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a b s t  r  a c t  

We study  the  classic problem  in  which  a Searcher must  locate  a hidden  point,  also called  the  Hider in  a 
network,  starting  from  a root  point.  The network  may  be either  bounded  or  unbounded,  thus  generalizing  
well-known  settings  such as linear  and star search. We distinguish  between  pathwise  search, in  which  
the  Searcher follows  a continuous  unit-speed  path  until  the  Hider  is reached, and expanding  search, in  
which,  at  any point  in  time,  the  Searcher may  restart  from  any previously  reached  point.  The former  
has been the  usual  paradigm  for  studying  search games, whereas  the  latter  is a more  recent  paradigm  
that  can model  real-life  settings  such as hunting  for  a fugitive,  demining  a field,  or  search-and-rescue  
operations.  We seek both  deterministic  and  randomized  search strategies  that  minimize  the  competitive  
ratio  , namely  the  worst-case  ratio  of  the  Hider’s  discovery  time,  divided  by the  length  of  the  shortest  path  
to  it  from  the  root.  Concerning  expanding  search, we  show  that  a simple  search strategy  that  applies  a 
“waterfilling” principle  has optimal  deterministic  competitive  ratio;  in  contrast,  we  show  that  the  optimal  
randomized  competitive  ratio  is attained  by fairly  complex  strategies  even in  a very  simple  network  of  
three  arcs. Motivated  by this  observation,  we  present  and analyze  an expanding  search strategy  that  is a 
5 
4 -approximation  of  the  randomized  competitive  ratio.  Our approach  is also applicable  to  pathwise  search, 
for  which  we  give a strategy  that  is a 5-approximation  of  the  randomized  competitive  ratio,  and which  
improves  upon  strategies  derived  from  previous  work.  

© 2020  Elsevier B.V. All  rights  reserved. 

1. Introduction 

We consider  the  classic setting  in  which  a mobile  Searcher must  
locate  a stationary  hidden  object,  called  the  Hider , in  a network  
Q with  given  arc lengths.  This general  problem  goes back to  early  
work  in  Isaacs (1965)  and Gal (1979)  , who  introduced  it  in  the  con-  
text  of the  standard,  pathwise search; namely,  in  this  usual  setting,  
the  Searcher moves at unit  speed starting  from  a given  point  O of 
the  network  that  we  call  the  root , and the  search time  is defined  as 
the  first  time  at which  the  Searcher reaches the  Hider.  A different  
approach  was recently  introduced  in  Alpern  and Lidbetter  (2013) , 
and allows  the  Searcher to  move  at infinite  speed within  any re-  
gion  of  the  network  that  it  has already  visited;  see Section 2.1 for  
a formal  definition.  This paradigm  captures  several situations  in  
which  the  cost of re-exploration  is negligible,  compared  to  the  cost 
of first-time  exploration,  and thus  can model  settings  such as min-  
ing  for  coal, hunting  a fugitive,  or  searching  for  a missing  person. 

The above works  take  the  approach  of  seeking mixed,  i.e., ran-  
domized  search strategies,  with  the  objective  of minimizing  the  
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expected  search time,  in  the  worst  case; that  is, the  maximum  ex-  
pected  search time  over  all  hiding  points  in  the  network.  This is 
accomplished  by studying  a zero-sum  game with  payoff the  search 
time,  between  a minimizing  Searcher and a maximizing  Hider.  In  
this  paper, instead,  we  study  a normalized  variant  of the  search 
time,  in  which  the  search time  for  reaching  a point  p in  Q is di-  
vided  by  the  length  of the  shortest path  from  O to  p in  Q ;  we  call  
this  the  normalized  search time  of p . The objective  thus  becomes to  
find  strategies  that  minimize  the  worst-case  (normalized)  search 
time,  by considering  all  points  in  the  network  Q . 

This normalized  formulation  was first  applied  in  search games 
over  unbounded  domains,  such as the  linear  search ( Beck & New-  
man, 1970 ) and star search ( Gal, 1972 ) problems.  Normalization  is 
essential  in  unbounded  domains,  since otherwise  the  Hider  can in-  
duce unbounded  search times,  by hiding  arbitrarily  far  from  O . Fur- 
ther  motivation  behind  the  study  of normalized  objectives  is pro-  
vided  by competitive  analysis of online algorithms  in  which  the  al-  
gorithm  operates in  a status  of total  uncertainty  about  the  input,  
and the  normalized  objective  describes how  much  close the  algo-  
rithm’s  output  is, in  comparison  to  an ideal  solution  with  com-  
plete  information  on the  input.  For this  reason, Jaillet and Stafford  
(1993)  refer  to  searching  under  the  competitive  ratio  as online 
searching . Competitive  analysis has been applied  even in  search 
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games over  a bounded  domain,  as in  Angelopoulos,  Dürr,  and Lid-  
better  (2019) ;  Fleischer, Kamphans, Klein,  Langetepe, and Trippen  
(2008)  ;  Koutsoupias,  Papadimitriou,  and Yannakakis (1996)  . We 
will  refer  to  the  competitive  ratio  of a strategy as the  worst-case  
normalized  search time  among  all  points  of the  network  1 . Lastly, 
we  define  the  competitive  ratio  of a network  Q (with  a given  root  
O ) as the  minimum  competitive  ratio  of any search strategy  for  
Q . We will  further  distinguish  between  the  deterministic  and the  
randomized competitive  ratios,  depending  on whether  we  consider  
deterministic  or  randomized  search strategies, respectively.  

1.1. Main  results 

In  this  work  we  study  the  competitive  ratio  of general net-  
works,  both  in  the  expanding  and the  pathwise  search paradigms,  
which  are defined  precisely  in  Section 2 . For expanding  search, we  
first  show  in  Section 3 that  the  deterministic  competitive  ratio  is 
achieved  by a simple  strategy.  This strategy  can be visualized  as 
the  frontier  that  is obtained  by “flooding” the  network  starting  at 
O , assuming  that  the  arcs represent  pipes  of corresponding  lengths.  
We then  move  to  randomized  strategies  for  expanding  search in  
Section 4 . Here, we  show  that,  unlike  the  deterministic  case, op-  
timal  search strategies  have a complex  statement  even on a very  
simple  network  that  consists of three  arcs. Motivated  by this  obser- 
vation,  we  give approximations  to  the  value  of  the  game. First, we  
show  that  the  randomized  competitive  ratio  of a network  is within  
a factor  of 2 of its  deterministic  competitive  ratio,  and this  bound  
is tight.  More  importantly,  we  give a class of randomized  strategies  
that  approximate  the  randomized  competitive  ratio  of  a network  
within  a factor  of 5/4.  This class of  strategies  is based on iterative  
applications  of Randomized  Depth-First-Search,  in  randomly  cho-  
sen and increasingly  large subsets of  the  network.  This strategy  is 
inspired  by a randomized  strategy  used for  tree  graphs in  the  dis- 
crete setting,  namely  when  the  Hider  can only  hide  over  vertices  of 
a given, finite  tree  ( Angelopoulos  et al., 2019 ). We emphasize  that,  
unlike  ( Angelopoulos  et al., 2019 ), in  this  work,  the  search domain  
may  be substantially  more  complex  than  a tree, and it  may  also be 
unbounded.  

Moreover,  we  give further  approximations  of the  value  of the  
game by  relating  the  payoff of  the  search strategy  to  the  function  
f Q , which  informally  gives the  measure of the  set of  points  within  
a certain  given  radius  from  the  root.  As a corollary,  we  show  that  
if  the  function  f Q is concave, the  randomized  competitive  ratio  is 
identical  to  the  deterministic  one. This finding  may  have practi-  
cal implications  in  the  context  of searching  in  a big  city,  since the  
road  network  is naturally  much  more  dense in  its  center  than  it  its  
outskirts,  and one expects this  density  to  decrease the  further  we  
move  from  the  city  center. 

Our  approach  in  studying  expanding  search, and more  specif-  
ically,  our  lower  bounds  on the  randomized  competitive  ratio,  
have implications  for  pathwise  search as well.  More  precisely,  in  
Section 5 we  give a randomized  pathwise  search strategy,  inspired  
by  the  one for  expanding  search, which  is a 5-approximation  of 
the  randomized  competitive  ratio.  This is an improvement  over 
the  3 +  2 

√  
2 ≈ 5  . 828  -approximation  that  can be derived  from  tech-  

niques  in  Koutsoupias  et al. (1996)  . 
In  Section 6 we  discuss some technicalities  relating  to  the  im-  

plementation  of  our  search strategies,  and in  Section 7 we  con-  
clude  with  directions  for  future  work.  

