFV scenario is the virtual-
ized Radio Access Network (vRAN). The RAN system is
the most expensive part of the mobile network and the re-
source of 80% of performance problems that affect the user
experience. The 5G RAN infrastructure calls for a re-
architected service hierarchy to deliver a more flexible and
diverse service provisioning. Compared to traditional LTE
RAN, parts of the 5G core functions (i.e. user-plane func-
tions in the LTE core) and the baseband units (BBUs) are
consolidated as 5G distributed units (DUs), where the non-
real-time functions are implemented as virtual network
functions (VNFs) or containers and deployed on commodi-
ty-off-the-shelf (COTS) servers to provide a more scalable
and cost-effective solution compared to traditional special-
ized equipment at the cell site. Moreover, the vRAN is usu-
ally co-located with multi-access edge computing (MEC)
workloads on the edge servers, such as streaming 360-
degree video processing. Such mixed-service oriented work-
load consolidation can significantly challenge the resource
management of edge NFV servers.

Second, the recent trend to adopt cloud-native applica-
tion deployment in telco clouds brings an unexplored envi-
ronment to edge NFV. The cloud-native environment de-
ploys containerized applications as a loosely-coupled sys-
tem (often implemented as microservices) with optimized
orchestration and resource utilization to deliver extreme
simplicity, scalability, and resilience. The cloud-native ser-
vice inherently fits the 5G edge use cases such as vRAN and
MEC considering the heterogeneous platforms at the edge
and the differentiated service requirements. For example,
various 5G services are delivered as differentiated network
slices with specific network function host requirements. The
phone slice only needs to host DU at edge servers, while
hosting all other 5G core, IMS server, and WAN optimizers
on the central cloud. While the mission-critical slices such
as autonomous driving need all DU, user-plane 5G core, and
V2X services to be hosted on edge servers. The cloud-native
technology enables an effortless deployment, operation, and
management of containerized 5G applications regardless of
the edge location and heterogeneous hardware platform type.

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

�"# � "�#� $%$% "&��&'(�)���*���������

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

2

Understanding the new edge workloads and emerging
deployment manners will significantly impact the design of
edge hardware platform. As the edge platform needs to seek
the tradeoff between the cross-platform compatibility and
the extreme energy and cost-efficiency. However, though
existing work explores the virtualized BBU system under
different RAN system configurations and provides initial
insights on system computational capacity, more detailed
architectural implications are still needed to better decide
the architecture tradeoff of 5G edge cloud servers. Our goal
is to provide first-hand characterization experiences.

In this paper, we build a test framework of 5G RAN and
MEC based on cloud-native technology. We collect the ar-
chitectural characteristics of key network components and
MEC applications on the 5G edge cloud platform. Our ex-
periments demonstrate the following implications: (1) The
RAN system is a CPU consuming application, while the
usage of memory is trivial. (2) The main micro-architectural
bottleneck for the RAN system is caused by its Backend
Bound, the optimization for Backend Bound is necessary to
get better RAN performance. (3) In the RAN system, the
turbo decoding module consumes the majority part of the
CPU, it should be further optimized or offloaded to a hard-
ware accelerator. (4) The co-running of the RAN system
and MEC application will slow down the video processing
based MEC applications by 24% ~ 100%. However, the
RAN performance is not seriously affected when co-running
with our chosen MEC applications.
2. Related Work
Edge NFV: Network Virtualization Networks (NFV) has
received substantial attention from the research community
in recent years with both academia and industry recognizing
its benefits on operational mobile networks. Although most
of the work highlights the NFV process on core networks
[1-9], there are still several NFV projects [10-13] proposed
at the side of radio access networks and network edge.
While the scope of the above-mentioned works includes the
RAN virtualization and network slicing realization, none of
them provide an architectural characterization of a virtual-
ized RAN system, particularly as a cloud-native container-
ized form. Moreover, no existing work has explored the co-

located vRAN and MEC systems from an architectural per-
spective.
RAN Characterization: In the last few years, several
works [14-19] provide the performance analysis and study
on the vRAN system. [15, 17] introduces the concepts and
architecture of the vRAN system. [15] validates two MAC
schedulers and analyzes the vRAN system, in terms of
memory occupancy and execution time. [17] performs thor-
ough profiling of OAI, in terms of execution time, on the
user plane data flow. A recent work [23] explores the sys-
tem computational requirements of vBBU on a cloud RAN
testbed. However, none of the existing work has provided a
comprehensive architectural behavior characterization for
the vRAN framework. To the best of knowledge, our work is
the first one that explores the architectural implications of
the colocation of cloud-native vRAN and MEC.
3. System Architecture of 5G Edge Cloud

