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We study the classic problem in which a Searchermust locate a hidden point, also called the Hider in a
network, starting from a root point. The network may be either bounded or unbounded, thus generalizing
well-known settings such as linear and star search. We distinguish between pathwise search, in which
the Searcher follows a continuous unit-speed path until the Hider is reached, and expanding search, in
which, at any point in time, the Searcher may restart from any previously reached point. The former
has been the usual paradigm for studying search games, whereas the latter is a more recent paradigm
that can model real-life settings such as hunting for a fugitive, demining a field, or search-and-rescue
operations. We seek both deterministic and randomized search strategies that minimize the competitive
ratio  namely the worst-case ratio of the Hider's discovery time, divided by the length of the shortest path
to it from the root. Concerning expanding search, we show that a simple search strategy that applies a
“waterfilling” principle  has optimal deterministic competitive ratio; in contrast, we show that the optimal
randomized competitive ratio is attained by fairly complex strategies even in a very simple network of
three arcs. Motivated by this observation, we present and analyze an expanding search strategy that is a
%-approximation of the randomized competitive ratio. Our approach is also applicable to pathwise search,
for which we give a strategy that is a 5-approximation of the randomized competitive ratio, and which
improves upon strategies derived from previous work.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider the classic setting in which a mobile Searchermust
locate a stationary hidden object, called the Hider, in a network
Q with given arc lengths. This general problem goes back to early
work in Isaacs (1965) and Gal (1979), who introduced it in the con-
text of the standard, pathwise search; namely, in this usual setting,
the Searcher moves at unit speed starting from a given point O of
the network that we call the r00t, and the searchtime is defined as
the first time at which the Searcher reaches the Hider. A different
approach was recently introduced in Alpern and Lidbetter (2013),
and allows the Searcher to move at infinite speed within any re-
gion of the network that it has already visited; see Section 2.1 for
a formal definition. This paradigm captures several situations in
which the cost of re-exploration is negligible, compared to the cost
of first-time exploration, and thus can model settings such as min-
ing for coal, hunting a fugitive, or searching for a missing person.

The above works take the approach of seeking mixed, i.e., ran-
domized search strategies, with the objective of minimizing the
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expected search time, in the worst case; that is, the maximum ex-
pected search time over all hiding points in the network. This is
accomplished by studying a zero-sum game with payoff the search
time, between a minimizing Searcher and a maximizing Hider. In
this paper, instead, we study a normalized variant of the search
time, in which the search time for reaching a point P in Q is di-
vided by the length of the shortest path from Oto P in Q; we call
this the normalized searchtime of p, The objective thus becomes to
find strategies that minimize the worst-case (normalized) search
time, by considering all points in the network Q.

This normalized formulation was first applied in search games
over unbounded domains, such as the linear search (Beck & New-
man, 1970) and Star search (Gal, 1972) problems. Normalization is
essential in unbounded domains, since otherwise the Hider can in-
duce unbounded search times, by hiding arbitrarily far from O. Fur-
ther motivation behind the study of normalized objectives is pro-
vided by competitive analysis of online algorithms in which the al-
gorithm operates in a status of total uncertainty about the input,
and the normalized objective describes how much close the algo-
rithm’s output is, in comparison to an ideal solution with com-
plete information on the input. For this reason, Jaillet and Stafford
(1993) refer to searching under the competitive ratio as online
searching. Competitive analysis has been applied even in search
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games over a bounded domain, as in Angelopoulos, Durr, and Lid-
better (2019); Fleischer, Kamphans, Klein, Langetepe, and Trippen
(2008); Koutsoupias, Papadimitriou, and Yannakakis (1996). We
will refer to the competitive ratio of a strategy as the worst-case
normalized search time among all points of the network . Lastly,
we define the competitive ratio of a network Q (with a given root
O) as the minimum competitive ratio of any search strategy for
Q. We will further distinguish between the deterministic and the
randomized competitive ratios, depending on whether we consider
deterministic or randomized search strategies, respectively.

1.1. Main results

In this work we study the competitive ratio of general net-
works, both in the expanding and the pathwise search paradigms,
which are defined precisely in Section 2. For expanding search, we
first show in Section 3 that the deterministic competitive ratio is
achieved by a simple strategy. This strategy can be visualized as
the frontier that is obtained by “flooding” the network starting at
O, assuming that the arcs represent pipes of corresponding lengths.
We then move to randomized strategies for expanding search in
Section 4. Here, we show that, unlike the deterministic case, op-
timal search strategies have a complex statement even on a very
simple network that consists of three arcs. Motivated by this obser-
vation, we give approximations to the value of the game. First, we
show that the randomized competitive ratio of a network is within
a factor of 2 of its deterministic competitive ratio, and this bound
is tight. More importantly, we give a class of randomized strategies
that approximate the randomized competitive ratio of a network
within a factor of 5/4. This class of strategies is based on iterative
applications of Randomized Depth-First-Search, in randomly cho-
sen and increasingly large subsets of the network. This strategy is
inspired by a randomized strategy used for tree graphs in the dis-
crete setting, namely when the Hider can only hide over vertices of
a given, finite tree (Angelopoulos et al., 2019). We emphasize that,
unlike (Angelopoulos et al., 2019), in this work, the search domain
may be substantially more complex than a tree, and it may also be
unbounded.

Moreover, we give further approximations of the value of the
game by relating the payoff of the search strategy to the function
fo, which informally gives the measure of the set of points within
a certain given radius from the root. As a corollary, we show that
if the function fo is concave, the randomized competitive ratio is
identical to the deterministic one. This finding may have practi-
cal implications in the context of searching in a big city, since the
road network is naturally much more dense in its center than it its
outskirts, and one expects this density to decrease the further we
move from the city center.