1 In Angelopoulos et al. (2019) ; Koutsoupias et al. (1996) the term search ratio is 
used in order to refer to the competitive ratio. In this work we choose the latter, 
since it is more prevalent, and since it has been adopted both by the Operations 
Research and the Computer Science communities; see e.g., the discussion in Alpern 
and Gal (2003) and Jaillet and Stafford (1993) . 

To illustrate  the  significance  of the  results  and the  approaches, 
consider  the  star-search problem  in  which  the  search domain  con-  
sists of  m infinite,  concurrent  rays ( Fig. 1 (a)). Star search has a long  
history  of research, and several of variants  of  this  problem  have 
been studied  under  the  competitive  ratio  (see Chapters 7 and 9 
in  Alpern  & Gal (2003)  ). It  is known  that  the  deterministic  com-  

petitive  ratio  is equal to  1 +  (2 
m 

m −1  
) 

m 
m −1  Gal (1972) . In  contrast,  the  

randomized  competitive  ratio  is not  known  (in  Kao, Ma, Sipser, and 
Yin  (1998)  optimality  is shown  under  the  fairly  restrictive  assump-  
tion  of periodic strategies).  The strategy  we  obtain  in  this  work  has 
randomized  competitive  ratio  which  is at most  a factor  of  5 from  
the  optimal  one. Furthermore,  the  result  applies  to  much  more  
complicated  unbounded  domains,  for  instance  such as the  one de-  
picted  in  Fig. 1 (b), under  the  mild  (and  necessary) assumption  that  
for  any r  >  0, the  number  of points  at distance  r  from  the  root  of 
the  network  is bounded.  

1.2. Related work  

Expanding  search on a network  was introduced  in  Alpern  and 
Lidbetter  (2013)  , with  the  focus on the  Bayesian problem  of min-  
imizing  the  expected  search time  against a known  Hider  dis-  
tribution.  In  a followup  paper  ( Alpern  & Lidbetter,  2019 ), the  
same authors  studied  expanding  search on general  networks  and 
gave two  strategy  classes that  have expected  search times  that  
are within  a factor  close to  1 of the  value  of the  game. Both  
these works  apply  to  the  unnormalized  search time.  For normal-  
ized  objectives  ( Angelopoulos  et al., 2019 ) recently  studied  expand-  
ing  search in  a fixed  (finite)  graph  in  which  the  Hider  can only  
hide  on vertices.  In  terms  of  finding  a strategy  of optimal  deter-  
ministic  competitive  ratio  ( Angelopoulos  et al., 2019 ) showed  that  
the  problem  is NP-hard, and gave a 4ln  4-approximation.  Concern-  
ing  the  randomized  competitive  ratio,  the  same work  presented  
a strategy  that  is a 5 

4 -approximation  in  the  special case of tree  
graphs. 

The competitive  ratio  of pathwise  search was first  studied  by 
Beck and Newman  in  the  context  of the  linear  search problem  
( Beck & Newman,  1970 ) and later  by  Gal (1972, 1974) for  star  
search. For fixed  graphs, assuming  that  the  Hider  can only  hide  on 
vertices,  it  is NP-hard  to  approximate  the  deterministic  competitive  
ratio  ( Koutsoupias  et al., 1996 ). The same paper  also gave constant-  
factor  approximations  for  both  the  deterministic  and the  random-  
ized  competitive  ratio,  assuming  the  graph  is undirected.  Exten-  
sions to  edge-weighted  graphs were  studied  in  Ausiello,  Leonardi,  
and Marchetti-Spaccamela  (20  0 0) , which  also showed  connections  
between  graph  searching  and classic optimization  problems  such 
as the  Traveling  Salesman problem  and the  Minimum  Latency 
problem.  The setting  in  which  the  search graph  is not  known  to  
the  Searcher, but  is rather  revealed  as the  search progresses was 
studied  in  Fleischer et al. (2008)  . 

The exact and approximate  competitive  ratio  of pathwise  search 
has been studied  in  many  settings,  mostly  assuming  a star-  
like  search domain.  Examples include  multi-Searcher  strategies  
( Angelopoulos,  Arsénio,  Dürr,  & López-Ortiz,  2016a; López-Ortiz  & 
Schuierer, 2004  ), searching  with  turn  cost ( Angelopoulos,  Arsénio,  
& Dürr,  2017; Demaine,  Fekete, & Gal, 2006  ), searching  with  prob-  
abilistic  information  ( Jaillet & Stafford,  1993 ), searching  with  up-  
per/lower  bounds  on the  distance  of the  Hider  from  the  root  ( Bose, 
Carufel, & Durocher,  2015; Hipke,  Icking,  Klein,  & Langetepe, 1999;  
López-Ortiz  & Schuierer, 2001  ), and searching  for  multiple  hiders  
( Angelopoulos,  López-Ortiz,  & Panagiotou, 2014; Kirkpatrick,  2009;  
McGregor, Onak, & Panigrahy, 2009  ). All  these works  assume that  
the  search domain  is either  the  unbounded  line  or  the  unbounded  
star. 
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Fig. 1. An illustration of different search domains. 

2. Preliminaries 

We consider  a search domain  that  is represented  by  a con-  
nected  network  Q which  consists of vertices  and arcs, and which  
has a certain  vertex  O designated  as its  root.  Moreover,  Q is en-  
dowed  with  Lebesgue measure corresponding  to  length.  The mea-  
sure of a subset A of Q is denoted  by λ( A ), and in  the  case that  Q 
has finite  measure, we  will  denote  by  μ =  λ(Q) the  total  measure  
of Q . This defines  a metric  on Q , where  d ( x , y ) is the  length  of the  
shortest  path  from  x to  y . We write  d ( x ) for  the  distance  d ( O , x ) 
from  O to  x . We denote  by deg Q (v ) the  degree of v in  Q , namely  
the  number  of arcs incident  to  v . 

We do not  limit  ourselves  to  bounded  networks,  but  make  the  
standing  assumption  that  the  network  Q satisfies  the  condition  
that  there  exists some integer  M such that  for  any r  >  0, 

|{  x ∈  Q :  d(x ) =  r}|  ≤ M.  (1)  

That is, there  are at most  M points  at distance  r  from  O . Any  net-  
work  with  a finite  number  of arcs automatically  satisfies  this  con-  
dition.  We will  see that  this  condition  ensures that  the  compet-  
itive  ratio  exists. As an example  of an unbounded  network,  if  Q 
is an m -ray  star, we  have |{  x ∈  Q :  d(x ) =  r}| =  m,  for  all  r , hence 
this  quantity  is bounded.  In  contrast,  if  Q is an unbounded  full  bi-  
nary  tree  in  which  there  are 2 i vertices  at distance  i  from  the  root,  
for  all  i ∈  N +  , then  this  quantity  is unbounded,  and this  implies  
the  competitive  ratio  is also unbounded.  Indeed,  any determinis-  
tic  search strategy  (pathwise  or  expanding)  on this  network  must  
take  at least time  2 i to  reach all  points  at distance  i from  the  root,  
so the  deterministic  competitive  ratio  would  be at least 2 i /  i  , which  
is unbounded.  We will  see later  ( Proposition  8 ) that  this  implies  
that  the  randomized  competitive  ratio  of  this  tree  network  is also 
unbounded.  

Given a network  Q , and any r  ≥ 0, we  denote  the  closed 
disc of  radius  r around  O by Q[  r]  =  { x ∈  Q :  d(x ) ≤ r } . Let r  max =  
max  x ∈ Q d(x ) be the  distance  of the  furthest  point  in  Q from  O , 
where  r  max  =  ∞  if  Q is unbounded.  We define  the  real  function  
f Q :  [0  , r max  ]  →  R given  by f Q (r ) =  λ(Q[  r] ) , so f Q ( r ) is the  measure 
of the  set of points  at distance  no more  than  r  from  the  root.  

Example 1. Fig. 2 depicts  a network  Q and the  graph  of the  func-  
tion  f Q ( r ). The numbers  on the  arcs denote  the  corresponding  
lengths.  

We begin  with  preliminary  definitions  and results  concerning  
expanding  search, since it  is a more  recent  paradigm,  and some-  
what  more  subtle  to  define.  We then  explain  how  these definitions  
change in  what  concerns  pathwise  search. 

