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One class of active particles that is especially promising for biomedical microrobotic
applications is rigid magnetic microswimmers propelled via rotation by a magnetic field.
For these particles there is a maximum rotational frequency, hence velocity, determined by
the maximum torque exerted by the field on the particle magnetization. It has been expected
that velocity can always be increased by increasing the field magnitude to increase torque.
This expectation holds if magnetization is constant or responds linearly to applied field,
but all real materials actually respond nonlinearly, since as field strength increases the
magnetization saturates and is coerced to point along the field direction. Here we show
that this saturation and coercivity limit the maximum velocity of these microparticles.
These effects are particularly important for soft magnetic materials. Although soft mag-
netic materials are used in many microswimmers, propulsion models incorporating their
magnetic response are lacking. Our results are consistent with experimental observations
and we predict that the limiting behavior occurs for common magnetic materials at typical
rotational frequencies and field strengths, hence is relevant for current microswimmer
design.

DOI: 10.1103/PhysRevFluids.5.064202

I. INTRODUCTION

Swimming active microparticles [1] are of great current interest for those creating and studying
the properties of new phases of active matter. When capable of controlled navigation, such active
particles or microswimmers also become microrobots with applications including drug delivery,
microsensing, and micromanipulation [2]. Common types of active particles use different propulsion
methods including chemical [3,4], magnetic [5,6], thermal [7], acoustic [8], electric [9,10], and
biotic [11–13]. We focus on rigid magnetic microswimmers with nanoscale features that are
propelled via rotation by a magnetic field [14–16], which are particularly promising for biomedical
microrobotic applications [17]. Over the past decade the dynamics and control of these rigid helical
magnetic swimmers has been an active area of study both experimentally and theoretically [17–26].

Most realizations of these microswimmers utilize a rotating uniform magnetic field [17,27]
producing on the particle zero external magnetic force, and a magnetic torque that is proportional
to both the magnetization and field strength [28]. Usually the magnetic field is perpendicular to its
rotation axis [Fig. 1(a)]. The particles can be experimentally controlled by the rotation axis, rotation
rate, and magnitude of the field. The average velocity (va) is along the rotation axis and steering is
achieved by setting the rotation axis in a desired direction. Although nonhelical geometries of such
microswimmers are an increasing area of interest [21,22,29–32], we specifically consider helical
microswimmers to focus on the effects of magnetization. For a fixed field magnitude, the average
velocity of helical microswimmers is typically proportional to the rotation rate (frequency) of the
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FIG. 1. Schematic of rigid magnetic microswimmer and its velocity-frequency response. (a) Magnetic field
h is rotated with an angular velocity ω resulting in rotation of the swimmer with angular velocity � and
average translational velocity va. (b) Schematic of typical velocity-frequency response for helical magnetic
microswimmers. Up to the step-out frequency (�s), the average velocity is proportional to ω.

field up to a certain step-out frequency [18], above which there is not enough magnetic torque to
rotate the swimmer as fast as the field. The maximum velocity occurs at the step-out frequency and
is an important performance metric [32]; the velocity decreases for higher frequencies [Fig. 1(b)].
Assuming that torque increases as magnetic field strength increases leads to the current expectation
that step-out frequency and maximum velocity can be increased by increasing the field magnitude.

This expectation holds for microswimmers that are permanent magnets, which have constant
magnetization, or paramagnets, which have magnetization that varies linearly with applied field
[18,21–24,26], but any real material combines two key features in a way so far unaccounted for: as
the applied field increases, the magnetization saturates at a maximum amplitude that depends on the
material, and at high enough fields the direction of magnetization tends toward the direction of the
applied field. The latter effect occurs through the same physics that causes demagnetization when a
strong enough opposing field is applied, so we refer to it by the same name, coercivity. In particular,
these effects are important for soft magnetic materials, which have been used in microswimmers
[15,27], but there are no models that treat soft magnetic microswimmers. In this paper we show
theoretically and numerically that saturation and coercivity impose fundamental physical limits
on the performance of magnetically rotated active particles, causing the step-out frequency and
hence maximum velocity to approach a constant plateau as field magnitude is increased, rather than
increase without bound. This limitation is consistent with experiments, and we predict that it is
important in the current design space of microswimmers.

II. PROPULSION MODEL

Active microparticles propelled through bulk fluid by rotating magnetic fields operate in a
viscous-dominated regime, in which the external force (F) and torque (τ) on a particle are linearly
related to its translational (v) and angular (�) velocities through a 6 × 6 mobility matrix [22],

[

v

�

]

=
[

K C

C
T

M

][

F

τ

]

. (1)

The 3 × 3 submatrices K and M relate the linear and angular velocities to force and torque,
respectively, while C relates the linear velocity to the torque and angular velocity to the force (see
Table I for our list of symbols).

In a constantly rotated field, “steady” solutions occur when the angular velocity � of the
swimmer equals the angular velocity of the field ω [22] [� = ω; Fig. 1(a)]; i.e., the particle and
field rotate together. Then in the particle’s body frame the field, magnetization, rotation rate, and
velocity are all constant in time, simplifying analysis. Our method for finding steady solutions is
described in [22,26] for permanent magnets (constant magnetization). For a given field magnitude
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TABLE I. Symbols used in main text.