Our approach in studying expanding search, and more specif-
ically, our lower bounds on the randomized competitive ratio,
have implications for pathwise search as well. More precisely, in
Section 5 we give a randomized pathwise search strategy, inspired
by the one for expanding search, which is a 5-approximation of
the randomized competitive ratio. This is an improvement over
the 3+ 2 2 =5.828-approximation that can be derived from tech-
niques in Koutsoupias et al. (1996).

In Section 6 we discuss some technicalities relating to the im-
plementation of our search strategies, and in Section 7 we con-
clude with directions for future work.

' In Angelopoulos et al. (2019) ; Koutsoupias et al. (1996) the term search ratio is
used in order to refer to the competitive ratio. In this work we choose the latter,
since it is more prevalent, and since it has been adopted both by the Operations
Research and the Computer Science communities; see e.g., the discussion in Alpern
and Gal (2003) and Jaillet and Stafford (1993) .

To illustrate the significance of the results and the approaches,
consider the star-search problem in which the search domain con-
sists of M infinite, concurrent rays (Fig. 1(a)). Star search has a long
history of research, and several of variants of this problem have
been studied under the competitive ratio (see Chapters 7 and 9
in Alpern & Gal (2003)). It is known that the deterministic com-
petitive ratio is equal to 1+ (2% e Gal (1972). In contrast, the
randomized competitive ratio is not known (in Kao, Ma, Sipser, and
Yin (1998) optimality is shown under the fairly restrictive assump-
tion of periodic strategies). The strategy we obtain in this work has
randomized competitive ratio which is at most a factor of 5 from
the optimal one. Furthermore, the result applies to much more
complicated unbounded domains, for instance such as the one de-
picted in Fig. 1(b), under the mild (and necessary) assumption that
for any I'> 0, the number of points at distance I from the root of
the network is bounded.

1.2. Related work

Expanding search on a network was introduced in Alpern and
Lidbetter (2013), with the focus on the Bayesian problem of min-
imizing the expected search time against a known Hider dis-
tribution. In a followup paper (Alpern & Lidbetter, 2019), the
same authors studied expanding search on general networks and
gave two strategy classes that have expected search times that
are within a factor close to 1 of the value of the game. Both
these works apply to the unnormalized search time. For normal-
ized objectives (Angelopoulos et al., 2019) recently studied expand-
ing search in a fixed (finite) graph in which the Hider can only
hide on vertices. In terms of finding a strategy of optimal deter-
ministic competitive ratio (Angelopoulos et al., 2019) showed that
the problem is NP-hard, and gave a 4In 4-approximation. Concern-
ing the randomized competitive ratio, the same work presented
a strategy that is a %-approximation in the special case of tree
graphs.

The competitive ratio of pathwise search was first studied by
Beck and Newman in the context of the linear search problem
(Beck & Newman, 1970) and later by Gal (1972, 1974) for star
search. For fixed graphs, assuming that the Hider can only hide on
vertices, it is NP-hard to approximate the deterministic competitive
ratio (Koutsoupias et al., 1996). The same paper also gave constant-
factor approximations for both the deterministic and the random-
ized competitive ratio, assuming the graph is undirected. Exten-
sions to edge-weighted graphs were studied in Ausiello, Leonardi,
and Marchetti-Spaccamela (2000), which also showed connections
between graph searching and classic optimization problems such
as the Traveling Salesman problem and the Minimum Latency
problem. The setting in which the search graph is not known to
the Searcher, but is rather revealed as the search progresses was
studied in Fleischer et al. (2008).

The exact and approximate competitive ratio of pathwise search
has been studied in many settings, mostly assuming a star-
like search domain. Examples include multi-Searcher strategies
(Angelopoulos, Arsénio, Durr, & Lopez-Ortiz, 2016a; Lopez-Ortiz &
Schuierer, 2004), searching with turn cost (Angelopoulos, Arsénio,
& Durr, 2017; Demaine, Fekete, & Gal, 2006), searching with prob-
abilistic information (Jaillet & Stafford, 1993), searching with up-
per/lower bounds on the distance of the Hider from the root (Bose,
Carufel, & Durocher, 2015; Hipke, Icking, Klein, & Langetepe, 1999;
Loépez-Ortiz & Schuierer, 2001), and searching for multiple hiders
(Angelopoulos, Lopez-Ortiz, & Panagiotou, 2014; Kirkpatrick, 2009;
McGregor, Onak, & Panigrahy, 2009). All these works assume that
the search domain is either the unbounded line or the unbounded
star.
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(a) A star domain in which m = 4.

O]

(b) An example of a search domain studied in this work.

Fig. 1. An illustration of different search domains.

2. Preliminaries

We consider a search domain that is represented by a con-
nected network Q which consists of vertices and arcs, and which
has a certain vertex O designated as its root. Moreover, Q is en-
dowed with Lebesgue measure corresponding to length. The mea-
sure of a subset A of Q is denoted by A(A), and in the case that Q
has finite measure, we will denote by M = A(Q) the total measure
of Q. This defines a metric on Q, where d(X, Y) is the length of the
shortest path from X to Y. We write d(X) for the distance d(O, X)
from O to X. We denote by dego(V) the degree of Vin Q, namely
the number of arcs incident to V.

We do not limit ourselves to bounded networks, but make the
standing assumption that the network Q satisfies the condition
that there exists some integer M such that for any > 0,

[{xe Q:d(x)=r} <m. (1)

That is, there are at most M points at distance ! from O. Any net-
work with a finite number of arcs automatically satisfies this con-
dition. We will see that this condition ensures that the compet-
itive ratio exists. As an example of an unbounded network, if Q
is an M-ray star, we have [{Xe Q:d(x)=r}| =m, for all I, hence
this quantity is bounded. In contrast, if Qis an unbounded full bi-
nary tree in which there are 2' vertices at distance / from the root,
for all i e N*, then this quantity is unbounded, and this implies
the competitive ratio is also unbounded. Indeed, any determinis-
tic search strategy (pathwise or expanding) on this network must
take at least time 2' to reach all points at distance / from ‘the root,
so the deterministic competitive ratio would be at least 2'/i, which
is unbounded. We will see later (Proposition 8) that this implies
that the randomized competitive ratio of this tree network is also
unbounded.