In this section, we first describe the evolution of RAN ar-
chitecture and discuss several network function deployment
cases. We then introduce our cloud-native edge cloud
testbed based on open-source virtualized RAN framework
OpenAirInterface (OAI) [10] and MEC Benchmark PAR-
SEC [22].
3.1 The Architecture of 5G RAN

To meet the rigorous requirements of bandwidth and la-
tency, 5G needs a new network architecture that scales to
device and traffic densities far beyond current LTE net-
works. As the most performance-critical part in the transport
network, the traditional LTE radio access network (RAN)
will be re-architected by combining part of the core func-
tions and edge computational capabilities. This will transfer
the centralized RAN to a heterogeneous edge cloud. Ac-
cording to various service requirements of applications, the
cloud-native function modules could be flexibly spawned
and deployed on the container-enabled central cloud, edge
cloud, and cell site.

 We show three typical cases of network function place-
ment corresponding to the specific application in Figure 1.
For the mobile broadband service slices with roundtrip de-
lay tolerance is around 10ms, the 5G core control-plane
functions and user-plane functions are collocated at the cen-
tral cloud, while the 5G distributed unit (DU, an analogy to
the eNodeB in LTE) is deployed on edge cloud servers. For
the autonomous driving case with the roundtrip latency

Applications
LTE Core

LTE central node

LTE eNodeB

LTE edge node

LTE RU

Cell site

Applications
5G Core CP

5G central cloud

5G Core UP

5G RU

5G DU

Applications

MEC

5G DU

5G Core CP

5G Core UP

5G RU

Applications

MEC

5G DU

5G Core CP

5G Core UP

5G RU

5G edge cloud

5G cell site

(A) Mobile Broadband (B) Self-driving (C) Mission-critical IoT

Figure 1. RAN architecture evolution from LTE to 5G.

 COTS server

Ettus B210 USRPUE

U
SB

Cloud
native
MEC

Edge Cloud

 COTS server Intel
Vtunes

Central Cloud

ethernet

HS
SS-

G
W

P-
G

W

M
M

E

Cloud native eNB

M
AC RL
C

RRC

CRC

PHY proc.

Rate
matching

scrambling
Modulation
Ctrl. chanl

DCI

PD
CP

encoding

Intel Vtunes

Docker Docker

Figure 2. RAN architecture evolution from LTE to 5G.

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

3

guarantee is within 5ms, the 5G core data-plane functions
will be deployed in edge cloud. And the edge cloud servers
also host the MEC platform to process latency-sensitive
applications. For the industrial mission-critical IoT applica-
tions (e.g. robot motion control), the ultra-low-latency de-
mand (<1ms) may even require host MEC on cell site.
3.2 Experimental Platform Overview

We choose the OpenAirInterface (OAI) as the RAN
framework and conduct necessary function split to mimic a
real 5G RAN system.

OAI is the most complete open-source RAN experimenta-
tion and prototyping platform created by EURECOM. The
OAI platform includes a full software implementation of
mobile cellular systems compliant with 3GPP standards in C
under realtime Linux optimized for x86. For the 3GPP Ac-
cess-Stratum, OAI provides standard-compliant implemen-
tations of PHY, MAC, RLC, PDCP and RRC, spanning the
entire protocol stack from the physical to networking layer,
for both eNodeB and User Equipment (UE). For the core
network, the OAI provides standard-compliant implementa-
tions of a subset of 3GPP Evolved Packer Core (EPC) com-
ponents such as the Serving Gateway (S-GW), the Packet
Data Network Gateway (P-GW), the Mobility Management
Entity (MME), and the Home Subscriber Server (HSS). Fig.
2 shows a typical downlink path and the key network func-
tions in OAI edge and core networks, note that both eNodeB
and core functions are hosted in containers.

