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Abstract Future medical microrobots, which are likely to be simple microstruc-

tures with no actual computational intelligence on board, can be functionalized to

perform targeted therapy in the body. In this paper, we describe how the properties

of rotating magnetic dipole fields have the potential to enable in vivo swarm con-

trol for the popular class of magnetic microrobots that convert rotation into forward

propulsion. The methods we describe can be used with swarms of batch-fabricated

homogeneous microrobots, and do not require any localization information beyond

what is realistically obtainable from medical images.

Biomedical “microrobots”, which are typically conceived as simple microstructures

with no actual computational intelligence on board, can be functionalized to perform

targeted therapy in the body such as chemotherapy or hyperthermia [10, 14]. The

majority of the work on biomedical microrobots has focused on magnetic swimmers

and screws that use a chiral structure (e.g., a helix) to convert magnetic torque gen-

erated by a rotating magnetic field into forward propulsion, although we have shown

that achiral structures can also be propelled in the same fashion [3]. This method of

propulsion compares favorably to other methods of magnetic propulsion [1].

Biomedical applications will likely require the control of a large number of mi-

crorobots (i.e., a swarm) to accomplish a therapeutic task. However, this is difficult

for two reasons. First, the entire swarm will be subject to some globally applied

magnetic field, and the distances between individual microrobots will be small com-

pared to their distances from the field-generation source, resulting in them experi-

encing very similar magnetic fields to each other. Second, for clinical use it may be
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unrealistic to assume that each microrobot can be individually localized; rather, a

medical image will show a swarm of microrobots as a blob in the image [13].

To date, research on the control of multiple magnetic microrobots has either con-

sidered a small set that are individually localized [5, 6], or a swarm that is controlled

as an aggregate unit with no ability to differentiate microrobots [13], or a swarm

in which microrobot heterogeneity is required for differentiation [2, 15]. No prior

work has proposed a solution for the comprehensive control of a swarm of batch-

fabricated homogeneous microrobots, a likely scenario for practical realization.

In this paper, we propose two ways to think about controlling a swarm of homo-

geneous microrobots in vivo. We can treat the swarm as an object to be manipulated,

and perform basic manipulation primitives on the swarm such as “move the aggre-

gate swarm to a new location,” “spread out the swarm,” “gather the swarm together,”

or “split the swarm into smaller swarms and move them to separate locations.” Alter-

natively, we can directly control the concentration field of the microrobots through-

out a volume of interest. We will describe how the unique properties of rotating

magnetic dipole fields can be utilized to make both of these strategies possible.

Our group has put significant effort into characterizing and utilizing magnetic

dipole fields due to their numerous desirable properties, first and foremost being

that they have a simple analytic representation that lends itself to analysis and real-

time computation. Dipole fields are generated by spherical permanent magnets,1 and

the fields generated by certain other permanent-magnet geometries2 and specialized

electromagnetic sources3 can be accurately approximated by the dipole model at

clinically realistic distances. It is easy to conceive of a clinical scenario in which

the patient is surrounded by one or more relatively small dipole sources in close

proximity to the location of interest, as opposed to designing a large one-size-fits-

all system into which the patient is placed (which is typical in prior work).

A magnetic dipole moment mmm generates a field hhh at each point ppp (with respect to

the dipole), which is described by the point-dipole equation:

hhh =
1

4π‖ppp‖3

[

3 p̂ppp̂ppT − I
]

mmm =
1

4π‖ppp‖3
Hmmm (1)

We see that the magnetic field is nonlinear with respect to position, with a strength

that decays rapidly from the source as ∼ ‖ppp‖−3, but the field is linear with respect

1 We have developed a spherical-permanent-magnet robotic end-effector capable of continuous

singularity-free rotation of the spherical magnet about any axis [17].
2 We show in [11] that the fields of cubic and certain cylindrical permanent magnets—which

are easy to fabricate (and purchase in variety of sizes), fixture, and manipulate—are accurately

approximated by the dipole model not far outside of their minimum bounding sphere.
3 We developed an electromagnetic source called the Omnimagnet, comprising three mutually

orthogonal coils with a common soft-magnetic spherical core, all in a cubic package [12]. The

