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1. Introduction

A person, or more generally a target, is lost in a network. We
know the lengths of the arcs of the network, and we have a knowl-
edge of the probability distribution (or hiding distribution ) accord-
ing to which the target is hidden. We wish to choose a unit speed
trajectory (or search) staring from a given point (the root) with
the aim of minimizing the expected search time: that is the ex-
pected time to find the target. The target might be a child lost in
a cave, as in the recent rescue in Thailand; or it might be a leak in
a pipeline. The Searcher could be an underwater diver or an un-
manned aerial vehicle (UAV), respectively. We call a search that
minimizes the expected search time optimal The target does not
have to be at a node; it can be anywhere in the interior of any arc.
This paper considers the problem when the network is a tree.

The hiding distribution can be interpreted as a distribution of
mail recipients along the roads, in which case we seek the delivery
route which minimizes the mean time for a package to be received.
This generalizes the case of one recipient at each node, where it
is called the Delivery Man Problem or Traveling Repairman Prob-
lem, and the case of the uniform hiding distribution (defined for-
mally in Section 4), where the probability that the target belongs
to a region (measurable subset) of the network is proportional to
the total length of that region. The latter problem was coined the
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Utilitarian - Postman Problem by Alpern (2007), and some general re-
sults on this problem in Alpern, Baston, and Gal (2009).

One method of searching a tree is what is known as depth-first
(DF) search, which follows a sequences of arcs, starting and ending
at the root, where the unique arc going back to the root is chosen
only after all other arcs from the node have been traversed. The
main problem addressed in this paper is the titled question: for
which hiding distributions is a DF search optimal? We call such
hiding distributions simply searchable

The recent work of Li and Huang (2018) shows that, under
a certain assumption on the optimal search, the uniform hiding
distribution on a tree is simply searchable. Earlier it was shown
by Kella (1993) that the uniform distribution on a star is simply
searchable. Beck and Beck (1992) and Baston and Beck (1995) also
proved this for a finite interval with interior start, with the more
general objectives of minimizing certain functions of the expected
search time.

Another distribution on a tree that has been shown to be sim-
ply searchable is the distribution shown by Gal (1979) to be op-
timal for a time maximizing hider in what is known as a search
game. To describe Gal's distribution, now known as the Equal
Branch Density (EBD) distribution, we must define the elementary
concept of searchdensity. The search density of a region of a net-
work is the ratio of the probability the target is located in the re-
gion and the length of the region. For example, the uniform distri-
bution can be characterized as the unique hiding distribution for
which the search densities of all regions are equal. If a point X is
removed from a tree, we call the components not containing the
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root in the resulting network the branches at X. A hiding distribu-
tion on a tree is called balanced if the densities of all the branches
at X are equal, for any point X on the tree. Gal's EBD distribution is
defined as the unique balanced distribution on a tree whose sup-
port is the set of leaf nodes. See Section 4 for an example of the
construction of the EBD distribution. Alpern (2011) showed that
the EBD distribution is simply searchable and Alpern and Lidbet-
ter (2014) showed that the optimal searches are exactly the DF
searches.

In this paper we define a class of distributions called monotone,
encompassing the uniform distribution and the EBD distribution,
and we show they are all simply searchable. We say that a hiding
distribution is monotone if whenever X is on the path from the
root to Y, the density of the set of branches at X is at most that of
the set of branches at Y. Roughly speaking, this says that the target
is more likely to be far than close to the root along any path from
root to leaf node. Theorem 4 says that monotone distributions are
simply searchable.

The important paper of Kella (1993) considered search on star
networks. For such networks we say that a hiding distribution is
forward biased if the probability the target is located within dis-
tance X of the root on a given arc is bounded above by a certain
function H(X), given explicitly in Section 7. Such an upper bound
clearly limits the probability that the target is close to the cen-
ter. For general star networks, Theorem 6 says that a balanced dis-
tribution is simply searchable if and only if it is forward-biased.
For two-arc stars (intervals) we can remove the assumption of bal-
anced. Theorem 7 says that for intervals a hiding distribution is
simply searchable if and only if it is forward-biased. The connec-
tion between our results and those of Kella for the star are dis-
cussed in Section 7.3. In particular, we give a hiding distribution
on an interval that is forward biased and balanced, hence simply
searchable by Theorem 6 or 7, but does not satisfy Kella’s condition
for simply searchability.

One reason for determining sufficient conditions for simple
searchability is that for simply searchable balanced distributions
this gives us a simple formula for the minimum expected search
time, given in Theorem 3. This allows us to show that for
both the Utilitarian Postman Problem and the Delivery Man Prob-
lem, the optimal depot location (starting point of the search) is
the leaf node of minimal closeness centrality (the one which max-
imizes the sum of distances to all nodes). Our result for the Deliv-
ery Man Problem corrects an error from Minieka (1989).

The paper is organized as follows. Section 2 is a literature
review. Section 3 presents the main definitions for the paper and
in particular describes a new way of partitioning a tree into two
parts with respect to a given search: a rooted subtree where the
search fails to be DF; and the rest, where it searches the com-
plementary trees in a DF manner. Section 4 proves the formula
stated above for the minimal search time for a simply searchable
balanced distribution and gives consequences for the uniform
distribution and the case where the starting point (root) is a
choice variable. Section 5 proves Theorem 4, described above, that
monotone distributions are simply searchable. Section 6 solves
the problem of optimal depot location on a tree for the Delivery
Man Problem. Section 7 gives our results for star networks, that
forward biased is a necessary and sufficient condition for simple
searchability. Section 7.3 compares our results for stars with those
of Kella (1993). Section 8 concludes.

2. Literaturereview

There is a considerable literature on the so-called Linear Search
Problem, originating with Beck (1964) and Franck (1965), which
seeks an optimal search for a target located on the real line ac-
cording to a known distribution. This has been extended by Kella

(1993) to search on a star, where it was shown that against a
uniform hiding distribution on a star, all DF searches are optimal.
Kella’s results are discussed more fully in Section 7.3.

The problem of finding an optimal search path for a target lo-
cated uniformly on an interval is considered in Beck and Beck
(1992) and Baston and Beck (1995). Both these works considered
a more general objective than the search time T: the former con-
siders the objective T for some 0> 1; the latter considers a gen-
eral convex function of T. Both papers show that DF searches are
optimal when the root is taken as any point in the interval.

More recently, Li and Huang (2018) address the problem of
finding an optimal search in the case that the target is hidden
on a network according to the uniform distribution, as discussed
in Section 1. Li and Huang (2018) make the assumption that the
Searcher never turns in the interior of an arc. They prove that un-
der this assumption any DF search of a tree is optimal for the uni-
form distribution.

Li and Huang (2018) also show that for the uniform hiding dis-
tribution on a tree, if the Searcher can choose her starting point,
then she should choose a leaf node. However, they do not give a
way to determine Wwhich leaf node should be chosen, and we fill
this gap in this paper. Search games in which the Searcher chooses
her starting point have been studied in Dagan and Gal (2008) and
Alpern, Baston, and Gal (2008). More recently, Alpern (2018) stud-
ied a search game in which the Searcher can choose her starting
point from a given subset of the network.