2.1. Expanding search 

In  expanding  search, we  allow  the  search to  move  at no cost 
over  any part  of  the  network  that  it  has previously  explored.  This 
is formalized  in  the  following  definition.  

Definition 2 ( Alpern  & Lidbetter  (2013) ) . An expanding  search on 
a network  Q with  root  O is a family  of connected  subsets S ( t  ) ⊂ Q 
(for  0 ≤ t  ≤ μ ) satisfying:  (i)  S(0) =  O ;  (ii)  S ( t  ) ⊂ S ( t   ) for  all  t  ≤ t   ;  
and (iii)  λ(S(t ))  =  t for  all  t  . 

If  the  context  is clear, we  will  refer  to  an expanding  search as 
a search strategy . For a given  expanding  search S of Q and a point  
H ∈  Q , let  T (S, H) =  min  { t  :  H ∈  S(t ) } be the  (expanding) search time  
of H under  S . This was shown  to  be well  defined  in  Alpern  and 
Lidbetter  (2013)  . For H  =  O , let  ˆ T (S, H) be the  ratio  T ( S , H )/  d ( H ) of 
the  search time  of H to  the  distance  of H from  the  root.  We refer  
to  ˆ T (S, H) as the  normalized search time  . It  is convenient  to  define  
ˆ T (S, O ) to  be equal to  0. 

Definition 3. The deterministic  competitive  ratio  σS =  σS (Q) of a 
deterministic  expanding  search S of  a network  Q is given  by  

σS (Q) =  sup 
H∈  Q 

ˆ T (S, H) . 

The (deterministic,  expanding)  competitive  ratio,  σ =  σ(Q) of  Q is 
given  by 

σ(Q) =  inf  
S 

σS (Q) , 

where  the  infinum  is taken  over  all  search strategies  S . If  σS =  σ
we  say that  S is optimal.  

Note that  the  infimum  and supremum  do not  commute  in  gen-  
eral  in  Definition  3 and also that  the  competitive  ratio  of a strat-  
egy S may  be infinite.  For example,  suppose that  Q consists of  
two  unit-length  arcs a and b meeting  at the  root  and suppose S 
searches a first  and then  b . If  H lies  on the  arc b at distance  x from  
the  root  then  ˆ T (S, H) =  (a +  x ) /x  =  1 +  a/x  →  ∞  as x →  0. It  is not  
immediately  obvious  whether  or  not  the  competitive  ratio  of  a net-  
work  is finite  in  general, but  we  will  show  in  Section 3 that  this  
is indeed  the  case, by  explicitly  giving  the  optimal  search strategy  
for  any network.  

In  addition,  we  consider  randomized search strategies:  that  is, 
search strategies  that  are chosen according  to  some probability  dis-  
tribution.  We denote  randomized  strategies  by lower  case letters,  
and for  randomized  strategies  s and h for  the  Searcher and the  
Hider,  respectively,  we  denote  the  expected search time  by T ( s , h ) 
and the  expected normalized search time  by ˆ T (s, h ) . 
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Fig. 2. The calculation of the function f Q ( r ) (right) for a particular network Q (left). 

Definition 4. The randomized  competitive  ratio  ρs =  ρs (Q) of  a 
randomized  expanding  search s of a network  Q is given  by  

ρs (Q) =  sup 
H∈  Q 

ˆ T (s, H) . 

The randomized  competitive  ratio,  ρ =  ρ(Q) of  Q is given  by  

ρ(Q) =  inf  
s 

ρs (Q) , 

where  the  infimum  is taken  over  all  possible  randomized  search 
strategies  s . If  ρs =  ρ we  say that  s is optimal.  

When  clear  from  context,  we  omit  Q for  simplicity,  e.g., we  will  
use σS instead  of  σS ( Q ). 

We can view  the  randomized  competitive  ratio  of a network  
as the  value of a zero-sum  game ( Q , O ). Readers who  are fa-  
miliar  with  the  fundamentals  of zero-sum  games may  skip  the  
rest  of this  paragraph.  Recall that  a zero-sum  game between  a 
minimizer  (Player 1)  and a maximizer  (Player 2) is given  by 
two  strategy sets A and B and a payoff function  P :  A × B  →  R . 
A mixed strategy for  Player 1 is given  by a probability  distri-  
bution  π on A , and similarly  for  Player 2. Denoting  the  set of 
mixed  strategies  for  the  players  by ( A ) and ( B ), respectively,  
the  domain  of payoff function  P naturally  extends  to  ( A ) × ( B ), 
where  P ( π1 , π2 ) is given  by the  expected  payoff,  with  respect  
to  π1 ∈  ( A ) and π2 ∈  ( B ). If  V 1 =  inf  π1 ∈ ( A ) sup π2 ∈ ( B ) P (π1 , π2 ) 
and V 2 =  sup π2 ∈ ( B ) inf  π1 ∈ ( A ) P (π1 , π2 ) , then  it  is easy to  show  
that  V 1 ≤ V 2 . If  equality  holds  we  refer  to  V 1 =  V 2 as the  value of 
the  game, which  represents  the  Nash equilibrium.  The game has 
a value  if  A and B have finite  cardinality,  by von  Neumann’s  Min-  
imax  Theorem,  and there  are many  variations  of  this  theorem  for  
cases in  which  the  strategy  sets do not  have finite  cardinality.  If  the  
value, V exists  and π1 and π2 are such that  sup π2 ∈ ( B ) P (π∗

1 
, π2 ) =  

V =  inf  π1 ∈ ( A ) P (π1 , π∗
2 
) , then  we  say π∗

1 and π∗
2 are optimal  . If  

for  every  ε >  0, there  exists a mixed  strategy  π1 ∈  ( A ) such that  
| V − sup  π2 ∈ ( B ) P (π∗

1 , 
π2 ) | <  ε, then  we  say that  Player 1 has ε-  

optimal  mixed  strategies;  similarly  for  Player 2. 
In  this  work,  the  Searcher is Player 1 and the  Hider  is Player 

2. The Searcher’s strategy  set is the  set of search strategies  as de-  
scribed  above and a the  Hider’s  strategy  set is Q . The payoff of  the  
game for  two  strategies  S and H of the  Searcher and Hider,  respec- 
tively,  is the  normalized  search time  ˆ T (S, H) . For mixed  (random-  
ized)  strategies  s and h of the  Searcher and Hider,  respectively,  the  
expected  payoff is  denoted  by ˆ T (s, h ) . 

In  Alpern  and Lidbetter  (2013)  the  authors  considered  a similar  
zero-sum  game on finite  networks  in  which  the  players’  strategy  
sets are the  same but  the  payoff is  the  unnormalized  search time  
T ( S , H ). They showed  that  the  strategy  sets are compact  with  re-  
spect to  the  uniform  Hausdorff metric  and that  T ( S , H ) is lower  

semicontinuous  in  S for  fixed  H . Since d ( H ) is a constant  for  fixed  
H , it  follows  that  ˆ T (S, H) =  T (S, H ) /d (H ) is also lower  semicontin-  
uous in  S for  fixed  H , and by  a form  of the  Minimax  Theorem  
( Alpern  & Gal, 1988 ), we  have the  following  theorem.  

Theorem 5. Let Q be a finite  network  with  root  O. The game ( Q , O ) 
has a value, which  is equal to the randomized competitive  ratio  ρ( Q ) . 
The Searcher has an optimal  mixed strategy (with  competitive  ratio  
ρ( Q ) ) and the Hider has ε-optimal  mixed strategies. 

It  is not  so straightforward  to  show  that  the  game has a value  
if  Q is unbounded.  Nonetheless, this  is not  important  for  our  anal-  
ysis, and we  will  rely  on the  following  general result  for  zero-sum  
games that  for  any mixed  Hider  strategy  h , 

ρ(Q) ≥ inf  
S 

ˆ T (S, h ) , (2)  

where  the  supremum  is taken  over  all  search strategies  S . 

2.2. Pathwise search 

For pathwise  search, which  is the  usual  search paradigm,  the  
Searcher follows  a continuous,  unit-speed  path:  that  is a trajec-  
tory  S :  [0, ∞  ) →  Q with  S(0) =  O and d(S(t  1 ) , S(t  2 ))  ≤ t  2 − t  1 for  
all  t  1 <  t  2 . For such a pathwise  search S and a point  H on Q , the  
(pathwise)  search time  T ( S , H ) of H under  S is the  first  time  that  
H is reached by the  Searcher, i.e., min  { t  ≥ 0 : S (t ) = H } . The con-  
cepts of  deterministic  and randomized  search times,  as well  as the  
deterministic  and randomized  competitive  ratios  are defined  anal-  
ogously  to  Definitions  3 and 4 . 