Symbol Description

A magnetic energy anisotropy
C off-diagonal mobility submatrix [Eq. (1)]
ce1−e2,s1−s3 model parameters in magnetic anisotropy
δi j Kronecker delta
δαi infinitesimal rotation of body
e magnetic energy
ǫi jk antisymmetric Levi-Civita symbol
F external force exerted on swimmer
φ azimuthal angle in spherical coordinates
φh azimuthal angle of magnetic field
φm azimuthal angle of magnetization
h applied magnetic field
hc coercive field strength
K linear mobility submatrix [Eq. (1)]
χ tensor magnetic susceptibility
χe tensor magnetic susceptibility of ellipsoid
L arclength of the helical tail
M angular mobility submatrix [Eq. (1)]
m magnetization vector
mr remanence
ms saturation magnetization
µ0 permeability of free space
η dynamic viscosity
Rh aspect ratio of ellipsoidal head
ra minor axis radius of ellipsoidal head
rb major axis radius of ellipsoidal head
rh radius of helical tail
rt radius of thickness of tail
τ external torque acting on swimmer
θ polar angle in spherical coordinates
θh polar angle of magnetic field
θm polar angle of magnetization
V volume of magnetic material
v velocity of swimmer
va time-average velocity of swimmer
� angular velocity of swimmer
�s angular velocity of swimmer at step-out
ω angular velocity of magnetic field
ωs step-out frequency

and rotation rate, there can exist discrete solutions each with a specific magnetic field direction in
the body frame. Steady solutions exist only below the step-out frequency, which is thus determined
by the steady solution with maximum |�|.

Combining Eq. (1) and the condition F = 0,

v = CM
−1�. (2)

Therefore if �̂ (hats denote normalized unit vectors) has a fixed direction in the body frame as |�|
varies, as is typical for a microswimmer with large aspect ratio [26], then its velocity and hence time-
average velocity (va) will be proportional to frequency, with maximum at the step-out frequency.
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FIG. 2. Types of magnetic materials. Magnetization (m) response to an applied field h for paramagnetic
(green dashed line), hard magnetic (blue dot-dashed line), and soft magnetic (red solid line) material. Saturation
magnetization (ms), remanence (mr), and coercive field (hc) are indicated for hard and soft magnets.

III. MAGNETIZATION MODEL AND MAGNETIC TORQUE

Different types of magnetization response to applied field can be classified by remanence and
coercivity. Remanence (mr ) is how much magnetization remains after removing the applied field.
The coercive field (hc) is the opposing applied field required to demagnetize the material, since
the magnetization tends to align with an applied field. Soft ferromagnets (Fig. 2, red solid line)
have a magnetization amplitude that increases with increasing field magnitude until it saturates at a
constant saturation value ms. Hard ferromagnets (Fig. 2, blue dot-dashed line) have a magnetization
that can be assumed to be constant in typical operational ranges due to their high remanence and
coercive field, but in applied fields larger than hc their magnetization will eventually align with the
field. Paramagnetic response (Fig. 2, green dashed line), with magnetization linearly related to the
field, is observed for materials with close to zero remanence and coercive field in fields much smaller
than those needed to cause saturation. Paramagnets typically have small magnetization compared to
ferromagnets.

We develop a phenomenological magnetization model to capture the effects of saturation and
coercivity by writing magnetic energy (e) as the sum of a magnetic potential term and an anisotropy
term,

e = −µ0V m · h + A(m), (3)

where m is the magnetization, V is the volume of magnetic material, and µ0 is the permeability of
free space. For a given field, the magnetization is determined by minimizing e with respect to m, as
appropriate in a quasistatic limit of magnetization dynamics. The choice of A in Eq. (3) can account
for different magnetic physics including shape or magnetocrystalline anisotropy.

A paramagnet is described if the anisotropy is A(m) = 1
2µ0V m · χ−1

m, where χ is the (symmet-
ric) tensor magnetic susceptibility that depends on the material and geometry of the object. Then
minimizing the energy ( δe

δm
= 0) results in the linear relation m = χh.

To include saturation, we impose the additional constraint |m| � ms. Then magnetization
responds as a paramagnet in the unsaturated regime but saturates at higher field magnitudes,
similar to the experimentally validated description of soft magnetic materials in Ref. [33]. While
the small-field unsaturated regime is only well described for materials with small remanence
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(i.e., paramagnets and soft magnets), the large-field saturated and coercive regime—the one of
importance for the phenomena we investigate—is well described for all types of magnetic materials.
For large enough field magnitudes, |m| = ms, the first term on the right-hand side of Eq. (3) becomes
dominant, and m̂ approaches ĥ. In the limit |h| → ∞, that first term is minimized by m̂ = ĥ, and
for |h| ≫ ms we can find a perturbation expansion

m̂ = ĥ +
msn(ĥ)

|h|
+ O

(

m2
s

|h|2
, . . .

)

, (4)

where n is a vector that only depends on the direction, not magnitude, of h. As shown in Appendix A,
n is the projection of −∇mA/(µ0V ms) into the plane perpendicular to ĥ. For the following
arguments, it is enough that Eq. (4) describes the coercive large-field behavior.

