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A B S T R A C T

The latest Triassic was an interval of prolonged biotic extinction culminating in the end-Triassic Extinction
(ETE). The ETE is now associated with a perturbation of the global carbon cycle just before the end of the Triassic
that has been attributed to the extensive volcanism of the Circum-Atlantic Magmatic Province (CAMP).
However, we attribute the onset of declining latest Triassic diversity to an older perturbation of the carbon cycle
(δ13Corg) of global extent at or very close to the Norian/Rhaetian boundary (NRB). The NRB appears to be the
culmination of stepwise biotic turnovers that characterize the latest Triassic and includes global extinctions of
significant marine and terrestrial fossil groups. These biotic events across the NRB have been largely under-
appreciated, yet together with a coeval disturbance of the carbon cycle were pivotal in the history of the Late
Triassic. Here, we present new and published δ13Corg data from widespread sections (Italy, Greece, ODP,
Australia, New Zealand, USA, Canada). These sections document a previously unknown perturbation in the
carbon cycle of global extent that spanned the NRB. The disturbance extended across the Panthalassa Ocean to
both sides of the Pangaean supercontinent and is recorded in both the Northern and Southern Hemispheres. The
onset of stepwise Late Triassic extinctions coincides with carbon perturbation (δ13Corg) at the NRB, indicating
that a combination of climatic and environmental changes impacted the biota at a global scale. The NRB event
may have been triggered either by gas emissions from the eruption of a large igneous province pre-dating the
NRB, by a bolide impact of significant size or by some alternative source of greenhouse gas emissions. As yet, it
has not been possible to clearly determine which of these trigger scenarios was responsible; the evidence is
insufficient to decisively identify the causal mechanism and merits further study.

1. Introduction

The Triassic Period is unique among the geologic periods of the

Phanerozoic because it is the only period constrained by two of the
largest declines in biodiversity of the Phanerozoic: 1) the end-Permian
mass extinction, which is the most extensive biotic extinction of the
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Phanerozoic (e.g., Benton and Twitchett, 2003; Erwin, 2006); and 2)
the end-Triassic biotic decline, culminating in the extinctions across the
Triassic/Jurassic boundary (TJB; e.g., Hallam, 2002; Tanner et al.,
2004; Richoz et al., 2007; Lucas and Tanner, 2018).

Environmental instability is characteristic of the Triassic. During the
Late Triassic in particular (ca. 237–201.3 Ma), Pangaea experienced a
variable climate regime (e.g., Preto et al., 2010; Rigo et al., 2012a;
Trotter et al., 2015) that was interrupted by several global events in-
cluding humid episodes (e.g., Carnian Pluvial Episode, Late Triassic of
Simms and Ruffell, 1989, 1990; Simms et al., 1995) and warm cycles.
The warm cycles (W1, W2, and W3) are documented by δ18Ophosp from
conodont biogenic apatite (Rigo et al., 2012a; Trotter et al., 2015) and
supported by pCO2 reconstruction based on stable isotopes of pedogenic
carbonates from the Newark Basin in the USA (Knobbe and Schaller,
2018). Additional evidence of climatic perturbations at the NRB has
been suggested recently by evidence of a major mega-monsoon climate
in Australian paleolatitudes. In fact, Zeng et al. (2019) describe a mega-
monsoon climate for the Northwest Shelf of Australia that reached its
peak during the Carnian Pluvial Episode and weakened at the NRB, so
that the climate during the Rhaetian became non-seasonal. This change
in seasonality also was expressed by changes in vegetation as indicated
by certain plant biomarkers from the same region (e.g., cadalene and
retene: Cesar and Grice, 2019). These climatic perturbations may have
resulted from extreme volcanic activity, with consequent impacts on
Earth’s biota (e.g., Raup and Sepkoski, 1982; McElwain et al., 1999;
Hallam, 2002; Marzoli et al., 2004; Rigo et al., 2007; Rigo and
Joachimski, 2010; McRoberts et al., 2008; Lucas, 2010; Ogg, 2012; Dal
Corso et al., 2014; Trotter et al., 2015).

Important clues to the evolution of ocean water chemistry, oxyge-
nation, and productivity of past marine environments, including those
of the Triassic, are recorded by changes in the isotopic composition of
sediments (organic and inorganic). In particular, perturbations ob-
served in δ13C values are widely applied and interpreted as indicators of
paleoclimatic and paleoenvironmental changes (e.g., Hayes et al., 1999;
Veizer et al., 1999; Payne et al., 2004; Ward et al., 2004; Korte et al.,
2005; Lucas, 2010; Muttoni et al., 2004, 2014; Galli et al., 2005, 2007;
Mazza et al., 2010; Preto et al., 2010; Whiteside and Ward, 2011;
Zaffani et al., 2017, 2018). The stable carbon isotope record available
for the Triassic gives a general overview of the evolution of δ13C, but its
paleoclimatic and paleooceanographic interpretation is somewhat un-
certain due to the multiple ecological and geochemical controls that can
drive changes in the stable carbon isotope system.