Given a network ©Q, and any =0, we denote the closed
disc of radius I around O by Q[r] = {Xe Q:d(x) <r}. Let Fmax =
maxx.0d(x) be the distance of the furthest point in @ from O,
where Imax = « if Q is unbounded. We define the real function
fo: [0 f'max] - R given by fo(r) = A(Q[r]). so fo(r) is the measure
of the set of points at distance no more than ! from the root.

Examplel. Fig. 2 depicts a network Q and the graph of the func-
tion fo(r). The numbers on the arcs denote the corresponding
lengths.

We begin with preliminary definitions and results concerning
expanding search, since it is a more recent paradigm, and some-
what more subtle to define. We then explain how these definitions
change in what concerns pathwise search.

2.1. Expanding search

In expanding search, we allow the search to move at no cost
over any part of the network that it has previously explored. This
is formalized in the following definition.

Definition2 (Alpern & Lidbetter (2013)). An expanding search on
a network Q with root Ois a family of connected subsets St)c Q
(for 0<t< M) satisfying: (i) S0)= 0O, (i) JHcgt) for all t<t;
and (i) A(S(t)) = tfor all t.

If the context is clear, we will refer to an expanding search as
a search strategy. For a given expanding search S of Q and a point
HeQ let T(SH) = min{t : He )} be the (expanding) searchtime
of H under S This was shown to be well defined in Alpern and
Lidbetter (2013). For H= O, let T(S,H) be the ratio T(S, Hy/d(H) of
the search time of H to the distance of H from the root. We refer
to T(S.H) as the normalized searchtime 1t is convenient to define
7(S,0) to be equal to 0.

Definition 3. The deterministic competitive ratio Os= Os(Q) of a
deterministic expanding search S of a network Q is given by

05(Q) = sup T(S.H).
He@Q

The (deterministic, expanding) competitive ratio, 0 = 0(Q) of Qis
given by

9(0) = inf Q).

where the infinum is taken over all search strategies S If Os= 0
we say that Sis optimal.

Note that the infimum and supremum do not commute in gen-
eral in Definition 3 and also that the competitive ratio of a strat-
egy S may be infinite. For example, suppose that Q consists of
two unit-length arcs @ and b meeting at the root and suppose S
searches @ first and then b. If H lies on the arc b at distance X from
the root then T(S.H) = (a+ X)X = 1+ @X 5 » asX- 0. It is not
immediately obvious whether or not the competitive ratio of a net-
work is finite in general, but we will show in Section 3 that this
is indeed the case, by explicitly giving the optimal search strategy
for any network.

In addition, we consider randomized search strategies: that is,
search strategies that are chosen according to some probability dis-
tribution. We denote randomized strategies by lower case letters,
and for randomized strategies S and h for the Searcher and the
Hider, respectively, we denote the expected search time by T(s, h)
and the expected normalized searchtime py T(s,h).
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Fig. 2. The calculation of the function f

Definition 4. The randomized competitive ratio Ps= Ps(Q) of a
randomized expanding search S of a network Qis given by

Ps(Q) = sup T(s, H).

HeQ
The randomized competitive ratio, P = P(Q) of Qs given by
pP(Q) = inf Ps(Q),

where the infimum is taken over all possible randomized search
strategies S. If Ps = P we say that Sis optimal.

When clear from context, we omit Q for simplicity, e.g., we will
use Osinstead of O4Q).

We can view the randomized competitive ratio of a network
as the value of a zero-sum game (@, O). Readers who are fa-
miliar with the fundamentals of zero-sum games may skip the
rest of this paragraph. Recall that a zero-sum game between a
minimizer (Player 1) and a maximizer (Player 2) is given by
two Strategy sets A and B and a payoff function P:AxB - R.
A mixed strategy for Player 1 is given by a probability distri-
bution 7T on A, and similarly for Player 2. Denoting the set of
mixed strategies for the players by (A) and (B), respectively,
the domain of payoff function P naturally extends to (A)yx (B),
where P(TT,, 71,) is given by the expected payoff, with respect
to Mye (A)and Mye (B). If V= infr( a)supmye( ) P70, TT)
and Y, = suprm,e( g infrrc( A) P(T,, TT,), then it is easy to show
that V4 <V,. If equality holds we refer to V; = V, as the value of
the game, which represents the Nash equilibrium. The game has
a value if A and B have finite cardinality, by von Neumann’s Min-
imax Theorem, and there are many variations of this theorem for
casesin which the strategy sets do not have finite cardinality. If the
value, V exists and 7Ty and 7T, are such that supm ( ) P(IT;, m,) =
V=infro( a) P(T,, TT;), then we say TT and TT; are optimal. |f
for every €> 0, there exists a mixed strategy T, e (A) such that
|V-supm,c( g P(T[;, T,)| < € then we say that Player 1 has €-
optimal mixed strategies; similarly for Player 2.

In this work, the Searcher is Player 1 and the Hider is Player
2. The Searcher’s strategy set is the set of search strategies as de-
scribed above and a the Hider's strategy set is Q. The payoff of the
game for two strategies Sand H of the Searcher and Hider, respec-
tively, is the normalized search time T(S.H). For mixed (random-
ized) strategies S and h of the Searcher and Hider, respectively, the
expected payoffis denoted by T(s.h).

In Alpern and Lidbetter (2013) the authors considered a similar
zero-sum game on finite networks in which the players’ strategy
sets are the same but the payoffis the unnormalized search time
T(S, H). They showed that the strategy sets are compact with re-
spect to the uniform Hausdorff metric and that T(S H) is lower

fir)-r : 1
i ‘ ,
5 ’
4 £—
3
2
1 y
.
0 1 2 3

o( r) (right) for a particular network Q (left).

semicontinuous in Sfor fixed H. Since d(H) is a constant for fixed
H, it follows that T(S,H) = T(S,H)/d (H) is also lower semicontin-
uous in S for fixed H, and by a form of the Minimax Theorem
(Alpern & Gal, 1988), we have the following theorem.