The torque τ on an object with constant magnetization m and volume V in a magnetic field h is
[28]

τ = µ0V m × h. (5)

However, the magnetization determined from Eq. (3) is not constant; it is a function of applied field
and the body orientation. For this nonconstant magnetization, we can find the torque on the body
using the principle of virtual work by calculating the variation of energy due to variation in body
orientation while the field remains fixed. This energy variation due to an infinitesimal rotation of the
body (δαi) is equivalent to the energy variation due to an opposite rotation of the field (−δαi) while
the body remains fixed. The energy change due to such a rotation of the field can be written as

δe =
(

∂e

∂h
+

∂e

∂m

δm

δh

)

δh. (6)

The second term in the parentheses on the right-hand side of Eq. (6) vanishes since ∂e
∂m

= 0. Then
since the change in field (δh) due to an infinitesimal rotation −δαi is δhi = −ǫi jkδα jhk , we get
δe = µ0V δαiǫi jkm jhk, and

τi =
δe

δαi

= µ0V (m × h)i. (7)

In the above we use indicial notation with implied summation of repeated indices, and ǫi jk is the
antisymmetric Levi-Civita tensor. Hence in our model the magnetic torque obeys Eq. (5) just as for
material with a permanent magnetization.

IV. GENERAL THEORY OF STEP-OUT

Since mobility matrices depend only on the geometry of the particle, Eq. (2) suggests that
magnetic properties will not affect the slope of the velocity-frequency response [Fig. 1(b)]. Instead,
they greatly affect the behavior of step-out frequency as a function of field magnitude. For a given
field magnitude, the step-out frequency is the maximum possible rotation rate of the field that the
microswimmer can steadily follow. Working in the body frame, the step-out frequency is obtained
by finding the maximum angular velocity value among the steady solutions over varying directions
of h while keeping its magnitude constant, or using Eqs. (2) and (5), and the steady condition ω = �,

ωs = |�s| = max
ĥ

{|µ0V M(m(h) × h)|}. (8)

Step-out for a permanent magnet. If m(h) is a constant vector relative to the body, Eq. (8) becomes

|�s| = max
ĥ

{µ0V |m||h||M(m̂ × ĥ)|}. (9)

Since M and m are constant in the body frame, there is a unique direction of h that maximizes the
right-hand side, and thus the step-out frequency is linear in |h|.
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Step-out for a paramagnet. If m is paramagnetic [m(h) = χ · h], Eq. (8) becomes

|�s| = max
ĥ

{µ0V |h|2|M((χĥ) × ĥ)|}. (10)

Again, regardless of the field magnitude, a unique direction of h maximizes the right-hand side, but
now the step-out increases in proportion to |h|2.

Step-out in the saturated and coercive regime. When the applied field is large enough to saturate
and coerce the magnetic response, |m| = ms and m̂ approaches ĥ. From Eq. (4), m × h = m2

s n(ĥ) ×
ĥ, to lowest order, and Eq. (8) becomes

|�s| = max
ĥ

{µ0V m2
s |M(n(ĥ) × ĥ)|}. (11)

Since n is independent of |h|, we conclude that the step-out frequency will not change for increasing
field magnitudes once Eq. (4) is valid. Thus, by going beyond permanent and paramagnetic
magnetization to include coercivity and saturation, we see that for a microswimmer made of any real
material both the step-out frequency and the maximum velocity plateau when the field magnitude
becomes large enough. Physically, the origin of this plateau behavior is that as |h| increases, the
angle between m and h decreases proportionally to 1

|h| , and hence the torque τ = µ0V m × h remains
constant.

V. NUMERICAL DEMONSTRATION OF PLATEAU BEHAVIOR

Next we numerically demonstrate the described step-out behavior by modeling a microswimmer
with a helical tail and prolate ellipsoidal head [Fig. 3(a)].

A. Model for microswimmer with ellipsoidal head

The magnetization response of an ellipsoidal head is relatively simple, with a single easy axis,
and we choose a specific anisotropy [A(m) in Eq. (3)] to capture the shape anisotropy of a soft
magnetic prolate ellipsoid with randomly oriented domains.

The axial symmetry of the ellipsoid constrains the magnetic properties. First, the magnetization
always lies in the same plane as the field and axis of symmetry [φm = φh; Fig. 3(a)]. Second, the
anisotropy expression should be independent of the azimuthal angle φm and only be a function
of polar angle θm. Third, since the major axis of a prolate ellipsoid is its easy axis, A(m) should
be symmetric around θm = π/2, with minima at θm = 0, π and a maximum at θm = π/2. An
anisotropy satisfying these properties is

A(m) = 1
2µ0V m · χ−1

e m, (12)

where χe is a diagonal matrix of the form

χe =







1
ce1

0 0

0 1
ce1

0

0 0 1
ce2






. (13)

For a general ellipsoid ce1 and ce2 are computed in [34] as a function of the ratio of major and minor
axes and satisfy the constraint 2ce1 + ce2 = 1. For a prolate ellipsoid ce1 > ce2, which minimizes
the energy at θh = 0, π and maximizes it at θh = π/2. For an oblate ellipsoid ce1 < ce2.

Using Eq. (12) with φm = φh, Eq. (3) becomes

e = −µ0V
[

|m||h| cos (θh − θm) + 1
2 |m|2(ce2 cos2 θm + ce1 sin2 θm)

]

. (14)

Minimizing Eq. (14) under the constraint |m| � ms gives the magnetization as m = χh for the
linear regime where |m| < ms, and as the solution of (ce1 − ce2)ms sin(2θm) = 2|h| sin(θh − θm) for
the saturated regime where |m| = ms. This magnetization is in agreement with the experimentally
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FIG. 3. (a) Schematic of microswimmer with a prolate ellipsoidal head. The volume of magnetic material
(V ) is not shown, and the head and tail are not to scale. Polar and azimuthal angles θ and φ are used to describe
vectors in the swimmer’s body frame. (b) Demonstration of plateau behavior due to saturation and coercivity
for microswimmer with head aspect ratio 2. Nondimensional step-out frequency (�s; left axis) plateaus as
field magnitude (h) increases, because the magnetization approaches the field direction, as shown by the angle
between magnetization and applied field (right axis). Dashed line shows h−1 behavior of this angle. Insets show

how step-out frequencies are determined from the largest nondimensional average velocity (ṽa = vaηL2

µ0m2
s V

) and

nondimensional frequency (ω̃ = ωηL3

µ0m2
s V

) for which a solution exists, where η is the dynamic viscosity of the
fluid.

validated model proposed in [33]; our coefficients ce1 and ce2 correspond to the demagnetization
factors there.