We select PARSEC to mimic our video processing based
MEC applications. PARSEC is a benchmark suite for stud-
ies of Chip-multiprocessors. PARSEC includes emerging
applications in system applications that mimic large-scale
multithreaded industrial programs. All the PARSEC appli-
cations are leveraged in containers.
3.3 Experimental Platform Setup

As shown in Figure 2, the experimental testbed consists
of one/two units of Commercial-Off-The-Shelf (COTS) UE,
one unit of OAI eNodeB Remote Unit (RU), one unit of
eNodeB Distributed Unit (DU) and one unit of EPC. We use
Intel Core machines (Core i7-8700 @ 3.20GHz 16GB RAM)
for eNB DU and RU, Intel Xeon machine (E5405 @
2.00GHz 4G RAM) for EPC and Huawei Honor 8 as our
UE. The eNB version we use is branch 2018_w25. For EPC,
we use the develop branch. The Operation system used for
both machines is Ubuntu 16.04. The testbed is implemented
with a real RF front-end (Ettus B210 USRP). All the exper-
iments were conducted with the same eNodeB configuration,
namely FDD with 5 MHz bandwidth in band 7. We use Intel
VTune Amplifier [24] to profile architectural data of key
network functions as illustrated in Figure 2. All the applica-
tions are implemented in the Docker container environment.
The docker version we use is 18.09.1.
4. Understanding the Architecture Implica-
tions of Edge NFV Workloads

In this section, we demonstrate several key learnings that
are drawn from our detailed architectural profiling. We start

by characterizing the solo-run eNodeB Distributed Unit
(DU). Then, we evaluate the performance of DU and edge
computing applications when co-running them together on
the same cores. We reason about the interesting findings and
provide a platform setup guideline for cloud-native edge
NFV workloads.

4.1 CPU and Memory Usage of eNB
Figure 3 and Figure 4 illustrate the CPU utilization of

the whole the OpenAirInterface eNodeB in both uplink and
downlink under 3 traffic types: (1) UDP - increasing band-
width while maintaining the same packet size. (using default
packet size). (2) TCP – increasing bandwidth while main-
taining the same packet size. (using default packet size) (3)
UDP – decreasing the packet size while maintaining the
same bandwidth. We choose 10Mb/s for downlink and 5
MB/s for uplink. We observe that the CPU utilization in-
creases with the increase of UE’s packet per second (pps).
Meanwhile, the memory usage always stays around
0.928GB regardless of the trend of the UE’s pps, which il-
lustrated that the eNodeB Distributed Unit is a computation-
intensive application. Besides, the uplink per Mbps CPU
utilization is 2 times to the downlink per Mbps CPU utiliza-
tion.
4.2 CPU utilization for OAI eNodeB Sub-modules

Figure 5 and Figure 6 show the CPU utilization of sub-
modules inside OpenAirInterface eNodeB for UDP traffics
with different bandwidth and packet sizes. We observe that
the layer 2 modules (PDCP, RLC, MAC) are less CPU-
consuming compared to the physical layer modules (Encod-
ing/Decoding, Rate Matching/Dematching, Scrambling/
Descrambling and Modulation/Demodulation) in both
downlink and uplink directions under all cases. This indi-
cates that the layer 2 modules are not constrained by CPU
resource. More attention needs to be paid into the physical
layer modules.

 Figure 3. CPU/Memory Usage vs. UDP/TCP Bandwidth

Figure 4. CPU/Memory Usage with UDP Packet size

0

0.2

0.4

0.6

0.8

1

0
5

10
15
20
25
30
35
40

2 6 10 14

M
em

or
y

U
sa

ge
 (G

B)

CP
U

 U
til

iz
at

io
n(

%
)

Downlink Bandwidth (Mbps)

UDP CPU TCP CPU

UDP Mem TCP Mem

0

0.2

0.4

0.6

0.8

1

0
5

10
15
20
25
30
35
40
45

1 3 5 7

M
em

or
y

U
sa

ge
 (G

B)

CP
U

 U
til

za
tio

n(
%

)

Uplink Bandwidth (Mbps)

UDP CPU TCP CPU

UDP Mem TCP Mem

0
0.2
0.4
0.6
0.8
1

0
10
20
30
40
50

1024 512 256 128

M
em

or
y

U
sa

ge
 (G

B)

CP
U

 U
til

iz
at

io
n(

%
)

Downlink Packetsize (Bytes)

UDP CPU
UDP Memory

0
0.2
0.4
0.6
0.8
1

0
10
20
30
40
50

1024B 512B 256B 128B

M
em

or
y

U
sa

ge
 (G

B)

CP
U

 U
til

iz
at

io
n(

%
)

Uplink Packetsize (Bytes)

UDP CPU
UDP Memory

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

4

Figure 5 and Figure 6 also illustrate that the CPU utiliza-
tion of different modules inside eNodeB alters greatly in
uplink and downlink direction. For the downlink, the CPU
consumptions are evenly distributed among the modules.
For the Uplink, Turbo decoding consumes most of the CPU.
The CPU utilization of all other modules is negligible com-
pared to the Turbo decoding. This result agrees with the
studies on the Radio Access Network sub-module behaviors
in the work [21]. The turbo decoding module should be
highly optimized or this module is suggested to implement
by a hardware accelerator.

