
Operations Research Letters 48 (2020) 405–409

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

The Largest-Z-ratio-First algorithm is 0.8531-approximate for
scheduling unreliable jobs on m parallel machines
Alessandro Agnetis a, Thomas Lidbetter b,∗

a Dipartimento di Ingegneria dell’Informazione, Università di Siena, Italy
b Management Science and Information Systems Department, Rutgers Business School,Rutgers University, United States of America

a r t i c l e i n f o

Article history:

Received 12 October 2019
Received in revised form 4 May 2020
Accepted 4 May 2020
Available online xxxx

Keywords:

Unreliable jobs
Largest-ratio-first
Approximation ratio

a b s t r a c t

In this paper we analyze the worst-case performance of a greedy algorithm called Largest-Z-ratio-First
for the problem of scheduling unreliable jobs on m parallel machines. Each job is characterized by
a success probability and a reward earned in the case of success. In the case of failure, the jobs
subsequently sequenced on that machine cannot be performed. The objective is to maximize the
expected reward. We show the algorithm provides an approximation ratio of ≃ 0.853196, and that
the bound is tight.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The following problem, called Unreliable Job scheduling Problem
(UJP),was introduced in [2]. A set of jobs J = {J1, . . . ,Jn} must
be assigned to m parallel, identical machines, M1, . . . ,Mm. Each
job must be assigned to a single machine and a machine can
process one job at a time. Jobs are unreliable, i.e., while a job is
being processed by a machine, a failure can occur, which implies
losing all the work which was scheduled but not yet executed
by the machine. Each job Ji is characterized by a certain success
probability π i (independent from other jobs) and a reward r i ,
which is gained if the job is successfully completed. We assume
that the values π i are rational numbers strictly between 0 and 1.
(A job with probability 0 will always be appended to the end of
a machine schedule, without affecting the value of the objective
function, while a job with probability 1 can always be scheduled
first on a machine, only adding a constant term to the objective
but without affecting the rest of the schedule.) The problem is to
find an assignment of jobs to the m machines and a sequence on
each machine that maximizes the total expected reward. We may
also frame UJP as a search and rescue problem, as in [4].

In this note we consider the Largest-Z-ratio-First algorithm for
UJP, and, for any instance I, give a bound on the ratio λ(I) between
the value produced by the Largest-Z-ratio-First algorithm and the
optimal value. Limited to the case m = 2, it was shown in [1] that
λ(I) ≥ (2 +

√
2)/ 4 ≃ 0.8535. Here we extend the result to any

value of m, showing that λ(I) ≥ 0.85319

∗ Corresponding author.
E-mail addresses: agnetis@dii.unisi.it (A. Agnetis),

tlidbetter@business.rutgers.edu (T. Lidbetter).

In Section 2 we review some basic notions concerning UJP,
while in Section 3 we provide the main result.

2. Unreliable job scheduling problem

Here we briefly review the main concepts and notation con-
cerning UJP. Let Sh be a sequence of K jobs assigned to machine
Mh, and let S h(k) be the job in kth position in S h. A feasible solu-
tion S = {S1, S2, . . . ,Sm

} for UJP is an assignment and sequencing
of the n jobs on the m machines. If K jobs are assigned to M h, the
expected reward of sequence Sh is given by

ER[S
h
] = πSh(1) rSh(1) + πSh(1)πSh(2) rSh (2) + · · · (1)

+ π Sh(1) · · · πSh(K−1)πSh(K)rSh (K).

and the total expected reward is therefore

ER[S] =ER[S1] + ER[S2] + +· · ·ER[S
m
].

UJP consists of finding a solution S OPT = {S1
OPT, S2

OPT, . . . ,Sm
OPT}

that maximizes the total expect reward. A key role in our analysis
is played by the following quantity associated with each job j,
called the Z-ratio:

Zj =
π jr j

1 − πj
. (2)

When m = 1, the optimal solution is achieved by sequencing the
jobs in non-increasing order of Z j [2,5]. Hence, UJP indeed consists
of deciding how to partition the n jobs among the m machines,
since on each machine the sequencing is then dictated by the
priority rule (2). Since Product Partition can be polynomially
reduced to UJP with m = 2 [2], and since Product Partition is
strongly NP-hard [6], so is UJP,even for m = 2.

https://doi.org/10.1016/j.orl.2020.05.006
0167-6377/ © 2020 Elsevier B.V. All rights reserved.

