
European Journal of Operational Research 285 (2020) 965–976 

Contents  lists  available  at ScienceDirect  

European Journal of  Operational  Research 

journal  homepage:  www.elsevier.com/locate/ejor  

Stochastics and  Statistics  

Search and  Delivery  Man  Problems:  When  are depth-first  paths  

optimal?  

Steve Alpern  a , Thomas Lidbetter  b , ∗

a Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom 
b Department of Management Science and Information Systems, Rutgers Business School, Newark, NJ 07102, United States 

a r  t  i  c l  e i  n  f  o 

Article history: 
Received 6 November 2019 
Accepted 13 February 2020 
Available online 19 February 2020 

Keywords: 
Networks 
Depth-first search 
Delivery Man Problem 
Trees 

a b s t  r  a c t  

Let h be a probability  measure  on the  nodes and arcs of  a network  Q , viewed  either  as the  location  
of  a hidden  object  to  be found  or  as the  continuous  distribution  of  customers  receiving  packages. We 
wish  to  find  a trajectory  starting  from  a specified  root,  or  depot  O that  minimizes  the  expected  search 
or  delivery  time.  We call  such a trajectory  optimal.  When  Q is a tree, we  ask for  which  h there  is an 
optimal  trajectory  that  is depth-first,  and we  find  sufficient  conditions  and in  some cases necessary and 
sufficient  conditions  on  h . A consequence of  our  analysis  is a determination  of the  optimal  depot  location  
in  the  Delivery  Man  Problem,  correcting  an error  in  the  literature.  We concentrate  mainly  on the  search 
problem,  with  the  Delivery  Man  Problem  arising  as a special case. 

© 2020  Elsevier B.V. All  rights  reserved. 

1. Introduction 

A person,  or  more  generally  a target  , is lost  in  a network.  We 
know  the  lengths  of the  arcs of  the  network,  and we  have a knowl-  
edge of the  probability  distribution  (or  hiding  distribution  ) accord-  
ing  to  which  the  target  is hidden.  We wish  to  choose a unit  speed 
trajectory  (or  search ) starting  from  a given  point  (the  root  ) with  
the  aim  of minimizing  the  expected  search time  :  that  is the  ex-  
pected  time  to  find  the  target.  The target  might  be a child  lost  in  
a cave, as in  the  recent  rescue in  Thailand;  or  it  might  be a leak  in  
a pipeline.  The Searcher could  be an underwater  diver  or  an un-  
manned  aerial  vehicle  (UAV), respectively.  We call  a search that  
minimizes  the  expected  search time  optimal  . The target  does not  
have to  be at a node;  it  can be anywhere  in  the  interior  of any arc. 
This paper  considers  the  problem  when  the  network  is a tree. 

The hiding  distribution  can be interpreted  as a distribution  of 
mail  recipients  along  the  roads, in  which  case we  seek the  delivery  
route  which  minimizes  the  mean  time  for  a package to  be received. 
This generalizes the  case of one recipient  at each node, where  it  
is called  the  Delivery Man  Problem or  Traveling Repairman Prob- 
lem , and the  case of the  uniform  hiding  distribution  (defined  for-  
mally  in  Section 4 ), where  the  probability  that  the  target  belongs  
to  a region  (measurable  subset) of the  network  is proportional  to  
the  total  length  of that  region.  The latter  problem  was coined  the  
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Utilitarian  Postman Problem by Alpern  (2007)  , and some general  re-  
sults  on this  problem  in  Alpern,  Baston, and Gal (2009)  . 

One method  of searching  a tree  is what  is known  as depth-first  
(DF) search, which  follows  a sequences of  arcs, starting  and ending  
at the  root,  where  the  unique  arc going  back to  the  root  is chosen 
only  after  all  other  arcs from  the  node  have been traversed.  The 
main  problem  addressed in  this  paper  is the  titled  question:  for  
which  hiding  distributions  is a DF search optimal?  We call  such 
hiding  distributions  simply  searchable . 

The recent  work  of Li and Huang (2018) shows that,  under  
a certain  assumption  on the  optimal  search, the  uniform  hiding  
distribution  on a tree  is simply  searchable. Earlier  it  was shown  
by Kella (1993)  that  the  uniform  distribution  on a star  is simply  
searchable. Beck and Beck (1992)  and Baston and Beck (1995)  also 
proved  this  for  a finite  interval  with  interior  start,  with  the  more  
general  objectives  of  minimizing  certain  functions  of the  expected  
search time.  

Another  distribution  on a tree  that  has been shown  to  be sim-  
ply  searchable is the  distribution  shown  by  Gal (1979)  to  be op-  
timal  for  a time  maximizing  hider  in  what  is known  as a search 
game. To describe  Gal’s distribution,  now  known  as the  Equal 
Branch Density (EBD) distribution,  we  must  define  the  elementary  
concept  of  search density . The search density  of a region  of a net-  
work  is the  ratio  of the  probability  the  target  is located  in  the  re-  
gion  and the  length  of  the  region.  For example,  the  uniform  distri-  
bution  can be characterized  as the  unique  hiding  distribution  for  
which  the  search densities  of all  regions  are equal. If  a point  x is 
removed  from  a tree, we  call  the  components  not  containing  the  
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root  in  the  resulting  network  the  branches at x . A hiding  distribu-  
tion  on a tree  is called  balanced if  the  densities  of  all  the  branches 
at x are equal, for  any point  x on the  tree. Gal’s EBD distribution  is 
defined  as the  unique  balanced  distribution  on a tree  whose  sup-  
port  is the  set of  leaf nodes. See Section 4 for  an example  of the  
construction  of the  EBD distribution.  Alpern  (2011) showed  that  
the  EBD distribution  is simply  searchable and Alpern  and Lidbet-  
ter  (2014) showed  that  the  optimal  searches are exactly  the  DF 
searches. 

In  this  paper  we  define  a class of  distributions  called  monotone , 
encompassing  the  uniform  distribution  and the  EBD distribution,  
and we  show  they  are all  simply  searchable. We say that  a hiding  
distribution  is monotone  if  whenever  x is on  the  path  from  the  
root  to  y , the  density  of  the  set of  branches at x is at most  that  of 
the  set of branches at y . Roughly  speaking, this  says that  the  target  
is more  likely  to  be far  than  close to  the  root  along  any path  from  
root  to  leaf node. Theorem  4 says that  monotone  distributions  are 
simply  searchable. 

The important  paper  of Kella (1993)  considered  search on star  
networks.  For such networks  we  say that  a hiding  distribution  is 
forward  biased if  the  probability  the  target  is located  within  dis-  
tance x of the  root  on a given  arc is bounded  above by a certain  
function  H ( x ), given  explicitly  in  Section 7 . Such an upper  bound  
clearly  limits  the  probability  that  the  target  is close to  the  cen-  
ter. For general  star  networks,  Theorem  6 says that  a balanced  dis-  
tribution  is simply  searchable if  and only  if  it  is forward-biased.  
For two-arc  stars (intervals)  we  can remove  the  assumption  of  bal-  
anced. Theorem  7 says that  for  intervals  a hiding  distribution  is 
simply  searchable if  and only  if  it  is forward-biased.  The connec-  
tion  between  our  results  and those  of Kella for  the  star  are dis-  
cussed in  Section 7.3 . In  particular,  we  give a hiding  distribution  
on an interval  that  is forward  biased and balanced, hence simply  
searchable by  Theorem  6 or  7 , but  does not  satisfy Kella’s  condition  
for  simply  searchability.  

One reason for  determining  sufficient  conditions  for  simple  
searchability  is that  for  simply  searchable balanced  distributions  
this  gives us a simple  formula  for  the  minimum  expected  search 
time,  given  in  Theorem  3 . This allows  us to  show  that  for  
both  the  Utilitarian  Postman Problem  and the  Delivery  Man  Prob-  
lem,  the  optimal  depot  location  (starting  point  of  the  search) is 
the  leaf node of  minimal  closeness centrality  (the  one which  max-  
imizes  the  sum  of distances to  all  nodes). Our  result  for  the  Deliv-  
ery  Man  Problem  corrects  an error  from  Minieka  (1989)  . 

The paper  is organized  as follows.  Section 2 is a literature  
review.  Section 3 presents  the  main  definitions  for  the  paper  and 
in  particular  describes a new  way  of partitioning  a tree  into  two  
parts  with  respect  to  a given  search: a rooted  subtree  where  the  
search fails  to  be DF; and the  rest, where  it  searches the  com-  
plementary  trees in  a DF manner.  Section 4 proves the  formula  
stated  above for  the  minimal  search time  for  a simply  searchable 
balanced  distribution  and gives consequences for  the  uniform  
distribution  and the  case where  the  starting  point  (root)  is a 
choice variable.  Section 5 proves Theorem  4 , described  above, that  
monotone  distributions  are simply  searchable. Section 6 solves 
the  problem  of  optimal  depot  location  on a tree  for  the  Delivery  
Man  Problem.  Section 7 gives our  results  for  star  networks,  that  
forward  biased is a necessary and sufficient  condition  for  simple  
searchability.  Section 7.3 compares  our  results  for  stars with  those  
of  Kella (1993)  . Section 8 concludes. 

2. Literature review 

There is a considerable  literature  on the  so-called  Linear Search 
Problem , originating  with  Beck (1964)  and Franck (1965)  , which  
seeks an optimal  search for  a target  located  on the  real  line  ac- 
cording  to  a known  distribution.  This has been extended  by Kella 

(1993)  to  search on a star, where  it  was shown  that  against a 
uniform  hiding  distribution  on a star, all  DF searches are optimal.  
Kella’s results  are discussed more  fully  in  Section 7.3 . 

The problem  of finding  an optimal  search path  for  a target  lo-  
cated uniformly  on an interval  is considered  in  Beck and Beck 
(1992)  and Baston and Beck (1995)  . Both  these works  considered  
a more  general objective  than  the  search time  T :  the  former  con-  
siders the  objective  T α for  some α >  1;  the  latter  considers  a gen-  
eral  convex  function  of  T . Both  papers show  that  DF searches are 
optimal  when  the  root  is taken  as any point  in  the  interval.  