If the target is confined to the nodes of the network, the prob-
lem of finding the optimal search is a discrete one. In the case that
the target is on each node with equal probability, the problem of
finding the optimal search is equivalent to minimizing the /atency
of a network, also known as the Delivery Man Problem or Travel-
ing Repairman Problem (see Blum et al., 1994, Goemans & Klein-
berg, 1998, Sitter, 2002 and Arora & Karakostas, 2003). Minieka
(1989) showed that for a tree with unit arc lengths, a DF search
is optimal for this problem. By placing nodes of equal probability
at approximately equal intervals on all arcs, we can approximate
a continuous uniform distribution and the result of Li and Huang
(2018). Baston and Kikuta (2019) solve the problem of finding the
optimal search for a target located according to known probabil-
ites on the nodes of a bipartite network, when the nodes have
search costs.

Our approach to searching a network in this paper is to assume
the target is located according to some known probability distri-
bution. This differs from the approach taken in the search games
literature, of determining a randomized search of the network that
minimizes the expected search time in the worst case, which can
be equivalently framed as a zero-sum game between the target
and the Searcher. That approach to searching a network has been
studied extensively in the search games literature, for example in
Gal (1979), where this field of study was initiated; Garnaev (2000),
Alpern and Gal (2003) and more recently in Alpern and Lidbetter
(2013), Alpern and Lidbetter (2014), Baston and Kikuta (2013) and
Lin and Singham (2016).

3. Definitions

We start by giving rigorous definitions of a search and a hid-
ing distribution, and what it means for a search to be optimal. We
then go on to define precisely DF search, and the notion of search
density, which will be an important tool in our analysis.

3.1. Searchesand hiding distributions

Let Q be a tree network with root node O. The length (or
Lebesgue measure) of an arc @ of Q is denoted )\(a), which ex-
tends naturally to a measure A on Q, with total measure denoted
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U = A(Q). This defines a metric d on Q such that d(X, ¥) is the
length of the (shortest) path P(X, ¥) from X to Y. Note that we
model the network as continuous, in the sense that X and ¥ can
be points in the interior of arcs as well as nodes.

The branch nodes of a tree Q consist of the root O and all other
nodes of degree at least 3. Let be the natural partial order on
points of Q, so that Xy if X is on the path between O and Y. For a
point Xe Q, let Qx={¥ e Q: X y } be the subtree rooted at X. The
connected components of Q« - {X} are called the branches at x, and
clearly there are at least two branches at X if and only if X is a
branch node.

We define a search of the tree to be a function S [0, » )~ Q
satisfying (0) = O (starts at the root) and d(S(t,), St,) <t, -ty
for all times 0<t4<t,. That is, a search is a unit speed path on
the metric network Q. In this paper distance, length and time
are aligned. The distance between two points is the length of the
shortest path between them and also is the least time required for
a search to go from one point to the other, as searches are required
to go at unit speed. Of course if Q has been covered by some time
M (that is, @ = ([0, M])), then the behavior of S after time M is
irrelevant. We denote the set of all searches by S. We consider S
with the topology of uniform convergence on compact sets.

The hiding distribution / is a Borel probability measure on the
network, viewed as a compact metric space (@, d). For a given
search S and a given point X in Q, denote the time taken for
Sto first reach X (the Searchtime) by T(S,x) = min{t 20 : St) =
X}, which we allow to be += (but not for reasonable covering
searches). Note that T(S, X) is lower semi-continuous in S.

Similarly, we denote the expected search time py T(S,h) =
xo T(Sx) dh(x), which is also lower-semicontinuous in Se S.
Since S is compact in this topology, it follows that there is a search
Sthat minimizes T(S, h), for given N, and we refer to such a search
as optimal . We write V(h) for the expected search time T(S, h) of an
optimal search S against a hiding distribution h. We know that the
minimum expected search time cannot be more than 2M because
the tree Q can be searched in time 2H. We summarize these dis-
cussions in the following theorem. The details are standard, having
first being proved in Appendix 1 of Gal (1980).

Theorem. For any hiding distribution h, there exists some search
Sec S that minimizes T (S h).

Recall that PX, ¥) denotes the shortest path between two points
X, ¥ e Q. We distinguish searches with following property.

Definition 1. A search S is normal if for any times 4, t, with
[ty t,]) = P(S(ty), St,)), it is the case that at time t; the search
S goes directly from t;) to St,). More precisely, for 0< 8< 1, the
point X6t + (1- 0)t,) is the point on At,), St)) that is at dis-
tance Ot, + (1- O)t, from St,).

It is clear that against a fixed hiding distribution, there must be
an optimal search that is normal, since a search that is not normal
can be replaced by a normal search whose expected search time is
no greater. We therefore assume for the rest of the paper that all
searches considered are normal.

This paragraph is only for background. When Q is an infinite
line, h has bounded support [X~,X*] and the search starts at O= 0
(the Linear Search Problem) the search is typically described by as
a generalized search strategy, given by a doubly infinite sequence
x={x}r._  satisfying

X S SX_jqSX;S - S0S - SXjSXjy S ooSxT (1)

That is, the Searcher employs a path in which, for each integer I,
he goes from Xr to X.,q . Beck (1965) (Theorem 12) has shown that
infinite oscillations at the start are not required if the cumulative
distribution function (cdf) F for the hiding distribution has a fi-
nite right or left derivative at the origin. Kella (1993) noted that

Fig. 1. A tree network.

a similar result also holds for stars, and it is clear that this fur-
ther extends to all trees. This condition on the cdf will be true for
the hiding distributions we consider here, but in fact we do not
need this result. When there is an integer / such that Xj = X~ or
X* it is said that the strategy is terminating . If, for some M, the
Xj = 0 for all i<m, this is called a Standard search strategy, and it
starts with a first step from 0 to Xm. For some hiding distributions,
the optimal search S may not be terminating. For instance, Beck
and Beck (1992) showed this to be the case in the context of the
Linear Search Problem for the triangular distribution on the inter-
val [-1,1], with probability density function (pdf) f(x) = 1- |X|.
Baston and Beck (1995) (Theorem 5.2) have shown that it is suffi-
cient to consider terminating search strategies if either

lim_inf F(t)/ t-x= >0 or lim inf F(t)/ x* -t >o.

Later in this section we will prove in Theorem 2 an analogue of
that result for trees. Kella (1993) has adapted the sequence nota-
tion (1) to star networks. We will not use these notations here.

3.2. Depth-first search

We are interested in this paper in when a DF search is optimal
on a tree. We give the formal definition of DF below.

Definition2. A depth-first(DF) search of a tree Q with root O is
a sequence of arcs, traversed at unit speed, starting and ending at
O such that, when leaving a node, the unique arc towards the root
is only chosen if all the other arcs have been traversed.

Note that a DF search ends back at the root having traversed
every arc once in each direction. Thus if Sis DF we have o) =
S21) = O, In fact, any search S with S[0,2H]= Qis necessarily
DF.

An example of a DF search on the tree depicted on the left in
Fig. 1 is the one that visits the nodes in the order O, A O, D C
D, B, D, O. Given the indicated arc lengths, the search takes time
2(6+3+2+3)=28=2U.