As in  the  case of expanding  search, we  may  view  the  random-  
ized  competitive  ratio  of a network  as the  value  of  a game played  
between  a minimizing  Searcher and a maximizing  Hider  where  the  
payoff is  the  normalized  search time.  In  the  case of finite  networks,  
it  is easy to  show  that  the  value  exists, whereas  for  unbounded  
networks,  it  is again the  inequality  (2)  which  will  be most  essen- 
tial  in  our  analysis. 

3. Deterministic, expanding competitive ratio 

In  this  section  we  show  how  to  obtain  an expanding  search of 
optimal  deterministic  ratio,  using  a “water  filling” principle.  Infor-  
mally,  the  network  is searched in  such a way  that  the  set of  points  
that  have been searched at any given  time  form  an expanding  disc 
around  O . Recall the  definition  of f Q from  Section 2 . f Q is piece-  
wise  linear  and strictly  increasing  so has an inverse  g Q . The in-  
terpretation  is that  g Q ( t  ) is the  unique  radius  r  for  which  Q [  r  ]  has 
measure t  . 
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Definition 6. For a network  Q with  root  O , consider  the  expanding  
search S ∗ defined  by S ∗ (t ) =  Q[  g Q (t )]  for  0 ≤ t  ≤ r  max  . 

Thus, S ∗ ( t  ) is an expanding  disc of radius  g Q ( t  ). It  is easy to  ver-  
ify  that  S ∗ is indeed  an expanding  search. First, we  note  that  S ∗ ( t  ) 
is connected,  since Q [  r  ]  is always  connected.  It  also trivially  satis-  
fies (i)  and (ii)  from  Definition  2 , and (iii)  is also satisfied  since 

λ(S ∗ (t ))  =  λ(Q[  g Q (t )] ) =  f Q (g Q (t ))  =  t . 

We will  show  that  S ∗ attains  the  optimal  competitive  ratio.  First, 
note  that  the  search time  of a point  H ∈  Q under  S ∗ is the  unique  
time  t  such that  S ∗ (t ) =  Q[  d(H )]  , so T (S ∗ , H ) =  λ(Q[  d(H)] ) =  
f Q (d(H))  . Hence, the  competitive  ratio  of S ∗ is 

σS ∗ =  sup 
H∈  Q− { O } 

f Q (d(H))  
d(H) 

=  sup 
r>  0 

f Q (r ) 
r  

. (3)  

This has an intuitive  interpretation  as follows:  if  we  draw  the  
graph  of  f Q ( r  ) then  the  competitive  ratio  is the  slope of the  steep-  
est straight  line  through  the  origin  that  intersects  with  the  graph  
of f Q ( r ). Condition  (1)  ensures that  σS ∗ is finite  for  unbounded  net-  
works,  since f Q ( r ) ≤ Mr  for  all  r . 

Theorem 7. 2 The expanding search S ∗ is optimal  and the competitive  
ratio  σ of a network  Q with  root  O is given by 

σ =  sup 
r>  0 

f Q (r ) 
r 

. (4)  

Proof. Let S be an optimal  search, and let  t (r ) =  min  { t  >  0 :  Q[  r]  ⊂
S(t ) } be the  first  time  that  S contains  Q [  r ]. Then the  maximum  
search time  of any point  H at some fixed  distance  r from  O is t  ( r  ), 
and it  follows  that  σ =  σS is given  by 

σS =  sup 
r>  0 

t (r ) 
r  

. 

Clearly, t  ( r  ) ≥ f  Q ( r  ), so σS ∗ ≤ σS , by (3)  . The optimality  of S ∗ and the  
expression  for  σ follows.  

4. Randomized, expanding competitive ratio 

In  this  section  we  study  the  randomized  competitive  ratio  of 
expanding  search, which  is significantly  more  challenging  to  ana- 
lyze  than  the  deterministic  one. We begin  by showing  that  the  ran-  
domized  competitive  ratio  is at least half  the  deterministic  com-  
petitive  ratio  and that  there  exist  networks  for  which  this  bound  
is tight  ( Section 4.1 ). In  Section 4.2 we  give a Hider  strategy  that  
allows  us to  get useful  lower  bounds  on the  randomized  competi-  
tive  ratio.  We also obtain  bounds  on ρ that  are parameterized  by 
the  function  f Q , from  which  we  can deduce the  randomized  com-  
petitive  ratio  for  networks  with  concave f Q . In  Section 4.3 we  show  
that  the  randomized  strategy  may  have a quite  complex  statement,  
even for  very  simple  networks  that  consist  only  of three  arcs. We 
address this  difficulty  in  Section 4.4 , in  which  we  give a strategy  
that  is within  a factor  at most  5/4  of the  optimal  randomized  com-  
petitive  ratio,  for  all  networks.  

4.1. A simple approximation  of the randomized competitive  ratio  

Recall that  S ∗ denotes  the  optimal  deterministic  search strategy  
of Section 3 . 

2 This theorem appeared without proof as Theorem 6 of Angelopoulos, Dürr, and 
Lidbetter (2016b) . 

Fig. 3. A network for which ρ ≈ σ/2. 

Proposition 8. 3 For a network  Q with  root O , the randomized com- 
petitive  ratio  ρ satisfies 

σ/  2 ≤ ρ ≤ σ. 

Furthermore, the bounds are tight,  in  the sense that  they are the best 
possible. 

Proof. The right-hand  inequality  is clear, since every  deterministic  
search strategy  is also a randomized  search strategy.  To prove  the  
left-hand  inequality,  we  first  observe that  since S ∗ is an optimal  
deterministic  search, for  any ε >  0, we  can find  some point  H on 
Q such that  ˆ T (S ∗ , H) ≥ σ − ε. Let r =  d(H) so that  σ ≤ f  Q (r ) /r  +  ε. 
Let h be the  Hider  strategy  that  hides  on Q [  r  ]  uniformly:  that  is, it  
chooses a subset of Q [  r  ]  with  probability  proportional  to  the  mea-  
sure of that  subset. For any search strategy  S , the  expected  search 
time  T ( S , h ) is at least λ( Q [  r  ])/2,  so 

ρ ≥ sup  
S 

ˆ T (S, h ) 

≥
λ(Q[  r] ) /  2 

r 
(since  every  point  in  Q[  r]  is at distance  

no  more  than  r from  the  root)  

=  
f Q (r ) 

2 r  

≥
σ − ε 

2 
. 

Since ε can be arbitrarily  small,  it  follows  that  ρ ≥ σ/2. 
We will  now  argue that  both  bounds  are tight.  This is trivially  

true  for  the  right-hand  inequality  since the  network  consisting  of 
one arc with  the  root  at its  end has the  same deterministic  and 
randomized  competitive  ratio.  

For the  left-hand  inequality,  consider  the  network  depicted  in  
Fig. 3 . The normalized  search time  ˆ T (S ∗ , H) is maximized  at leaf 
nodes X , so that  σ =  ˆ T (S ∗ , X) =  (n +  n 2 ) /  (n +  1) =  n . 

Consider now  the  randomized  strategy  s that  searches the  arc 
of length  n first  before  searching  the  remainder  of the  arcs in  a 
uniformly  random  order.  Then all  points  H at distance  no greater  
than  n have expected  normalized  search time  1;  a point  H at dis-  
tance d >  n has 

ˆ T (s, H) =  
d +  (n 2 − 1 ) /  2 

d 
≤ 1  +  

(n 2 − 1 ) /  2 
n 

≤ 1  +  n/  2 , 

so ρ ≤ 1  +  n/  2 =  1 +  σ/  2 . Since ρ ≥ σ/2, we  must  have that  
σ/  ρ →  2, as n →  ∞  . 

A corollary  of Proposition  8 is that  the  “water-filling” search  S ∗

approximates  the  optimal  randomized  search by  a factor  of 2. 

3 This proposition appeared without proof as Proposition 7 of Angelopoulos et al. 
(2016b) . 
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4.2. A Hider strategy, and lower  bounds on the randomized 
competitive  ratio  

For a general network  Q , let  A be a connected  subset. Let d ( A ) 
be the  distance  from  O to  A and let  u A be the  Hider  strategy  
(probability  measure)  that  hides  uniformly  on A , so that  u A (X) =  
λ(X) / λ(A ) for a measurable subset X  ⊂ A . Then denote  the  average 
distance  from  O to  points  in  A by d (A ) =  

 
x ∈ A d (x ) d u A (x ) . 