To apply the propulsion model (Sec. II), first the submatrices K, C, and M in Eq. (1) are
computed using the method of regularized Stokeslets [35] as described in Appendix B. We find
steady solutions (� = ω) for varying field strength and rotation rate using the method described in
[22], but must adjust it for the soft magnetic model as follows.

Recall that we compute the field directions (in the swimmer’s body frame) resulting in steady
orbits. Since for an ellipsoid the field, magnetization, and axis of symmetry are coplanar, for a field
direction described in body frame as ĥ = [sin θh cos φh, sin θh sin φh, cos θh], the torque [Eq. (7)]
lies in the x-y plane,

τ̂ =





− sin φh

cos φh

0



. (15)
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The angle between rotation axis of the field and the field itself is prescribed experimentally and in
this paper it is assumed that they are perpendicular as is typical in experiments. Hence ĥ · (Mτ̂) = 0
is a constraint that can be used to determine the steady solutions. This constraint results in

tan θh =
M13 sin φh − M23 cos φh

M12 cos 2φh + (M22 − M11) sin φh cos φh

. (16)

In a given field magnitude, for each pair of (θh, φh) that solves Eq. (16) we compute the
magnetization, then the torque on the swimmer from Eq. (7), and the swimmer’s angular velocity �

from Eq. (1). Stability for the solutions was confirmed by checking that perturbations return to the
original solution under time evolution by numerical integration of the angular velocity in Eq. (1),
which agrees with analytical criteria for stability [36].

B. Demonstration of plateau behavior

The insets in Fig. 3(b) show the nondimensional average velocities of steady solutions as a
function of nondimensional frequency for h = 0.17ms and h = 0.63ms; the step-out frequency
corresponds to the largest velocities in each plot. Changing the field strength yields the same
slope but different step-out frequencies and maximum velocities. The resulting dependence of
step-out frequency on field magnitude is shown in Fig. 3(b) (blue circles, left axis). Initially, as field
magnitude increases the step-out frequency grows quadratically, corresponding to the regime where
coercivity is important but saturation is not yet reached. Since our model assumes a paramagnetic
response in this regime, the quadratic behavior is the same as expected for a paramagnet. However,
for high field magnitudes the step-out frequency plateaus, confirming our analytical results.
Furthermore, the angle between the field and magnetization decreases proportionally to 1/|h| as
the step-out plateaus [Fig. 3(b), red diamonds, right axis], confirming our physical picture of the
origin of plateau behavior.

VI. EXPERIMENTAL RELEVANCE OF PLATEAU BEHAVIOR

To our knowledge, the plateau behavior has not been reported in experiments. Hard magnets
are not operated in the coercive regime (by definition) so we do not expect plateau behavior for
microswimmers made of those materials.

A. Consistency with reported soft magnetic microswimmer

To check whether our predictions are consistent with existing soft magnetic microswimmers,
we model the velocity-frequency response for the soft magnetic swimmer reported in Ref. [15]
with a square, not ellipsoidal, head. For this microswimmer, the properties of the anisotropy energy
A(m) are dictated by a square’s geometry and the placement of its easy axis. In agreement with
[15], Ref. [37] reports that the easy axis for thin square plates are the diagonals for fields less than
11ms. Assuming that holds true, then A(m) should be symmetric about θm = π/2 [Fig. 4(a)] in the
range of 0 � θm � π with a minimum at θm = π/2 and maxima at θm = 0, π . Also A(m) should
be 4-fold symmetric with respect to φm in the range of 0 � φm � 2π with minima at φm = k1π/2,
(k1 = 0, 1, 2, 3, . . .) and maxima at φm = k2π/4 (k2 = 1, 3, 5, . . .). Adding an additional term to
the shape anisotropy of an oblate ellipsoid generates the following anisotropy which satisfies these
properties:

A(m) = 1
2µ0V

[

cs1
(

m2
x + m2

y

)

+ cs2m2
z + cs3m2

xm2
y

]

, (17)

where cs1, cs2, and cs3 are constant coefficients; the first two describe the shape anisotropy of an
oblate ellipsoid (cs1 < cs2), while the third term controls the in-plane behavior of magnetization
for a thin square plate with easy axes along its diagonals (the x and y axes). An example of the
calculation of the magnetization from this shape anisotropy is presented in Appendix C.
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FIG. 4. Plateau behavior of experimental microswimmer with square head. (a) Geometry of microswimmer
with a thin square plate head [27]. Polar and azimuthal angles θ and φ are used to describe vectors in the
swimmer’s body frame. (b) Experimental data for velocity versus frequency in three different field magnitudes,
with uncertainty in estimation of step-out frequencies indicated. Taken from [27] and modified with permission.
(c) Calculated step-out frequencies versus field magnitude for various parameter values as discussed in the main
text. Table II shows values of cs1, cs2, cs3, ms, and E corresponding to each plot. The inset shows more clearly
the estimated experimental values of ωe

1.5 and ωe
2 and their uncertainties relative to our predictions.