406 A. Agnetis and T. Lidbetter / Operations Research Letters 48 (2020) 405–409

UJP bears various similarities with the classical problem of
minimizing total weighted completion time on m parallel ma-
chines, i.e., P ∥

∑
wjCj , though unlike this problem, UJP is not

concerned with the processing times of jobs. The single-machine
problem 1 ∥

∑
wjCj is solved by the well-known Smith’s rule,

i.e., sequencing the jobs in non-increasing order of the ratio ρj =
wj / pj . For any m ≥ 2, Pm ∥

∑
wjCj is NP-hard.

The Largest-Ratio-First algorithm for P ∥
∑
wjCj is the follow-

ing: order the jobs by non-increasing ratios ρj and assign them
in this order to the m machines, allocating the next job in the
list to the machine that frees up first. A schedule obtained in this
way is called a Largest-Ratio-First (LRF) schedule. Kawaguchi and
Kyan [3] showed that the worst-case error of any LRF schedule is
(1 +

√
2)/ 2. A simpler proof of this result has been provided by

Schwiegelshohn [7].
In this paper we analyze the performance of an analogous

ratio-based algorithm for UJP. In the following, while assigning
the jobs to machines, we call the cumulative probability of a ma-
chine the product of the success probabilities of the jobs already
scheduled on that machine. When a job j is assigned to a machine,
we use the notation P j to indicate the product of the success
probabilities of all jobs scheduled on the machine up to job j
(included), and we refer to P j as the cumulative probability of
job j.

The Largest-Z-ratio-First algorithm for UJP works as follows.
Order the jobs by non-increasing Z j and assign them in this order
to the m machines, allocating the next job in the list to a machine
currently having maximum cumulative probability (ties are bro-
ken arbitrarily). A schedule obtained in this way is also called a
Largest-Z-ratio-First (LZF) schedule. In this paper we investigate
the worst-case performance of any LZF schedule.

In establishing our result, we follow a similar line of reasoning
to the one in [7] for P ∥

∑
wjCj . While our Lemmas 3.1 and 3.2

are an adaptation of Corollaries 1 and 3 in [7], Lemma 3.3 is novel
and exploits features that are specific to UJP.

3. An approximation bound

The bound on the performance of an LZF schedule is proved
by subsequently reducing the set of instances which need to be
considered in order to detect the worst-case instance. This is
done through three lemmas. In Lemma 3.1 we show that we can
restrict to instances in which all jobs have Z j = 1. In Lemma 3.2
we prove that it is sufficient to consider instances containing at
most m − 1 jobs having a very large reward and an arbitrary
number of jobs having small reward. Lemma 3.3 shows that,
furthermore, the worst-case situation occurs when the success
probabilities of the jobs having very large reward are arbitrarily
close to 0. Thereafter, the main result can be established.

As in [7], we extend the usual definition of an instance I of
the problem to include an arbitrary LZF order for all the jobs. This
order produces the primary LZF schedule S LZF(I). In this way, an
instance I has a unique primary LZF schedule, even if all jobs have
the same Z j . For an instance I, we let

λ(I) =
ER[SLZF(I)]
ER[SOPT(I)]

.

The following lemma is an adaption of Corollary 1 in [7].

Lemma 3.1.For every instance I of UJP,there is an instance I ′ with
λ(I ′) ≤ λ(I) and Z j = 1 for all jobs j ∈ I ′.

Proof.Let ζ1 > ζ2 > · · · > ζd be the d different Z j values of jobs
in I , and let ζd+ 1 = 0. We can write ζi as ζi =

∑ d
k=i(ζk − ζk+ 1).

Letting i(j) denote the index of the Z-ratio of job j, we have

r j = ζi(j)
1 − πj

π j
=

d∑

k=i(j)

(ζk − ζk+ 1)
1 − πj

π j
.