More  recently,  Li and Huang (2018) address the  problem  of 
finding  an optimal  search in  the  case that  the  target  is hidden  
on a network  according  to  the  uniform  distribution,  as discussed 
in  Section 1 . Li and Huang  (2018) make  the  assumption  that  the  
Searcher never  turns  in  the  interior  of an arc. They prove  that  un-  
der  this  assumption  any DF search of a tree  is optimal  for  the  uni-  
form  distribution.  

Li and Huang  (2018) also show  that  for  the  uniform  hiding  dis-  
tribution  on a tree, if  the  Searcher can choose her  starting  point,  
then  she should  choose a leaf node. However,  they  do not  give a 
way  to  determine  which  leaf  node  should  be chosen, and we  fill  
this  gap in  this  paper. Search games in  which  the  Searcher chooses 
her  starting  point  have been studied  in  Dagan and Gal (2008)  and 
Alpern,  Baston, and Gal (2008)  . More  recently,  Alpern  (2018) stud-  
ied  a search game in  which  the  Searcher can choose her  starting  
point  from  a given  subset of  the  network.  

If  the  target  is confined  to  the  nodes of the  network,  the  prob-  
lem  of finding  the  optimal  search is a discrete  one. In  the  case that  
the  target  is on each node  with  equal probability,  the  problem  of 
finding  the  optimal  search is equivalent  to  minimizing  the  latency 
of a network,  also known  as the  Delivery Man Problem or  Travel- 
ing Repairman Problem (see Blum  et al., 1994, Goemans & Klein-  
berg, 1998, Sitter,  2002  and Arora  & Karakostas, 2003  ). Minieka  
(1989)  showed  that  for  a tree  with  unit  arc lengths,  a DF search 
is optimal  for  this  problem.  By placing  nodes of  equal probability  
at approximately  equal  intervals  on all  arcs, we  can approximate  
a continuous  uniform  distribution  and the  result  of Li and Huang 
(2018) . Baston and Kikuta  (2019) solve the  problem  of finding  the  
optimal  search for  a target  located  according  to  known  probabil-  
ities  on the  nodes of a bipartite  network,  when  the  nodes have 
search costs. 

Our  approach  to  searching  a network  in  this  paper  is to  assume 
the  target  is located  according  to  some known  probability  distri-  
bution.  This differs  from  the  approach  taken  in  the  search games 
literature,  of  determining  a randomized  search of the  network  that  
minimizes  the  expected  search time  in  the  worst  case, which  can 
be equivalently  framed  as a zero-sum  game between  the  target  
and the  Searcher. That approach  to  searching  a network  has been 
studied  extensively  in  the  search games literature,  for  example  in  
Gal (1979)  , where  this  field  of  study  was initiated;  Garnaev (20  0 0) , 
Alpern  and Gal (2003)  and more  recently  in  Alpern  and Lidbetter  
(2013)  , Alpern  and Lidbetter  (2014) , Baston and Kikuta  (2013)  and 
Lin  and Singham  (2016) . 

3. Definitions 

We start  by giving  rigorous  definitions  of a search and a hid-  
ing  distribution,  and what  it  means for  a search to  be optimal.  We 
then  go on to  define  precisely  DF search, and the  notion  of search 
density , which  will  be an important  tool  in  our  analysis. 

3.1. Searches and hiding  distributions  

Let Q be a tree  network  with  root  node  O . The length  (or  
Lebesgue measure)  of an arc a of Q is denoted  λ( a ), which  ex-  
tends  naturally  to  a measure λ on Q , with  total  measure denoted  
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μ =  λ(Q) . This defines  a metric  d on Q such that  d ( x , y ) is the  
length  of the  (shortest)  path  P ( x , y ) from  x to  y . Note that  we  
model  the  network  as continuous,  in  the  sense that  x and y can 
be points  in  the  interior  of arcs as well  as nodes. 

The branch nodes of a tree  Q consist  of the  root  O and all  other  
nodes of degree at least 3. Let  be  the  natural  partial  order  on 
points  of Q , so that  x y  if  x is on the  path  between  O and y . For a 
point  x ∈  Q , let  Q x =  { y ∈  Q :  x  y  } be the  subtree  rooted  at x . The 
connected  components  of  Q x − { x } are called  the  branches at x , and 
clearly  there  are at least two  branches at x if  and only  if  x is a 
branch  node. 

We define  a search of the  tree  to  be a function  S :  [0, ∞  ) →  Q 
satisfying  S(0) =  O (starts  at the  root)  and d(S(t  1 ) , S(t  2 ))  ≤ t  2 − t  1 , 
for  all  times  0 ≤ t  1 <  t  2 . That is, a search is a unit  speed path  on 
the  metric  network  Q . In  this  paper  distance, length  and time  
are aligned.  The distance  between  two  points  is the  length  of  the  
shortest  path  between  them  and also is the  least time  required  for  
a search to  go from  one point  to  the  other,  as searches are required  
to  go at unit  speed. Of course if  Q has been covered  by some time  
M (that  is, Q =  S([0  , M] ) ), then  the  behavior  of  S after  time  M  is 
irrelevant.  We denote  the  set of all  searches by S. We consider  S

with  the  topology  of uniform  convergence on compact  sets. 
The hiding  distribution  h is a Borel  probability  measure on the  

network,  viewed  as a compact  metric  space ( Q , d ). For a given  
search S and a given  point  x in  Q , denote  the  time  taken  for  
S to  first  reach x (the  search time  ) by T (S, x ) =  min  { t  ≥ 0  :  S(t ) =  
x } , which  we  allow  to  be +  ∞  (but  not  for  reasonable covering  
searches). Note that  T ( S , x ) is lower  semi-continuous  in  S . 

Similarly,  we  denote  the  expected search time  by T (S, h ) =   
x ∈ Q T (S, x ) dh (x ) , which  is also lower-semicontinuous in  S ∈  S. 

Since S is  compact  in  this  topology,  it  follows  that  there  is a search 
S that  minimizes  T ( S , h ), for  given  h , and we  refer  to  such a search 
as optimal  . We write  V ( h ) for  the  expected  search time  T ( S , h ) of an 
optimal  search S against a hiding  distribution  h . We know  that  the  
minimum  expected  search time  cannot  be more  than  2 μ because 
the  tree  Q can be searched in  time  2 μ . We summarize  these dis-  
cussions in  the  following  theorem.  The details  are standard,  having  
first  being  proved  in  Appendix  1 of Gal (1980)  . 

Theorem 1. For any hiding  distribution  h , there exists some search 
S ∈  S that minimizes T  ( S , h ) . 

Recall that  P ( x , y ) denotes the  shortest  path  between  two  points  
x , y ∈  Q . We distinguish  searches with  following  property.  

Definition 1. A search S is normal if  for  any times  t  1 , t  2 with  
S([  t  1 , t  2 ] ) =  P (S(t  1 ) , S(t  2 ))  , it  is the  case that  at time  t  1 the  search 
S goes directly  from  S ( t  1 ) to  S ( t  2 ). More  precisely, for  0 ≤ θ≤ 1, the  
point  S(θt  1 +  (1 − θ) t  2 ) is the  point  on P ( S ( t  1 ), S ( t  2 ))  that  is at dis-  
tance θt  1 +  (1 − θ) t  2 from  S ( t  1 ). 

It  is clear that  against a fixed  hiding  distribution,  there  must  be 
an optimal  search that  is normal,  since a search that  is not  normal  
can be replaced  by a normal  search whose  expected  search time  is 
no greater. We therefore  assume for  the  rest  of the  paper  that  all  
searches considered  are normal.  

This paragraph  is only  for  background.  When  Q is an infinite  
line,  h has bounded  support  [  x − , x +  ]  and the  search starts  at O =  0 
(the  Linear  Search Problem)  the  search is typically  described  by as 
a generalized search strategy , given  by a doubly  infinite  sequence 
x =  { x i } ∞  

i =  −∞  satisfying  

x − ≤ · · · ≤ x  −i  −1  ≤ x  −i  ≤ · · · ≤ 0  ≤ · · · ≤ x  i ≤ x  i +1  ≤ · · · ≤ x  +  . (1)  

That is, the  Searcher employs  a path  in  which,  for  each integer  r , 
he goes from  x r to  x r+1  . Beck (1965)  (Theorem  12) has shown  that  
infinite  oscillations  at the  start  are not  required  if  the  cumulative  
distribution  function  (cdf)  F for  the  hiding  distribution  has a fi-  
nite  right  or  left  derivative  at the  origin.  Kella (1993)  noted  that  

Fig. 1. A tree network. 

a similar  result  also holds  for  stars, and it  is clear  that  this  fur-  
ther  extends  to  all  trees. This condition  on the  cdf  will  be true  for  
the  hiding  distributions  we  consider  here, but  in  fact  we  do not  
need this  result.  When  there  is an integer  i  such that  x i =  x − or  
x +  it  is said that  the  strategy  is terminating  . If, for  some m , the  
x i =  0 for  all  i  <  m , this  is called  a standard search strategy , and it  
starts  with  a first  step from  0 to  x m . For some hiding  distributions,  
the  optimal  search S may  not  be terminating.  For instance,  Beck 
and Beck (1992)  showed  this  to  be the  case in  the  context  of  the  
Linear  Search Problem  for  the  triangular  distribution  on the  inter-  
val  [  −1  , 1]  , with  probability  density  function  (pdf)  f (x ) =  1 − | x | . 
Baston and Beck (1995)  (Theorem  5.2) have shown  that  it  is suffi-  
cient  to  consider  terminating  search strategies  if  either  

lim  
t  x −

inf  F ( t  ) /  t  − x  − >  0 or  lim  
t  x +  inf  F ( t  ) /  x +  − t  >  0 . 

Later in  this  section  we  will  prove  in  Theorem  2 an analogue of  
that  result  for  trees. Kella (1993)  has adapted  the  sequence nota-  
tion  (1)  to  star  networks.  We will  not  use these notations  here. 