Theorem 9. Consider the Hider strategy h A given by 

d h A (x ) =  
d (x ) 

d (A ) 
d u A (x ) . 

By adopting the strategy h A , the Hider ensures that  the randomized 
competitive  ratio  ρ satisfies 

ρ ≥
d(A ) +  λ(A ) /  2 

d (A ) 
. 

Proof. Let S be any search strategy, and note  that  T (S, u A ) ≥ d (A ) +  
λ(A ) /  2 . We have 

ρ ≥ ˆ T (S, h A ) =  

 

x ∈ A 

T (S, x ) 
d(x ) 

dh A (x ) 

=  
1 

d (A ) 

 

x ∈ A 
T (S, x ) du A (x ) 

=  
1 

d (A ) 
T (S, u A ) 

≥
d(A ) +  λ(A ) /  2 

d (A ) 
. 

To illustrate  the  applicability  of Theorem  9 , we  show  how  to  ob-  
tain,  in  a different  way, the  corollary  of Proposition  8 that  the  op-  
timal  deterministic  search strategy  approximates  the  optimal  ran-  
domized  strategy  by a factor  of 2. 

Corollary 10. The optimal  deterministic  search S ∗ approximates the 
randomized competitive  ratio  by a factor of 2. 

Proof. Let ε >  0 and let  x be a point  of Q such that  σ ≤ ˆ T (S ∗ , x ) +  
ε/  2 =  λ(A ) /d (x ) +  ε/  2 , where  A ≡ Q [  d ( x )]  is the  set of all  points  at 
distance  at most  d ( x ). By Theorem  9 , ρ ≥ λ(A ) /  (2 d (A ))  , so 

σ
ρ ≤

λ(A ) /d (x ) +  ε/  2 

λ(A ) /  (2 d (A ))  
=  

2 d (A ) 
d(x ) 

+  
ε d (A ) 
λ(A ) 

≤ 2  +  ε. 

Since ε can be arbitrarily  small,  the  corollary  follows.  

More  importantly,  Theorem  9 allows  us to  obtain  the  following  
lower  bound  on the  randomized  competitive  ratio  of Q . 

Lemma 11. For any network  Q with  root  O , it  holds that  ρ ≥
deg Q (O ) . 

Proof. Let E O denote  the  set of arcs in  Q that  are incident  with  
O . Fix r  0 >  0 such that  r  0 ≤ min  e ∈ E O 

λ(e ) ;  clearly,  such an r  0 must  
exist.  Let A =  Q[  r  0 ]  be the  ball  of points  in  Q that  are at distance  
at most  r  0 from  O , and let  h A be the  Hider  strategy  associated with  
A , and defined  as in  the  statement  of Theorem  9 . We calculate  the  
average distance  d (A ) from  O to  points  in  A by  writing  

d (A ) =  

 r 0 

0 
1 − u  A (Q[  r] ) dr  =  

 r 0 

0 
1 −

r  
r  0 

dr  =  
r 0 
2 

. 

Moreover,  from  the  definition  of A , we  have that  λ(A ) =  deg Q (O ) ·
r  0 . By Theorem  9 , we  have 

ρ ≥
λ(A ) 

2 d (A ) 
=  deg Q (O ) . 

The above lemma  implies  a tight  bound  on the  randomized  
competitive  ratio  for  all  networks  Q for  which  the  function  f Q is 
concave, as shown  in  the  following  corollary.  

Corollary 12. For any network  Q for which  f Q is concave, we have 
that  σ =  ρ =  deg Q (O ) , and strategy S ∗ is an optimal  randomized 
strategy. 

Proof. The lower  bound  on ρ follows  from  Lemma  11 . For the  up-  
per  bound,  by (4)  , we  have ρ ≤ σ =  sup r>  0 f Q (r ) /r,  and for  any 
network  for  which  f Q is concave, it  holds  that  sup r>  0 f Q (r ) /r  =  
deg Q (O ) . 

Note that  Corollary  12 applies  to  star  networks  with  m rays, 
since in  this  case, f Q is linear;  thus,  σ =  ρ =  m . 

Example 13. An example  of a network  for  which  f Q is concave is 
depicted  in  Fig. 4 , along  with  a plot  of  its  function  f Q . 

More  generally,  we  have established  the  following  approxima-  
tion.  

Corollary 14. Suppose that  for the network  Q it  holds that  
sup r>  0 f Q (r ) /r  ≤ α deg Q (O ) , for some α >  1 . Then S ∗ approximates 
the optimal  randomized ratio  of Q within  a factor of at most α. 

4.3. Optimal  randomized strategies are complex: Y -networks  

We now  consider  a class of the  simplest  networks  for  which  the  
function  f Q is not  concave, and thus  Corollary  12 does not  apply.  In  
particular,  we  consider  the  Y-network  depicted  in  Fig. 5 consisting  
of a node v which  is incident  to  three  arcs of lengths  1, L and M ≥ L . 
The root  node  is the  other  endpoint  of the  arc of length  1. We refer  
to  the  arc of  length  L as the  “left  arc” and  the  arc of length  M as 
the  “right  arc”. 

Clearly  the  optimal  Hider  strategy  on the  Y -network  will  hide  
on the  arc incident  to  the  root  with  probability  0. Let A be the  
subset of Q consisting  of all  the  points  on the  left  arc at distance  
at most  x from  v and all  the  points  on the  right  arc at distance  
at most  y from  v . From Theorem  9 , by using  the  strategy  h A , the  
Hider  ensures that  the  competitive  ratio  is at least 

ρ ≥
d(A ) +  λ(A ) /  2 

d (A ) 

1 +  (x +  y ) /  2 

1 +  (x/  (x +  y ))( x/  2) +  (y/  (x +  y ))  y/  2 

=  1 +  
2 xy 

x (x +  2) +  y (y +  2) 
. 

By elementary  calculus, this  bound  is maximized  for  x =  L and y =  

min  { M,  
 
L (L +  2) } , giving  

ρ ≥ V :=  1 +  
2 LM  

L (L +  2) +  M  (M   +  2) 
, (5)  

where  M  =  min  { M,  
 
L (L +  2) } . 

We show  that  the  expression  V given  in  (5)  is indeed  the  ran-  
domized  competitive  ratio  by giving  an optimal  Searcher strategy.  
The optimal  Searcher strategy  we  present  mixes  between  four  dif-  
ferent  strategies  which  we  list  below.  (Each strategy  begins  by 
searching  the  arc incident  to  the  root,  so we  do not  mention  this  
part  of the  search.) 

A . Search the  left  arc first  then  search the  right  arc. 
B . Search the  right  arc up  to  length  M  first  then  the  left  arc then  

search the  remainder  of  the  right  arc. 
C . Search the  left  arc and the  right  arc at the  same time,  at speeds 

proportional  to  L and M  respectively,  until  the  whole  of  the  
left  arc has been searched, then  search the  remainder  of  the  
right  arc. In  other  words,  in  the  time  interval  [1  , 1 +  t ] , search 
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Fig. 4. An example of a network Q (left) and the function r → f ( r ) ≡f Q ( r ) (right). All arcs in Q are unit-length. 

Table 1 
An optimal search strategy for the Y -network. 

Search strategy Probability Exp. search time on left Exp. search time on right 

A 2 M  
L (L +2 )+  M  (M  +2 ) 1 + a 1 + L + b

B L 2 +2  L −M   2 
L (L +2 )+  M  (M  +2 ) 1 + M  + a 1 + b

C 2 L 2 
L (L +2 )+  M  (M  +2 ) 1 + a 

L (L + M  ) 1 + b 
M  (L + M  ) 

D 2 M  2 −2  L 2 
L (L +2 )+  M  (M  +2 ) 1 + M  

2 + a 1 + b 
M  (L + M  ) 

tL/  (L +  M  ) of the  left  arc and tM   /  (L +  M   ) of the  right  arc, for  
t  ≤ L  +  M  , then  search the  remainder  of the  right  arc. 

D . Begin by searching  the  right  arc, but  at some time  chosen uni-  
formly  at random  between  0 and M  , search the  whole  of the  
left  arc before  completing  the  search of the  right  arc. 