Recalling the definition of P j , the expected reward of an arbitrary
schedule S for instance I can be written as

ER[S] =
∑

j∈I

r jPj =
∑

j∈I

⎛
⎝

d∑

k=i(j)

(ζk − ζk+ 1)
1 − πj

π j

⎞
⎠Pj =

=

d∑

k=1

⎛
⎝(ζk − ζk+ 1)

∑

j:i(j)≤k

1 − πj

π j

Pj

⎞
⎠. (3)

Next, we define a sequence of instances of UJP, Ik = {j ∈ I :
i(j) ≤ k}, k = 1, . . . ,d. For these instances, we set the reward
of job j in I k as (1 − πj)/π j (hence, Zj = 1). It follows that any
ordering of the jobs in I k is an LZF order, so we can select an LZF
order for I k that is consistent with our LZF order for I, ensuring
that for any job j ∈ Ik, the values of P j in SLZF(Ik) and in S LZF(I) are
identical. Letting P ∗

j denote the value of P j in an optimal schedule
SOPT(I), and observing that ER [SLZF(Ik)] =

∑
j∈Ik

((1 − πj)/π j)Pj , we
can apply (3) to both S LZF(I) and S OPT(I) to obtain

λ(I) =
∑ d

k=1(ζk − ζk+ 1)ER[SLZF(Ik)]
∑ d

k=1(ζk − ζk+ 1)
∑

j∈Ik

1−πj

π j
P∗

j

.

By the optimality of SOPT(Ik), we must have ER[SOPT(Ik)]
≥

∑
j∈Ik

((1 − πj)/π j)P∗
j , so that

λ(I) ≥
∑ d

k=1(ζk − ζk+ 1)ER[SLZF(Ik)]
∑ d

k=1(ζk − ζk+ 1)ER[SOPT(Ik)]
≥ min

1≤k≤d
λ(Ik).

Hence, λ(I) is at least as large as the value it attains in an instance
in which all jobs have Z-ratio equal to 1. □

Notice that if Z j = 1 for all jobs, the expected reward of the
jobs scheduled on a certain machine M h, from (1), is given by

ER[S
h
] = πSh(1)

(
1 − πSh(1)

πSh(1)

)

+ πSh(1)πSh(2)

(
1 − πSh(2)

πSh(2)

)

+ +· · ·

+ πSh(1) · · · πSh(K−1)πSh (K)

(
1 − πSh(K)

πSh(K)

)

= 1 −

K∏

i=1

πSh(i) (4)

and hence, given a schedule S, if Ph(S) =
∏K

i=1 πSh(i) is the
cumulative probability of machine M h in schedule S, the expected
reward ER[S] is given by

ER[S] =m −

m∑

h=1

Ph(S). (5)

In view of Lemma 3.1, from now on we only consider instances
of UJP in which all jobs have Z-ratio equal to 1.

Given an instance I and the corresponding primary schedule
SLZF, let P max (I) = max 1≤h≤m{Ph(SLZF(I))}. We can now establish
the UJP counterpart of Corollary 3 in [7].

Lemma 3.2. For every instance I of UJP for which all jobs have
Z-ratio equal to 1, there is an instance I ′ such that λ(I ′) ≤ λ(I) and
every job has an arbitrarily high success probability if its cumulative
probability in S LZF(I ′) is at least P max (I ′).

Proof. Consider an arbitrary instance I and the corresponding
LZF schedule S LZF(I). Now consider an instance J obtained by
replacing any job j with two jobs j1 and j2 such that π j1π j2 = πj ,
and consider the schedule S(J) obtained from S LZF(I) replacing
j with j1 and j2 consecutively scheduled in this order on the
same machine. Note that ER [SLZF(I)] = ER[S(J)], by (5). Call P̄

the cumulative probability of the jobs preceding j on the same
machine in S LZF(I). Due to the mechanism of the LZF algorithm
and since π i < 1 for all jobs, P̄ > Pmax (I). We choose π j1

A. Agnetis and T. Lidbetter / Operations Research Letters 48 (2020) 405–409 407

large enough so that S(J) is still an LZF schedule and therefore
π j1 P̄ ≥ Pmax (I). (This is not the case if π j1 P̄ < Pmax (I), as an LZF
schedule would have assigned j2 on the machine that in S LZF(I)
has cumulative probability P max (I).) Also, note that ER [SOPT(J)] ≥
ER[SOPT(I)]. Hence, as long as S(J) is a LZF schedule,

λ(I) =
ER[SLZF(I)]
ER[SOPT(I)]

≥
ER[S(J)]

ER[SOPT(J)]
= λ(J).