Unlike the microswimmer with the ellipsoidal head, we could not derive an analytical expression
for the steady solutions (� = ω) for this microswimmer from Eq. (1). Instead, for a given field
magnitude, we numerically search for field directions and their resulting angular velocities for
which the angle between the two (γ ) is close to 90◦. We use a threshold of |γ − 90◦| � 1◦ for
our simulations but smaller thresholds are possible at the cost of more computation time. In Eq. (1),
we require the mobility matrices which are computed using the method of regularized Stokeslets as
described in Appendix C.

Prediction of plateau value for reported microswimmer. Reference [27] reports velocities of their
experimental microswimmer as a function of frequency for 1, 1.5, and 2 mT fields [Fig. 4(b)]. We
estimated the step-out frequency for the 1.5 and 2 mT curves in Fig. 4(b) to be ωe

1.5 = 27.5 and
ωe

2 = 32.5 Hz with a ±2.5 Hz uncertainty. We did not use the 1 mT curve since the uncertainty
in approximating the step-out frequency in that field is much larger. To model the experiment, we
must specify values for the parameters cs1, cs2, cs3, ms. We numerically searched for parameters
that produce step-out frequencies (ω1.5 and ω2) at 1.5 mT and 2 mT field magnitudes that locally
minimize the error E =

√

(ω1.5 − ωe
1.5)2 + (ω2 − ωe

2)2. We found many such sets of parameters
within the experimental uncertainty (E � 2.5

√
2 Hz).

Four examples are shown in Fig. 4(c) for sets of parameters listed in Table II. The fit constrains
ms within a relatively small range of (1.9–2.2) × 104 A m−1; in Appendix C we check that the
implied value for ms is reasonable for the magnetic structure in this microswimmer. The fit does not
strongly confine the values of cs1, cs2, and cs3. The result for cs3 can be rationalized since it controls
the in-plane behavior of magnetization; however for this microswimmer, magnetization vectors of
the steady solutions have in-plane components mostly along the x easy axis. This implies that cs3

can change in a wide range without having a strong effect on the step-out curve. In general a wide
range of cs1 and cs2 can fit the data, and larger cs2 leads to larger plateau step-out frequencies, which

TABLE II. Values of parameters used in the four curves in Fig. 4(c).

cs1 cs2 cs3 (m2 A−2) ms (A m−1) E (Hz)

a 0.0108 0.2102 2.96 × 10−10 21818 2.09
b 0.001 0.6430 3 × 10−8 19800 2.50
c 0.004 1.1322 1.23 × 10−5 19470 2.50
d 0.0082 1.6758 1.74 × 10−11 19654 2.49
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FIG. 5. Effect of material and geometry on plateau behavior. Dependence of step-out frequency (�s) on
applied field magnitude (h) for labeled values of (a) saturation magnetization ms, (b) volume of magnetic
material V , and (c) head aspect ratio Rh. h0, m0

s , V 0, and R0
h are the values for the baseline case (blue curves)

described in the text.

also vary over a wide range from 50 Hz to 350 Hz. (Note that even by conservative estimates these
microswimmers will remain in the assumed viscously-dominated regime, with Reynolds number
less than 0.1, for frequencies of up to a few thousand Hz.) Therefore, while our models are consistent
with the experimental data at low frequencies, we are not able to predict the expected plateau
behavior for this microswimmer.

B. Plateau behavior is predicted for microswimmers made of common materials

in typical operating ranges

Next, to see whether the plateau behavior should be seen in real active particles, we examined
the effects of head geometry and material. Using the models for a microswimmer with ellipsoidal
head above, we examine the effects of varying saturation magnetization ms, volume of magnetic
material V , and head aspect ratio Rh. As a baseline for comparison, in each case we include a
microswimmer (results plotted in blue) consisting of a prolate ellipsoid head of aspect ratio R0

h = 2
with minor and major radii ra = 0.78 µm and rb = 1.56 µm containing a volume V 0 = 4.05 µm3

of magnetic material with m0
s = 2.78 × 104 A m−1, and a left-handed helical tail with length

L = 38 µm, helical radius rh = 1.4 µm, 4.5 turns, and thickness radius of rt = 0.7 µm. This tail
geometry (chirality, length, number of turns, and radius) and head volume are chosen to be similar to
the experimental microswimmer in [15]. The thickness of the tail relative to the head size is similar
to the microswimmer reported in [18]. The saturation magnetization is that of the soft magnetic
alloy YIG [37].

First, materials with smaller saturation magnetization lead to smaller plateau step-out frequencies
and fields. In Fig. 5(a) we change the value for ms to represent different magnetic materials
while keeping the geometry of the particle constant. As implied by the nondimensionalization
in Fig. 3(b), the field strength at which the plateau behavior starts increases linearly with in-
creasing ms. The plateau step-out frequency increases quadratically with increasing ms. We note
that changing the magnetic material of the head from nickel (ms = 4.9 × 105 A m−1 [38]) to
YIG (ms = 2.78 × 104 A m−1) decreases the plateau step-out frequency from ωc = 2.7 × 104 Hz
starting at 150 mT, to approximately 100 Hz starting at 10 mT; both values are well outside
typical ranges used in experiments. However, as discussed in Appendix C, soft magnetic materials
incorporating diamagnetic and/or antiferromagnetic components can have significantly smaller
saturation magnetizations than nickel.