Theorem5. Let Q be a finite network with root O. The game (Q, O)
has a value, which is equal to the randomized competitive ratio P(Q).
The Searcher has an optimal mixed strategy (with competitive ratio
P(Q)) and the Hider has €-optimal mixed strategies.

It is not so straightforward to show that the game has a value
if Qis unbounded. Nonetheless, this is not important for our anal-
ysis, and we will rely on the following general result for zero-sum
games that for any mixed Hider strategy h,

P(Q) zinf T(Sh), )
where the supremum is taken over all search strategies S.

2.2. Pathwise search

For pathwise search, which is the usual search paradigm, the
Searcher follows a continuous, unit-speed path: that is a trajec-
tory S [0, » )~ Qwith 0)= 0 and d(St,), St,)) <t,-tq for
all t;<t,. For such a pathwise search S and a point H on Q, the
(pathwise) search time T(S, H) of H under Sis the first time that
H is reached by the Searcher, i.e., min{t 20:S(t) =H}. The con-
cepts of deterministic and randomized search times, as well as the
deterministic and randomized competitive ratios are defined anal-
ogously to Definitions 3 and 4.

As in the case of expanding search, we may view the random-
ized competitive ratio of a network as the value of a game played
between a minimizing Searcher and a maximizing Hider where the
payoff is the normalized search time. In the case of finite networks,
it is easy to show that the value exists, whereas for unbounded
networks, it is again the inequality (2) which will be most essen-
tial in our analysis.

3. Deterministicexpandingcompetitiveaatio

In this section we show how to obtain an expanding search of
optimal deterministic ratio, using a “water filling” principle. Infor-
mally, the network is searched in such a way that the set of points
that have been searched at any given time form an expanding disc
around O. Recall the definition of fo from Section 2. fo is piece-
wise linear and strictly increasing so has an inverse Jdp. The in-
terpretation is that Jo(f) is the unique radius I for which Q[I] has
measure {.



S. Angelopoulos and T. Lidbetter / European Journal of Operational Research 286 (2020) 781-790 785

Definition6. For a network Q with root O, consider the expanding
search S defined by S(t) = Q[9o(t)] for 0=t < rmax.

Thus, S (t) is an expanding disc of radius 9o(f). It is easy to ver-
ify that S is indeed an expanding search. First, we note that S (f)
is connected, since Q'] is always connected. It also trivially satis-
fies (i) and (ii) from Definition 2, and (iii) is also satisfied since

A(S (1)) = A(Qgo(t)) = fo(go(t)) = t.

We will show that S attains the optimal competitive ratio. First,
note that the search time of a point He Q under S is the unique
time t such that S(t)= Q[d(H)]. so T(S.H) = A(Q[d(H))) =
fo(d(H)) . Hence, the competitive ratio of S is

oup fo(d(H))
HeQ-{C} d(H)

f
Qr(f)' @

Os

sup
r>0
This has an intuitive interpretation as follows: if we draw the
graph of fo(f) then the competitive ratio is the slope of the steep-
est straight line through the origin that intersects with the graph
of fo(r). Condition (1) ensures that Os is finite for unbounded net-
works, since fo()< Mr for all T.

Theorem?. > The expanding search S is optimal and the competitive
ratio O of a network Q with root O is given by

fo(r)'

o= sup 7

r>Q

“4)

Proof. Let Sbe an optimal search, and let t(r) = min{t > 0: Q[/] <
1)} be the first time that S contains Q[f]. Then the maximum
search time of any point H at some fixed distance I from Ois t(I),
and it follows that 0 = Og is given by
t(r

Os = sup ——-

o T
Clearly, t(r) = fo(r), so Os < Os by (3). The optimality of S and the
expression for O follows.

4. Randomized expandingcompetitiveatio

In this section we study the randomized competitive ratio of
expanding search, which is significantly more challenging to ana-
lyze than the deterministic one. We begin by showing that the ran-
domized competitive ratio is at least half the deterministic com-
petitive ratio and that there exist networks for which this bound
is tight (Section 4.1). In Section 4.2 we give a Hider strategy that
allows us to get useful lower bounds on the randomized competi-
tive ratio. We also obtain bounds on P that are parameterized by
the function fo, from which we can deduce the randomized com-
petitive ratio for networks with concave fo. In Section 4.3 we show
that the randomized strategy may have a quite complex statement,
even for very simple networks that consist only of three arcs. We
address this difficulty in Section 4.4, in which we give a strategy
that is within a factor at most 5/4 of the optimal randomized com-
petitive ratio, for all networks.

4.1. A simple approximation of the randomized competitive ratio

Recall that S denotes the optimal deterministic search strategy
of Section 3.

2 This theorem appeared without proof as Theorem 6 of Angelopoulos, Diirr, and
Lidbetter (2016b) .

n? arcs

0

Fig. 3. A network for which P = 0/2.

Proposition8. 8 For a network Q with root O, the randomized com-
petitive ratio P satisfies

0/2<pP<0.

Furthermore, the bounds are tight, in the sensethat they are the best
possible.

Proof. The right-hand inequality is clear, since every deterministic
search strategy is also a randomized search strategy. To prove the
left-hand inequality, we first observe that since S is an optimal
deterministic search, for any €> 0, we can find some point H on
Qsuch that T(S,H) 2 0 - € Let r = d(H) so that T <f o(r)/r + €.
Let h be the Hider strategy that hides on Q[/] uniformly: that is, it
chooses a subset of Q[f] with probability proportional to the mea-
sure of that subset. For any search strategy S, the expected search
time T(S h) is at least A(Q[)/2, so

P =sup T(S.h)
S

N AQ[n)/2
r

(since every point in Q[r] is at distance

no more than I from the root)
fo(f)
or

g-¢&
> .