We can repeat this job splitting until all jobs j such that P j ≥
Pmax (I) have a success probability that is arbitrarily close to 1.
Note all the jobs such that P j < Pmax (I) are the last scheduled
jobs on the various machines, and hence there can be at most
m − 1 of them. □

The consequence of Lemma 3.2 is that we can restrict to
instances satisfying the following. Each machine processes a large
number of jobs with an arbitrarily high success probability, until
its cumulative probability reaches P max (SLZF(I)). We call these
jobs low-value jobs, since, if the success probability is high, then
the reward is low. After these jobs, at most m − 1 machines
process one more job. We call these jobs second-stage jobs. So, in
summary, from now on we only consider instances which contain
several low-value jobs followed by at most m − 1 second-stage
jobs.

We now take the last fundamental step, which consists of
showing that the most unfavorable situation occurs when the
success probabilities of all second-stage jobs are arbitrarily close
to 1 or arbitrarily close to 0. The proof of this lemma uses
arguments that are specific to UJP and are not derived from [7].

Lemma 3.3.For every ε > 0 and every instance I of UJP for which
all jobs have Z-ratio equal to 1, there is an instance I ′ such that

λ(I ′) ≤ λ(I) and every job has an arbitrarily high success probability
if its cumulative probability in S LZF(I ′) is at least P max (I ′). All other

jobs have success probability greater than 1 − εor less than ε.

Proof.Given an instance I, let p = Pmax (I) and denote by t ∈
(0, m) the sum of all the success probabilities of the second-stage
jobs in I that lie in the range [ε, 1− ε]. We will prove that we can
construct an instance I ′ with the required properties in the case
that t is an integer. In the case that t is not an integer, let q be an
integer such that tq is an integer. Given I, consider an instance I q

in which each job of I is replaced with q consecutive copies, and
there are qm machines. In I q, we adopt an LZF order producing
q identical copies of each machine schedule in S LZF(I), so that
ER[SLZF(I q)] = qER[SLZF(I)]. It is also clear that ER[SOPT(I q)] ≥
qER[SOPT(I)], since any schedule for I gives rise to a schedule for
Iq whose expected reward is q times as large. Hence, λ(I q) ≤ λ(I),
and it is sufficient to find a schedule I ′ such that λ(I ′) ≤ λ(I q). But
the sum of all the success probabilities of the second-stage jobs
in I q that lie within [ε, 1 − ε] is tq, hence an integer, so we may
as well assume t is an integer (otherwise, the whole argument is
applied to I q).

Recall that in S LZF(I) every machine processes a large number
of low-value jobs with cumulative probability p = Pmax (I), possi-
bly followed by a second-stage job. Let k = k(I) be the number
of second-stage jobs in I with success probability in the range
[ε, 1 − ε]. For every fixed m, we will prove by strong induction
on k that there is an instance I ′ such that λ(I ′) ≤ λ(I) and all the
second-stage jobs of λ(I ′) have success probability less than ε or
more than 1 − ε, which will prove the thesis.

This is evidently true for k = 0, because in that case I is
already of the form I ′. Note that we cannot have k = 1, since in
this case a single second-stage job would have success probability
π̃ ∈ [ε,1 − ε]and t = π̃ would not be an integer.

Although not strictly necessary, we consider separately the
case k = 2, since this is a good introduction to the structure of

the general induction argument. In this case, in I there must be
two second-stage jobs i and j with success probabilities π i , πj ∈
[ε, 1−ε] such that π i+π j = 1 (again, since t is integer). We define
a new instance I ′ by replacing jobs i and j with jobs i ′ and j ′ having
success probabilities π ′

i = δand π ′
j = 1 − δrespectively, where

δ ∈(0, ε) will be specified later. This does not affect the expected
reward because π i + π j = π i′ + π j′ = 1. Hence, the expected
rewards of SLZF(I) and S LZF(I ′) are the same, and k(I ′) = 0. We
must show that there is a schedule for I ′ whose expected reward
is at least ER[SOPT(I)], so that λ(I ′) ≤ λ(I).