Second, decreasing the volume of magnetic material (V ) will decrease the plateau step-out
frequency. In Fig. 5(b) we decrease the volume of magnetic material while keeping the head
geometry constant, as might occur if the magnetic material were a coating rather than the entire
head. The plateau step-out frequency is proportional to the magnetic material volume, while the
field magnitude at which the plateau starts remains constant. More generally as implied by the
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nondimensionalization in Fig. 3(b), the plateau step-out frequency is proportional to the ratio of V

and the geometric volume of the swimmer. Thus if a microswimmer is fabricated with a coating of
magnetic material of constant thickness, increasing the particle size decreases the ratio of magnetic
volume to geometric volume, leading to smaller plateau step-out frequencies and velocities.

Third, the head shape will affect the plateau step-out frequency. In Fig. 5(c) we change the head
aspect ratio while keeping the head volume constant. The head aspect ratio affects the magnetization
model [Eq. (12)] as well as the mobility matrix [Eq. (1)]. The plateau step-out frequency decreases
as the head aspect ratio decreases, but the field magnitude at which the plateau starts remains
approximately constant.

Applying these results to realistic materials and geometries, we found that if the microswimmer
head of Fig. 3(a) were made from nickel, due to its relatively large saturation magnetization
(ms = 4.9 × 105 A m−1 [38]), the plateau step-out frequency and the field magnitude at which it
happens would be well outside typical laboratory ranges. However, an active particle can easily
be designed with experimentally relevant step-out plateau behavior. As a concrete example, we
combine all the effects above and model a microswimmer consisting of a prolate ellipsoidal head
with minor and major radii ra = 1.46 µm and rb = 3.02 µm, with an additional coating of a 100 nm
thick layer of YIG (ms = 2.78 × 104 A m−1 [37]), and a left-handed helical tail with 4.5 turns and
length L = 76 µm, thickness radius rt = 1.4 µm, and helical radius rt = 2.8 µm. We find that the
plateau behavior begins at field magnitude of approximately 10 mT, with step-out frequency 12 Hz,
and swimming velocity 31 µm s−1, which are well within standard operating ranges for these types
of magnetic active particles.

VII. DISCUSSION

We have shown that for active magnetic microswimmers propelled by a rotating magnetic field,
previously ignored saturation and coercive effects cause the step-out frequency, and hence maximum
velocity, to plateau rather than increase as field magnitude increases. We predict that for reasonable
choices of soft magnetic materials and geometry, the plateau in step-out frequency can occur at field
magnitudes and rotation rates typically encountered in the laboratory, so this new physical limit is
relevant for current microswimmer design.

At low field strengths, our magnetization model assumed paramagnetic behavior. This assump-
tion holds for ideal soft magnetic materials such as HyMu 80 [33], but may not be valid for materials
with significant remanence, and quantitative treatment of such materials will require further work.
However, our model adequately treats saturation and coercivity for large fields and the limiting
behavior is quite general, since it only requires that the saturated magnetization approaches the
applied field direction as (1/|h|) as field strength increases [Eq. (4)], which results from any
anisotropy A(m) independent of |h|.

If undesired, the plateau behavior we have identified can easily be avoided by using materials
such as nickel with high saturation magnetizations. However, it may also turn out to be advan-
tageous to design microswimmers that can operate in the plateau regime; for example, control of
microrobots, especially in swarms, could be achieved using nonlinear response [22,39,40] including
post-step-out frequency properties [41] so it may be favorable to have a small step-out frequency.
Nonuniform magnetic fields can also be used to control swarms [42], so it may be favorable to have
microswimmers with a constant step-out frequency across varying magnetic field strengths.

We considered rigid magnetic particles propelled in bulk fluids, but other types of active
particles may be affected by the physical constraint on steady rotation rates we have identified. For
instance, magnetic particles are often rotated to roll along surfaces and boundaries [6,43–45], and
magnetic rotational actuation is also used in self-assembled micromachines [46]. Finally, limits on
maximum rotation rates may also constrain nonpropulsive applications of magnetic particles such
as microrheology [47], targeted control of living cells [48], and thermal and mechanical treatment
of cancer tumors [49,50].
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APPENDIX A: LARGE-FIELD PERTURBATION EXPANSION FOR MAGNETIZATION

A nondimensional version of the energy in Eq. (3) for a saturated soft magnet is

ẽ = −m̂ · ĥ +
ms

|h|
Ã(msm̂), (A1)

where ẽ = e
µ0V ms|h| and Ã = A

µ0V m2
s
. For |h| ≫ ms Eq. (A1) is minimized by m̂ = ĥ, so for large |h|

ms

we use a perturbation expansion

m̂ =
ĥ + ms

|h|n(ĥ) +
(

ms

|h|
)2

n1(ĥ) + O
((

ms

|h|
)3

, . . .
)

√

1 + 2 ms

h
n · ĥ +

(

ms

h

)2
(n2 + 2n1 · ĥ) + O

((

ms

|h|
)3

, . . .
)

. (A2)

This can be further expanded neglecting the O(( ms

|h| )
3, . . . ) terms to get

m̂ = ĥ

[

1 −
ms

h
n · ĥ −

1

2

(

ms

h

)2

(n2 + 2n1 · ĥ) +
3

2

(

ms

h
n · ĥ

)2]