Omnimagnet was optimized such that its field is accurately approximated by the dipole model just

outside of its minimum bounding sphere.
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Fig. 1 A magnetic dipole

moment mmm, with instanta-

neous field lines shown, is

rotated about axis ω̂ωωm, with

swarms of microrobots shown

at different locations. The

microrobots are shown simply

as rotating magnets without

any chiral structure, with

their respective ω̂ωωh vectors

shown. At locations along

the axis of ω̂ωωm, swarms are

driven straight while either

(a) spreading or (b) gather-

ing the swarm. At a location

that is orthogonal to ω̂ωωm such

as (c), the swarm does not

spread/gather, but it is steered.

At general locations, such

as shown in (d), the swarm

will experience both spread-

ing/gathering and steering.
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to the dipole itself. We can use H to capture the shape of the dipole field, which is

invariant to distance from the source.4

We showed in [8] that if a dipole moment is rotated about, and orthogonal to,

some axis ω̂ωωm, then the field at any given point in space will rotate about, and or-

thogonal to, some axis ω̂ωωh, with the same period. The inverse problem was also

solved (i.e., How should we rotate the dipole to achieve some desired ω̂ωωh at some

desired location?):

ω̂ωωh = Ĥ−1ω̂ωωm ⇐⇒ ω̂ωωm = Ĥω̂ωωh (2)

where H−1 = (H − I)/2 is always well conditioned. The body of a microrobot lo-

cated at ppp will tend to align with ω̂ωωh as its magnetic element synchronously rotates

with hhh, and ω̂ωωh will become the microrobot’s “forward” direction.

If we consider a swarm of microrobots at some nominal position (e.g., the cen-

troid of the swarm), we observe that each microrobot will be at a different ppp and

will thus experience a different ω̂ωωh. As shown in Fig. 1, there will be locations in

the rotating dipole field in which we can conceive of basic swarm manipulation

primitives, such as spreading out or gathering together while moving forward, or

steering while moving forward. If the patient is surrounded by multiple sources, or

a single moving source, such motions will be possible in arbitrary directions.

The phenomena that we have discussed become less pronounced as we consider

locations with increasing distance from the dipole source. It is likely that we will

need to utilize nonholonomic control techniques to amplify the phenomena. For

4 We use the “hat” notation to describe unit-normalized vectors (e.g., p̂pp ≡ ppp/‖ppp‖), as well as

pointing-direction vectors that are inherently unit length (e.g., ω̂ωω).
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Fig. 2 As the rotating dipole source is alternated (images going from left to right), the swarm can

be made to spread out without significant net motion of the centroid.

example, consider the scenario depicted in Fig. 2 in which two dipole sources are

on opposite sides of the swarm. By alternating between each source performing the

manipulation primitive of Fig. 1(b), the swarm can be made to effectively spread

out in place, without a net movement of the centroid. An analogous gathering of the

swarm can be visualized by considering the microrobots in Fig. 1(a).

Until this point, we have been assuming that all of the microrobots are rotating

synchronously with the applied field. However, that need not be the case. Consider

the two microrobots swimming along the ω̂ωωm axis in Fig. 1(b). If they are both close

enough to the dipole source that the magnetic field is sufficiently strong to keep

them both rotating synchronously with the field, then they will move forward at the

same average velocity. However, the farther microrobot will be the first to reach the

“step-out” regime in which the field is too weak to generate synchronous rotation,

at which point the microrobot’s average forward velocity will decrease. As shown

in Fig. 3, this yields a forward velocity v in the ω̂ωωh direction that transitions between

linear and nonlinear dependence on the field rotation frequency ‖ωωωm‖ (in general,

the forward velocity is a function of both ‖ωωωm‖ and ppp). Consider the inset in Fig.