Consider SOPT(I), and define a schedule S ′(I ′) for I ′ which is the
same as SOPT(I), but replacing i and j with i ′ and j ′, respectively.
There are two possibilities. Either, in S OPT(I), jobs i and j are
processed on the same machine or on different machines. If they
are processed on the same machine, then the expected reward
of S′(I ′) must be greater than that of S OPT(I). This is because the
contribution of that machine to the expected reward of S ′(I ′) is
1 − p̂δ(1 − δ), where p̂ is the cumulative probability of all the
other jobs processed by the machine; this is greater than the
contribution 1 − p̂π iπ j of the same machine to the expect reward
of SOPT(I). Now suppose that i and j are processed on different
machines in S OPT(I), and let the cumulative probabilities of all
the other jobs scheduled by S OPT(I) on these two machines be
p1 and p 2, respectively. First assume that p1 ≥ p2. Then the
contribution of these two machines to the expected reward of
S′(I ′) is 2−p1δ−p2(1−δ) and to SOPT(I) is 2−p1π i−p2π j . Recalling
that π i + πj = 1, the difference between these two contributions
is

p1(π i − δ) + p2(π j − 1 + δ) = (π i − δ)(p1 − p2) ≥ 0,

as long as δ is chosen to be at most π i .
If instead, p1 ≤ p2, we define a different schedule for I ′ which

is the same as SOPT(I), but replacing i with j ′ and j with i ′. A similar
argument to the one above shows that the expected reward of
this schedule is at least ER [SOPT(I)] for δ ≤ πj .

Now consider any k ≥ 3. Since we are using strong induction,
we assume that the induction hypothesis is true for all smaller
values of k. Let i and j be any two second-stage jobs in I with
success probabilities π i , πj ∈ [ε,1 − ε]. We consider two cases.

Case 1: π i + π j ≤ 1. This is similar to the case k = 2. We
define a new instance I ′ by replacing jobs i and j with i ′ and j ′ that
have success probabilities δ and π i + πj − δrespectively, where
δ ∈(0, ε) will be specified later. This does not affect the expected
reward, so the expected reward of S LZF(I) and SLZF(I ′) are the same.
Since, by the induction hypothesis, we also have that k(I ′) < k(I),
it is sufficient to show that there is a schedule for I ′ whose
expected reward is at least that of S OPT(I). As before, we define
a schedule S ′(I ′) for I ′ which is obtained from S OPT(I) replacing i
and j with i ′ and j ′, respectively. Again, there are two possibilities:
either i and j are processed on the same machine in S OPT(I) or not.
In the former case, ER[S′(I ′)] ≥ER[SOPT(I)], by a similar argument
as for k = 2. In the latter case, let the cumulative probabilities
of all the other jobs scheduled by S OPT(I) on these two machines
be p 1 and p 2, respectively. We assume that p1 ≥ p2. (If not,
then as before, we define a different schedule for I ′ in which i is
replaced with j ′ and j is replaced with i ′.) Then the contribution
of these two machines to ER [S′(I ′)] is 2 − p1δ −p2(π i + πj − δ)
and to ER[SOPT(I)] is 2−p1π i −p2π j . The difference between these
contributions is

−p1δ −p2(π i + πj − δ) + p1π i + p2π j = (π i − δ)(p1 − p2) ≥ 0,

as long as δ is chosen to be at most π i .
Case 2:π i + πj > 1. In this case, we define a new instance I ′′

by replacing jobs i and j in I with jobs i ′′ and j ′′ that have success
probabilities π i+π j−1+δ and 1−δ respectively, where δ ∈(0, ε)
will be specified later. Again, from (5), ER[SLZF(I)] = ER[SLZF(I ′′)],

408 A. Agnetis and T. Lidbetter / Operations Research Letters 48 (2020) 405–409

and k(I ′′) < k(I), so by the induction hypothesis, it is sufficient
to show that there is a schedule for I ′′ whose expected reward is
at least that of S OPT(I). We define a schedule S ′′(I ′′) for I ′′ which
is obtained from S OPT(I) by replacing i and j with jobs i ′′ and
j′′. Again there are two subcases. The first is when i and j are
processed on the same machine in S OPT(I). In this case, let p̂ be
the cumulative success probability of all the other jobs processed
on this machine. Then the contribution of this machine to the
expected reward of S ′′(I ′′) is 1 − p̂(π i + πj − 1 + δ)(1 − δ) and to
SOPT(I) is 1− p̂π iπ j . The difference between the two contributions
is therefore

p̂(π iπ j −(π i +π j −1+δ)(1−δ)) = p̂((1−π i)(1−π j)−δ(π i +π j + 2−δ)) .