+
(

ms

h

)

n

[

1 −
(

ms

h

)

n · ĥ

]

+
(

ms

h

)2

n1. (A3)

Substituting Eq. (A3) into Eq. (A1) and minimizing ẽ with respect to n,

∂ ẽ

∂ni

=
(ms

h

)2
(δi j − ĥiĥ j )n j +

(ms

h

)2
ms

∂Ã

∂mi

(δi j − ĥiĥ j ) = 0, (A4)

which results in

(δi j − ĥiĥ j )

(

ni + ms

∂Ã

∂mi

)

= 0. (A5)

In the above we use indicial notation with implied summation of repeated indices. Equation (A5)
gives the components of n in the plane perpendicular to ĥ. In the main text, we write the leading
order in ms

h
expression for m̂, in which we assume n has no component along ĥ, so that m̂ is a unit

vector to leading order in ms

h
.

APPENDIX B: MOBILITY MATRIX FOR A HELICAL MICROSWIMMER

WITH AN ELLIPSOIDAL HEAD

To compute the mobility matrix, we used the method of regularized Stokeslets [35], which
represents the flow around a body as a superposition of flows arising from “blobs” of force located
at discretized points on the surface of the body. Each blob of force has dimensions specified by
a regularization parameter. Figure 6 shows a discretization of the head and tail surfaces for this
microswimmer. We discretized the surface of the ellipsoidal head by defining cross sections along
the axis of symmetry and putting equally spaced points on the perimeter of each cross section.
The number of points on each cross section is chosen so that the spacing between them is as close
as possible to the distance between neighboring cross sections. The values of the mobility matrix
of the head itself were in good agreement with analytical values of mobility matrix components
for an ellipsoid [51]. We discretized the surface of the tail by defining cross sections along the
centerline and perpendicular to it and putting points on the perimeter of each cross section. Similarly
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FIG. 6. Surface discretization of microswimmer with ellipsoidal head. To scale, 2091 total discretization
points.

to the head, the distance between neighboring points on a cross section is equal to the distance
between neighboring cross sections. Each tail cross section has the same number of points and
any two neighboring cross sections are rotated compared to each other by half the angle between
two neighboring points of a cross section so that points are more equally distributed. We chose
the regularization parameter for both the head and the tail to be equal to the defined cross-section
distance of the head and tail, respectively. The distance between cross sections of the tail is equal
to that of the head and we increase the number of discretization points by decreasing this distance.
To make sure that the obtained values converge, we compute mobility matrix values [Eq. (1)] as we
increase the number of discretization points and compare the percentage change in values of ||K||,
||C||, and ||M|| at each step (where ||A|| =

√

∑

i j Ai jAi j) until the percentage change between the

last three computations is less than 1%.
For the baseline example associated with Fig. 5, the total number of discretization points is

11 358, with 10 605 for the tail and 753 for the head. The values for submatrices K, C, and M are

K =





2.1080 0.0075 0.0004
0.0075 1.0310 0.0115
0.0004 0.0115 2.1644



 × 107 N−1 s−1 m, (B1)

C =





0.0252 0.05058 7.0742
−0.0826 −2.1809 0.0728
−7.2956 0.7632 0.0094



 × 1011 N−1 s−1, (B2)

M =





0.0380 −0.0077 0.0001
−0.0077 1.0877 −0.0013
0.0001 −0.0013 0.0371



 × 1018 N−1 s−1 m−1. (B3)

APPENDIX C: MICROSWIMMER WITH SQUARE HEAD

Example of magnetization calculation for square head. The magnetization is found by numeri-
cally minimizing the magnetic energy [Eq. (3)] using the anisotropy Eq. (17) under the constraint
that |m| � ms. For a given field h we compute the magnetization by searching for |m|, θm, and φm

that minimizes the energy as follows. First we derive an expression for |m| in terms of the known
parameters (h, cs1, cs2, cs3) and the unknown θm and φm by setting ∂e

∂|m| = 0. This results in

0 = −|h|{cos(θm − θh) + sin θm sin θh[cos(φm − φh) − 1]}
+ |m|[cs2 cos2(θm) + cs1 sin2(θm)] + 2cs3|m|3 sin4(θm) sin2(φm). (C1)

Since both coefficients of |m| and |m3| are greater than or equal to zero, Eq. (C1) is monotonic
and will always have one real solution |m| = m′(φm, θm). The magnetization must satisfy the soft
magnetic constraint of |m| � ms, hence the actual value of |m| is

m̃(φm, θm) = min (m′(φm, θm), ms). (C2)

We then numerically minimize the energy equation with the substitution |m| = m̃(φm, θm) and the
anisotropy modeled for a square [Eq. (17)],

e = µ0V
[

− m̃m̂ · h + 1
2 m̃2(cs1 sin2 θm + cs2 cos2 θm) + 1

2 m̃4cs3 sin4 θm sin2 φm cos2 φm

]

. (C3)
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FIG. 7. Example of determination of magnetization with saturation condition. Dimensionless magnetic
energy (ẽ = e/µ0V m2

s ) for a square for different magnetization directions in an applied field with θh = 30◦

and φh = 0. Square points show energy computed with |m| = m′ from Eq. (C4), and the circles show energy
computed with |m| = ms. The actual energy values (solid line) are computed with |m| = m̃; see text. (a) Field
magnitude is |h|/ms = 0.05 and energy is minimized at θm = 86◦ (dashed line). (b) Field magnitude is
|h|/ms = 0.4 and energy is minimized at θm = 72◦ (dashed line).