Definition 3. A search S is terminating if 5([0, M]) = Qfor some
M. Equivalently, Smust reach all leaf nodes.

For any terminating search S on a tree Q with starting at the
root O, consider the points Xe Q for which the following condition
holds.

Kty ty + 2A(QJ1) = Qu where t; = T(S.x) and
‘qt1 + 2A(QX)) = X (2)

Condition (2) says that S carries out a DF search of the subtree Qx
upon reaching X for the first time. This allows us to partition Q into
a set D= Dg (the DF setfor S) where the condition holds and a set
N = Ng (the non-DF set for S) where it does no hold. Clearly Sis DF
if and only if D= Q, or equivalently N= ¢

As an example, consider the tree on the right of Fig. 1, where
A is located somewhere on the arc OA Let S be the search that
visits the nodes in the order O,A, O, D B D O A A A O D, C
The part of the network highlighted by the thick red line is Nsand
the remaining part of the network is Ds. Note that Nsis a closed
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subtree of the network, containing the root O and none of the leaf
nodes. This is true in general.

Lemma1. If Sis a terminating search of a tree Q starting at root O,
then its non-DF set N = Ng is a closed subtree of Q containing O (if it
is non-empty) and none of the leaf nodes.

Proof. It is clear that if some point Xe D= Dg and Xy ,then YeD.
It follows that if Qis non-empty then N is a subtree containing the
root O. It is also clear that D contains all the leaf nodes, since Sis
terminating.

To show that N is closed, we prove that D is open. Let Xe D,
and let Yx be the closest branch node below X, with Y= X. Let
t; be the latest time before t, = T(S.x) such that St;) = y. Then
we must have S[t;:t,]1) = P(¥, X) and since Sis normal, it must go
directly from Y to X at time t;. Since [0, t4]) is closed and does
not contain X, there must be an open ball around X consisting of
points that have not been visited by Sat time t;. Clearly, all these
points must belong to D, and D is therefore open.

3.3. Searchdensity

An important notion we will use is that of searchdensity. Con-
sider the restriction S of a search Sto some interval [tq, t5] with
t,>1,, and let F be the cumulative capture probability of S given
by F(t) = h([0.t]) for t< M. Then the search density of S is de-

fined as
p(S) = w
2~ 1y

In a slight abuse of notation, we will also refer to the search den-
sity of a region Rc Qwith A(R)> 0 and denote it P(R) = h(R)/A(R).

We will need to use a theorem that extends Theorem 5.2 from
Baston and Beck (1995) that, roughly speaking, says that if the
measure of the hiding distribution near the leaf nodes is concen-
trated enough, then there is a terminating optimal search. (For the
purposes of this paper, we do not consider O to be a leaf node
even if it has degree 1.)

First, we define the notion of a /eafy hiding distribution to be
one for which at all leaf nodes, or all but one leaf node VY, we
have

Iirpqi\pr(Qx) > 0. ®)

Theorem?2. Supposeh is a leafy hiding distribution on a tree. Then
any optimal strategy Sis terminating.

Proof. First suppose V is a leaf node for which (3) holds, and we
will show that for some time T >0, we have S(T) = V. Suppose V
is on an arc of length L whose other endpoint is W. We identify
the arc with the interval [0, L], where X = 0 corresponds to V and
X = L corresponds to W. Let F(x) = h(]0. x]) be the measure of the
set Qx=[0, X] of points within distance X of V. Then we have, by
assumption, that

F(x
lim inf () =m,
X V X

for some M> 0. It follows that for some O with 0< 0< L2,
F(x) m
—~ > 7 for 0< xs<Q
Let t be such that h([0.t1) > 1 - & where €< Lmja.

Now suppose it is not the case that S(T) = V for some time T.
In this case, there must be some t >t such that S reaches some
point at distance at most O from V at time t. At some later time
t , the search S must revisit W, by the normality condition. Let @
be the closest point to Vin S0, t ]). Let d(V,a) = O < O and let
t*>t be such that t*) = a. Let S be the same as Sup until time
t*, whereupon it goes to V and back to @, and then follows St -

20), the original path of Sfrom a. For points Y that have not been
reached by time !*, we compare the difference in the time they
are reached by Sand by S. If ¥e Qa, it will be found at least time L
sooner by S; if Ye Qa, it will be found exactly time 20 sooner by
S

So, we have that

T(S,h) - T7(Sh) < €(20) - h(Q.)(L)
= 26 € - F4(266)i

L
<20 E—mT <0

by definiton of €. SoS has a strictly smaller expected search time,
contradicting the optimality of S It follows that there must be
some T for which ST) =V,

Since (3) holds for all but one leaf node of O, the argument
above implies that all but one of the leaf nodes are visited by some
T . Since Sis optimal, it is clear that after visiting the penultimate
leaf node, it must go directly to the final leaf node, so that Sis
terminating. This completes the proof.

We will also make use of the Search Density Lemma, whose
proof can be found in Alpern (2010). Roughly speaking, it says that
higher density searches should be carried out before lower density
searches, to minimize expected search time. Many forms of this
folk result exist in the literature; the following one is best for our
purposes.

Lemma2 (Search Density Lemma). Suppose h is a hiding distri-
bution on a tree Q, and let 0<t,<t,<tz<M. Suppose §[t,, t,])
and (t,, t,]) are probabilistically disjoint so that h([t,,t5])) =
h(s([ty. t,1) + h(([t,. t5]) andletS | and S, be the restrictions of
Sto [t,, t,] and [t,, t5], respectively. Let S be the same as S except
that the order of S, and S, are swapped. Then

if P(S) 2 P(S) then T(S,h) < T(S, h),
with equality if and only if P(S,) = P(S,).

4. Balancedlistributions

In this section we give necessary and sufficient conditions on
a hiding distribution that every DF search has the same expected
search time, and we give a simple expression for this expected
search time.

Definition 4. We say a hiding distribution 5 on a tree Q is bal-
ancedif at every branch node the search density of each branch is
the same.

Note that if we define the function 9. X- P(Qx) on {XeQ:
A(Qq) > 0}, then if g is continuous it follows that P is balanced. This
is because otherwise g would be discontinuous at some branch
node.

A particularly important balanced distribution is the uniform
distribution on Q. This is defined as the distribution (measure)
which assigns to each arc @ probability proportional to its length
A(a) and assigns to each subinterval of an arc @ measure propor-
tional to its length (it is a multiple of Lebesgue measure on each
arc). The uniform distribution is balanced because all branches
have the same density as Qo, which is 1/H.

Another important balanced distribution is the so called Equal
Branch Density (EBD), distribution introduced by Gal (1979). It is
the unique distribution concentrated on the leaf nodes which is
balanced. Gal showed that the EBD distribution is the hiding dis-
tribution h that maximizes min sT(S, h), and Alpern (2011) showed
that the minimizing searches S are exactly the DF searches. To il-
lustrate the EBD distribution, consider the tree network depicted
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on the left of Fig. 1. Nodes are labeled by letters, and lengths are
shown alongside the arcs. Let the EBD distribution on this tree be
denoted by h. For the tree to be balanced, the search density of the
two branches at O must be equal. Since the left branch has length
6 and the right branch has length 8, this means that we must have
h(A) = 6/14 and h(B) + h(C) = 8/14. In order for the two branches
at D to have equal search density, we must have h(B) = 2/5-8/14
and h(C) = 3/5-8/14.
We now relate balanced distributions to DF searches.