3.2. Depth-first  search 

We are interested  in  this  paper  in  when  a DF search is optimal  
on a tree. We give the  formal  definition  of  DF below.  

Definition 2. A depth-first (DF) search of  a tree  Q with  root  O is 
a sequence of arcs, traversed  at unit  speed, starting  and ending  at 
O such that,  when  leaving  a node, the  unique  arc towards  the  root  
is only  chosen if  all  the  other  arcs have been traversed.  

Note that  a DF search ends back at the  root  having  traversed  
every  arc once in  each direction.  Thus if  S is DF we  have S(0) =  
S(2 μ ) =  O . In  fact, any search S with  S[0 , 2 μ ]  =  Q is  necessarily  
DF. 

An example  of a DF search on  the  tree  depicted  on the  left  in  
Fig. 1 is the  one that  visits  the  nodes in  the  order  O , A , O , D , C , 
D , B , D , O . Given the  indicated  arc lengths,  the  search takes time  
2(6 +  3 +  2 +  3) =  28 =  2 μ . 

Definition 3. A search S is terminating  if  S([0  , M] ) =  Q for  some 
M . Equivalently,  S must  reach all  leaf  nodes. 

For any terminating  search S on a tree  Q with  starting  at the  
root  O , consider  the  points  x ∈  Q for  which  the  following  condition  
holds.  

S([  t  1 , t  1 +  2 λ(Q x )]) =  Q x , where  t  1 =  T (S, x ) and  

S(t  1 +  2 λ(Q x ))  =  x. (2)  

Condition  (2)  says that  S carries  out  a DF search of the  subtree  Q x 
upon  reaching  x for  the  first  time.  This allows  us to  partition  Q into  
a set D =  D S (the  DF set for S ) where  the  condition  holds  and a set 
N =  N S (the  non-DF set for S ) where  it  does no hold.  Clearly S is DF 
if  and only  if  D =  Q, or  equivalently  N =  ∅ . 

As an example,  consider  the  tree  on the  right  of Fig. 1 , where  
A  is located  somewhere  on the  arc OA . Let S be the  search that  
visits  the  nodes in  the  order  O , A  , O , D , B , D , O , A  , A , A  , O , D , C . 
The part  of the  network  highlighted  by the  thick  red  line  is N S and 
the  remaining  part  of the  network  is D S . Note that  N S is a closed 
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subtree  of the  network,  containing  the  root  O and none  of the  leaf 
nodes. This is true  in  general. 

Lemma 1. If S is a terminating  search of a tree Q starting  at root  O , 
then its non-DF set N =  N S is a closed subtree of Q containing  O (if  it  
is non-empty)  and none of the leaf nodes. 

Proof. It  is clear that  if  some point  x ∈  D =  D S , and x y  , then  y ∈  D . 
It  follows  that  if  Q is non-empty  then  N is a subtree  containing  the  
root  O . It  is also clear  that  D contains  all  the  leaf nodes, since S is 
terminating.  

To show  that  N is closed, we  prove  that  D is open. Let x ∈  D , 
and let  y x  be the  closest branch  node  below  x , with  y  =  x . Let 
t  1 be the  latest  time  before  t  2 =  T (S, x ) such that  S(t  1 ) =  y . Then 
we  must  have S([  t  1 , t  2 ] ) =  P (y, x ) and since S is normal,  it  must  go 
directly  from  y to  x at time  t  1 . Since S ([0,  t  1 ])  is closed and does 
not  contain  x , there  must  be an open ball  around  x consisting  of 
points  that  have not  been visited  by S at time  t  1 . Clearly, all  these 
points  must  belong  to  D , and D is therefore  open. 

3.3. Search density 

An important  notion  we  will  use is that  of search density . Con- 
sider  the  restriction  S  of a search S to  some interval  [  t  1 , t  2 ]  with  
t  2 >  t  1 , and let  F be the  cumulative  capture  probability  of S given  
by  F (t ) =  h (S([0  , t ]))  for  t  ≤ M  . Then the  search density  of S  is de-  
fined  as 

ρ(S  ) =  
F (t  2 ) − F (t  1 ) 

t  2 − t  1 
. 

In  a slight  abuse of notation,  we  will  also refer  to  the  search den-  
sity  of a region  R ⊂ Q with  λ( R ) >  0 and denote  it  ρ(R ) =  h (R ) / λ(R ) . 

We will  need to  use a theorem  that  extends  Theorem  5.2 from  
Baston and Beck (1995)  that,  roughly  speaking, says that  if  the  
measure of the  hiding  distribution  near the  leaf nodes is concen-  
trated  enough, then  there  is a terminating  optimal  search. (For the  
purposes  of this  paper, we  do not  consider  O to  be a leaf node  
even if  it  has degree 1.) 

First, we  define  the  notion  of a leafy hiding  distribution  to  be 
one for  which  at all  leaf nodes, or  all  but  one leaf node  v , we  
have 

lim  inf  
x →  v 

ρ(Q x ) >  0 . (3)  

Theorem 2. Suppose h is a leafy hiding  distribution  on a tree. Then 
any optimal  strategy S is terminating.  

Proof. First  suppose v is a leaf node  for  which  (3)  holds,  and we  
will  show  that  for  some time  τ >  0, we  have S(τ ) =  v . Suppose v 
is on an arc of  length  L whose  other  endpoint  is w  . We identify  
the  arc with  the  interval  [0, L ], where  x =  0 corresponds  to  v and 
x =  L corresponds  to  w  . Let F (x ) =  h ([0  , x ] ) be the  measure of the  
set Q x ≡ [0,  x ]  of  points  within  distance  x of  v . Then we  have, by 
assumption,  that  

lim  inf  
x →  v 

F (x ) 
x 

=  m,  

for  some m >  0. It  follows  that  for  some δ with  0 <  δ<  L /2, 
F (x ) 

x 
>  

m 

2 
for  0 <  x ≤ δ. 

Let t  be such that  h (S([0  , t ]))  >  1 − ε, where  ε <  Lm /4. 
Now  suppose it  is not  the  case that  S(τ ) =  v for  some time  τ . 

In  this  case, there  must  be some t   >  t  such that  S reaches some 
point  at distance  at most  δ from  v at time  t   . At  some later  time  
t   , the  search S must  revisit  w,  by  the  normality  condition.  Let a 
be the  closest point  to  v in  S ([0,  t   ]).  Let d(v , a ) =  δ  ≤ δ and let  
t  ∗ >  t   be such that  S(t  ∗ ) =  a . Let S  be the  same as S up  until  time  
t  ∗ , whereupon  it  goes to  v and back to  a , and then  follows  S(t  −

2 δ  ) , the  original  path  of  S from  a . For points  y that  have not  been 
reached by time  t  ∗ , we  compare  the  difference  in  the  time  they  
are reached by S and by S  . If  y ∈  Q a , it  will  be found  at least time  L 
sooner  by S  ;  if  y ∈  Q a , it  will  be found  exactly  time  2 δ  sooner  by 
S . 

So, we  have that  

T (S  , h ) − T (S, h ) ≤ ε(2 δ  ) − h  (Q a )(L ) 

=  2 δ  ε −
F (δ  ) L 

2 δ  

≤ 2  δ  ε −
mL 

4 
<  0 , 

by definition  of ε. So S  has a strictly  smaller  expected  search time,  
contradicting  the  optimality  of S . It  follows  that  there  must  be 
some τ for  which  S(τ ) =  v . 

Since (3)  holds  for  all  but  one leaf  node  of  Q , the  argument  
above implies  that  all  but  one of the  leaf nodes are visited  by some 
τ  . Since S is optimal,  it  is clear  that  after  visiting  the  penultimate  
leaf node, it  must  go directly  to  the  final  leaf node, so that  S is 
terminating.  This completes  the  proof.  

We will  also make  use of the  Search Density  Lemma, whose  
proof  can be found  in  Alpern  (2010) . Roughly  speaking, it  says that  
higher  density  searches should  be carried  out  before  lower  density  
searches, to  minimize  expected  search time.  Many  forms  of this  
folk  result  exist  in  the  literature;  the  following  one is best for  our  
purposes. 

Lemma 2 (Search Density  Lemma)  . Suppose h is a hiding  distri-  
bution  on a tree Q , and let 0 ≤ t  1 ≤ t  2 ≤ t  3 ≤ M.  Suppose S ([  t  1 , t  2 ])  
and S ([  t  2 , t  3 ])  are probabilistically  disjoint  so that  h (S([  t  1 , t  3 ] ))  =  
h (S([  t  1 , t  2 ] ))  +  h (S([  t  2 , t  3 ] ))  and let S  1 and S 2 be the restrictions  of 
S to [  t  1 , t  2 ]  and [  t  2 , t  3 ], respectively. Let S  be the same as S except 
that  the order of S 1 and S 2 are swapped. Then 

if  ρ(S 1 ) ≥ ρ(S 2 ) then  T (S, h ) ≤ T (S  , h ) , 

with  equality  if  and only  if  ρ(S 1 ) =  ρ(S 2 ) . 

4. Balanced distributions 

In  this  section  we  give necessary and sufficient  conditions  on 
a hiding  distribution  that  every  DF search has the  same expected  
search time,  and we  give a simple  expression  for  this  expected  
search time.  

Definition 4. We say a hiding  distribution  h on a tree  Q is bal- 
anced if  at every  branch  node the  search density  of each branch  is 
the  same. 

Note that  if  we  define  the  function  g :  x →  ρ( Q x ) on {  x ∈  Q :  
λ( Q x ) >  0}, then  if  g is continuous  it  follows  that  h is balanced. This 
is because otherwise  g would  be discontinuous  at some branch  
node. 

A particularly  important  balanced  distribution  is the  uniform  
distribution  on Q . This is defined  as the  distribution  (measure)  
which  assigns to  each arc a probability  proportional  to  its  length  
λ( a ) and assigns to  each subinterval  of an arc a measure propor-  
tional  to  its  length  (it  is a multiple  of Lebesgue measure on each 
arc). The uniform  distribution  is balanced  because all  branches 
have the  same density  as Q O , which  is 1/  μ . 