In  Table 1 we  list  probabilities  that  the  Searcher should  choose 
each of these four  strategies  along  with  the  expected  search time  
of a point  at distance  a ≤ L from  v on the  left  arc and a point  at 
distance  b ≤ M   from  v on the  right  arc. 

A simple  calculation  shows that  for  points  on the  left  arc at dis-  
tance a ≤ L from  v , the  expected  search time  is V (1 +  a ) and for  
points  on the  right  arc at distance  b ≤ M   from  v , the  expected  
search time  is V (1 +  b) . For points  on the  right  arc at distance  
b >  M  from  v (if  such points  exist),  the  expected  search time  is 
1 +  L +  b, and it  is easy to  show  that  this  is strictly  less than  
V (1 +  b) . Hence the  randomized  competitive  ratio  is V . 

Example 15. Consider the  Y -network  L =  1 and M =  2 . In  this  
case, M  =  min  { 2 , 

√  
1 · 3 } =  

√  
3 , so the  value  V of the  game, given  

in  (5)  is V =  1 +  2 · 1 ·
√  

3 /  (1 · 3 +  
√  

3 · ( 
√  

3 +  2))  =  (1 +  
√  

3 ) /  2 . An 
optimal  strategy  for  the  Hider  is h A , where  A consists of the  left  
arc and the  points  on the  right  arc within  distance  

√  
3 from  v . An 

optimal  strategy  for  the  Searcher is to  use strategies  A , C and D 
with  probabilities  ( 

√  
3 − 1 ) /  2 , (3 −

√  
3 ) /  6 and (3 −

√  
3 ) /  6 , respec- 

tively.  

4.4. A 5 
4 

-approximation  of the randomized competitive  ratio  

In  this  section  we  give a search strategy  that  is a 5 
4 -  

approximation  of the  optimal  randomized  search. This is inspired  
by the  strategy  of Angelopoulos  et al. (2019)  for  the  discrete  case, 
namely  for  searching  in  a given  graph  when  the  Hider  can only  
hide  at a vertex.  

We first  define  the  concept  of  a Randomized Depth-First Search 
( RDFS ) of a tree  T . Let S be any depth-first  search of T and let  
S −1  be the  depth-first  search that  visits  the  leaf nodes of T in  the  
reverse order  from  S . Then the  randomized  search s that  chooses 
between  S and S −1  equiprobably  is a RDFS of T . 

Fig. 5. The Y -network. 

Lemma 16. Let s be a RDFS of a tree T . Then the expected time  T ( s , 
H ) at which  a point  H ∈  T is found by s satisfies 

T (s, H) ≤
λ(T ) +  d(H) 

2 
. 

Proof. Suppose s is an equiprobable  mixture  of  the  depth-first  
search S and its  reverse S −1  . Let t  1 =  T (S, H) and t  2 =  T (S −1  , H) . 
Then 

T (s, H) =  
t  1 +  t  2 

2 
=  

λ(S(t  1 ))  +  λ(S(t  2 ))  

2 
. 

It  is easy to  see that  S ( t  1 ) ∩  S ( t  2 ) is the  path  from  O to  H , so 

λ(S(t  1 ))  +  λ(S(t  2 ))  =  λ(S(t  1 ) ∪  S(t  2 ))  +  λ(S(t  1 ) ∩  S(t  s ))  

≤ λ(T ) +  d(H) . 

The lemma  follows.  

Now  we  can define  the  randomized  search that  is a 5 
4 -  

approximation.  For an arbitrary  network  Q , let  Q T be its  shortest  
path  tree. We will  define  a search of  Q T which  naturally  translates  
to  a search of Q . First  we  partition  Q T into  infinitely  many  ran-  
domly  chosen subsets R j , j  ∈  Z . To define  the  sets R j , we  choose 

numbers  d j uniformly  at random  from  the  interval  [2  j−1  , 2 j ]  , and 
set R j :=  { x ∈  Q T :  d j ≤ d (x ) <  d j+1  } . We call  the  R j the  levels of the  
search. 
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The randomized doubling  strategy s is defined  as follows.  At  the  
start  of  the  j  th  iteration,  ∪  i <  j R i has already  been searched, and 
we  shrink  it  to  the  root,  so that  now  R j is a subtree  of the  re-  
sulting  network.  The j  th  iteration  is then  a RDFS of  R j . Note that  
this  means that  s begins with  infinitely  small  RDFS’s, similarly  
to  optimal  strategies  for  the  linear  search problem,  as studied  in  
Gal (1974) . 

Before proving  that  the  randomized  doubling  strategy  is a 5 
4 -  

approximation  for  the  optimal  randomized  search, we  first  estab-  
lish  two  technical  lemmas.  Let Q j =  { x ∈  Q T :  2 j−1  ≤ d (x ) <  2 j } , for  
j  ∈  Z , and let  Q j =  ∪  i ≤ j  Q i . 

Lemma 17. For any j  ∈  Z , 

1 −
d (Q j ) 

2 j 
λ(Q 

j ) ≤ 2  j−1  ρ. 

Proof. Applying  Theorem  9 to  Q j , 

1 −
d (Q j ) 

2 j 
λ(Q 

j ) ≤ 1 −
d (Q j ) 

2 j 
· 2 d (Q 

j ) ρ. 

Regarding the  right-hand  side of the  expression  above as a 
quadratic  in  d (Q j ) , it  is maximized  when  d (Q j ) =  2 j−1  , and the  
lemma  follows.  

Lemma 18. The expected measure of Q j ∩  R j−1  is (2 −
d (Q j ) /  2 j−1  ) λ(Q j ) . 

Proof. A point  x ∈  Q j is contained  in  R j−1  if  and only  if  d j >  x . This 

occurs with  probability  (2 j − d (x ))  /  2 j−1  . Therefore,  the  expected  
measure of Q j ∩  R j−1  is 

 

x ∈ Q j 

2 j − d (x ) 

2 j−1  
λ(Q j ) du (x ) =  2 −

d (Q j ) 

2 j−1  
λ(Q j ) . 

Theorem 19. The randomized doubling  strategy s is a 5 
4 -  

approximation  of the optimal  randomized search. In particular,  
ρs ≤ (5 /  4) ρ +  1 /  2 . 

Proof. Suppose that  the  randomized  competitive  ratio  of s is max-  
imized  at some point  x which  is contained  in  Q k , for  some k . 
Let J be a random  variable  that  takes the  value  k − 1  or  k de-  
pending  on whether  x is contained  in  R k −1  or  R k , respectively.  Let 
L J =  λ(∪  i<J R i ) +  λ(R J ) /  2 be the  random  variable  equal to  the  sum  
of  half  the  measure of R J and the  measure of all  levels preceding  
R J . Then, by Lemma  16 , the  expected  search time  of x is at most  
E (L J ) +  d(x ) /  2 . Hence 

ρs 
ρ ≤

(E (L J ) +  d (x ) /  2) /d  (x ) 
ρ =  

E (L J ) /d (x ) 
ρ +  

1 

2 ρ
. 

We just  have to  show  that  E (L J ) /  (d(x ) ρ) ≤ 5  /  4 . Let L 
J 
1 
, L 

J 
2 and L 

J 
3 

be the  contributions  to  L J from  Q k −1  , Q k and Q k +1  , respectively,  so 

that  L J =  λ(Q k −2  ) +  L 
J 
1 +  L 

J 
2 +  L 

J 
3 . 

We first  compute  E (L 
J 
1 
) . Note that  if  d k ≤ x , which  happens  

with  probability  (d(x ) − 2  k −1  ) /  2 k −1  , then  J =  k so that  R J is dis-  

joint  from  Q k −1  . In  this  case L 
J 
1 =  λ(Q k −1  ) . Otherwise,  with  proba-  

bility  (2 k − d (x ))  /  2 k −1  , we  have that  J =  k − 1  , and L 
J 
1 is equal to  

the  sum  of half  the  expected  measure of Q k −1  ∩  R k −1  and the  mea-  
sure of Q k −1  ∩  R k −2  , or  equivalently,  the  sum  of λ(Q k −1  ) /  2 and half  
the  expected  measure of  Q k −1  ∩  R k −2  . Applying  Lemma  18 , with  
j  =  k − 1  , this  is equal  to  

λ(Q k −1  ) 

2 
+  

1 

2 
2 −

d (Q k −1  ) 

2 k −2  
λ(Q k −1  ) =  

3 

2 
−

d (Q k −1  ) 

2 k −1  
λ(Q k −1  ) . 