Lemma3. Let h be a hiding distribution on a rooted tree. Then h is
balanced if and only if every DF search has the same expected search
time.

Proof. First suppose h is balanced. Suppose S; and S, are two
DF searches that differ only in that at some branch node, two
branches are searched (in the same way) in a different order. By
the last part of the Search Density Lemma, the expected search
time of S, and S, is the same. Now suppose S; and S, are any
two DF searches. By successively changing the order of search of
pairs of branches at the same branch node, S; can be transformed
into S, without changing the expected search time.

Now suppose that not all DF searches have the same expected
search time. Let X be a branch node at maximal distance from O
such that there are two DF searches of Qx with different expected
search times. (Such a node must exist, because X = O satisfies this
criterion.) Let S; and S, be two DF searches of Qx with different
expected search times. Both searches must tour the branches of Ox
is some order. Note that every DF search of a given branch of Ox
must have the same expected search time, otherwise d(O, X) would
not be maximal. Let 52 be the search that searches the branches of
Qx in the same order as S,, but performs the same DF search of
each given branch as ;. Then S, and S, have the same expected
search time, and 52 has a different expected search time to S;. By
the Search Density Lemma, the branches of Qx cannot have the
same search density, so /' cannot be balanced.

We can now express the expected search time of a DF search
against a balanced distribution in terms of a concise formula.

Theorema3. If h is a balanced distribution and S is DF,then the ex-
pected searchtime T(S, hy is given by

T(sh=p- M0 dn(x). @

XeQ
Proof.Let S be the time reverse of S, so that S (t) = Y2l -
t) for 0<t<2M. Let S be the equiprobable choice of S and S,
and denote the expected search time of S by T(s,h) = (T(S,h) +
T(S1,h))/2. Note that S is also DF,so by Lemma 3, T(S1,h) =
T(S,h). Therefore,

T(S,h) = T(s,h)

T(s,x) dh(x)
XeQ

Y (r(sx) + T(5, %) dn(x) (5)
X0 2

Let Xe Q, and let A and B be the subnetworks searched by S and
S respectively up until reaching X for the first time. Note that
AnBis equal to the path P(O, X) from O to X. Then before reaching
X for the first time, Straverses all the arcs of An B exactly once in
the forward direction and all other arcs of A once in each direction;
S traverses all arcs of AnB once in the forward direction and
all other arcs of B once in each direction. Therefore, since Au B=

Q-0x
T(Sx)+ T(S',x) = 2A(Ay B) = 21 - 2A(Q)). (6)

Substituting (6) into (5) gives
U - A(Q) dh(x)

xeQ
=M-  AQ) dh(x).

XeQ

T(Sh) =

The search time T(S h) is maximized over h by the EBD distri-
bution, when the integral in (4) is equal to zero, since @« has zero
measure for leaf nodes X. In this case, the expected search time is
simply equal to M. This is consistent with the expression for the
worst-case expected search time for trees, as found in Gal (1979).

Eq. (4) has a particularly nice form if the network Q is a star:
that is, a network consisting of N arcs with one common node, O
(the root). This form can be found in Kella (1993) (Eq. (3.13)), but
we include a derivation here based on (4) for completeness. For
a hiding distribution h on a tree Q with root O, let d = dj,(0) =
x0d(0.x)dh(x) denote the average distance of points in Q from
O, with respect to h.

Corollary1. Supposea target is located on a star with n arcs ac-
cording to a balanced distribution h, and let p; be the probability the
target is on the ith arc. Then any depth-first search S has expected
search time

T(sh)=p 1- p?

i=1

+ dy(0). @

Proof. Let Q denote arc /, and let L = A(Q) denote its length. By
Eq. (4), we have

n

T(S,h) = W - Q)\(Qx) dh(x)
iz X%
=H- Q(L,-— d(0.x)) dh(x)
iz X€@
= U+ d(0,x) dh(x) - L dh(x)
xeQ i1 XeQ;
=M+ d_— p/-L,-.

i=1
Now, since each arc has equal search density, their densities must

all be equal to the search density of the whole star, which is 1/M.
Hence Lj = pjl for each i, and Eq. (7) follows.

We can also apply Theorem 3 to the special case of a uni-
form hiding distribution, U, given by U(A) = A(A)/U, for measur-
able subsets A of Q. Theorem 2 of Li and Huang (2018) has already
shown that for the uniform distribution on trees, a DF search is op-
timal (assuming no turns within arcs). Here we give a closed form
expression for the expected search time of a DF search against the
uniform distribution on a tree. Later, in Section 5, we will prove
that even without the assumption of no turns within an arc, DF
search is optimal for the uniform distribution.

Corollary2. Supposea target is hidden on a tree according to the
uniform distribution u. Then any DF search S has expected search
time

T(Su) = Y - d,(0). (8)

Proof. By Theorem 3, it is sufficient to show that the integral in
(4) is equal to d. Noting that A(QJ = ,_o M du(y), we can write

A(Q) du(x) =
Xe@Q xeQ yeQ

M du(y) du(x). ©)
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Now, for every point ¥ e Q, the set of points X such that ¥ Qx is ex-
actly equal to PO, ¥). Therefore, swapping the order of integration
on the right-hand side of (9), we obtain

A(Q) du(x) H du(x) du(y)
xeQ yeQ xeP(Oy)

d(0,y) du(y)
yeQ

=d.

Note that Corollary 2 is not true in general, for non-uniform
hiding distributions. For example, if h is the EBD distribution,
T(S,h) = U but dp(O) is not 0.

5. Monotonehiding distributions

In this and the next section, we give conditions on the hiding
distribution h for some DF search to be optimal against it.

Definition 5. If some DF search is optimal against a hiding dis-
tribution h, we say h is simply searchablelf the only optimal
searches are DF, we say /' is stronglysimplysearchable

Note that if h is simply searchable and balanced then all DF
searches are optimal, by Lemma 3.

In this section we introduce a class of hiding distributions on
trees we call monotone distributions, which are a subset of bal-
anced distributions. We will show that DF searches are optimal
against monotone distributions.

Definition 6 (monotone) . We say the hiding distribution h on
a rooted tree Q is monotone if for any Xy , we have that

Clearly the uniform distribution and the EBD distribution are
monotone. Also, it is easy to see that monotone distributions
are leafy, since lim infx, vP(QJ) 2 P(Qo) = P(Q) = 1/H for all leaf
nodes V. It follows from Theorem 2 that any optimal search against
a monotone hiding distribution is terminating.

Recall that N has an atom at a point Xe Q if h({X}) > 0.

Lemmad. Supposeh is a monotone hiding distribution. Then

(i) h has no atoms except possibly at leaf nodes;
(i) P(Qx) is continuous in x on the set containing all points of Q
except leaf nodes, where it is not defined;
(iiiy h is a balanced distribution.