Another  important  balanced  distribution  is the  so called  Equal 
Branch Density ( EBD ), distribution  introduced  by Gal (1979)  . It  is 
the  unique  distribution  concentrated  on the  leaf nodes which  is 
balanced. Gal showed  that  the  EBD distribution  is the  hiding  dis-  
tribution  h that  maximizes  min  S T ( S , h ), and Alpern  (2011) showed  
that  the  minimizing  searches S are exactly  the  DF searches. To il-  
lustrate  the  EBD distribution,  consider  the  tree  network  depicted  
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on the  left  of Fig. 1 . Nodes are labeled  by letters,  and lengths  are 
shown  alongside  the  arcs. Let the  EBD distribution  on this  tree  be 
denoted  by h . For the  tree  to  be balanced, the  search density  of  the  
two  branches at O must  be equal. Since the  left  branch  has length  
6 and the  right  branch  has length  8, this  means that  we  must  have 
h (A ) =  6 /  14 and h (B ) +  h (C) =  8 /  14 . In  order  for  the  two  branches 
at D to  have equal  search density,  we  must  have h (B ) =  2 /  5 · 8 /  14 
and h (C) =  3 /  5 · 8 /  14 . 

We now  relate  balanced distributions  to  DF searches. 

Lemma 3. Let h be a hiding  distribution  on a rooted tree. Then h is 
balanced if  and only  if  every DF search has the same expected search 
time. 

Proof. First  suppose h is balanced. Suppose S 1 and S 2 are two  
DF searches that  differ  only  in  that  at some branch  node, two  
branches are searched (in  the  same way)  in  a different  order. By 
the  last  part  of  the  Search Density  Lemma, the  expected  search 
time  of  S 1 and S 2 is the  same. Now  suppose S 1 and S 2 are any 
two  DF searches. By successively changing  the  order  of search of 
pairs  of branches at the  same branch  node, S 1 can be transformed  
into  S 2 without  changing  the  expected  search time.  

Now  suppose that  not  all  DF searches have the  same expected  
search time.  Let x be a branch  node  at maximal  distance  from  O 
such that  there  are two  DF searches of  Q x with  different  expected  
search times.  (Such a node  must  exist,  because x =  O satisfies  this  
criterion.)  Let S 1 and S 2 be two  DF searches of Q x with  different  
expected  search times.  Both  searches must  tour  the  branches of Q x 
is some order.  Note that  every  DF search of a given  branch  of Q x 
must  have the  same expected  search time,  otherwise  d ( O , x ) would  
not  be maximal.  Let S  2 be the  search that  searches the  branches of 
Q x in  the  same order  as S 2 , but  performs  the  same DF search of 
each given  branch  as S 1 . Then S 2 and S  2 have the  same expected  
search time,  and S  2 has a different  expected  search time  to  S 1 . By 
the  Search Density  Lemma, the  branches of  Q x cannot  have the  
same search density,  so h cannot  be balanced. 

We can now  express the  expected  search time  of a DF search 
against a balanced  distribution  in  terms  of a concise formula.  

Theorem 3. If h is a balanced distribution  and S is DF, then the ex- 
pected search time  T ( S , h ) is given by 

T (S, h ) =  μ −
 

x ∈ Q 
λ(Q x ) dh (x ) . (4)  

Proof. Let S −1  be the  time  reverse of S , so that  S −1  (t ) =  S(2 μ −
t ) for  0 ≤ t  ≤ 2  μ . Let s be the  equiprobable  choice of S and S −1  , 
and denote  the  expected  search time  of s by T (s, h ) =  (T (S, h ) +  
T (S −1  , h ))  /  2 . Note that  S −1  is also DF, so by Lemma  3 , T (S −1  , h ) =  
T (S, h ) . Therefore, 

T (S, h ) =  T (s, h ) 

=  

 

x ∈ Q 
T (s, x ) dh (x ) 

=  

 

x ∈ Q 

1 

2 
(T (S, x ) +  T (S −1  , x ))  dh (x ) (5)  

Let x ∈  Q , and let  A and B be the  subnetworks  searched by S and 
S −1  respectively  up  until  reaching  x for  the  first  time.  Note that  
A ∩  B is equal to  the  path  P ( O , x ) from  O to  x . Then before  reaching  
x for  the  first  time,  S traverses all  the  arcs of A ∩  B exactly  once in  
the  forward  direction  and all  other  arcs of A once in  each direction;  
S −1  traverses all  arcs of  A ∩  B once in  the  forward  direction  and 
all  other  arcs of B once in  each direction.  Therefore,  since A ∪  B =  
Q − Q x , 

T (S, x ) +  T (S −1  , x ) =  2 λ(A ∪  B ) =  2 μ − 2  λ(Q x ) . (6)  

Substituting  (6)  into  (5)  gives 

T (S, h ) =  

 

x ∈ Q 
μ − λ(Q x ) dh (x ) 

=  μ −
 

x ∈ Q 
λ(Q x ) dh (x ) . 

The search time  T ( S , h ) is maximized  over  h by  the  EBD distri-  
bution,  when  the  integral  in  (4)  is equal to  zero, since Q x has zero 
measure for  leaf nodes x . In  this  case, the  expected  search time  is 
simply  equal  to  μ . This is consistent  with  the  expression  for  the  
worst-case  expected  search time  for  trees, as found  in  Gal (1979)  . 

Eq. (4)  has a particularly  nice  form  if  the  network  Q is a star:  
that  is, a network  consisting  of n arcs with  one common  node, O 
(the  root).  This form  can be found  in  Kella (1993)  (Eq. (3.13)), but  
we  include  a derivation  here based on (4)  for  completeness.  For 
a hiding  distribution  h on a tree  Q with  root  O , let  d̄ =  d̄ h (O ) =   

x ∈  Q d (O, x ) d h (x ) denote  the  average distance  of  points  in  Q from  
O , with  respect  to  h . 

Corollary 1. Suppose a target  is located on a star with  n arcs ac- 
cording to a balanced distribution  h , and let p i be the probability  the 
target  is on the ith  arc. Then any depth-first  search S has expected 
search time  

T (S, h ) =  μ

 

1 −
n  

i =1  

p 2 
i 

 

+  d̄ h (O ) . (7)  

Proof. Let Q i denote  arc i  , and let  L i =  λ(Q i ) denote  its  length.  By 
Eq. (4)  , we  have 

T (S, h ) =  μ −
n  

i =1  

 

x ∈ Q i 
λ(Q x ) dh (x ) 

=  μ −
n  

i =1  

 

x ∈ Q i 
(L i − d  (O, x ))  d h (x ) 

=  μ +  

 

x ∈ Q 
d (O, x ) d h (x ) −

n  

i =1  

L i 

 

x ∈ Q i 
dh (x ) 

=  μ +  d̄ −
n  

i =1  

p i L i . 

Now, since each arc has equal search density,  their  densities  must  
all  be equal  to  the  search density  of the  whole  star, which  is 1/  μ . 
Hence L i =  p i μ for  each i  , and Eq. (7)  follows.  

We can also apply  Theorem  3 to  the  special case of a uni-  
form  hiding  distribution,  u , given  by u (A ) =  λ(A ) / μ , for  measur-  
able subsets A of Q . Theorem  2 of Li and Huang (2018) has already  
shown  that  for  the  uniform  distribution  on trees, a DF search is op-  
timal  (assuming  no turns  within  arcs). Here we  give a closed form  
expression  for  the  expected  search time  of  a DF search against the  
uniform  distribution  on a tree. Later, in  Section 5 , we  will  prove  
that  even without  the  assumption  of no turns  within  an arc, DF 
search is optimal  for  the  uniform  distribution.  

Corollary 2. Suppose a target  is hidden on a tree according to the 
uniform  distribution  u. Then any DF search S has expected search 
time  

T (S, u ) =  μ − d̄ u (O ) . (8)  

Proof. By Theorem  3 , it  is sufficient  to  show  that  the  integral  in  
(4)  is equal to  d̄ . Noting  that  λ(Q x ) =  

 
y ∈ Q x 

μ du (y ) , we  can write  

 

x ∈ Q 
λ(Q x ) du (x ) =  

 

x ∈ Q 

 

y ∈ Q x 
μ du (y ) du (x ) . (9)  
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Now, for  every  point  y ∈  Q , the  set of points  x such that  y ∈  Q x is ex-  
actly  equal to  P ( O , y ). Therefore,  swapping  the  order  of integration  
on the  right-hand  side of (9)  , we  obtain  

 

x ∈ Q 
λ(Q x ) du (x ) =  

 

y ∈  Q 

 

x ∈ P(O,y ) 
μ du (x ) du (y ) 

=  

 

y ∈  Q 
d (O, y ) d u (y ) 

=  d̄ . 

Note that  Corollary  2 is not  true  in  general, for  non-uniform  
hiding  distributions.  For example,  if  h is the  EBD distribution,  
T (S, h ) =  μ but  d̄ h (O ) is not  0. 

5. Monotone hiding distributions 

In  this  and the  next  section,  we  give conditions  on the  hiding  
distribution  h for  some DF search to  be optimal  against it.  

Definition 5. If  some DF search is optimal  against a hiding  dis-  
tribution  h , we  say h is simply searchable . If  the  only  optimal  
searches are DF, we  say h is strongly simply searchable . 

Note that  if  h is simply  searchable and balanced  then  all  DF 
searches are optimal,  by Lemma 3 . 

In  this  section  we  introduce  a class of hiding  distributions  on 
trees we  call  monotone distributions,  which  are a subset of bal-  
anced distributions.  We will  show  that  DF searches are optimal  
against monotone  distributions.  

Definition 6 (monotone)  . We say the  hiding  distribution  h on 
a rooted  tree  Q is monotone  if  for  any x y  , we  have that  
ρ( Q x ) ≤ ρ( Q y ). 

Clearly the  uniform  distribution  and the  EBD distribution  are 
monotone.  Also, it  is easy to  see that  monotone  distributions  
are leafy, since lim  inf  x →  v ρ(Q x ) ≥ ρ(Q O ) =  ρ(Q) =  1 / μ for  all  leaf 
nodes v . It  follows  from  Theorem  2 that  any optimal  search against 
a monotone  hiding  distribution  is terminating.  