Besides, from Figure 5 and Figure 6 we observe that the
CPU utilization increases when the bandwidth goes up or
the packet size goes down. The reason for this is that the
total pps goes up when we increase the bandwidth or de-
crease the packet size in the experiment.

Moreover, we observe that the maximum bandwidth for
TCP is slightly smaller compared to the UDP. Under Re-
source Block=25, the maximum bandwidth for TCP is
around 7m for uplink and 15m for downlink. The maximum
bandwidth for UDP is around 8m for uplink and 16m for
downlink. The reason for this is probably that the TCP
needs to send ACK which leads to the smaller usable maxi-
mum bandwidth. The trend for CPU consumption for each
module of UDP and TCP is similar to each other.
4.3 Instructions Execution

Instruction per cycle (IPC) is a fundamental performance
metric indicating the average number of instructions execut-
ed for each clock cycle, which is used to measure instruc-
tion-level parallelism. There are four micro-architectural
metrics relate to the IPC – Retiring, Bad Speculation,
Frontend Bound and Backend Bound [20]. The high per-
centage of retiring usually means the high IPC value of an

Figure 5a. CPU utilization and microarchitecture value for downlink UDP bandwidth

Figure 5b. CPU utilization and microarchitecture value for uplink UDP bandwidth

Figure 6a. CPU utilization and microarchitecture value for downlink UDP packet size

Figure 6b. CPU utilization and microarchitecture value for uplink UDP packet size

0

2

4

6

8

0%

50%

100%

2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M

PDCP RLC MAC DCI CRC Encoding Rate Matching Scrambling Modulation Control Channel PHY_Proc.

CP
U

 U
til

iz
at

io
n(

%
) a

nd
 IP

C

To
ta

l C
yc

le
s

Retiring Frontend Bad Speculation Backend CPU Utilization IPC

0

10

20

30

0%

50%

100%

1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M

PDCP RLC MAC DCI CRC Decoding Rate
Dematching

Descrambling Demodulation Control Channel PHY_Proc.

CP
U

 U
til

iz
at

io
n(

%
) a

nd
 IP

C

To
ta

l C
yc

le
s

Retiring Frontend Bad Speculation Backend CPU Utilization IPC

0

2

4

6

8

0%

20%

40%

60%

80%

100%

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

PDCP RLC MAC DCI CRC Encoding Rate Matching Scrambling Modulation Control Channel PHY_Proc.

CP
U

 U
til

iz
at

io
n(

%
) a

nd
 IP

C

To
ta

l C
yc

le
s

Retiring Frontend Bad Speculation Backend CPU Utilization IPC

0

10

20

30

0%
20%
40%
60%
80%

100%

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B

10
24

B
51

2B
25

6B
12

8B
PDCP RLC MAC DCI CRC Decoding Rate Dematching Descrambling Demodulation Control Channel PHY_Proc.

CP
U

 U
til

iz
at

io
n(

%
) a

nd
 IP

C

To
ta

l C
yc

le
s

Retiring Frontend Bad Speculation Backend CPU Utilization IPC

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

5

application. The high percentage of the other three catego-
ries will hurt the retiring, which will lead to low IPC. A
thorough analysis of Frontend Bound, Bad Speculation and
Backend Bound would help us to locate the hotspot of an
application and provide optimization direction for further
development.