2

Since € can be arbitrarily small, it follows that P = 0/2.

We will now argue that both bounds are tight. This is trivially
true for the right-hand inequality since the network consisting of
one arc with the root at its end has the same deterministic and
randomized competitive ratio.

For the left-hand inequality, consider the network depicted in
Fig. 3. The normalized search time T(S.H) is maximized at leaf
nodes X, so that 0= T(S,X) = (n+n2)/(n+1)=n,

Consider now the randomized strategy S that searches the arc
of length 1N first before searching the remainder of the arcs in a
uniformly random order. Then all points H at distance no greater
than N have expected normalized search time 1; a point H at dis-
tance d> N has

d+ (n2-1)/2 (n2-1)/2
_ <1+ ——
d n

so P<1+n/2=1+0/2 Since P20/2, we must
O/P> 2,asN> o .

T(s,H) = <1+0n/2

have that

A corollary of Proposition 8 is that the “water-filling” search S
approximates the optimal randomized search by a factor of 2.

3 This proposition appeared without proof as Proposition 7 of Angelopoulos et al.
(2016b) .
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4.2. A Hider strategy, and lower bounds on the randomized
competitive ratio

For a general network @, let A be a connected subset. Let d(A)
be the distance from O to A and let Ua be the Hider strategy
(probability measure) that hides uniformly on A, so that ua(X) =
A(X)/A(A) for a measurable subset X < A. Then denote the average
distance from O'to points in A by d(A) = _,d(x)dus(x).

Theorem9. Considerthe Hider strategy h, given by

= d(x) un(x
dhu(x) = H(A)d A(x).

By adopting the strategy h,, the Hider ensures that the randomized
competitive ratio P satisfies

d(A) + A(A)/2

an
Proof. Let Sbe any search strategy, and note that T(S.Us) = d (A) +
A(A)/2. We have

p > T(S,hA) =

P>

T(S.x)
XA d(x)

1
O T(S,x)du,(x)

1
= @T(S,UA)
g d(A) + A(A)/2

d(A)

dha(x)

Toillustrate the applicability of Theorem 9, we show how to ob-
tain, in a different way, the corollary of Proposition 8 that the op-
timal deterministic search strategy approximates the optimal ran-
domized strategy by a factor of 2.

Corollary10. The optimal deterministic search S approximates the
randomized competitive ratio by a factor of 2.

Proof. Let £> 0 and let X be a point of @ such that 0 < T(S,x) +
&/2 = A(A)/d (x) + €/2, where A= Q[d(X)] is the set of all points at
distance at most d(X). By Theorem 9, P = A(A)/(2d(A)), so

O _AA()+ /2 _ 20(A)  €d(A)
P AwiGam) | dx) T A

Since € can be arbitrarily small, the corollary follows.

<2 + &

More importantly, Theorem 9 allows us to obtain the following
lower bound on the randomized competitive ratio of Q.

Lemma 11.For any network Q with root O, it holds that P >
dego(0)-

Proof. Let Ep denote the set of arcs in Q that are incident with
O. Fix r'y> 0 such that ry < min eEEO)\(e); clearly, such an 'y must
exist. Let A= Q[ly] be the ball of points in Q that are at distance
at most Iy from O, and let ha be the Hider strategy associated with
A and defined asin the statement of Theorem 9. We calculate the
average distance d(A) from O to points in A by writing
_ o Iy r r
dA) = 1-ualQ)dr= 1- —dr=2.

0 T 2
Moreover, from the definition of A, we have that A(A) = dego(©) -
I'y. By Theorem 9, we have
2 2 ego(0).

2d(A)

The above lemma implies a tight bound on the randomized
competitive ratio for all networks Q for which the function fo is
concave, as shown in the following corollary.

Corollary12. For any network Q for which fQ is concave, we have
that 0 = P = dego(O), and strategy S is an optimal randomized
strategy.

Proof. The lower bound on P follows from Lemma 11. For the up-
per bound, by (4), we have P < O = supso fo(r)/r, and for any
network for which fo is concave, it holds that sups o fo(r)/r =
dego(0).

Note that Corollary 12 applies to star networks with M rays,
since in this case, fo is linear; thus, 0= P = m,

Example13. An example of a network for which fo is concave is
depicted in Fig. 4, along with a plot of its function fo.

More generally, we have established the following approxima-
tion.

Corollary 14. Suppose that for the network Q it holds that
suprs o fo(r)/r < A dego(0), for some 0> 1. Then S approximates

the optimal randomized ratio of Q within a factor of at most Q.

4.3. Optimal randomized strategies are complex: Y-networks

We now consider a class of the simplest networks for which the
function fQ is not concave, and thus Corollary 12 does not apply. In
particular, we consider the Y-network depicted in Fig. 5 consisting
of anode Y which is incident to three arcs of lengths 1,Land M > L.
The root node is the other endpoint of the arc of length 1. We refer
to the arc of length L as the “left arc”and the arc of length M as
the “right arc”.

Clearly the optimal Hider strategy on the Y-network will hide
on the arc incident to the root with probability 0. Let A be the
subset of Q consisting of all the points on the left arc at distance
at most X from V and all the points on the right arc at distance
at most ¥ from V. From Theorem 9, by using the strategy Na, the
Hider ensures that the competitive ratio is at least

N d(A) + A(A)/2
- d(A)
1+ (x+y)/2
1+ (X (x+ y))(X/2) + (Y (x+ y))y/2
1 2xy _
x(x+2)+y(y+ 2)

By elementary calculus, this bound is maximized for X= L and ¥ =

min{M, L(L+ 2)}, giving
Py = 2LM

2V = M) s M (M % 2) ()
where M = min {M, L(L+ 2)}.

We show that the expression V given in (5) is indeed the ran-
domized competitive ratio by giving an optimal Searcher strategy.
The optimal Searcher strategy we present mixes between four dif-
ferent strategies which we list below. (Each strategy begins by
searching the arc incident to the root, so we do not mention this
part of the search.)