Recall that  h has an atom  at a point  x ∈  Q if  h ({  x })  >  0. 

Lemma 4. Suppose h is a monotone hiding  distribution.  Then 

(i)  h has no atoms except possibly at leaf nodes; 
(ii)  ρ( Q x ) is continuous in  x on the set containing  all  points of Q 

except leaf nodes, where it  is not  defined; 
(iii)  h is a balanced distribution.  

Proof. For (i),  suppose there  is an atom  of measure, say, ε at some 
point  x that  is not  a leaf node. Suppose x has degree n ≥ 2, and let  
y 1 , . . . , y n −1  be points  on the  n − 1  arcs above x satisying  d(x, y j ) <  
ε/  (nρ(Q x ))  , j  =  1 , . . . , n − 1  . Then 

ρ(∪  j Q y j ) =  
h (∪  j Q y j ) 

λ(∪  j Q y j ) 
<  

h (Q x ) − ε 
λ( Q x ) − ε/ ρ(Q x ) 

=  ρ( Q x ) 

Since ρ(∪  j Q y j 
) is a weighted  average of each ρ( Q j ), there  must  be 

some j  for  which  ρ( Q j ) is strictly  less than  ρ( Q x ), contradicting  
monotonicity.  Roughly, this  means we  would  have ρ(Q x − { x } ) <  
ρ(Q x ) . 

This establishes (i);  (ii)  is a consequence of this;  (iii)  follows  
from  (ii)  and the  remark  following  Definition  4 . 

We can give an equivalent  characterization  of monotone  distri-  
butions  in  the  case that  h can be described  by a probability  den-  
sity.  In  particular,  consider  any path  P from  the  root  O to  some leaf 
node. Suppose that  h has a pdf  f , so that  

 t 
0 f (x ) dx is the  proba-  

bility  that  the  target  is on P at most  distance  t  from  O . Then it  can 

Fig. 2. The cdf of a monotone distribution on a path from O to a leaf node (in solid 
red). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

be shown  that  h is monotone  if  and only  if  for  every  such path  P 
with  pdf  f , 

f (t ) ≤ ρ(Q x (t ) ) , 

for  all  t  , where  x ( t  ) is the  unique  point  on P at distance  t  from  O . 
This can be proved  rigorously,  but  it  is also intuitively  clear  from  
considering  the  graph  in  Fig. 2 . This corresponds  to  a path  P with  
h (P ) =  1 /  2 . The solid  red  line  is the  cdf  F of a monotone  distribu-  
tion  on P , whose  slope is the  pdf  f . The search density  of a sub-  
tree  Q x ( t ) is given  by the  slope of the  dotted  line  segment  that  
goes from  the  point  ( t  , F ( t  ))  to  (1, F (1)).  For h to  be monotone,  the  
slope of these lines  must  be non-decreasing  in  t  , or  equivalently,  
the  slope f ( t  ) of  the  red  line  must  be no greater  than  that  of the  
dotted  lines.  

It  is also worth  pointing  out  that  monotonicty  implies  that  F 
has finite  derivative  at 0. This is clear  from  Fig. 2 , and can be 
proved  rigorously.  Therefore, as in  Theorem  12 of Beck (1965)  , no  
optimal  search can start  with  infinite  oscillations.  In  fact, we  do 
not  need to  use this  observation  in  what  follows.  

We will  show  that  DF searches are optimal  against monotone  
distributions,  but  to  do so we  need a lemma  about  monotone  dis-  
tributions.  

Lemma 5. Suppose h is a monotone distribution  on a tree Q. If A is 
a subtree of Q containing  O , then ρ( A ) ≤ ρ( Q ) . 

Proof. The complement  Ā of  A is a disjoint  union  of  subtrees Q x 
of Q . Since h is monotone,  the  search density  of these subtrees  is 
at least the  search density  of Q , so ρ( Ā ) ≥ ρ(Q) . Since ρ( Q ) is a 
weighted  average of ρ( A ) and ρ( Ā ) , it  follows  that  ρ( A ) ≤ ρ( Q ). 

We can now  prove  that  against monotone  distributions,  it  is op-  
timal  to  use a DF search. 

Theorem 4. Let h be a monotone hiding  distribution  on a tree Q. 
Then h is strongly  simply  searchable. 

Proof. Suppose h is not  strongly  simply  searchable, and let  S be 
an optimal  search that  is not  DF. Since h is monotone,  it  is leafy, 
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so S must  be terminating,  by Theorem  2 . By Lemma  1 , the  non-  
DF set N =  N S of S is a closed subtree  of Q containing  O (since  S 
is not  DF) and containing  none  of  the  leaf nodes of Q . Let x be a 
leaf node  of N . Since Q x − { x } is a subset of the  DF set D =  D S , it  
must  be the  case that  S performs  DF searches of  all  the  branches 
of Q x . Therefore,  there  must  be times  t  1 , t  2 with  t  1 <  t  2 such that  
S is disjoint  from  Q x in  the  interval  ( t  1 , t  2 ), and then  it  performs  
a DF search of a branch  B of Q x starting  at time  t  2 , where  B may  
be equal to  Q x . In  any case, we  must  have ρ(B ) =  ρ(Q x ) , since S is 
balanced. 

Let S 1 be the  search S restricted  to  [  t  1 , t  2 ], and let  S 2 be the  DF 
search of B starting  at time  t  2 . Let A denote  the  set covered by  S 1 
and let  y be the  lowest  point  of A . Then since A is a subtree  of Q y 
containing  y , we  have ρ( A ) ≤ ρ( Q y ), applying  Lemma  5 to  Q y and 
A . It  follows  that  the  search density  of  S 1 satisfies  

ρ(S 1 ) <  
1 

2 
ρ(Q y ) , 

where  strictness  follows  from  the  fact  that  part  of S 1 retraces arcs. 
On the  other  hand, 

ρ(S 2 ) =  
1 

2 
ρ(B ) . 

The monotonicity  of h ensures that  ρ(B ) =  ρ(Q x ) ≥ ρ(Q y ) , hence 
ρ( S 2 ) >  ρ( S 1 ). 

By the  Search Density  Lemma, transposing  S 2 and S 1 at time  t  1 
reduces the  expected  search time.  But  this  results  in  a new  search 
S  with  a strictly  smaller  expected  search time  than  S , contradicting  
the  optimality  of S . So h is strongly  simply  searchable. 

Theorem  4 implies  that  if  h is a monotone  hiding  distribution,  
then  V ( h ) is given  by Eq. (4)  . This follows  from  Theorem  3 and 
Lemma  4 , part  (iii).  

We can now  prove  a more  general  version  of Theorem  2 from  Li 
and Huang (2018) , and give a simple  method  to  choose the  starting  
point  for  the  search that  has least optimal  expected  search time.  

Corollary 3. Suppose a target is hidden on a tree according to the 
uniform  distribution  u. Then 

(i)  u is strongly  simply  searchable and 

V (u ) =  μ − d̄ (O ) , and 

(ii)  the choice of root  O that  minimizes the expected search time  of 
any DF search is the leaf node x that  maximizes d̄ (x ) . 

Proof. Part (i)  follows  from  Theorem  4, Corollary  2 and the  fact  
that  the  uniform  distribution  is monotone.  

Part (ii)  follows  from  the  observation  that  d̄ (x ) is maximized  
when  x is a leaf node. Indeed,  suppose not,  and that  d̄ (x ) is max-  
imized  at some point  x which  is not  a leaf node. Let R be a con-  
nected  component  of Q − { x } with  λ(R ) ≤ λ(Q − R ) , and let  y be a 
point  in  R on the  same arc as x with  d(x, y ) =  ε. Then it  is easy to  
see that  

d̄ (y ) − d̄ (x ) =  
λ(Q − R ) 

μ
(ε) +  

λ(R ) − ε 
μ

(− ε ) ≥
ε 2 

μ
>  0 ,  

contradicting  the  maximality  of  d̄ (x ) . 

It  should  be emphasized  that  ( Li & Huang, 2018 ) already  
showed  directly  that  the  optimal  choice of root  for  the  uniform  
hiding  distribution  is some leaf  node, but  they  did  not  show  how  
to  determine  which  leaf node  is optimal.  

Note that  evaluating  the  mean  distance  d̄ (x ) from  x to  other  
points  in  the  network  is equivalent  to  evaluating  the  average dis-  
tance from  x to  the  midpoints  of the  arcs, weighted  by the  lengths  
of the  arcs. If  the  network  has unit  length  arcs, comparing  these 
averages is equivalent  to  comparing  the  mean  distance  from  x to  
all  other  nodes, since both  measures induce  the  same ordering  on 

Fig. 3. A network with distances labeled from node A in green and from C in red. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

the  nodes. If  the  lengths  of  the  arcs are all  rational,  then  by  adding  
nodes of degree 2 to  the  network,  it  can be transformed  into  a 
network  with  unit  length  arcs. In  this  case, the  problem  of find-  
ing  the  leaf node x that  maximizes  d̄ (x ) is equivalent  to  finding  
the  leaf node  of  a graph  whose  mean  distance  to  all  other  nodes is 
minimized.  This, in  turn  is equivalent  to  finding  the  node  x of min-  
imal  closeness centrality  , which  is defined  as the  reciprocal  of the  
mean  distance  from  x to  all  other  nodes. Closeness centrality  was 
introduced  by  Bavelas (1950)  and is used widely  in social  network  
analysis. 

6. Optimal depot location in the Delivery Man Problem 

We define  the  equiprobable distribution  e as the  atomic  distri-  
bution  that  places equal weight  on each node (including  the  root  
node). The problem  of  finding  the  optimal  search on a general  net-  
work  against the  equiprobable  distribution  is known  as the  Delivery 
Man Problem or  Traveling Repairman Problem . Although  the  distri-  
bution  e is not  monotone,  Minieka  (1989)  already  showed  directly  
that  for  a tree  with  equal arc lengths  any DF search is optimal.  We 
can use Corollary  3 to  improve  upon  this.  