Figure 5 and Figure 6 show IPC of the modules inside
OAI eNodeB. For the downlink cases, we can see that the
IPC value for modules DCI, Rate Matching, Scrambling and
Modulation are near to 4, which is almost the ideal value.
The IPC values for Control Channel are around 2.7, which
is also acceptable. The Turbo Encoding module’s IPC value
is around 1.8, which suggests potential optimizations to im-
prove the performance. For the uplink, we observe that the
IPC values for all the modules are around 2, which means
the headroom still exists to get better performance of each
module in eNodeB uplink direction. Analysis of the micro-
architecture bottleneck is given in section 4.4. Figure 5 and
Figure 6 also provides the Retiring percentage of modules
inside OAI eNB, we note that Retiring correlates well with
IPC value, high retiring value always means a high IPC.
4.4 Frontend Bound, Bad Speculation and
Backend Bound Behavior Analysis

Figure 5 and Figure 6 also show the cycle breakdown for
the submodules of DU. Front-end Bound denotes that in-
struction-fetch stall will prevent the car from making for-
ward progress due to lack of instructions. Bad Speculation
reflects slots wasted due to incorrect speculations. Backend
Bound illustrates that no uops are being delivered at the
issue pipeline, due to lack of required resources in the
backend. We can see that across all the modules, the
Frontend Bound and Bad Speculation overheads are negli-
gible. The main stall of the DU application is concentrated
at Backend Bound, which means the optimization for the
Backend part is necessary for DU application. For the most
CPU consuming module - turbo decoding, we observe that
the Backend Bound is around 45%, which is the main rea-

son causing the low IPC for the turbo decoding.
We further investigate the source of Backend Bound by

dividing it into two separate metrics: Memory Bound and
Core Bound. Memory Bound manifests with execution units
getting starved after a short while. Core Bound manifests
either with short execution starvation periods or with sub-
optimal execution ports utilization. Table 1 and 2 show the
Memory Bound and Core Bound details of CPU consump-
tion dominant functions in the main modules. We can find
the root cause of non-uniform Backend Bound. Memory
Bound and Core Bound both suffer for the current RAN sys-
tem. Memory Bound can be mitigated by increasing the
cache size of the server. Core Bound can be mitigated with
better code generation, e.g., avoiding dependent arithmetic
operations in a sequence; A compiler with better instruction
scheduling; Or better vectorization organization for
OpenAirInterface system.
4.5 eNodeB Performance on Beefy Server

We further deploy the DU on an alternative high-end
COTS server platform with higher cache size to investigate
if the backend bound overheads could be mitigated. Table 3
compares the cache size and CPU frequency of the wimpy
server and the beefy server. The beefy server we use for DU
is the Intel Xeon machine (W2195 @ 2.30GHz, 128GB
RAM). The compared wimpy server is original Intel Core
machines (Core i7-8700 @ 3.20GHz 16GB RAM)

Table 4 and Table 5 show the memory bound and core
bound details of CPU consumption dominant functions in
eNodeB on the beefy server. We observe that the memory
bound is significantly mitigated because of the larger cache
resources. However, the Core Bound overhead deteriorates
on the beefy server. The reason for this is probably due to
the frequency reduction of the server. The frequency reduc-
tion may lead to longer execution starvation and worse port
utilization, which results in the higher Core Bound beefy in
the server environment. The counteracts of lower Memory
Bound and higher Core Bound makes the overall backend
performance stay similar to the wimpy server platform.

Table 4. Downlink Main Functions in Beefy Node
Downlink Functions Retiring Memory Bound Core Bound
 sub_block_interleaving_turbo 55.8 0 44.2
 threegpplte_turbo_encoder 40 0 60.2
 crc24 13.8 0 86.2

Table 5. Uplink Main Functions in Beefy Node
Uplink Functions Retiring Memory Bound Core Bound
phy_threegpplte_turbo_decoder16 62.2 0 37.5
sub_block_deinterleaving 67.6 0 32.4
ulsch_decoding 45.7 0 52.8
_mm_sub_spi16 56.6 0 43.9
 _mm_max_epi16 52.2 0 43.5
 crc24 43.5 0 56.5

Table 6. Edge Computing Applications

 Information Workload

vips Image processing Image 18K*18K pixels

x264 Video encoding 25fps 640*360 pixels

Table 1. Downlink Main Functions in Wimpy Node

Downlink Functions Retiring Memory Bound Core Bound
 sub block interleaving turbo 72.9 13.6 14.9
threegpplte turbo encoder 30.4 30.5 34.3
crc24 15.2 48.5 36.4

Table 2. Uplink Main Functions in Wimpy Node
Uplink Functions Retiring Memory Bound Core Bound
phy_threegpplte_turbo_decoder16 50.8 23.8 23.8
sub_block_deinterleaving 68 14.9 13
ulsch_decoding 38.1 50.7 8.5
_mm_sub_spi16 66.9 8 25.8
 _mm_max_epi16 58.8 28.5 11.4
 crc24 26.7 35.7 32.6