A. Search the left arc first then search the right arc.

B. Search the right arc up to length M first then the left arc then
search the remainder of the right arc.

C. Searchthe left arc and the right arc at the same time, at speeds
proportional to L and M respectively, until the whole of the
left arc has been searched, then search the remainder of the
right arc. In other words, in the time interval [1.1+ t] search



S. Angelopoulos and T. Lidbetter / European Journal of Operational Research 286 (2020) 781-790 787

o)

15

fir)
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0 2 4

Fig. 4. An example of a network Q (left) and the functionr - f(r)=f  o(r) (right). All arcs in Q are unit-length.

Table 1
An optimal search strategy for the Y -network.

Search strategy Probability Exp. search time on left Exp. search time on right
A T 1+a 1+L+b

B Ml 1+M +a 1+b

c N SR 1+ 2(L+M) 1+ g (L+M)

D o ke 1+ % +a 14 g (L+Mm)

tL/(L+ M) of the left arc and tM /(L+ M ) of the right arc, for
t <L+ M, then search the remainder of the right arc.

D, Begin by searching the right arc, but at some time chosen uni-
formly at random between 0 and M, search the whole of the
left arc before completing the search of the right arc.

In Table 1 we list probabilities that the Searcher should choose
each of these four strategies along with the expected search time
of a point at distance @<L from V on the left arc and a point at
distance b<M from V on the right arc.

A simple calculation shows that for points on the left arc at dis-
tance @<L from V, the expected search time is V(1+ a) and for
points on the right arc at distance b<M from V, the expected
search time is V(1+ b). For points on the right arc at distance
b>M from V (if such points exist), the expected search time is
1+ L+ b, and it is easy to show that this is strictly less than
V(1 + b). Hence the randomized competitive ratio is V.

Example15. Congider the Y-network L=1 and M =2 In this
case, M =min{2, 1-3}= 3, sothe value V of the game, given
in(6)isV=1+2-1- 3/(1-3+ 3-( 3+2)=(1+ 3)/2.An
optimal strategy for the Hider is ha, where A consi@ts of the left
arc and the points on the right arc within distance 3 from V. An
optimal strategy for; the Searcher ig to use strategigs A, C and D
with probabilites ( 3-1)/2, (3- 3)/6 and (3- 3)/6. respec-
tively.

44. A %—approximation of the randomized competitive ratio

In this section we give a search strategy that is a %-
approximation of the optimal randomized search. This is inspired
by the strategy of Angelopoulos et al. (2019) for the discrete case,
namely for searching in a given graph when the Hider can only
hide at a vertex.

We first define the concept of a Randomized Depth-First Search
(RDFS of a tree T. Let S be any depth-first search of T and let
S be the depth-first search that visits the leaf nodes of T in the
reverse order from S Then the randomized search S that chooses
between Sand S' equiprobably is a RDFSof T.

Fig. 5. The Y -network.

Lemma16. Let s be a RDFSof a tree T. Then the expectedtime T(s,
Hy at which a point H e T is found by s satisfies

A(T) + d(H)

—

Proof. Suppose S is an equiprobable mixture of the depth-first

search S and its reverse S1. Let t; = T(S,H) and t, = T(S,H).
Then

T(s,H) <

i+t _ )\(.ﬂﬁ)) + )‘(qtz))
2 2 '
It is easy to see that §ty)n §t,) is the path from Oto H, so
A(S(t)) + A(S(t)) = A(S(t,) u S(t,)) + A(S(t) n 1))
< A(T) + d(H).

T(s,H) =

The lemma follows.

Now we can define the randomized search that is a %-

approximation. For an arbitrary network O, let Qr be its shortest
path tree. We will define a search of Qr which naturally translates
to a search of Q. First we partition Qr into infinitely many ran-
domly chosen subsets R, j € Z. To define the sets R, we choose
numbers d,— uniformly at random from the interval [2/"1,2"]. and
set Rj:= {xe Qr:dj<d(x) < d,;}. We call the R the levels of the
search.
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The randomized doubling strategy s is defined as follows. At the
start of the Jjth iteration, Ui<jRi has already been searched, and
we shrink it to the root, so that now R is a subtree of the re-
sulting network. The jth iteration is then a RDFSof R. Note that
this means that S begins with infinitely small RDFS’s, similarly
to optimal strategies for the linear search problem, as studied in
Gal (1974).

Before proving that the randomized doubling strategy is a %-
approximation for the optimal randomized search, we first estab-
lish two technical lemmas. Let Qj = {Xe Qr: 2/"1 <d(x) < 2/}, for

jez and let Q= U,‘Sij.
Lemmat7.Forany je 7,
)

2]

AQ) <2p

Proof. Applying Theorem 9 to @,

d(Q’) i < d(Q’)
1- = AQ) < 1- 5

-2d(Q)p.

Regarding the right-hand side of the expression above as a
quadratic in d(Q’), it is maximized when d(Q’) = 2/"1, and the
lemma follows.

Lemma 18.7The expected measure of
H(Qj)/ZH A (Qj)'

Proof. A point Xe G is contained in R4 if and only if d;> X. This
occurs with probability (27 - d(x))/2/1 . Therefore, the expected
measure of Qjn Ry is

Q] n Rj_1 is (2 -

230 jo) = 2- %Y 2

XeQ; 21

A(Q).

Theorem 19. The randomized doubling strategy s is a g
approximation of the optimal randomized search. In particular,

Ps< (5/4)P + 1/2.

Proof. Suppose that the randomized competitive ratio of Sis max-
imized at some point X which is contained in Q, for some K.
Let J be a random variable that takes the value k-1 or Kk de-
pending on whether X is contained in Rc_; or R, respectively. Let
L= AuicsR) + A(R)/2 be the random variable equal to the sum
of half the measure of R;and the measure of all levels preceding
R;. Then, by Lemma 16, the expected search time of X is at most
E(LY) + d(x)/2. Hence
E(L)/d(x) 1

o _ () + d()/2) (x) _ .
P~ P B P 2p
We just have to show that E(L)/(d(x)P) <5/4. Let Li,L; and Lg
be the contributions to L7 from Qk_;. O and Q.. respectively, so
that LJ= A(QK—Z) + L‘1] + L; + L‘?]).