Thus, if δ is chosen to be small enough, then the expression
displayed above is positive.

The second subcase is when i and j are processed on different
machines in S OPT(I). Again, let the cumulative probabilities of
all the other jobs scheduled by S OPT(I) on these two machines
be p 1 and p 2 respectively, with p 1 ≥ p2. Then the difference
between the contributions of these two machines to ER [S′(I ′)] and
ER[SOPT(I)] respectively is

(2−p1(π i+π j−1+δ)−p2(1−δ))−(2−p1π i−p2π j) = (1−π j−δ)(p1−p2),

which is positive since 1 − πi − δ >1− πi − ε ≥0, and the proof
is complete. □

We are now in the position of establishing the main result of
this paper.

Theorem 3.4.For any instance I of UJP,λ(I) ≥ 0.853196 ...

Proof.By Lemmas 3.1–3.3, for any instance I and any ε > 0, we
can find an instance I ′ with λ(I ′) ≤ λ(I) such that in S LZF(I), each
machine processes some low-value jobs first, until the cumulative
success probability reaches some p on each machine, then some
machines process a second-stage job with success probability
greater than 1 − ε or less than ε. If machine j processes a
second-stage job, let π j be the success probability of that job; if
it processes no second-stage job, let π j = 1. We may assume, by
reordering, that π1, . . . , πt > 1−ε for some t and πt+ 1, . . . , πm <
ε. By choosing ε to be small enough, we can ensure that in an
optimal schedule for such an instance I ′, for j > t , machine j
processes a single job with success probability π j and for j ≤ t ,
machine j processes a set of jobs with cumulative probability
π jp

m/ t . Recalling that ER [SLZF(I ′)] =m − p
∑ m

j=1 π j , the ratio λ(I ′)
is given by

λ(I ′) =
m − p

∑ m
j=1 π j

m −
∑ t

j=1 π jpm/ t −
∑ m

j=t+ 1 π j
.

Taking the limit as ε → 0, we have π j → 1 for j = 1, . . . ,t and
π j → 0 for j = t + 1, . . . ,m, so that we obtain

λ(I) ≥
m − tp

m − tpm/ t =
m/ t − p

m/ t − pm/ t =: f (m/ t , p).

The minimum of the function f (m / t , p) (for p ∈ (0, 1) and
m/ t ≥ 1) can be found by numerical methods and it has value
≃0.853195. (This value and those in Table 1 were confirmed
by a number of nonlinear solvers, including Matlab with the
GlobalSearch option.) □

The minimum of f (m / t , p) is attained when m / t ≃ 2.1231 and
p ≃ 0.58919.

The approximate values of min t ,p f (m/ t , p) are shown in
Table 1 for the first few values of m. In this table we also denote
by t̄ the value of t for which the bound is attained. We observe
that for m = 2 and t = 1, simple calculus shows that the

Table 1
Approximate minimum values of
f (m/ t , p) and t̄ .
m min t ,p f (m/ t , p) t̄

2 0.85355 1
3 0.86179 1
4 0.85355 2
5 0.85541 2
6 0.85355 3

minimum of f (2 , p) is attained for p = 2 −
√

2 and its value is
(2 +

√
2)/ 4 ≃ 0.85355, retrieving the result in [1] for m = 2.

(While the first few entries of the table hint at the possibility
that the minimum of f (m / t , p) is equal to ≃0.85355 for all even
values of m, this is in fact not the case. For instance, when m = 38,
the minimum is ≃0.853199.)

Proposition 3.1.For each fixed m, an arbitrarily tight example can
be built.