Table 3. Cache Size and Frequency in Wimpy and Beefy Node

 Wimpy Server Beefy Server
L1 cache 384KB 1152KB
L2 cache 1536KB 18432KB
L3 cache 12288KB 25344KB
Frequency 3.2GHz 2.3GHz

Table 1. Downlink Main Functions in Wimpy Node

Downlink Functions Retiring Memory Bound Core Bound
 sub block interleaving turbo 72.9 13.6 14.9
 threegpplte turbo encoder 30.4 30.5 34.3
crc24 15.2 48.5 36.4

Table 2. Uplink Main Functions in Wimpy Node
Uplink Functions Retiring Memory Bound Core Bound
phy_threegpplte_turbo_decoder16 50.8 23.8 23.8
sub_block_deinterleaving 68 14.9 13
ulsch_decoding 38.1 50.7 8.5
_mm_sub_spi16 66.9 8 25.8
 _mm_max_epi16 58.8 28.5 11.4
 crc24 26.7 35.7 32.6

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

6

4.6 Co-location of RAN and MEC Application
In this section, we begin with the evaluation of the per-

formance for edge computing applications when co-running
with eNodeB based DU. Furthermore, we demonstrate the
performance of eNodeB when sharing the same cores with
edge computing applications.

We choose video processing related applications as our
MEC applications since most of today’s edge computing
utilizations are concentrated on video processing. We
choose vips and x264 from the PARSEC benchmark. The
workload information is shown in Table 6. Vips is an image
processing library and x264 is an application for encoding
video streams in the H.264 compression format. We first co-
run edge computing applications and eNodeB DU with var-
ious traffic bandwidth on the same cores and report the edge
computing applications’ processing time. Figure 7 shows
the normalized processing time of MEC applications. With
the bandwidth going up for eNodeB, the edge computing
applications require more time on completing the same-
volume workload. The prolonged processing time is be-
tween 24% (when the bandwidth is 2M) to 100% (when the
bandwidth is 14M). The reason for the longer processing
time is that the eNodeB DU utilizes more CPU with the
bandwidth increasing, which constraints the available CPU
for edge computing application.

Furthermore, we evaluate the eNodeB Distribute Unit
performance when it is co-running with edge computing
applications. To our surprise, the performance of eNodeB
does not degrade even though it is sharing the same core
with the edge computing applications. Figure 8 shows typi-
cal performance for main modules inside eNodeB during the
co-running, we find that the performance is almost the same

compared with the solo eNodeB running situation. (Figure 5)
We observe that the PARSEC applications and eNodeB
efficiently utilize the given cores. The utilization goes up to
100% for the leveraged cores. However, when we increase
the bandwidth for the eNodeB, the CPU utilization of
eNodeB goes up to the same level as the level without the
co-running. The available CPU utilization of PARSEC edge
computing is constrained by eNodeB application during co-
running.

We speculate that the CPU resource for eNodeB does
not achieve its upper bound. All containers’ default cpu-
shares value is 1024, since the saturated traffic of eNodeB
only consumes 45% of the CPU, it does not achieve its max-
imum available 50% CPU ratio when co-running with the
edge computing application container.

To consolidate our speculation, we deploy 3 containers
in an additional experiment. We create two containers for
edge computing applications, with the cpu-share value 1024
and 256 respectively. We create the third container for
eNodeB with the cpu-share value 128. Our expectation is
that the CPU distribution ratio among the applications
should be around 8:2:1. The CPU utilization for eNodeB
should not exceed 20% when co-running with the other two
applications.

However, the result of the experiment shows that the
CPU utilization for eNodeB still cannot be constrained. For
saturated traffic, the CPU utilization of eNodeB goes up to
45%, which is the same value when we leverage the
eNodeB alone in the given core. The cpu-share for the two
edge computing application works as what we expect. The
CPU utilization ratio for them is 4:1. Our further speculation
is that there may exist inherited priority inside eNodeB and
edge computing applications. The eNodeB’s CPU utiliza-

 (a) Downlink+vips (b) Uplink+vips (c) Downlink+x264 (d) Uplink+x264

Figure 7. The Influence of edge computing applications’ runtime when co-running with eNodeB DU