Proof. For (i), suppose there is an atom of measure, say, € at some
point X that is not a leaf node. Suppose X has degree N> 2, and let
,,,,, Yn-1 be points on the -1 arcs above X satisying d(x, Y,-) <

Y1
&/ (np(Q)). ji=1,...

,N-=1.Then
_ h(Unyi) h(Qx) - & _
Pi%) = 350, < Mag—epray = P

Since p(UjQy,-) is a weighted average of each P(Q)), there must be
some J for which P(Q) is strictly less than P(), contradicting
monotonicity. Roughly, this means we would have P(Qx- {x}) <
P(Q).

This establishes (i); (ii) is a consequence of this; (iii) follows
from (ii) and the remark following Definition 4.

We can give an equivalent characterization of monotone distri-
butions in the case that N can be described by a probability den-
sity. In particular, consider any path Pfrom the root Oto some leaf
node. Suppose that N has a pdf f, so that (; f(x) dx is the proba-
bility that the target is on P at most distance t from O. Then it can
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Fig. 2. The cdf of a monotone distribution on a path from O to a leaf node (in solid
red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

be shown that N is monotone if and only if for every such path P
with pdf f,

f(t) < P(Qq).

for all t, where X(t) is the unique point on P at distance t from O.
This can be proved rigorously, but it is also intuitively clear from
considering the graph in Fig. 2. This corresponds to a path P with
h(P) = 1/2. The solid red line is the cdf F of a monotone distribu-
tion on P, whose slope is the pdf f. The search density of a sub-
tree QX([) is given by the slope of the dotted line segment that
goes from the point (¢, Ft)) to (1, F1)). For h to be monotone, the
slope of these lines must be non-decreasing in t, or equivalently,
the slope f(f) of the red line must be no greater than that of the
dotted lines.

It is also worth pointing out that monotonicty implies that F
has finite derivative at 0. This is clear from Fig. 2, and can be
proved rigorously. Therefore, as in Theorem 12 of Beck (1965), no
optimal search can start with infinite oscillations. In fact, we do
not need to use this observation in what follows.

We will show that DF searches are optimal against monotone
distributions, but to do so we need a lemma about monotone dis-
tributions.

Lemmab. Supposeh is a monotone distribution on a tree Q. If A is
a subtree of Q containing O, then P(A) < P(Q).

Proof. The complement A of A is a disjoint union of subtrees Ox
of Q. Since N is monotone, the search density of these subtrees is
at least the search density of Q, so P(A) = P(Q). Since P(Q) is a
weighted average of P(A) and P(A), it follows that P(A)< P(Q).

We can now prove that against monotone distributions, it is op-
timal to use a DF search.

Theoremd. Let h be a monotone hiding distribution on a tree Q.
Then h is strongly simply searchable.

Proof. Suppose 1 is not strongly simply searchable, and let S be
an optimal search that is not DF. Since h is monotone, it is leafy,
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so S must be terminating, by Theorem 2. By Lemma 1, the non-
DF set N= Ns of Sis a closed subtree of Q containing O (since S
is not DF) and containing none of the leaf nodes of Q. Let X be a
leaf node of N. Since Qx - {X} is a subset of the DF set D= Ds it
must be the case that S performs DF searches of all the branches
of Ox. Therefore, there must be times t4, t, with t; <t, such that
Sis disjoint from Qx in the interval (f;, t5), and then it performs
a DF search of a branch B of O« starting at time t,, where B may
be equal to Qx. In any case, we must have P(B) = P(Q.), since Sis
balanced.

Let S, be the search Srestricted to [t, 5], and let S, be the DF
search of B starting at time t,. Let A denote the set covered by S
and let ¥ be the lowest point of A. Then since A is a subtree of Qy
containing Y, we have P(A)< P(Qy), applying Lemma 5 to @ and
A. 1t follows that the search density of S; satisfies

p(s,) < %p(oy),

where strictness follows from the fact that part of S; retraces arcs.
On the other hand,

p(s) = 2p(B).

The monotonicity of h ensures that P(B) = P(Qc) = P(Q)). hence
P(S)> P(S)).

By the Search Density Lemma, transposing S, and S, at time ¢,
reduces the expected search time. But this results in a new search
S with astrictly smaller expected search time than S contradicting
the optimality of S Soh is strongly simply searchable.

Theorem 4 implies that if h is a monotone hiding distribution,
then V(h) is given by Eq. (4). This follows from Theorem 3 and
Lemma 4, part (iii).

We can now prove a more general version of Theorem 2 from Li
and Huang (2018), and give a simple method to choose the starting
point for the search that has least optimal expected search time.

Corollary3. Supposea target is hidden on a tree according to the
uniform distribution u. Then

(i) u is strongly simply searchable and
V(u) = Y - d(0), and

(i) the choice of root O that minimizes the expecteds_earch time of
any DF searchis the leaf node x that maximizes d(x).

Proof. Part (i) follows from Theorem 4, Corollary 2 and the fact
that the uniform distribution is monotone. _

Part (ii) follows from the observation that d(x) is_maximized
when X is a leaf node. Indeed, suppose not, and that d(x) is max-
imized at some point X which is not a leaf node. Let R be a con-
nected component of @ - {x} with A(R) < A(Q-R), and let ¥ be a
point in R on the same arc as X with d(x,¥) = € Then it is easy to
see that

dly) - d(x) = A(Qu‘ R (e) ”"2,‘ el

contradicting the maximality of d(x).

> 0,

It should be emphasized that
showed directly that the optimal choice of root for the uniform
hiding distribution is some leaf node, but they did not show how
to determine which leaf node is optimal. B

Note that evaluating the mean distance d(x) from X to other
points in the network is equivalent to evaluating the average dis-
tance from X to the midpoints of the arcs, weighted by the lengths
of the arcs. If the network has unit length arcs, comparing these
averages is equivalent to comparing the mean distance from X to
all other nodes, since both measures induce the same ordering on

(Li & Huang, 2018) already

431
o

Fig. 3. A network with distances labeled from node A in green and from C in red.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the nodes. If the lengths of the arcs are all rational, then by adding
nodes of degree 2 to the network, it can be transformed into a
network with unit length arcs. In this case, the problem of find-
ing the leaf node X that maximizes d(x) is equivalent to finding
the leaf node of a graph whose mean distance to all other nodes is
minimized. This, in turn is equivalent to finding the node X of min-
imal closenesscentrality | which is defined as the reciprocal of the
mean distance from X to all other nodes. Closeness centrality was
introduced by Bavelas (1950) and is used widely in social network
analysis.

6. Optimaldepotlocationin the DeliveryMan Problem

We define the equiprobable distribution e as the atomic distri-
bution that places equal weight on each node (including the root
node). The problem of finding the optimal search on a general net-
work against the equiprobable distribution is known asthe Delivery
Man Problem or Traveling Repairman Problem_ Although the distri-
bution € is not monotone, Minieka (1989) already showed directly
that for a tree with equal arc lengths any DF search is optimal. We
can use Corollary 3 to improve upon this.