Proof. Given m, let p̄ and t̄ be the values of p and t for which the
minimum of f (m / t , p) is attained. Consider an instance in which
Zj = 1 for all jobs. There are m t̄ jobs with success probability
π , where π is a rational number arbitrarily close to p̄1/ t̄ (for the
sake of simplicity, in what follows we consider π = p̄1/ t̄), and
(m − t̄) jobs with success probability ε. (As Zj = 1, the rewards
of the two job types are (1 − π)/π and (1 − ε)/ε respectively.)
Consider the schedule σH , in which t̄ jobs with success probability
π are assigned to each machine, and (m − t̄) machines receive
an additional job with success probability ε. Note that σH is
an LZF schedule, attained when first all jobs with probability
π are allocated, followed by all jobs with probability ε. Let z H

be the expected reward of this schedule. In σH , the cumulative
probability of (m − t̄) machines is εp̄, while that of the other t̄

machines is p̄. Hence, recalling (5), zH = m − (m − t̄)εp̄ − t̄ p̄.
Now consider the schedule σ∗ in which m jobs with success

probability π are scheduled on each of t̄ of the machines, while
the other (m − t̄) machines only receive a job with success prob-
ability ε. (Incidentally, we note that also σ∗ is an LZF schedule,
obtained by scheduling first all jobs with probability ε and then
all the others.) So, in σ∗ the cumulative probability on each of the
first t̄ machines is p̄m/ t̄ , while for the other (m − t̄) machines it is
ε, thus yielding z ∗= m − (m − t̄)ε −t̄ p̄m/ t̄ . We have:

zH

z∗
=

m − (m − t̄)εp̄ − t̄ p̄

m − (m − t̄)ε −t̄ p̄m/ t̄
,

and letting ε → 0, we have

zH

z∗
→

m − t̄ p̄

m − t̄ p̄m/ t̄
.

As an example, consider the case m = 5. In this case the value
of the bound is ≃0.855411, attained for t̄ = 2p̄ ≃ 0.6024533.
We define an instance with m t̄ = 10 jobs having probability
π = p̄1/ t̄

= 0.6024533 1/ 2 = 0.776179, and (m − t̄) = 3 jobs
having probability ε. It holds

5 − t̄ p̄ = 5 − 2∗0.6024533 ≃ 3.7950934

and

5 − t̄ p̄5/ t̄
= 5 − 2∗(0.6024533) (5/ 2) ≃ 4.43657195 .

Hence, as ε → 0, we have
zH

z∗
→

3.7950934
4.43657195

≃ 0.855411 . □

A. Agnetis and T. Lidbetter / Operations Research Letters 48 (2020) 405–409 409

Acknowledgments

The authors wish to acknowledge two anonymous reviewers
for their helpful comments and remarks, which have significantly
improved the rigor of the paper.

This material is based upon work supported by the National
Science Foundation, United States of America under Grant No.
IIS-1909446.

References

[1] A. Agnetis, P. Detti, M. Pranzo, The list scheduling algorithm for scheduling
unreliable jobs on two parallel machines, Discrete Appl. Math. 165 (2014)
2–11.

[2] A. Agnetis, P. Detti, M. Pranzo, M.S. Sodhi, Sequencing unreliable jobs on
parallel machines, J. Sched. 12 (2009) 45–54.

[3] T. Kawaguchi, S. Kyan, Worst case bound of an LRF schedule for the mean
weighted flow-time problem, SIAM J. Comput. 15, 4 (1986).

[4] T. Lidbetter, Search and rescue in the face of uncertain threats, European J.
Oper. Res. (2020) http://dx.doi.org/10.1016/j.ejor.2020.02.029.

[5] L.G.Mitten, An analytic solution to the least cost testing sequence problem,
J. Ind. Eng. 11, 17 (1960).

[6] C.T. Ng, M.S. Barketau, T.C.E. Cheng, M.Y. Kovalyov, Product partition
and related problems of scheduling and systems reliability: Computa-
tional complexity and approximation, European J. Oper. Res. 207 (2010)
601–604.

[7] U. Schwiegelshohn, An alternative proof of the Kawaguchi–Kyan bound for
the Largest-Ratio-First rule, Oper. Res. Lett. 39 (2011) 255–259.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