0

0.5

1

1.5

2

2 6 10 14

N
or

m
al

iz
ed

 R
un

tim
e

Bandwidth (Mbps)

Thread 1 Thread 4

0

0.5

1

1.5

2

2.5

1 3 5 7
N

or
m

al
iz

ed
 R

un
tim

e
Bandwidth (Mbps)

Thread 1 Thread 4

0

0.5

1

1.5

2

2 6 10 14

N
or

m
al

iz
ed

 R
un

tim
e

Bandwidth (Mbps)

Thread 1 Thread 4

0

0.5

1

1.5

2

2.5

1 3 5 7

N
or

m
al

iz
ed

 R
un

tim
e

Bandwidth (Mbps)

Thread 1 Thread 4

Figure 8b. CPU utilization and Microarchitecture value for

Uplink UDP with vips

0

20

40

0%

50%

100%

1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M 1M 3M 5M 7M

DCI Decoding Rate Dematching Descrambling Demodulation

CP
U

 U
til

iz
at

io
n(

%
) a

nd
 IP

C

To
ta

l C
yc

le
s

Retiring Frontend Bad Speculation
Backend CPU Utilization IPC

Figure 8a. CPU utilization and Microarchitecture value for
Downlink UDP with vips

0

5

10

0%

50%

100%

2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M 2M 6M 10
M

14
M

DCI Encoding Rate Matching Scrambling Modulation

CP
U

 U
til

iz
at

io
n(

%
) a

nd
 IP

C

To
ta

l C
yc

le
s

Retiring Frontend Bad Speculation
Backend CPU Utilization IPC

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

7

tion should be constrained when co-running with another
eNodeB since they have the same level priority. However,
since we only have one USRPb210 card at the time, this
experiment has to remain in the future.
5. Acknowledgment

We thank all the anonymous reviewers for invaluable
and insightful comments to make this paper better. This
work is supported in part by NSF grant CCF-1822985. The
corresponding author is Yang Hu.
6. Conclusion

We outline a comprehensive workload characterization
for virtual eNodeB and edge computing in this paper. Ac-
cording to our workload characterization work, the main
bottleneck for the virtual eNodeB is its Backend Bound; the
optimization should be the focus on its memory utilization
and core port utilization. Besides, when the eNodeB is co-
running with the edge computing applications, the edge
computing applications are slowed down by the eNodeB
application. However, the performance of the eNodeB is not
affected by our chosen edge computing applications.

References
[1] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao

Kong, Peng Sun, Wenfei Wu, Yongguang Zhang, “SecondNet: A
Data Center Network Virtualization Architecture with Bandwidth
Guarantees,” Proceeding Co-NEXT '10 Philadelphia. Pennsylvania,
Article No. 15.

[2] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado,
Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha
Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain
Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,
Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling,
Pankaj Thakkar, Dan Wendlandt, Alexander Yip, Ronghua Zhang,

Network Virtualization in Multi-tenant Datacenters, Proceeding
NSDI’ 14, Seattle. WA, April 2014, pp. 203-216.

[3] Dmitry Drutskoy, Eric Keller and Jennifer Rexford, “Scalable
Network Virtualization in Software-Defined Networks,” Journal
IEEE Internet Computing, March 2013, pp. 20–27.

[4] Malla Reddy Sama, Xueli An, Qing Wei and Sergio Beker,
“Reshaping the Mobile Core Network via Function Decomposition
and Network Slicing for the 5G Era,” 2016 IEEE Wireless
Communications and Networking Conference, Doha. Qatar, April
2016.

[5] Ravishankar Ravindran, Asit Chakraborti, Syed Obaid Amin, Aytac
Azgin, and Guoqiang Wang, “5G-ICN: Delivering ICN Services over
5G Using Network Slicing,” IEEE Communications Magazine

[6] Miloud Bagaa, Tarik Taleb, Abdelquoddouss Laghrissi, Adlen
Ksentini, and Hannu Flinck, “Coalitional Game for the Creation of
Efficient Virtual Core Network Slices in 5G Mobile Systems,” IEEE
Journal on Selected Areas in Communications, March 2018,

[7] Hu, Yang, Mingcong Song, and Tao Li. "Towards full
containerization in containerized network function virtualization."
ACM SIGOPS Operating Systems Review 51, no. 2 (2017): 467-481.

[8] Hu, Yang, and Tao Li. "Towards efficient server architecture for
virtualized network function deployment: Implications and
implementations." In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, p. 8. IEEE Press, 2016.