3: this phenomenon will enable the closer microrobot to catch up with the farther,

effectively creating another means to gather the swarm. An analogous spreading of

the swarm can be visualized by considering the microrobots in Fig. 1(a).

A general description of the behavior of a population of microrobots can be con-

structed as follows. Consider a concentration (density) field of microrobots ρ at

some time. Then, since at each position ppp, microrobots move with velocity magni-

tude v in direction ω̂ωωh, we can interpret vω̂ωωh as the standard velocity field for micro-

Fig. 3 In [9] we showed

how the step-out regime can

be exploited to differentiate

heterogeneous microrobots

in a rotating uniform field.

The same concepts can be

applied to the homogeneous

microrobots in a nonuniform

dipole field of interest here.

Note: the step-out frequencies

are not shown to scale with

the microrobot locations

depicted.
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robots used in continuum fluid mechanics [7]. Therefore, for example, by number

conservation the density profile evolves in time as

∂ρ

∂ t
=−∇ · (ρvω̂ωωh). (3)

This formalism can be directly related to the primitives in Fig. 1. To determine

if a local population of microrobots is spreading or gathering, one would examine

the rate of change in density moving with that local population, i.e., the material

derivative of the density:

Dρ

Dt
≡

∂ρ

∂ t
+(vω̂ωωh ·∇)ρ =−ρ∇ · (vω̂ωωh). (4)

A positive/negative value of
Dρ
Dt

indicates an increasing/decreasing population con-

centration and corresponds to gathering/spreading of microrobots. Steering of mi-

crorobots is determined by the rate of change of their orientation (ω̂ωωh) moving with

the local population:
Dω̂ωωh

Dt
≡

∂ω̂ωωh

∂ t
+(vω̂ωωh ·∇) ω̂ωωh. (5)

The measures in Eqs. 4 and 5 can be combined to describe all of the scenarios

depicted in Fig. 1.

Alternatively, time integration of Eq. 3 suffices to solve the forward problem

of how a swarm described by an initial density ρ would behave for a given time-

sequence of dipole strengths and rotation rates, which also enables motion plan-

ners that do not rely on primitives. We can conceptualize such a motion planner as

follows: (1) Voxelize the given volume, with each of the voxels having a desired

concentration of microrobots. From these values, compute the desired centroid and

variance of the swarm. (2) Using medical images, estimate the current concentration

in each voxel, as well as the current centroid and variance. (3) Construct an objective

function that penalizes a combination of the errors in the quantities found in Step 2.

This objective function would likely work by driving the centroid and variance of

the swarm in the correct direction initially, and then fine-tuning the individual voxel

concentrations. (4) For each of the dipole sources, determine the value of ω̂ωωm that

would minimize the objective function locally. (5) From the set of ω̂ωωm vectors found

in Step 4, choose the one that minimizes the objective function and implement it for

a short period of time. (6) Go back to Step 2 and iterate until convergence.

In this paper we have described kinematic models for how rotating dipole fields

can be utilized in the control of in vivo microrobot swarms. However, we did not

model the transient as a microrobot aligns itself with a rapid change in ω̂ωωh, nor did

we model other magnetic and fluidic interactions that will certainly exist [4, 16, 18].

In light of this fact, the swarm-manipulation techniques that we have described

should be thought of as feedforward models for the purpose of control, and as pro-

cess models for the purpose of estimation, but with the knowledge that closed-loop

feedback of the swarm via medical imaging will be required to ensure the swarm

keeps evolving as desired. As we learn more about the unmodeled effects, it may
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be possible to incorporate them into improved kinematic models. Assuming micro-

robots are not deployed in a flowing environment (e.g., the bloodstream), we antici-

pate inter-microrobot magnetic interactions to be the most significant disturbance to

our model. When might these magnetic interactions ruin our model of control by a

dipole field? In typical cases we estimate that a microrobot’s magnetic field is com-

parable to the external field at ∼ 2 magnetic-element lengths, i.e., for a quite dense

swarm. Although even small magnetic attraction can lead to (irreversible) aggrega-

tion, for less dense swarms our methods might be used to prevent such aggregation.