As a simple example, for an applied field direction defined by φh = 0 and θh = 30◦, we compute
the magnetization of a square plate with values of cs1 and cs2 equal to demagnetization factors (nr

and na) [33], respectively, of an oblate ellipsoid with major to minor axis ratio of 20 (the square
head of the microswimmer in Ref. [27] has a length to thickness ratio of 22.5). The value of cs3 is
not relevant since φh = 0. We also know that φm should be zero due to the symmetry of the square
around its x axis. Hence Eq. (C1) is simplified and |m| becomes

|m| =
|h| cos(θm − θh)

cs2 cos2(θm) + cs1 sin2(θm)
. (C4)

Figure 7 shows energy values plotted for two field magnitudes with different θm when the
energy is computed with |m| = m′, |m| = ms, and |m| = m̃; the latter is the actual value of energy.
Magnetization due to the applied field then corresponds to the point where energy is minimized. We
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FIG. 8. Surface discretization of microswimmer with thin square plate head. To scale, 894 total discretiza-
tion points.

see that for smaller field magnitudes, the magnetization is unsaturated and tends to be closer to the
easy axis and for higher field magnitudes it is saturated and tends to get closer to the field.

Geometry and mobility matrix for a helical microswimmer with a square head. The microswimmer
in Ref. [27] has a tail which is a left-handed helical ribbon with 4.5 turns, helical length of 38 µm,
helical radius of 1.4 µm, and made of a trilayer of InGaAs/GaAs/Cr with a ribbon width of 1.8 µm
and thickness of 32 nm. The tail is attached to a 4.5 × 4.5 × 0.2 µm3 thin square head made of
Cr/Ni/Au such that the helical axis is aligned with one of the square’s diagonals. To calculate the
mobility matrix, we discretized the surface of the six faces of the square head with dimensions
reported in the paper by putting equally distanced points on each surface. We discretized the helical
ribbon tail with one layer of Stokeslets as shown in Fig. 8. We put equally spaced points on lines
parallel to the helical axis. Each line has length wr cos(π/4) where wr is the ribbon width, and the
distance between neighboring lines is equal to the distance between two neighboring points on a
line.

The regularization parameters used for the head and the tail are equal to the distance between
two neighboring points on the head and the distance between two neighboring lines on the tail,
respectively. We set the distance between two adjacent points of the head to be 2.5 times bigger
than that of the tail and we increase the number of discretization points by decreasing the distance
of adjacent points on the tail. Similarly to the case of the ellipsoidal microswimmer, we ensure
convergence of mobility values by increasing the number of points until the percentage change of
||K||, ||C||, and ||M|| in the last three computations is less than 1%.

For our final simulations the ribbon tail has 9525 points, the square head has 722 points, and the
values for submatrices K, C, and M are

K =





1.9637 0.0034 −0.0092
0.0034 1.1285 −0.0487

−0.0092 −0.0487 1.7136



 × 107 N−1 s−1 m, (C5)

C =





−0.0046 1.1482 −0.06260
−0.0411 −0.1736 −0.0156
0.5940 −0.0782 −0.0025



 × 1012 N−1 s−1, (C6)

M =





0.0379 −0.0087 −0.0006
−0.0087 1.3652 0.0344
−0.0006 0.0344 0.0412



 × 1018 N−1 s−1 m−1. (C7)

This mobility matrix can be checked since the ratio |C22/M22| [Eq. (1) of the text] should be equal
to the slope of the velocity-frequency plots in Fig. 4(b). This slope is reported to be 1.1 × 10−7 m
[27], and the value that we computed for |C22/M22| is 1.27 × 10−7 m.

Discussion of the implied ms value for microswimmer with square head. Here we argue that the
implied value for ms found in our model of the microswimmer with a thin square head is reasonable.
The square head of the microswimmer in [27] is a trilayer alloy made up of Cr/Ni/Au with thickness
of 10/180/10 nm, while it has a trilayer tail of InGaAs/GaAs/Cr with thickness of 11/16/15 nm.
Nickel is a soft magnet with a saturation magnetization ms ≈ 4.9 × 105 A m−1 while chromium is
an antiferromagnetic metal and all the rest of the metals used in the head and tail are diamagnetic.

The value of ms found in our fit (ms ≈ 2 × 104 A m−1) is much lower than that of nickel, but
the trilayer structure could significantly affect ms. We were not able to compute the saturation
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magnetization of this exact trilayer structure, but the saturation magnetizations of a number of
similar structures have been reported. Reference [52] reports ms values of a series of biaxially
textured Ni1−xCrx materials, in which increasing x decreases ms such that x = 7% results in a ms

almost 2.5 times smaller than that of nickel, while x = 13% results in a ms 144 times smaller than
that of nickel. Reference [53] reports ms values for biaxially textured substrates of Ni/W, in which
increasing the percentage of W decreases ms, and they estimate ms to become zero for Ni91W9.
Reference [54] reports ms values for Ni/Au superlattices with bilayer thicknesses less than 5 nm, in
which decreasing the thickness of the Ni layer decreases ms. Based on these reports and considering
the amount of chromium (35% in head and tail combined) and the diamagnetic materials of the
head and tail, we believe that ms = 2 × 104 A m−1 is not an unreasonable value for the saturation
magnetization of the swimmer in [27].
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