Theoremb5. For the Delivery Man Problem on a tree with n unit
length arcs,

(i) the optimal expected search time is
V(e) =n-1- d_e(o):

where do(0) is the mean distance from O to all nodes of the
network (including O);

(iiy the optimal choice of depot for the Delivery Man Problem is the
leaf node x of minimum closenesscentrality.

Proof. For part (i), consider the network Q obtained by adding an
extra unit length arc, one of whose endpoints is O, and the other
is a new degree 1 node O. The average distance from O to points
in @ is de(O) + 1/2, so by Corollary 3, the expected search time
of a DF search of Q against the uniform distribution U is V(u) =
A(Q) - (de(0) + 1/2). Using A(Q ) = n and V(&) = V(u) - 1/2, the
result follows. _

Part (ii) follows from the fact that de(x) is maximized at a leaf
node.

Minieka (1989) has claimed that “For a tree with equal edge
weights, the best depot is the endpoint of any longest path.” While
in many cases this will agree with our choice of best location,
we present in Fig. 3 a network with unit arc lengths for which
the leaf node of minimal closeness centrality is a strictly better
place to start than any end of a path of maximum length. First we
show that Cis the node of minimal closeness centrality and then
we show directly that it is a better depot location (starting point)
than the node A at the end of the maximum length path.

There are two contenders (up to symmetry) for nodes of min-
imum closeness centrality: nodes A and C. The distances from A
to the other nodes are written in green on the top left of each
node, and the distances from C are written in red on the bottom
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right. The sum of the distances from A is 46 and from Cis 47. So
C has the smallest closeness centrality, and is therefore the best
choice of depot for the Delivery Man Problem. Indeed, when fol-
lowing a DF search from C, the sum of the times to reach the other
12 nodes is 1+ 3+ 5+ 7+ 9+ 13+ 17+ 25+ 27+ 29+ 33+ 37 =
206. The corresponding sum when starting at A is 1+ 3+ 7+
11+ 13+ 15+ 17+ 23+ 25+ 27 + 31+ 35 = 208, which confirms
directly that it is best to start from C.

For some hiding distributions it is best to adopt the DF search
which starts and ends at diametrical points of the tree, such as A
and Bin Fig. 3. Dagan and Gal (2008) considered the search game
where the Hider picks any point of the tree and the Searcher can
start at any point. They showed that the optimal strategy for the
Hider was the distribution h*, which is the Equal Branch Density
distribution when taking the root as the center of the tree (the
point minimizing the maximum distance to other points, or the
midpoint of diametrical points). This results in a hiding distribu-
tion that places probability 6/36 at C and probability 5/36 at the
six other leaf nodes. For the Searcher, the optimal mixed strategy
is to take a Chinese Postman Path (on a tree this starts and ends
at diametrical points) and traverse it equiprobably in either direc-
tion. Thus starting at A or B is optimal against the distribution h*.
Clearly this is also the solution to the game where the Hider must
choose a node and the Searcher must start at a node.

Thus for any tree Q, the Dagan-Gal solution gives a hiding dis-
tribution h*(Q) and a start point A(Q) such that all optimal searches
are DF but not all DF searches are optimal. For example, for the
tree of Fig. 3 with hiding distribution h*, a DF search starting at A
is optimal if and only if the last point reached is diametrical to A.

It is worth noting that on a star, the node of minimum close-
ness centrality is always located at the end of the longest arc. Kella
(1993) showed that the optimal starting position on a star is at
the end of the longest arc for a class of hiding distributions that
includes the uniform distribution.

7. Which distributionsare simplysearchablen a star?

In this section we restrict our attention to stars. A star is a tree
with exactly one node of degree greater than 1, and we always as-
sume this node is the root O in this section. We consider the ques-
tion of what are necessary and sufficient conditions on the hiding
distribution for it to be simply searchable. To that end, we define
a class of hiding distributions on a star.

Definition7 (forward biased). Let N be a hiding distribution on a
star with arcs j= 1,..., N of lengths A; with ~ ;A; = . Let F()
be the probability that the target is on arc j at distance from the
root less than or equal to X and let h; = F,-()\,-) be the probability
the target is located on arcj. We say that  is forward biased if for

all j we have
X+ (hj/J - /\j)+
F](X) SH/(X) W: for all X< )\]1

where ¥* = max{y, 0}- (10)

If condition (10) is strict for all j and X< A,-, then we say h is strictly
forward biased.

A condition of the type Fj(X)<H;(X) puts an upper bound on
how likely the target is close to the root on an arc. So it is more
likely to be near to the forward (leaf node) part of the arc. This is
the reason for the name.

We show in Section 7.1 that a balanced hiding distribution on
a star is simply searchable if and only if it is forward biased. In
Section 7.2, we remove the assumption of balanced in the case that
the network is a line segment, and show a hiding distribution is
simply searchable if and only if it is forward biased.

Kella (1993) also considered the problem of when DF search is
optimal on a star, giving a sufficient condition on the hiding dis-
tribution for it to be simply searchable. In Section 7.3, we consider
Kella’s condition, and show that it is stronger than ours.

We first show that the distributions we consider in this section
are leafy.

Lemma6. Let h be a forward biased hiding distribution on a star
with k arcs. If h is balanced or k = 2, then h is leafy.

Proof. In the first case, that h is balanced, every arc of the star

must have the same search density as the whole star, which is 1/M.

Since the search density of arc J is hj/A;, this implies that (h;H -
/)+ = 0 for all /, and condition (10) reduces to

F(x) <Hj(x) = m for all X< A} (11)
=4

It follows that the search density of the region within distance €
of the leaf node of an arc J is

hj_F,-()\j_s)> hi(u-€)-A;+¢€
3

- (o -¢)e
1-hj 1-hj
= — " 5 , as€ > 0
p-€” @
So h is leafy.

In the second case, we only need to show that the limiting
search density of the tip of On€ of the arcs is positive. But one
of the two arcs j must have search density at most 1/H, so that
(h/'IJ - /\j)+ = 0, and the same argument as above holds.

It follows from Lemma 6 and Theorem 2 that any optimal
search for a target hidden according to a forward biased distribu-
tion on a star is terminating if the distribution is balanced or has
two arcs.

7.1. Balanced stars

In this subsection we assume that the hiding distribution is bal-
anced, so that some DF is optimal if and only if all DF searches are
optimal. We show that a balanced hiding distribution on a star is
simply searchable if and only if it is forward biased.

Theorem6. Supposea target is located on a star according to a bal-
anced hiding distribution h. Then h is simply searchable if and only
if it is forward biased. Moreover, h is strictly simply searchableif and
only if it is strictly forward biased.

Proof. We first show that if /' is not forward biased then it is not
simply searchable. Suppose that condition (11) does not hold for
some point P on arc / at distance X<A; from the O. Then let S
be the non-DF search S, S,, S;, where S, goes directly from O to
P then S, returns to O and tours the remaining arcs of the star
before returning to P, and S; tours Qp. Then the search density of
S is

p(s)= 1K

m (12)
The search density of S; is

AU - F(x)

=) a9

Therefore, the difference between the search density of the two
searches is

p(s) =

p(S) - p(S) = ﬂ7\1—x} AO) = A (14)



S. Alpern and T. Lidbetter / European Journal of Operational Research 285 (2020) 965-976 973

This difference is positive, since condition (11) does not hold.
Therefore, the DF search S obtained from S by swapping the or-
der of S, and S; has a greater expected search time than S, by the
Search Density Lemma, so 1 cannot be simply searchable.