Theorem 5. For the Delivery Man Problem on a tree with  n unit  
length arcs, 

(i)  the optimal  expected search time  is 

V (e ) =  n − 1  − d̄ e (O ) , 

where d̄ e (O ) is the mean distance from  O to all  nodes of the 
network  (including  O); 

(ii)  the optimal  choice of depot for the Delivery Man Problem is the 
leaf node x of minimum  closeness centrality.  

Proof. For part  (i),  consider  the  network  Q  obtained  by adding  an 
extra  unit  length  arc, one of  whose  endpoints  is O , and the  other  
is a new  degree 1 node  O  . The average distance  from  O  to  points  
in  Q  is d̄ e (O ) +  1 /  2 , so by Corollary  3 , the  expected  search time  
of a DF search of  Q  against  the  uniform  distribution  u is V (u ) =  
λ(Q  ) − ( d̄ e (O ) +  1 /  2) . Using λ(Q  ) =  n and V (e ) =  V (u ) − 1  /  2 , the  
result  follows.  

Part (ii)  follows  from  the  fact  that  d̄ e (x ) is maximized  at a leaf 
node. 

Minieka  (1989)  has claimed  that  “For  a tree  with  equal edge 
weights,  the  best depot  is the  endpoint  of any longest  path.” While  
in  many  cases this  will  agree with  our  choice of best location,  
we  present  in  Fig. 3 a network  with  unit  arc lengths  for  which  
the  leaf node  of  minimal  closeness centrality  is a strictly  better  
place to  start  than  any end of a path  of maximum  length.  First  we  
show  that  C is the  node of minimal  closeness centrality  and then  
we  show  directly  that  it  is a better  depot  location  (starting  point)  
than  the  node  A at the  end  of the  maximum  length  path.  

There are two  contenders  (up  to  symmetry)  for  nodes of min-  
imum  closeness centrality:  nodes A and C . The distances from  A 
to  the  other  nodes are written  in  green on the  top  left  of  each 
node, and the  distances from  C are written  in  red  on the  bottom  



972 S. Alpern and T. Lidbetter / European Journal of Operational Research 285 (2020) 965–976 

right.  The sum  of the  distances from  A is 46 and from  C is 47. So 
C has the  smallest  closeness centrality,  and is therefore  the  best 
choice of  depot  for  the  Delivery  Man  Problem.  Indeed, when  fol-  
lowing  a DF search from  C , the  sum  of the  times  to  reach the  other  
12 nodes is 1 +  3 +  5 +  7 +  9 +  13 +  17 +  25 +  27 +  29 +  33 +  37 =  
206  . The corresponding  sum  when  starting  at A is 1 +  3 +  7 +  
11 +  13 +  15 +  17 +  23 +  25 +  27 +  31 +  35 =  208  , which  confirms  
directly  that  it  is best to  start  from  C . 

For some hiding  distributions  it  is best to  adopt  the  DF search 
which  starts  and ends at diametrical  points  of  the  tree, such as A 
and B in  Fig. 3 . Dagan and Gal (2008)  considered  the  search game 
where  the  Hider  picks  any point  of  the  tree  and the  Searcher can 
start  at any point.  They showed  that  the  optimal  strategy  for  the  
Hider  was the  distribution  h ∗ , which  is the  Equal Branch Density  
distribution  when  taking  the  root  as the  center of the  tree  (the  
point  minimizing  the  maximum  distance  to  other  points,  or  the  
midpoint  of  diametrical  points).  This results  in  a hiding  distribu-  
tion  that  places probability  6/36  at C and probability  5/36  at the  
six  other  leaf nodes. For the  Searcher, the  optimal  mixed  strategy  
is to  take  a Chinese Postman Path (on  a tree  this  starts  and ends 
at diametrical  points)  and traverse  it  equiprobably  in  either  direc-  
tion.  Thus starting  at A or  B is optimal  against the  distribution  h ∗ . 
Clearly this  is also the  solution  to  the  game where  the  Hider  must  
choose a node  and the  Searcher must  start  at a node. 

Thus for  any tree  Q , the  Dagan-Gal solution  gives a hiding  dis-  
tribution  h ∗ ( Q ) and a start  point  A ( Q ) such that  all  optimal  searches 
are DF but  not  all  DF searches are optimal.  For example,  for  the  
tree  of Fig. 3 with  hiding  distribution  h ∗ , a DF search starting  at A 
is optimal  if  and only  if  the  last  point  reached is diametrical  to  A . 

It  is worth  noting  that  on a star, the  node  of minimum  close-  
ness centrality  is always  located  at the  end of  the  longest  arc. Kella 
(1993)  showed  that  the  optimal  starting  position  on a star  is at 
the  end of the  longest  arc for  a class of  hiding  distributions  that  
includes  the  uniform  distribution.  

7. Which distributions are simply searchable on a star? 

In  this  section  we  restrict  our  attention  to  stars. A star  is a tree  
with  exactly  one node  of degree greater  than  1, and we  always  as- 
sume this  node is the  root  O in  this  section.  We consider  the  ques- 
tion  of what  are necessary and sufficient  conditions  on the  hiding  
distribution  for  it  to  be simply  searchable. To that  end, we  define  
a class of hiding  distributions  on a star. 

Definition 7 (forward  biased) . Let h be a hiding  distribution  on a 
star  with  arcs j  =  1 , . . . , n of lengths  λ j with  

 
j λ j =  μ . Let F j ( x ) 

be the  probability  that  the  target  is on arc j  at distance  from  the  
root  less than  or  equal to  x and let  h j =  F j (λ j ) be the  probability  
the  target  is located  on arc j  . We say that  h is forward  biased if  for  
all  j  we  have 

F j (x ) ≤ H  j (x ) ≡
x +  (h j μ − λ j ) +  

x +  μ − λ j 
, for  all  x ≤ λ j , 

where  y +  =  max  { y, 0 } . (10)  

If  condition  (10) is strict  for  all  j  and x <  λ j , then  we  say h is strictly  
forward  biased. 

A condition  of the  type  F j ( x ) ≤ H j ( x ) puts  an upper  bound  on 
how  likely  the  target  is close to  the  root  on  an arc. So it  is more  
likely  to  be near to  the  forward  (leaf  node)  part  of the  arc. This is 
the  reason for  the  name. 

We show  in  Section 7.1 that  a balanced hiding  distribution  on 
a star  is simply  searchable if  and only  if  it  is forward  biased. In  
Section 7.2 , we  remove  the  assumption  of balanced  in  the  case that  
the  network  is a line  segment,  and show  a hiding  distribution  is 
simply  searchable if  and only  if  it  is forward  biased. 

Kella (1993)  also considered  the  problem  of when  DF search is 
optimal  on a star, giving  a sufficient  condition  on the  hiding  dis-  
tribution  for  it  to  be simply  searchable. In  Section 7.3 , we  consider  
Kella’s condition,  and show  that  it  is stronger  than  ours. 

We first  show  that  the  distributions  we  consider  in  this  section  
are leafy. 

Lemma 6. Let h be a forward  biased hiding  distribution  on a star 
with  k arcs. If h is balanced or k =  2 , then h is leafy. 

Proof. In  the  first  case, that  h is balanced, every  arc of the  star  
must  have the  same search density  as the  whole  star, which  is 1/  μ . 
Since the  search density  of arc j  is h j /  λ j , this  implies  that  (h j μ −
λ j ) +  =  0 for  all  i  , and condition  (10) reduces to  

F j (x ) ≤ H  j (x ) ≡
x 

x +  μ − λ j 
, for  all  x ≤ λ j . (11) 

It  follows  that  the  search density  of the  region  within  distance  ε
of the  leaf node  of an arc j  is 

h j − F j (λ j − ε) 
ε 

≥
h j (μ − ε) − λ j +  ε 

(μ − ε) ε 

=  
1 − h  j 
μ − ε 

→  
1 − h  j 

μ
, as ε →  0 . 

So h is leafy. 
In  the  second case, we  only  need to  show  that  the  limiting  

search density  of the  tip  of  one of the  arcs is positive.  But  one 
of the  two  arcs j  must  have search density  at most  1/  μ , so that  
(h j μ − λ j ) +  =  0 , and the  same argument  as above holds.  

It  follows  from  Lemma  6 and Theorem  2 that  any optimal  
search for  a target  hidden  according  to  a forward  biased distribu-  
tion  on a star  is terminating  if  the  distribution  is balanced  or  has 
two  arcs. 

7.1. Balanced stars 

In  this  subsection  we  assume that  the  hiding  distribution  is bal-  
anced, so that  some DF is optimal  if  and only  if  all  DF searches are 
optimal.  We show  that  a balanced  hiding  distribution  on a star  is 
simply  searchable if  and only  if  it  is forward  biased. 

Theorem 6. Suppose a target is located on a star according to a bal-  
anced hiding  distribution  h. Then h is simply  searchable if  and only  
if  it  is forward  biased. Moreover, h is strictly  simply  searchable if  and 
only  if  it  is strictly  forward  biased. 

Proof. We first  show  that  if  h is not  forward  biased then  it  is not  
simply  searchable. Suppose that  condition  (11) does not  hold  for  
some point  P on arc j  at distance  x <  λ j from  the  O . Then let  S ∗

be the  non-DF  search S 1 , S 2 , S 3 , where  S 1 goes directly  from  O to  
P , then  S 2 returns  to  O and tours  the  remaining  arcs of the  star  
before  returning  to  P , and S 3 tours  Q P . Then the  search density  of 
S 2 is 

ρ(S 2 ) =  
1 − λ j / μ

2( μ − λ j +  x ) 
. (12)  

The search density  of S 3 is 

ρ(S 3 ) =  
λ j / μ − F j (x ) 

2(λ j − x  ) 
. (13)  

Therefore,  the  difference  between  the  search density  of the  two  
searches is 

ρ(S 2 ) − ρ(S 3 ) =  
1 

2(λ j − x  ) 
F j (x ) −

x 
μ − λ j +  x 

. (14) 
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This difference  is positive,  since condition  (11) does not  hold.  
Therefore,  the  DF search S  obtained  from  S by swapping  the  or-  
der  of  S 2 and S 3 has a greater  expected  search time  than  S , by the  
Search Density  Lemma, so h cannot  be simply  searchable. 