We first compute E(Li). Note that if dx<x, which happens
with probability (d(x) —=2%1)/2%1, then J= k so that Rjis dis-
joint from Q4. In this case Lf = A(Q¢_;). Otherwise, with proba-
bility (2%~ d(x))/2"1, we have that J= k-1, and L] is equal to
the sum of half the expected measure of Qx_y n Rc_; and the mea-
sure of Qs n Re_y. or equivalently, the sum of A(Q,_;)/2 and half
the expected measure of Qx4 n R, . Applying Lemma 18, with
J= k-1, this is equal to
)‘(Qk_1) 1 d(Q. 1) 3 a(Qk_1)

+ - 2- )= -
2 2 27 M= 5 5

A(Qiy)-

Putting this together,

ew)= 20727 o)
a9 3 Q)
2251)( %_ 2kf11 AQcy)
SRR IR Rt CRVC

Next, we consider L;. With probability (2K -d(x)/251, we have
that di> d(X), so that J= k-1, and Ryis disjoint from Q.. In this
case, L; is zero. Otherwise, J= k, and L; is equal to half the ex-
pected measure of Q. N Re. Applying Lemma 18 again, this time
with j = K+ 1, gives

d(x) - 2%
J
E(LS) = 2[(7_1

a(Qk.m )

2k+1

1- A(Qu,q ). @)

Lastly, we consider LJ Denote by Q[d] the set of points in Q
at distance at most “a from O. If dy<d(X), then J= k-1 and

= A(Qudi1) + A(Q - Quldk1)/2. If di> d(X) then J= k and L] =
/\(Qk[dk])/z Integrating over all possible value of ¥ = di, we ob-
tain

d(x)
E(L) = 2%1 A(Q) + A(Qc - Quiv1)/2 dy
2kt
17
A /2 d
= (Quy))/2 dy
1 1

)
M2 dy+
gt g, MAV2 g 2k1

Now, the second integral above is equal to the expected measure
of Qxn R4, and using Lemma 18 with J = K gives

A(Qy1) dy.

e = 027 d@)e ] 2- 4 aa)
d(x) a9
= 2); % - - M. 8)

6), (7) and (8) in E(L) = A(Q2)+ E(L]) +
E(’—;) + E(L;) and rearranging, we obtain

Cd(x) a2

Substituting Egs.

ew) = 1- %0 L 4 o)
P29 K e
621%)—1 1-8(237?) A(Q1).

The first term in the expression on the right-hand side above is
non positive, since d(X)< 2% and d(Q¥2) <22, g0, dividing by
d(x), we obtain

E(LJ) 3 1 d(Qk_ ) A(Qk 1)

xS 2d(x) ~ 2k=1
3 1 d(Q¥)
R A(QY)
1 1 d(Qk+1) .
f g a1 oger AT ©
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Each of the three terms on the right-hand side of (9) is non-
negative for 21 <g(x) <3 - 22, and in this caseit follows from
Lemma 17 that

EL) 3 1 o, 3 1
d(x)p = 2d(x) k- 2d(x) 2k
11
k-1 d(x)
k-3
R )
<5/4,

where the maximum is attained at d(x) = 2K-1. If, on the other
hand, 3262 <d(x) < 2% then the first term on the right-hand
side of (9) is negative and the other two are positive. Hence, ap-
plying Lemma 17 again we obtain

EL) 3 1 e, 1
dix)p - 2d(x) 2k ok=1 — d(x)
= 3/2-2k2/d(x)
<5/4,

where the maximum is attained at d(x) = 2. This completes the
proof.

5. Randomizedpathwisecompetitivaatio

In this section we study search strategies for a network Q,
in the pathwise search paradigm. An obvious first approach is
to apply the doubling technique of Koutsoupias et al. (1996), in
the context of a general, and possibly unbounded network rather
than giixed graph. We will first show that this approach yields a
3+ 2 2=5.828-approximation of the randomized competitive ra-
tio and we will later show how to improve the approximation ratio
to 5, based on ideas from Section 4.4.

Let '> 1 be a parameter that will be determined later, and re-
call that Q[r'1<Q denotes the network of points in Q at distance at
most I from O for all integers i. The strategy works in iterations,
until the Hider is located. Namely in iteration i, the Searcher fol-
lows a Random Chinese Postman Tour of the network Q[']. More
precisely, the Searcher computes a Chinese Postman Tour of Q[(f],
(i.e., a minimal time tour that visits the points of all arcs in Q[I']),
then mixes equiprobably between the tour itself and its reversed
one. Let S denote this strategy. The following theorem is based on
the approach of Koutsoupias et al. (1996).

Theorem20. Strategy s, is a 2( % + % )-approximation of the ran-
domized compevtitive ratio. In particular, for r = 1+ 2, we have that

p(s) < (3+2 2)p.

Proof. For a fixed Hider strategy, let j denote the iteration in which
Sr locates the Hider, and let G denote the contribution to the ex-
pected search cost of S in iteration i for i<j. Moreover, let /(Q[I"])
denote the length of the optimal Chinese Postman Tour in Q['].
Then,
(e
p(s) ssup —=2—. (10)
1 M

By considering a Hider that hides uniformly at random on Q[fi], we
obtain that

I(o[r'1)
ps Q). 1)

2

Lastly, since the Searcher discovers the Hider on iteration J, we
have that

r!

. l /
Q= I(Q[rl]), if I<] and Cj= @ (12)

By combining (10), (11), (12), we obtain that

-1 riy 1ri

/ r
S, . _fF= 2 p-= _ p.
p(s) <2 iu1p o= p=2 1t p

The@gtimal choice of ' that minimizes the above@ipression isl=
1+ 2, from which it follows that P(s) < (3+2 2)P.