If his not strictly forward biased but it is forward biased, then
condition (10) holds with equality for some arc / and some dis-
tance X. In this case, (14) holds with equality, and S must be opti-
mal. Hence, h is not strictly simply searchable.

Now suppose h is forward biased, and we will show it is simply
searchable. Let Sbe an optimal search that is not DF.By Lemma 6,
it must be the case that h is leafy, so S must be terminating, by
Theorem 2. By Lemma 1, the non-DF set N = Ns of Sis a closed
subtree of Q containing O (since Sis not DF) and containing none
of the leaf nodes of Q. Let P be the leaf node of N with the largest
expected search time t; = T(S,P). Again, we express Sas a succes-
sion of three searches, S;, S,, S;. The first, S; follows S from time
t = 0 until time ty. The second, S, starts at time t; and ends when
Snext reaches P at time t,. The third, S;, tours Qp, starting at time
t,. Note that S, must go from Pto O and then perform a DF search
of some set A of arcs of the star.

The search density of S, satisfies,

AU 1-A/U
ieATl J
P& o oA ®) S s = A, )

where both the inequalities in (15) holds with equality if and only
if Sis equal to the search S from the first paragraph of the proof.
Also, P(S;) is given by the Eq. (13), so the right-hand side of
Eq. (14) is an upper bound for P(S,) - P(S,). This upper bound
holds with equality if and only if S= S, in which case the search
S obtained by swapping the order of S, and S; is a DF search
with the same expected search time, and is, therefore, optimal.
Otherwise the bound is strict, and S has a strictly smaller ex-
pected search time, contradicting the optimality of S. Soh is simply
searchable.

If h is strictly forward biased, then the right-hand side of
Eq. (14) must be a strict upper bound for P(S,) - P(S;). so that
S cannot be optimal. Hence, the only optimal searches are DF and
h is strictly simply searchable.

(15)

If follows from Theorem 6 that for a forward biased hiding dis-
tribution h on a star, V(h) is given by (7).

7.2. Two-arc stars (intervals)

We now remove the assumption that h is balanced, and con-
sider the same question as in the previous subsection: what con-
ditions are necessary and sufficient for /' to be simply searchable
on a star? Notice that for arcs / whose search density h,-/)\,- is lower
than the average search density 1/M of the star, condition (10) re-
duces to (11). For arcs with higher than average search density,

the term hiH - )\; is included inthe numerator of (10), so that the
bound is

X+ hju - )\ i
F(x)<H(x) = W for all X< A (16)

We will restrict our attention here to two-arc stars, which can
be represented as an interval Q = [_)\2 +A1] containing the root
O= 0. We refer to the subinterval [0, A1] as the right arc, and the
subinterval [-A,, 0] as the /eft arc. Throughout this section we as-
sume that the search density h1/)\1 of the right arc is at least the
average search density 1/M, so that h is simply searchable if and
only if the DF search S' that starts with the right arc is optimal.
This means that for the right arc, condition (10) takes the form
(16) and for the left arc, it takes the form (11). Note that the right-
hand side of (16) is bounded above by h, but the right-hand side
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Fig. 4. Uniform distribution (dashed) on the interval for h
H (x) (right) and min{ H-x) , 1/B(left) in solid.

4 =2/ 3 and the bounds

of (11) may be strictly greater than h, for some values of X (in par-
ticular, X = Ag: where it is equal to )\2/N > h,). Thus the cdf F, on
the left must satisfy the stricter condition F,(X)<min {H(X), h,}.

The two forms of the constraint (10) are illustrated in Fig. 4
for a star with two arcs both of length 1 and the weight N4 on
the right equal to 2/3. The solid lines represent the bound H(X) for
0sxsA; and min{H(-x), 1/3} for -A, <x <0. The dashed lines
show the cdfs F; and F, for the uniform distribution with weight
1/3 on the left and weight 2/3 on the right.

We show that for two-arc stars, N is simply searchable if and
only if it is forward biased. To prove this we first show that if we
restrict our searches to having at most one turning point within an
arc, then h is simply searchable if and only if it is forward biased.

We first define two single-turn searches S (X) = [0, X _)\2, +A1]
and S¥) =10,-y, +A;, -A,l, 0<x<A, 0<y<A, where the
points listed in the square bracket refer to the turning points. (The
0 is there to indicate the searches start at 0.) We will compare
these searches to the best DF search, S' = [0, +)\1, —AZ].

Lemma?. For any fixed x and y with 9< x< Ah o<y< /\2,

(i) the expected search time of S (x) is smaller than that of St if
and only if condition (10) fails for this x and j = 1, and

(i) the expected search time of Sy) is smaller than that of St if
and only if condition (10) fails for this y and j = 2.

Proof. For part (i), we observe that for fixed X, after the search
S(x) goes from 0 to X, it continues with S = [% -A, X] and
then S, = [X,)\1,X]. By the Search Density Lemma, we know that
T(S(x),h) < T(S*,h) if and only if P(S;)>P(S,). It is easily seen

that
-F(x)

p(S1) 7—A_} and p(sz) 72—;

If follows that

P(S)> P(S) it and only it F() > T 2.

Hence, P(S;) > P(S,) if and only if (16), and hence (10) fails for this
Xand j= 1.
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For part (i), define the sets A=[0,A], By =1[-y, 0], B,=
[—Az, -y] and define the time difference 2) = T(Hy), 2) -
T(S,2), for ze [-A, Ay]. For Zin A, By, B, we have

If Ze A, then =2y
(comes later, after going to ¥ and back);

if Ze B,, then = 24,
(comes earlier, before going to 1 and back);
if Ze By, then =2y

(comes later, having gone to ¥ and back an extra time).

Since the measures of the three sets are given by h(A) =
hy, h(B,) = K(y), h(B,) = (1-h4) - F(¥). it follows that the ex-
pected value of s given by

T(Xy).h) -1(S.h) = 2y(h; + (1-h4) - R(V) - 2AF(Y).

So T(Sy). h) is smaller than T(S',h) if and only this expression
is negative, which, on solving for F,(Y), gives Fg(,V) > y/()\1 +y)=
H(y). Equivalently (11), and hence (10) fails for this ¥ and Jj = 2.

Theorem 7. A hiding distribution h on a two-arc star is simply
searchable if and only if it is forward biased. Moreover, h is strictly
simply searchableif and only if it is strictly forward biased.

Proof. First suppose that h is not forward biased. Then condition
(10) fails for some j and some X< )\j. In this case, by Lemma 7,

either the search S (X) or the search y) has a smaller expected
search time than that of S'. In either case S" is not optimal, and
therefore, no DF search is optimal and h is not simply searchable. If
his not strictly forward biased, but it is forward biased, then S (X)
or YY) have the same expected search time as S* for some X or Y,
so N is not strictly simply searchable.