Putting  this  together,  

E (L 
J 
1 
) =  

d(x ) − 2  k −1  

2 k −1  
λ(Q k −1  ) 

+  
2 k − d (x ) 

2 k −1  
3 

2 
−

d (Q k −1  ) 

2 k −1  
λ(Q k −1  ) 

=  2 −
d(x ) 

2 k − 2 −
d(x ) 

2 k −1  

d (Q k −1  ) 

2 k −1  
λ(Q k −1  ) . (6)  

Next,  we  consider  L 
J 
3 . With  probability  (2 k − d (x ))  /  2 k −1  , we  have 

that  d k >  d ( x ), so that  J =  k − 1  , and R J is disjoint  from  Q k +1  . In  this  

case, L 
J 
3 is zero. Otherwise,  J =  k,  and L 

J 
3 is equal to  half  the  ex-  

pected  measure of Q k +1  ∩  R k . Applying  Lemma 18 again, this  time  
with  j  =  k +  1 , gives 

E (L 
J 
3 
) =  

d(x ) − 2  k −1  

2 k −1  1 −
d (Q k +1  ) 

2 k +1  
λ(Q k +1  ) . (7)  

Lastly, we  consider  L 
J 
2 . Denote  by Q k [  d ]  the  set of  points  in  Q k 

at distance  at most  d from  O . If  d k ≤ d  ( x ), then  J =  k − 1  and 
L 

J 
2 =  λ(Q k [  d k ] ) +  λ(Q k − Q k [  d k ] ) /  2 . If  d k >  d ( x ) then  J =  k and L 

J 
2 =  

λ(Q k [  d k ]) /  2 . Integrating  over  all  possible  value  of y =  d k , we  ob-  
tain  

E (L 
J 
2 
) =  

1 

2 k −1  

 d(x ) 

2 k −1  
λ(Q k [  y ] ) +  λ(Q k − Q k [  y ] ) /  2 dy 

+  
1 

2 k −1  

 2 k 

d(x ) 
λ(Q k [  y ] ) /  2 dy 

=  
1 

2 k −1  

 d(x ) 

2 k −1  
λ(Q k ) /  2 dy +  

1 

2 

 2 k 

2 k −1  

1 

2 k −1  
λ(Q k [  y ] ) dy. 

Now, the  second integral  above is equal to  the  expected  measure 
of Q k ∩  R k −1  , and using  Lemma  18 with  j  =  k gives 

E (L 
J 
2 
) =  

d(x ) − 2  k −1  

2 k 
λ(Q k ) +  

1 

2 
2 −

d (Q k ) 

2 k −1  
λ(Q k ) 

=  
d(x ) 

2 k +  
1 

2 
−

d (Q k ) 

2 k 
λ(Q k ) . (8)  

Substituting  Eqs. (6)  , (7)  and (8)  in  E (L ) =  λ(Q k −2  ) +  E (L 
J 
1 
) +  

E (L 
J 
2 
) +  E (L 

J 
3 
) and rearranging,  we  obtain  

E (L 
J ) =  1 −

d(x ) 

2 k 

d (Q k −2  ) 

2 k −2  − 1  λ(Q 
k −2  ) 

+  
3 

2 
−

d(x ) 

2 k −1  1 −
d (Q k −1  ) 

2 k −1  
λ(Q 

k −1  ) 

+  
3 

2 
−

d(x ) 

2 k 1 −
d (Q k ) 

2 k 
λ(Q 

k ) 

+  
d(x ) 

2 k −1  − 1  1 −
d (Q k +1  ) 

2 k +1  
λ(Q 

k +1  ) . 

The first  term  in  the  expression  on the  right-hand  side above is 
non  positive,  since d ( x ) ≤ 2  k and d (Q k −2  ) ≤ 2  k −2  , so, dividing  by  
d ( x ), we  obtain  

E (L J ) 
d(x ) 

≤
3 

2 d(x ) 
−

1 

2 k −1  1 −
d (Q k −1  ) 

2 k −1  
λ(Q 

k −1  ) 

+  
3 

2 d(x ) 
−

1 

2 k 1 −
d (Q k ) 

2 k 
λ(Q 

k ) 

+  
1 

2 k −1  −
1 

d(x ) 
1 −

d (Q k +1  ) 

2 k +1  
λ(Q 

k +1  ) . (9)  
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Each of the  three  terms  on the  right-hand  side of (9)  is non-  
negative  for  2 k −1  ≤ d (x ) ≤ 3  · 2 k −2  , and in  this  case it  follows  from  
Lemma  17 that  

E (L J ) 
d(x ) ρ

≤
3 

2 d(x ) 
−

1 

2 k −1  2 
k −2  +  

3 

2 d(x ) 
−

1 

2 k 2 
k −1  

+  
1 

2 k −1  −
1 

d(x ) 
2 

k 

=  1 +  
2 k −3  

d(x ) 

≤5  /  4 , 

where  the  maximum  is attained  at d(x ) =  2 k −1  . If, on the  other  
hand, 3 · 2 k −2  ≤ d (x ) ≤ 2  k , then  the  first  term  on the  right-hand  
side of  (9)  is negative  and the  other  two  are positive.  Hence, ap-  
plying  Lemma  17 again we  obtain  

E (L J ) 
d(x ) ρ

=  
3 

2 d(x ) 
−

1 

2 k 2 
k −1  +  

1 

2 k −1  −
1 

d(x ) 
2 

k 

=  3 /  2 − 2  
k −2  /d (x ) 

≤ 5  /  4 , 

where  the  maximum  is attained  at d(x ) =  2 k . This completes  the  
proof.  

5. Randomized pathwise competitive ratio 

In  this  section  we  study  search strategies  for  a network  Q , 
in  the  pathwise  search paradigm.  An obvious  first  approach  is 
to  apply  the  doubling  technique  of Koutsoupias  et al. (1996)  , in  
the  context  of  a general, and possibly  unbounded  network  rather  
than  a fixed  graph. We will  first  show  that  this  approach  yields  a 
3 +  2 

√  
2 ≈ 5  . 828  -approximation  of the  randomized  competitive  ra-  

tio  and we  will  later  show  how  to  improve  the  approximation  ratio  
to  5, based on ideas from  Section 4.4 . 

Let r >  1 be a parameter  that  will  be determined  later,  and re-  
call  that  Q [  r i ]  ⊆Q denotes  the  network  of points  in  Q at distance  at 
most  r  i from  O for  all  integers  i  . The strategy  works  in  iterations,  
until  the  Hider  is located.  Namely  in  iteration  i , the  Searcher fol-  
lows  a Random Chinese Postman Tour of the  network  Q [  r i ]. More  
precisely,  the  Searcher computes  a Chinese Postman Tour of  Q [  r i ], 
(i.e., a minimal  time  tour  that  visits  the  points  of all  arcs in  Q [  r  i ]),  
then  mixes  equiprobably  between  the  tour  itself  and its  reversed  
one. Let s r denote  this  strategy.  The following  theorem  is based on 
the  approach  of Koutsoupias  et al. (1996)  . 

Theorem 20. Strategy s r is a 2( r 
r−1  +  r 

2 
) -approximation  of the ran-  

domized competitive  ratio.  In particular,  for r  =  1 +  
√  

2 , we have that  
ρ(s r ) ≤ (3 +  2 

√  
2 ) ρ. 

Proof. For a fixed  Hider  strategy,  let  j  denote  the  iteration  in  which  
s r locates the  Hider,  and let  C i denote  the  contribution  to  the  ex-  
pected  search cost of  s r in  iteration  i  for  i ≤ j  . Moreover,  let  l ( Q [  r i ])  
denote  the  length  of the  optimal  Chinese Postman  Tour in  Q [  r i ]. 
Then, 

ρ(s r ) ≤ sup  
j≥1  

 j 
i =  −∞  

C i 
r  j−1  

. (10)  

By considering  a Hider  that  hides  uniformly  at random  on Q [  r i ], we  
obtain  that  

ρ ≥
l (Q[  r i ] ) 

2 r  i 
. (11) 

Lastly, since the  Searcher discovers  the  Hider  on iteration  j  , we  
have that  

C i =  l (Q[  r  
i ] ) , if  i  <  j  and C j =  

l (Q[  r  j ] ) 

2 
. (12)  

By combining  (10) , (11) , (12)  , we  obtain  that  

ρ(s r ) ≤ 2  · sup 
j≥1  

 j−1  
i =  −∞  

r  i +  1 
2 
r  j 

r  j−1  
ρ =  2 

r  
r − 1  

+  
r  

2 
ρ. 