[9] Hu, Yang, and Tao Li. "Enabling efficient network service function
chain deployment on heterogeneous server platform." In 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), pp. 27-39. IEEE, 2018.

[10] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex
Dawson, Raymond Knopp, Christian Bonnet, “OpenAirInterface: A
Flexible Platform for 5G Research,” ACM SIGCOMM Computer
Communication Review, October 2014

[11] Qinghua Zheng, Haipeng Du, Junke Li, Weizhan Zhang, “Open-
LTE: An Open LTE Simulator For Mobile Video Streamin,” 2014
IEEE International Conference on Multimedia and Expo Workshops
(ICMEW), Chengdu. China, July 2014.

[12] Antonio Virdis, Giovanni Stea, and Giovanni Nardini, “SimuLTE —
A Modular System-level Simulator for LTE/LTE-A Networks based
on OMNeT++,” Proceeding SIMULTECH, Vienna. Austria, August
2014, pp. 59-70.

[13] Zhang, Lu, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan
Chen, and Minyi Guo. "Characterizing and orchestrating NFV-ready
servers for efficient edge data processing." In Proceedings of the
International Symposium on Quality of Service, p. 22. ACM, 2019.

[14] Antonio Virdis, Niccolo Iardella, Giovanni Stea and Dario Sabella,
“Performance analysis of OpenAirInterface system emulation,” 2015
3rd International Conference on Future Internet of Things and Cloud,
Rome. Italy, October 2015.

[15] Chun Yeow Yeoh, Mohammad Harris Mokhtar, Abdul Aziz Abdul
Rahman and Ahmad Kamsani Samingan, “Performance study of LTE
experimental testbed using OpenAirInterface” 2016 18th International
Conference on Advanced Communication Technology (ICACT),
Pyeongchang. South Korea, March 2016.

[16] Oumayma Neji, Nada Chendeb, Olfa Chabbouh, Nazim Agoulmine
and Sonia Ben Rejeb, “Experience deploying a 5G C-RAN
virtualized experimental setup using OpenAirInterface,” 2017 IEEE
17th International Conference on Ubiquitous Wireless Broadband
(ICUWB), Salamanca. Spain, January 2018.

[17] Po-Chiang Lin and Sheng-Lun Huang, “Performance Profiling of
Cloud Radio Access Networks using OpenAirInterface,” 2018 Asia-
Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), HI. USA, March 2019.

[18] Qi Zheng, Yajing Chen, Ronald Dreslinski, Chaitali Chakrabarti,
Achilleas Anastasopoulos, Scott Mahlke, Trevor Mudge, “WiBench:
An open source kernel suite for benchmarking wireless systems”,
2013 IEEE International Symposium on Workload Characterization
(IISWC), Portland, OR, USA, Sept. 2013

[19] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton ,
Pablo Serrano, Cristina Cano, Doug J. Leith, “srsLTE: an open-
source platform for LTE evolution and experimentation”, Proceedings
of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization WiNTECH,
New York City, New York, October , 2016

[20] Ahmad Yasin , “A Top-Down method for performance analysis and
counters architecture”, 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Monterey,
CA, USA, March 2014

[21] Vanchinathan Venkataramani, Aditi Kulkarni, Tulika Mitra, Li-
Shiuan Peh “SPECTRUM: a software defined predictable many-core
architecture for LTE baseband processing”, 2019 Proceedings of the
20th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES),
Phoenix, AZ, USA, June, 2019

[22] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, Kai Li, “The
PARSEC benchmark suite: characterization and architectural
implications”, Proceedings of the 17th international conference on
Parallel architectures and compilation techniques (PACT), Toronto,
Ontario, Canada, October, 2008

[23] Tuyen X. Tran, Ayman Younis, Dario Pompili, “Understanding the
Computational Requirements of Virtualized Baseband Units Using a
Programmable Cloud Radio Access Network Testbed”, 2017 IEEE
International Conference on Autonomic Computing (ICAC),
Columbus, OH, USA, July 2017

[24] Intel Vtune Amplifier: https://software.intel.com/en-us/vtune

����������	
��
�
��
�
���
��
���������
��������������
�������
�����
��
���
���
��
�������� ���!

Authorized licensed use limited to: University of Florida. Downloaded on July 23,2020 at 20:05:47 UTC from IEEE Xplore. Restrictions apply.