We now show how the randomized doubling strategy of
Section 4.4 can be adapted for the pathwise case to give an im-
proved approximation ratio of 5. We define the shortest path trees
Q and the random levels, R, jeZ as in the expanding search
setting. A Randomized Depth-First Search (RDFS)is defined simi-
larly in the pathwise search setting as an equiprobable mixture of
a depth-first search S and its reverse search S', except that we
stipulate that Sand S return to the root O after visiting all the
leaf nodes. We will use the following lemma, whose proof can be
found, for example, in Alpern and Gal (2003).

Lemma21. Let s be a (pathwise) RDFSof a tree T. Then the expected
time T(s, Hy a point H e T is found by s satisfies

T(s,H) < A(T).

The (pathwise) random doubling strategy then performs succes-
sive RDFS’sof unions of levels U< ;R.

Theorem22. The (pathwise) random doubling strategy s is a 5-
approximation for the optimal randomized pathwise search. That is,

Ps<5pP.

Proof. As in the proof of Theorem 19, suppose that the random-
ized competitive ratio of Sis maximized at some point X which is
contained in Q, for some K. Again, we define Jas the index of the
level containing X. We use Lemma 21 to write down an expression
for the expected search time of X, conditioned on J and which we
will denote by T(S, X|J.

T(s,x|J) = Auig;R) +
jea-1

2)\(U/'5jR/')-

Rearranging, we have
T(s.x|) =A(R) + Auic;4 R)
+ A(R/) + )\(Uigj_1 R/) + )\(Uiszi)

j<I-1

A(R) + A(R)

j<J-1

b A R)+ AMuigR) +
jea-2 j<I-1

AR) + 2A (uieps R).

jsJ

A(Uigl‘Ri)

Now taking expectations, with respect to J we obtain

T(s,x) = 2E(U), (13)
<

where L7= )‘(RJ)/2+)\(U,-SJ_1 R) is defined as in the proof of

Theorem 19, and similarly for L1, 172, etc. We showed in the

proof of Theorem 19 that

L‘]

E(L) <5/4,
a(x)p

and it follows that
E(L-))

/4.
s-dcgp <54
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So by (13),
T(s,x)
[9]

5. i EL)
2-id(x)p

j20

2-277-5/4
j20
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6. Implementatiomnd complexityissues

In this section we discuss issues related to the implementation
of our search strategies.

Infinitesimally small tours For the purposes of the analysis, we
allow the doubling strategies of Sections 4.2 and 5 to start with
an infinite number of infinitesimally small tours. This is a standard
way of getting around the technical complication that any strategy
which starts by a search to a constant distance €> 0 from the root
cannot be constant-competitive, and has been applied in the anal-
ysis of searching in the infinite line and the infinite star, e.g., Gal
(1974). In practice, of course, the Searcher will start its search at
some small distance from the root, and we may assume, as often
in the Computer Science literature on search algorithms, that the
Hider is at distance at least 1 from the origin. The overall analysis
remains the same, at the expense of some negligible additive con-
tribution to the overall search cost that does not affect the com-
petitive ratios.

Representation of the network |f the network Q is bounded, then
there is a straightforward way of representing it as an undirected,
weighted graph, in which the edge weights correspond to arc
lengths. However, if Q is unbounded, we need certain assumptions
in regards to how the Searcher can access the network. One such
way is to assume an oracle that given a parameter > 0 returns the
subnetwork Q[r] of Q that corresponds to all points in Q at a radius
I around the root, and which in turn can be encoded as a weighted
graph, since it is bounded. For a Hider H, and a given search strat-
egy, we denote by Oy the number of accessesto the oracle that
the strategy requires (and which we aim to bound).

With these observations in mind, we can now discuss the im-
plementation of our strategies. Concerning the “waterfilling” de-
terministic strategy of Section 3, it suffices for the Searcher to
access the oracle a logarithmic number of times, namely Oy =
O(qu(d(H))). Specifically, the oracle will reveal the subnetworks
Q2'7, with fe[1, log(d(H)) 1. Within any given subnetwork, the
strategy can be implemented in time polynomial in its graph rep-
resentation, by simply keeping track of the “active” edges, namely
arcs of the network which have been only partially searched.

Similarly, for the doubling strategies of Sections 4.2 and 5,
a logarithimic number of oracle accesses,in the distance of the
Hider, will suffice. For a given level J in the execution of these al-
gorithms, all associated actions of the strategies, namely finding
a shortest path tree, performing an RDFStraversal of the tree, or
finding a Chinese Postman tour can be done in time polynomial in
the size of the graph representation of the corresponding level.

7. Conclusion

In this work we studied expanding and pathwise search in a
general, possibly unbounded network. We focused on the competi-
tive ratio of the network as a measure for the efficiency of a search
strategy, and gave the first constant-approximation mixed strate-
gies in these settings. In particular, we addressed two open ques-
tions from Angelopoulos et al. (2019), namely how to derive effi-
cient strategies that are i) randomized; and ii) apply to a general
network and not only to discrete trees.

The obvious open problem from our work is to further improve
the approximation of the randomized competitive ratios, or iden-

tify more classes of networks for which optimal strategies can be
found (although our result of Section 4.3 shows that any such iden-
tification will unavoidably exclude some very simple networks).
Another direction is to consider searching for multiple hiders, as
an extension to multi-hider search in a star under the competitive
ratio (Angelopoulos et al., 2014) or relaxations of the competitive
ratio (Kirkpatrick, 2009; McGregor et al., 2009).

Last, concerning bounded networks, and beyond competitive
analysis of search strategies, an interesting, and perhaps surpris-
ingly open problem is to find a pathwise search strategy that min-
imizes the expected time to locate the Hider, assuming that the
Hider’s distribution is known.
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