If  h is not  strictly  forward  biased but  it  is forward  biased, then  
condition  (10) holds  with  equality  for  some arc j  and some dis-  
tance x . In  this  case, (14) holds  with  equality,  and S  must  be opti-  
mal.  Hence, h is not  strictly  simply  searchable. 

Now  suppose h is forward  biased, and we  will  show  it  is simply  
searchable. Let S be an optimal  search that  is not  DF. By Lemma  6 , 
it  must  be the  case that  h is leafy, so S must  be terminating,  by 
Theorem  2 . By Lemma  1 , the  non-DF  set N =  N S of S is a closed 
subtree  of Q containing  O (since  S is not  DF) and containing  none  
of the  leaf nodes of Q . Let P be the  leaf node of N with  the  largest  
expected  search time  t  1 =  T (S, P ) . Again, we  express S as a succes- 
sion  of three  searches, S 1 , S 2 , S 3 . The first,  S 1 follows  S from  time  
t  =  0 until  time  t  1 . The second, S 2 starts  at time  t  1 and ends when  
S next  reaches P at time  t  2 . The third,  S 3 , tours  Q P , starting  at time  
t  2 . Note that  S 2 must  go from  P to  O and then  perform  a DF search 
of some set A of arcs of the  star. 

The search density  of S 2 satisfies, 

ρ(S 2 ) ≤
 
i ∈ A λ i / μ

2( 
 
i ∈ A λ i +  x ) 

≤
1 − λ j / μ

2( μ − λ j +  x ) 
, (15)  

where  both  the  inequalities  in  (15) holds  with  equality  if  and only  
if  S is equal  to  the  search S ∗ from  the  first  paragraph  of the  proof.  
Also, ρ( S 3 ) is given  by the  Eq. (13) , so the  right-hand  side of  
Eq. (14) is an upper  bound  for  ρ(S 2 ) − ρ(S 3 ) . This upper  bound  
holds  with  equality  if  and only  if  S =  S ∗ , in  which  case the  search 
S  obtained  by  swapping  the  order  of  S 2 and S 3 is a DF search 
with  the  same expected  search time,  and is, therefore,  optimal.  
Otherwise  the  bound  is strict,  and S  has a strictly  smaller  ex-  
pected  search time,  contradicting  the  optimality  of S . So h is simply  
searchable. 

If  h is strictly  forward  biased, then  the  right-hand  side of  
Eq. (14) must  be a strict  upper  bound  for  ρ(S 2 ) − ρ(S 3 ) , so that  
S ∗ cannot  be optimal.  Hence, the  only  optimal  searches are DF and 
h is strictly  simply  searchable. 

If  follows  from  Theorem  6 that  for  a forward  biased hiding  dis-  
tribution  h on a star, V ( h ) is given  by (7)  . 

7.2. Two-arc stars (intervals)  

We now  remove  the  assumption  that  h is balanced, and con-  
sider  the  same question  as in  the  previous  subsection:  what  con-  
ditions  are necessary and sufficient  for  h to  be simply  searchable 
on a star? Notice  that  for  arcs i  whose  search density  h i /  λ i is lower  
than  the  average search density  1/  μ of  the  star, condition (10)  re-  
duces to  (11) . For arcs with  higher  than  average search density,  
the  term  h i μ − λ i is included  in the numerator  of (10)  , so that the  
bound  is 

F j (x ) ≤ H (x ) ≡
x +  h j μ − λ j 
x +  μ − λ j 

, for  all  x ≤ λ j . (16)  

We will  restrict  our  attention  here to  two-arc  stars, which  can 
be represented  as an interval  Q =  [  − λ2 , +  λ1 ]  containing  the  root  
O =  0 . We refer  to  the  subinterval  [0,  λ1 ]  as the  right  arc , and the  
subinterval  [  − λ2 , 0]  as the  left  arc . Throughout  this  section  we  as- 
sume that  the  search density  h 1 /  λ1 of the  right  arc is at least the  
average search density  1/  μ , so that  h is simply  searchable if  and 
only  if  the  DF search S +  that  starts  with  the  right  arc is optimal.  
This means that  for  the  right  arc, condition  (10) takes the  form  
(16) and for  the  left  arc, it  takes the  form  (11) . Note that  the  right-  
hand  side of (16) is bounded  above by h 1 , but  the  right-hand  side 

Fig. 4. Uniform distribution (dashed) on the interval for h 1 = 2 / 3 and the bounds 
H ( x ) (right) and min { H(−x ) , 1 / 3 } (left) in solid. 

of (11) may  be strictly  greater  than  h 2 for  some values of  x (in  par-  
ticular,  x =  λ2 , where  it  is equal  to  λ2 /  μ ≥ h 2 ). Thus the  cdf  F 2 on 
the  left  must  satisfy  the  stricter  condition  F 2 ( x ) ≤ min  {  H ( x ), h 2 }. 

The two  forms  of the  constraint  (10) are illustrated  in  Fig. 4 
for  a star  with  two  arcs both  of length  1 and the  weight  h 1 on 
the  right  equal to  2/3.  The solid  lines  represent  the  bound  H ( x ) for  
0 ≤ x ≤ λ1 and min  { H(−x  ) , 1 /  3 } for  − λ2 ≤ x  ≤ 0  . The dashed lines  
show  the  cdfs F 1 and F 2 for  the  uniform  distribution  with  weight  
1/3  on the  left  and weight  2/3  on the  right.  

We show  that  for  two-arc  stars, h is simply  searchable if  and 
only  if  it  is forward  biased. To prove  this  we  first  show  that  if  we  
restrict  our  searches to  having  at most  one turning  point  within  an 
arc, then  h is simply  searchable if  and only  if  it  is forward  biased. 

We first  define  two  single-turn  searches S ∗ (x ) =  [0  , x, − λ2 , +  λ1 ]  
and ˆ S (y ) =  [0  , −y,  +  λ1 , − λ2 ]  , 0 <  x <  λ1 , 0 <  y <  λ2 , where  the  
points  listed  in  the  square bracket  refer  to  the  turning  points.  (The 
0 is there  to  indicate  the  searches start  at 0.) We will  compare  
these searches to  the  best DF search, S +  =  [0  , +  λ1 , − λ2 ]  . 

Lemma 7. For any fixed x and y with  0 <  x <  λ1 , 0 <  y <  λ2 , 

(i)  the expected search time  of S ∗ ( x ) is smaller than  that  of S +  if  
and only  if  condition  (10) fails for this  x and j  =  1 , and 

(ii)  the expected search time  of ˆ S (y ) is smaller than  that  of S +  if  
and only  if  condition  (10) fails for this  y and j  =  2 . 

Proof. For part  (i),  we  observe that  for  fixed  x , after  the  search 
S ∗ ( x ) goes from  0 to  x , it  continues  with  S 1 =  [  x, − λ2 , x ]  and 
then  S 2 =  [  x, λ1 , x ]  . By the  Search Density  Lemma, we  know  that  
T (S ∗ (x ) , h ) <  T (S +  , h ) if  and only  if  ρ( S 1 ) >  ρ( S 2 ). It  is easily  seen 
that  

ρ(S 1 ) =  
1 − h  1 

2( x +  λ2 ) 
and ρ( S 2 ) =  

h 1 − F 1 ( x ) 

2( λ1 − x  ) 
. 

If  follows  that  

ρ(S 1 ) >  ρ(S 2 ) if  and only  if  F 1 (x ) >  
x +  h 1 μ − λ1 

x +  λ2 
≡ H (x ) . 

Hence, ρ( S 1 ) >  ρ( S 2 ) if  and only  if  (16) , and hence (10) fails  for  this  
x and j  =  1 . 
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For part  (ii),  define  the  sets A =  [0  , λ1 ]  , B 1 =  [  −y,  0]  , B 2 =  
[  − λ2 , −y  ]  and define  the  time  difference  (z) =  T (  ̂  S (y ) , z) −
T (S +  , z) , for  z ∈  [  − λ2 , λ1 ]  . For z in  A , B 1 , B 2 we  have 

If  z ∈  A, then  =  2 y 

(comes  later,  after  going  to  y and back);  

if  z ∈  B 1 , then  =  −2  λ1 

(comes  earlier,  before  going  to  1 and back);  

if  z ∈  B 2 , then  =  2 y 

(comes  later,  having  gone to  y and back an extra  time).  

Since the  measures of the  three  sets are given  by h (A ) =  
h 1 , h (B 1 ) =  F 2 (y ) , h (B 2 ) =  (1 − h  1 ) − F 2 (y ) , it  follows  that  the  ex-  
pected  value  of is given  by 

T (  ̂  S (y ) , h ) − T (S +  , h ) =  2 y (h 1 +  (1 − h  1 ) − F 2 (y ))  − 2  λ1 F 2 (y ) . 

So T (  ̂  S (y ) , h ) is smaller  than  T (S +  , h ) if  and only  this  expression  
is negative,  which,  on solving  for  F 2 ( y ), gives F 2 (y ) >  y/  (λ1 +  y ) ≡
H(y ) . Equivalently  (11), and hence (10) fails  for  this  y and j  =  2 . 

Theorem 7. A hiding  distribution  h on a two-arc  star is simply  
searchable if  and only  if  it  is forward  biased. Moreover, h is strictly  
simply  searchable if  and only  if  it  is strictly  forward  biased. 

Proof. First  suppose that  h is not  forward  biased. Then condition  
(10) fails  for  some j  and some x <  λ j . In  this  case, by Lemma  7 , 
either  the  search S ∗ ( x ) or  the  search ˆ S (y ) has a smaller  expected  
search time  than  that  of S +  . In  either  case S +  is not  optimal,  and 
therefore,  no DF search is optimal  and h is not  simply  searchable. If  
h is not  strictly  forward  biased, but  it  is forward  biased, then  S ∗ ( x ) 
or  ˆ S (y ) have the  same expected  search time  as S +  for  some x or  y , 
so h is not  strictly  simply  searchable. 