The optimal  choice of  r  that  minimizes  the  above expression  is r  =  
1 +  

√  
2 , from  which  it  follows  that  ρ(s r ) ≤ (3 +  2 

√  
2 ) ρ. 

We now  show  how  the  randomized  doubling  strategy  of 
Section 4.4 can be adapted  for  the  pathwise  case to  give an im-  
proved  approximation  ratio  of 5. We define  the  shortest  path  trees 
Q j and the  random  levels, R j , j  ∈  Z as in  the  expanding  search 
setting.  A Randomized  Depth-First  Search (RDFS) is defined  simi-  
larly  in  the  pathwise  search setting  as an equiprobable  mixture  of 
a depth-first  search S and its  reverse search S −1  , except that  we  
stipulate  that  S and S −1  return  to  the  root  O after  visiting  all  the  
leaf nodes. We will  use the  following  lemma,  whose  proof  can be 
found,  for  example,  in  Alpern  and Gal (2003)  . 

Lemma 21. Let s be a (pathwise)  RDFS of a tree T . Then the expected 
time  T ( s , H ) a point  H ∈  T is found by s satisfies 

T (s, H) ≤ λ(T ) . 

The (pathwise)  random  doubling  strategy  then  performs  succes- 
sive RDFS’s of unions of levels ∪  i ≤ j  R j . 

Theorem 22. The (pathwise)  random doubling  strategy s is a 5-  
approximation  for  the optimal  randomized pathwise search. That is, 
ρs ≤ 5  ρ. 

Proof. As in  the  proof  of Theorem  19 , suppose that  the  random-  
ized  competitive  ratio  of s is maximized  at some point  x which  is 
contained  in  Q k , for  some k . Again, we  define  J as the  index  of the  
level  containing  x . We use Lemma 21 to  write  down  an expression  
for  the  expected  search time  of  x , conditioned  on J , and which  we  
will  denote  by  T ( s , x | J ). 

T (s, x | J) =  λ(∪  i ≤J R i ) +  
 

j≤J−1  

2 λ(∪  i ≤ j  R i ) . 

Rearranging, we  have 

T (s, x | J) =  λ(R J ) +  λ(∪  i ≤J−1  R i ) 

+  
 

j≤J−1  

λ(R j ) +  λ(∪  i ≤ j−1  R i ) +  λ(∪  i ≤ j  R i ) 

=  

 

λ(R J ) +  
 

j≤J−1  

λ(R j ) 

 

+  

 

λ(∪  i ≤J−1  R i ) +  
 

j≤J−2  

λ(∪  i ≤ j  R i ) 

 

+  
 

j≤J−1  

λ(∪  i ≤ j  R i ) 

=  
 

j≤J 

λ(R i ) +  2 λ(∪  i ≤ j−1  R i ) . 

Now  taking  expectations,  with  respect  to  J , we  obtain  

T (s, x ) =  
 

j≤J 
2 E (L 

j ) , (13)  

where  L J =  λ(R J ) /  2 +  λ(∪  i ≤J−1  R i ) is defined  as in  the  proof  of 
Theorem  19 , and similarly  for  L J−1 , L J−2 , etc. We showed  in  the  
proof  of Theorem  19 that  

E (L J ) 
d(x ) ρ

≤ 5  /  4 , 

and it  follows  that  

E (L J− j ) 

2 − j  d(x ) ρ
≤ 5  /  4 . 
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So by (13) , 

ˆ T (s, x ) 
ρ ≤

 

j≥0  

2 · 2 − j  E (L J− j ) 

2 − j  d(x ) ρ

≤
 

j≥0  

2 · 2 − j  · 5 /  4 

=  5 . 

6. Implementation and complexity issues 

In  this  section  we  discuss issues related  to  the  implementation  
of  our  search strategies.  

Infinitesimally  small tours For the  purposes  of the  analysis, we  
allow  the  doubling  strategies  of Sections 4.2 and 5 to  start  with  
an infinite  number  of infinitesimally  small  tours.  This is a standard  
way  of  getting  around  the  technical  complication  that  any strategy  
which  starts  by a search to  a constant  distance  c >  0 from  the  root  
cannot  be constant-competitive,  and has been applied  in  the  anal-  
ysis of  searching  in  the  infinite  line  and the  infinite  star, e.g., Gal 
(1974) . In  practice,  of course, the  Searcher will  start  its  search at 
some small  distance  from  the  root,  and we  may  assume, as often  
in  the  Computer  Science literature  on search algorithms,  that  the  
Hider  is at distance  at least 1 from  the  origin.  The overall  analysis 
remains  the  same, at the  expense of  some negligible  additive  con-  
tribution  to  the  overall  search cost that  does not  affect  the  com-  
petitive  ratios.  

Representation of the network  If  the  network  Q is bounded,  then  
there  is a straightforward  way  of  representing  it  as an undirected,  
weighted  graph, in  which  the  edge weights  correspond  to  arc 
lengths.  However,  if  Q is unbounded,  we  need certain  assumptions  
in  regards to  how  the  Searcher can access the  network.  One such 
way  is to  assume an oracle  that  given  a parameter  r  >  0 returns  the  
subnetwork  Q [  r ]  of Q that  corresponds  to  all  points  in  Q at a radius  
r  around  the  root,  and which  in  turn  can be encoded as a weighted  
graph, since it  is bounded.  For a Hider  H , and a given  search strat-  
egy, we  denote  by O H the  number  of accesses to  the  oracle that  
the  strategy  requires  (and  which  we  aim  to  bound).  

With  these observations  in  mind,  we  can now  discuss the  im-  
plementation  of our  strategies. Concerning  the  “waterfilling” de-  
terministic  strategy  of Section 3 , it  suffices  for  the  Searcher to  
access the  oracle a logarithmic  number  of times,  namely  O H =  
O ( log  (d(H)))  . Specifically,  the  oracle will  reveal  the  subnetworks  
Q [2  i ], with  i ∈  [1,  log  ( d ( H ))   ]. Within  any given  subnetwork,  the  
strategy  can be implemented  in  time  polynomial  in  its  graph  rep-  
resentation,  by simply  keeping  track  of the  “active” edges,  namely  
arcs of  the  network  which  have been only  partially  searched. 

Similarly,  for  the  doubling  strategies  of Sections 4.2 and 5 , 
a logarithimic  number  of oracle accesses, in  the  distance  of the  
Hider,  will  suffice.  For a given  level  j  in  the  execution  of these al-  
gorithms,  all  associated actions  of  the  strategies, namely  finding  
a shortest  path  tree, performing  an RDFS traversal  of the  tree, or  
finding  a Chinese Postman tour  can be done  in  time  polynomial  in  
the  size of the  graph  representation  of  the  corresponding  level. 

7. Conclusion 

In  this  work  we  studied  expanding  and pathwise  search in  a 
general, possibly  unbounded  network.  We focused on the  competi-  
tive  ratio  of the  network  as a measure for  the  efficiency  of  a search 
strategy,  and gave the  first  constant-approximation  mixed  strate-  
gies in  these settings.  In  particular,  we  addressed two  open  ques- 
tions  from  Angelopoulos  et al. (2019) , namely  how  to  derive  effi-  
cient  strategies  that  are i)  randomized;  and ii)  apply  to  a general  
network  and not  only  to  discrete  trees. 

The obvious  open  problem  from  our  work  is to  further  improve  
the  approximation  of the  randomized  competitive  ratios,  or  iden-  

tify  more  classes of  networks  for  which  optimal  strategies  can be 
found  (although  our  result  of Section  4.3 shows  that  any such iden-  
tification  will  unavoidably  exclude  some very  simple  networks).  
Another  direction  is to  consider  searching  for  multiple  hiders,  as 
an extension  to  multi-hider  search in  a star  under  the  competitive  
ratio  ( Angelopoulos  et al., 2014 ) or  relaxations  of the  competitive  
ratio  ( Kirkpatrick,  2009;  McGregor  et al., 2009  ). 

Last, concerning  bounded  networks,  and beyond  competitive  
analysis of  search strategies,  an interesting,  and perhaps  surpris-  
ingly  open  problem  is to  find  a pathwise  search strategy  that  min-  
imizes  the  expected  time  to  locate  the  Hider,  assuming  that  the  
Hider’s  distribution  is known.  
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