On the other hand, suppose h is forward biased. Let S be an
optimal search, and suppose Sis not DF.By Lemma 6, the hiding
distribution 5 is leafy, so S must be terminating, by Theorem 2.
The non-DF set N = Nsis some interval [-y, X] with -1 < -y <0 <
X< 1.1f ¥=0then S= S(x) and if X= 0 then S= X¥). In either
case, by Lemma 7, the DF search S also optimal, and h is simply
searchable. So assume that -y < 0 < X and we will derive a con-
tradiction. Note that we must have F;(X), F(¥) > 0, otherwise )
or S(X), would have a strictly smaller expected search time that S.

First suppose that T(S.x) > T(S,—y). Then at time T(S, X), the
search S must follow S; = [X -A, X] followed by S, = [X Ay, X].
(We may as well assume that S returns to X after reaching A4.)
The search density of S, is

1-hi-FR) _ 1-h;y hy - Fy (%)
p(s) = S+ ;) < (v Ay) and P(S,) = 2 =x)
Since h is forward biased, it follows that P(S,)> P(S;), similarly to
the proof of Lemma 7. Hence, S; and S, can be swapped to obtain
a search with a strictly smaller expected search time, contradicting
the optimality of S

Now suppose that T(S,-y) > T(S,x). Note that S must go di-
rectly from X to -y between times T(S X) and T(S.~y). Let h be
the marginal hiding distribution on the interval after time T(S X).
Regarding X as the new root, let P4 and P, be the densities of
the new right and left arcs, [X, )\1] and [—)\Z.X]. with respect to
the new hiding distribution h. Then h ([x. A1) = hy - F,(X) and
h ([—)\2, X]) < 1-hy, since F;(X)> 0. Rearranging condition (16) for
J =1, we get
hy-F(x) _1-h;

2 )
A1 -X AZ + X
and it follows that P{>P,.

We show that h is forward biased on the interval with root X.

Let P<1 —F1(X) be the probability that the target has not been

found before Sreaches X, and let F; and F, be the cdfs on the new
right and left arcs, with respect to h . Since the right arc has higher
search density than the left we need to establish condition (16) for

the right arc, which says

F(Z) _ F1(Z+ X) —F1(X) < Z+ H(h1 —F1(X))/p - ()‘1 —X)
L p - Z+ (A, + x) ’
where Z is the distance from X to a point on the (new) right arc. It
is easy to show that this is equivalent to the condition

F) <Hy)+ (1 _F1(X3;ﬁ3()\1 )

where ¥ = X+ z. Since we know that Fj(¥)< H4(Y), it is sufficient to
show that the sum of the remaining terms on the right-hand side
of the expression above is non-negative. This is equivalent to the
conditon P<1 - F (%), which we have already noted.

For the left arc, we need to show that condition (10) holds for
Fz- This is trivially true for any point on the left arc at distance
Z< x from the (new) root, since then ’:2(2) = 0. So consider a point
at distance Z> X from the root. Then

Z-x z
,:2(2) SFZ(Z_X) SHz(Z—X) - Z—-X + A1 ) Z+ (A1 —X).
This establishes condition (10) for h, and furthermore the condi-
tion holds strictly on the left arc. It follows from Lemma 7 that
when S reaches X, it would be better (smaller expected search
time) to continue to +A1, then to —Az.

We leave it to the reader to check that if h is strictly forward
biased then it is strictly simply searchable.

7.3. Kella’s condition for simply searchable stars

Kella (1993) also considers the question of which hiding distri-
butions are simply searchable on a star. In Theorem 3.1 he gives
a sufficient condition for simple searchability. In our notation, this
condition is that for each arc J, the following function G;(X) is non-
increasing.

Gi(x) = h ix(1/F;(x) - 1),

where Fj is the cdf of the hiding distribution on arc /.

Here, we present examples of distributions that are forward bi-
ased but do not satisfy Kella’s condition. We first consider the case
of a balanced distribution on a two-arc star with unit length arcs,
and cdfs F(X) = F;(X) = F»(X) given by

2x/ ifosx <1/2
F(X) - 3 if 0<x
(1+2x)/6 if1/2<x<1.

Fig. 5 depicts this cdf, along with the function H, (x) = Hz(X) =
X/(1+ x) 2 F(x), implying that this hiding distribution is forward
biased. But the function G(X)= G4(X)= G,(X), also depicted in the
graph is not non-increasing for all Xe [0, 1], so AX) does not sat-
isfy Kella’s condition. In other words, Theorem 6 implies that this
hiding distribution is simply searchable, but Theorem 3.1 of Kella
(1993) does not.

For the case of hiding distributions that are not balanced, con-
sider again the two-arc star, but this time with an atom of weight
2/3 at the end of the left arc, and a distribution on the right arc
given by the following cdf, F;.

x/2 if 0<x <12
(1+x)/6 if1/2<sx<1.

Then H, () =x(1+x) = Fq (%), as depicted in Fig. 6, and clearly
H,(X)2 F,(X), so by Theorem 7, the hiding distribution is simply
searchable. But the function G;(X) is not non-increasing for all X
in [0,1], so F;(X) does not satisfy Kella’s condition.

Of course Kella’s condition applies to some unbalanced distribu-
tions on the N-star, 7> 2, which is not covered at all by our results.

R(X) =



S. Alpern and T. Lidbetter / European Journal of Operational Research 285 (2020) 965-976 975

-0:5
0 0.5 1
X
Fig. 5. The cdf F (bottom), H ( x ) (middle) and G ( x ) (top).
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Fig. 6. The cdf F1 (bottom), H ( x ) (middle) and G 1( x ) (top).

8. Conclusion

We have introduced a new class of hiding distributions on a
tree called balanced, containing precisely those distributions for
which every DF search has the same expected search time, for
which we gave a simple formula. We then showed that for the
subclass of monotone distributions, all DF searches are optimal.
This includes the uniform distribution, which results in a simple
method for choosing the point of the tree from which to begin the
search that minimizes the optimal expected search time. We gave
a concise characterization of the balanced hiding distributions on
a star for which DF searches are optimal, and gave a necessary and

sufficient condition for some DF search to be optimal on a two-arc
star when the distribution may not be balanced.

Further work could aim to specify the subclass of balanced dis-
tributions for which DF is optimal on a tree. More work is also
needed to determine necessary and sufficient conditions for some
DF search to be optimal when the hiding distribution is not bal-
anced. It would be interesting to conduct further research on the
problem of finding the optimal search for a target hidden according
to a known distribution on an arbitrary network. One might also
consider the problem of finding multiple targets hidden on a net-
work according to a known distribution. A discrete version of this
problem was considered in Fokkink, Lidbetter, and Vegh (2019),
and a search game with multiple targets was solved in Lidbetter
(2013). Finally, these problems could all be generalized by consid-
ering asymmetric (or windy) networks, for which the time to tra-
verse an arc depends on the direction of travel. Such networks
have been widely studied in the context of the Traveling Salesman
Problem, for example in Fischetti and Toth (1997) and Svensson,
Tarnawski, and Végh (2018), and also in the context of search
games in Alpern (2010) and Alpern and Lidbetter (2014).
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