On the  other  hand, suppose h is forward  biased. Let S be an 
optimal  search, and suppose S is not  DF. By Lemma 6 , the  hiding  
distribution  h is leafy, so S must  be terminating,  by Theorem  2 . 
The non-DF  set N =  N S is some interval  [  −y,  x ]  with  −1  <  −y  ≤ 0  ≤
x <  1 . If  y =  0 then  S =  S ∗ (x ) and if  x =  0 then  S =  ˆ S (y ) . In  either  
case, by  Lemma 7 , the  DF search S +  also optimal,  and h is simply  
searchable. So assume that  −y  <  0 <  x and we  will  derive  a con-  
tradiction.  Note that  we  must  have F 1 ( x ), F 2 ( y ) >  0, otherwise  ˆ S (y ) 
or  S ∗ ( x ), would  have a strictly  smaller  expected  search time  that  S . 

First  suppose that  T (S, x ) >  T (S, −y  ) . Then at time  T ( S , x ), the  
search S must  follow  S 1 =  [  x, − λ2 , x ]  followed  by S 2 =  [  x, λ1 , x ]  . 
(We  may  as well  assume that  S returns  to  x after  reaching  λ1 .) 
The search density  of  S 1 is 

ρ(S 1 ) =  
1 − h  1 − F 2 (y ) 

2( x +  λ2 ) 
<  

1 − h  1 
2( x +  λ2 ) 

and ρ( S 2 ) =  
h 1 − F 1 ( x ) 

2( λ1 − x  ) 
. 

Since h is forward  biased, it  follows  that  ρ( S 2 ) >  ρ( S 1 ), similarly  to  
the  proof  of Lemma  7 . Hence, S 1 and S 2 can be swapped  to  obtain  
a search with  a strictly  smaller  expected  search time,  contradicting  
the  optimality  of S . 

Now  suppose that  T (S, −y  ) >  T (S, x ) . Note that  S must  go di-  
rectly  from  x to  −y  between  times  T ( S , x ) and T (S, −y  ) . Let h  be 
the  marginal  hiding  distribution  on the  interval  after  time  T ( S , x ). 
Regarding x as the  new  root,  let  ρ1 and ρ2 be the  densities  of 
the  new  right  and left  arcs, [  x , λ1 ]  and [  − λ2 , x ]  , with  respect  to  
the  new  hiding  distribution  h  . Then h  ([  x, λ1 ] ) =  h 1 − F 1 (x ) and 
h  ([  − λ2 , x ] ) <  1 − h  1 , since F 1 ( x ) >  0. Rearranging condition  (16) for  
j  =  1 , we  get 
h 1 − F 1 (x ) 

λ1 − x  
≥

1 − h  1 
λ2 +  x 

, 

and it  follows  that  ρ1 >  ρ2 . 
We show  that  h  is forward  biased on the  interval  with  root  x . 

Let p ≤ 1  − F 1 (x ) be the  probability  that  the  target  has not  been 

found  before  S reaches x , and let  F  
1 and F  

2 be the  cdfs on the  new  
right  and left  arcs, with  respect  to  h  . Since the  right  arc has higher  
search density  than  the  left  we  need to  establish  condition  (16) for  
the  right  arc, which  says 

F  
1 (z) ≡

F 1 (z +  x ) − F 1 (x ) 
p 

≤
z +  μ ( h 1 − F 1 ( x ))  /p  − ( λ1 − x  ) 

z +  ( λ2 +  x ) 
, 

where  z is the  distance  from  x to  a point  on the  (new)  right  arc. It  
is easy to  show  that  this  is equivalent  to  the  condition  

F 1 (y ) ≤ H  1 (y ) +  
(1 − F 1 (x ) − p )(λ1 − y  ) 

y +  λ2 
, 

where  y =  x +  z. Since we  know  that  F 1 ( y ) ≤ H 1 ( y ), it  is sufficient  to  
show  that  the  sum  of the  remaining  terms  on the  right-hand  side 
of the  expression  above is non-negative.  This is equivalent  to  the  
condition  p ≤ 1  − F 1 (x ) , which  we  have already  noted.  

For the  left  arc, we  need to  show  that  condition  (10) holds  for  
F  
2 . This is trivially  true  for  any point  on the  left  arc at distance  

z ≤ x from  the  (new)  root,  since then  F  
2 
(z) =  0 . So consider  a point  

at distance  z >  x from  the  root.  Then 

F  
2 (z) ≤ F 2 (z − x  ) ≤ H  2 (z − x  ) =  

z − x  
z − x  +  λ1 

<  
z 

z +  (λ1 − x  ) 
. 

This establishes condition  (10) for  h  , and furthermore  the  condi-  
tion  holds  strictly  on the  left  arc. It  follows  from  Lemma  7 that  
when  S reaches x , it  would  be better  (smaller  expected  search 
time)  to  continue  to  +  λ1 , then  to  − λ2 . 

We leave it  to  the  reader  to  check that  if  h is strictly  forward  
biased then  it  is strictly  simply  searchable. 

7.3. Kella’s condition  for simply searchable stars 

Kella (1993)  also considers  the  question  of which  hiding  distri-  
butions  are simply  searchable on a star. In  Theorem  3.1 he gives 
a sufficient  condition  for  simple  searchability.  In  our  notation,  this  
condition  is that  for  each arc j  , the  following  function  G j ( x ) is non-  
increasing.  

G j (x ) ≡ h  j x (1 /F j (x ) − 1 ) ,  

where  F j is the  cdf  of the  hiding  distribution  on arc j  . 
Here, we  present  examples  of distributions  that  are forward  bi-  

ased but  do not  satisfy  Kella’s condition.  We first  consider  the  case 
of a balanced distribution  on a two-arc  star  with  unit  length  arcs, 
and cdfs F ( x ) ≡ F 1 ( x ) ≡ F 2 ( x ) given  by 

F (x ) ≡
2 x/  3 if  0 ≤ x  <  1 /  2 , 

(1 +  2 x ) /  6 if  1 /  2 ≤ x  ≤ 1  . 

Fig. 5 depicts  this  cdf, along  with  the  function  H 1 (x ) ≡ H  2 (x ) =  
x/  (1 +  x ) ≥ F (x ) , implying  that  this  hiding  distribution  is forward  
biased. But  the  function  G ( x ) ≡ G 1 ( x ) ≡ G 2 ( x ), also depicted  in  the  
graph  is not  non-increasing  for  all  x ∈  [0, 1], so F ( x ) does not  sat-  
isfy  Kella’s condition.  In  other  words,  Theorem  6 implies  that  this  
hiding  distribution  is simply  searchable, but  Theorem  3.1 of  Kella 
(1993)  does not.  

For the  case of hiding  distributions  that  are not  balanced, con-  
sider  again the  two-arc  star, but  this  time  with  an atom  of  weight  
2/3  at the  end of the  left  arc, and a distribution  on the  right  arc 
given  by  the  following  cdf, F 1 . 

F 1 (x ) ≡
x/  2 if  0 ≤ x  <  1 /  2 , 

(1 +  x ) /  6 if  1 /  2 ≤ x  ≤ 1  . 

Then H 1 (x ) =  x/  (1 +  x ) ≥ F 1 (x ) , as depicted  in  Fig. 6 , and clearly  
H 2 ( x ) ≥ F 2 ( x ), so by Theorem  7 , the  hiding  distribution  is simply  
searchable. But  the  function  G 1 ( x ) is not  non-increasing  for  all  x 
in  [0,1], so F 1 ( x ) does not  satisfy  Kella’s condition.  

Of course Kella’s condition  applies  to  some unbalanced  distribu-  
tions  on the  n -star, n >  2, which  is not  covered  at all  by our  results.  
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Fig. 5. The cdf F (bottom), H ( x ) (middle) and G ( x ) (top). 

Fig. 6. The cdf F 1 (bottom), H 1 ( x ) (middle) and G 1 ( x ) (top). 

8. Conclusion 

We have introduced  a new  class of hiding  distributions  on a 
tree  called  balanced, containing  precisely  those  distributions  for  
which  every  DF search has the  same expected  search time,  for  
which  we  gave a simple  formula.  We then  showed  that  for  the  
subclass of monotone  distributions,  all  DF searches are optimal.  
This includes  the  uniform  distribution,  which  results  in  a simple  
method  for  choosing  the  point  of  the  tree  from  which  to  begin  the  
search that  minimizes  the  optimal  expected  search time.  We gave 
a concise characterization  of  the  balanced  hiding  distributions  on 
a star  for  which  DF searches are optimal,  and gave a necessary and 

sufficient  condition  for  some DF search to  be optimal  on a two-arc  
star  when  the  distribution  may  not  be balanced. 

Further  work  could  aim  to  specify  the  subclass of balanced  dis-  
tributions  for  which  DF is optimal  on a tree. More  work  is also 
needed to  determine  necessary and sufficient  conditions  for  some 
DF search to  be optimal  when  the  hiding  distribution  is not  bal-  
anced. It  would  be interesting  to  conduct  further  research on the  
problem  of finding  the  optimal  search for  a target  hidden  according  
to  a known  distribution  on an arbitrary  network.  One might  also 
consider  the  problem  of finding  multiple  targets  hidden  on a net-  
work  according  to  a known  distribution.  A discrete  version  of this  
problem  was considered  in  Fokkink,  Lidbetter,  and Végh (2019) , 
and a search game with  multiple  targets  was solved  in  Lidbetter  
(2013)  . Finally,  these problems  could  all  be generalized  by consid-  
ering  asymmetric (or  windy  ) networks,  for  which  the  time  to  tra-  
verse an arc depends on the  direction  of  travel.  Such networks  
have been widely  studied  in  the  context  of  the  Traveling  Salesman 
Problem,  for  example  in  Fischetti  and Toth (1997)  and Svensson, 
Tarnawski,  and Végh (2018) , and also in  the  context  of  search 
games in  Alpern  (2010) and Alpern  and Lidbetter  (2014) . 
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