References

1. J. J. Abbott, M. Cosentino Lagomarsino, L. Zhang, L. Dong, and B. J. Nelson. How should

microrobots swim? Int. J. Robotics Research, 28(11-12):3663–3667, 2009.
2. U. K. Cheang, K. Lee, A. A. Julius, and M. J. Kim. Multiple-robot drug delivery strategy

through coordinated teams of microswimmers. Applied Physics Letters, 105(8):083705, 2014.
3. U. K. Cheang, F. Meshkati, D. Kim, M. J. Kim, and H. C. Fu. Minimal geometric requirements

for micropropulsion via magnetic rotation. Phys. Rev. E, 90:033007, 2014.
4. U. K. Cheang, F. Meshkati, H. Kim, K. Lee, H. C. Fu, and M. J. Kim. Versatile microrobotics

using simple modular subunits. Scientific Reports, 6:30472, 2016.
5. S. Chowdhury, W. Jing, and D. J. Cappelleri. Controlling multiple microrobots: recent

progress and future challenges. J. Micro-Bio Robotics, 10(1-4):1–11, 2015.
6. E. Diller, J. Giltinan, and M. Sitti. Independent control of multiple magnetic microrobots in

three dimensions. Int. J. Robotics Research, 32(5):614–631, 2013.
7. P. Kunda, I. Cohen, and D. Dowling. Fluid Mechanics. Academic Press, sixth edition, 2015.
8. A. W. Mahoney and J. J. Abbott. Generating rotating magnetic fields with a single permanent

magnet for propulsion of untethered magnetic devices in a lumen. IEEE Trans. Robotics,

30(2):411–420, 2014.
9. A. W. Mahoney, N. D. Nelson, K. E. Peyer, B. J. Nelson, and J. J. Abbott. Behavior of

rotating magnetic microrobots above the step-out frequency with application to control of

multi-microrobot systems. Applied Physics Letters, 104(14):144101, 2014.
10. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott. Microrobots for minimally invasive medicine.

Annual Review of Biomedical Engineering, 12:55–85, 2010.
11. A. J. Petruska and J. J. Abbott. Optimal permanent-magnet geometries for dipole field ap-

proximation. IEEE Trans. Magnetics, (2):811–819, 2013.
12. A. J. Petruska and J. J. Abbott. Omnimagnet: An omnidirectional electromagnet for controlled

dipole-field generation. IEEE Trans. Magnetics, 50(7):8400810, 2014.
13. A. Servant, F. Qiu, M. Mazza, K. Kostarelos, and B. J. Nelson. Controlled in vivo swimming

of a swarm of bacteria-like microrobotic flagella. Advanced Materials, 27(19):2981–2988,

2015.
14. M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller. Biomedical applica-

tions of untethered mobile milli/microrobots. Proc. IEEE, 103(2):205–224, 2015.
15. S. Tottori, N. Sugita, R. Kometani, S. Ishihara, and M. Mitsuishi. Selective control method for

multiple magnetic helical microrobots. J. Micro-Nano Mechatronics, 6(3-4):89–95, 2011.
16. S. Tottori, L. Zhang, K. E. Peyer, and B. J. Nelson. Assembly, disassembly, and anomalous

propulsion of microscopic helices. Nano Letters, 13(9):4263–4268, 2013.
17. S. E. Wright, A. W. Mahoney, K. M. Popek, and J. J. Abbott. The spherical-actuator-magnet

manipulator: A permanent-magnet robotic end-effector. IEEE Trans. Robotics, 33(5):1013–

1024, 2017.
18. J. Yu, T. Xu, Z. Lu, C. I. Vong, and L. Zhang. On-demand disassembly of paramagnetic

nanoparticle chains for microrobotic cargo delivery. IEEE Trans. Robotics, (99):1–13, 2017.