From a broad perspective, a pronounced negative δ13C excursion
across the Permian/Triassic boundary marks the beginning of the
Triassic Period. This severe perturbation of the global carbon cycle is
followed by large isotopic variability during the earliest Triassic (e.g.,
Payne et al., 2004; Tanner, 2010) that eventually leads to a more stable
period spanning the Middle to the early Late Triassic (Julian, early
Carnian) (Payne et al., 2004; Tanner, 2010). This interval is char-
acterized by steadily rising δ13C values that are likely related to biotic
recovery in the aftermath of the end-Permian mass extinction and the
resulting enhanced storage of organic carbon in terrestrial environ-
ments (e.g., Lucas, 2010).

The Late Triassic is framed by two significant negative carbon iso-
tope shifts, both linked to the emplacement of Large Igneous Provinces
(LIPs). The first δ13C excursion occurred during the middle Carnian
climate perturbation referred to as the Carnian Pluvial Episode (Dal
Corso et al., 2014, 2018) and is likely associated with the emplacement
of the Wrangellia Igneous Province (e.g., Furin et al., 2006; Dal Corso
et al., 2014). The second δ13C perturbation, recorded at the Triassic-
Jurassic transition (uppermost Rhaetian to lowermost Hettangian), is
associated with the End-Triassic Extinction (ETE) and the emplacement
of the Central Atlantic Magmatic Province (CAMP; e.g., Marzoli et al.,
2004; Whiteside et al., 2010; Schaller et al., 2012; Zaffani et al., 2018).

The causes of the Triassic carbon isotope excursions remain a topic
of much debate, with the most likely trigger mechanisms being related

to greenhouse gas emissions produced by volcanic activity, the volatiles
of which can derive from both the magma itself and/or be released by
the combustion of crustal materials in contact with the magma
(Clapham and Renne, 2018). Alternatively, other processes that can
contribute to the occurrence and magnitude of the observed carbon
cycle perturbation include changes in primary biotic productivity,
global ocean anoxia or seafloor methane release (e.g., Richoz et al.,
2007; Lucas, 2010; Clapham and Renne, 2018). In principle, all of these
processes are capable of perturbing the global carbon cycle and causing
episodes of biotic crises (e.g., Rampino and Stothers, 1988; Wignall,
2001; Jones and Jenkyns, 2001; Ward et al., 2004; Richoz et al., 2007;
van de Schootbrugge et al., 2008; Jenkyns, 2010; Tanner, 2010; Pálfy
et al., 2001; Trotter et al., 2015).

Published δ13Corg data are especially focused on mass extinction
events (i.e., Permian/Triassic boundary, Triassic/Jurassic boundary),
whereas long-term background data (before and after those events) are
comparatively less abundant. Data from the Norian (ca.
227.0–205.7 Ma; Diakow et al., 2011, 2012; Maron et al., 2015) of
North America reveal rapid oscillations of δ13Corg that culminate in a
positive δ13Corg peak, which corresponds to the virtual extinction of the
bivalve Monotis around the NRB (Ward et al., 2004; Wignall et al.,
2007; Whiteside and Ward, 2011; Rigo et al., 2016; Bertinelli et al.,
2016; Zaffani et al., 2017). This positive excursion has been interpreted
as the possible result of reduced circulation of ocean waters (Sephton
et al., 2002; Ward et al., 2004; Wignall et al., 2007), and it is preceded
by a negative shift (Maron et al., 2015; Rigo et al., 2016; Bertinelli
et al., 2016; Zaffani et al., 2017).

Relatively few δ13Corg records are available for the Rhaetian (ca.
205.7–201.3 ± 0.2 Ma; Williford et al., 2007; Schoene et al., 2010;
Wotzlaw et al., 2014; Maron et al., 2015; Rigo et al., 2016), a stage
marked by significant faunal turnovers in both the marine and con-
tinental realms, including taxa such as ammonites (Guex et al., 2004;
Whiteside and Ward, 2011), conodonts (Kozur and Mock, 1991;
Giordano et al., 2010; Karádi et al., 2019), bivalves (McRoberts and
Newton, 1995), radiolarians (Carter, 1993; Ward et al., 2001; Carter
and Hori, 2005; O’Dogherty et al., 2010), the coral reef community
(Flügel and Kiessling, 2002), dinoflagellates and foraminiferans
(Hesselbo et al., 2002), calcareous nannofossils (van de Schootbrugge
et al., 2007; Preto et al., 2012, 2013), theropod dinosaurs (Olsen et al.,
2002), and terrestrial plants (McElwain et al., 1999, 2009; Kürschner
et al., 2007; Bonis et al., 2009; Cesar and Grice, 2019). The Rhaetian
experienced a series of biotic crises and turnovers that culminated in
the crisis at the Triassic/Jurassic boundary (TJB), which supports the
hypothesis of a step-like extinction pattern for the end-Triassic mass
extinction (e.g., Hallam, 2002; Tanner et al., 2004; Whiteside and
Ward, 2011; Lucas and Tanner, 2018; Karádi et al., 2019).

Moreover, the latest Rhaetian is widely accepted to have been af-
fected by the extensive eruptive activity of the CAMP, which is thought
to have triggered three major negative carbon isotope excursions
(CIEs): the ‘main’ CIE at the TJB, preceded by the late Rhaetian ‘initial’
and ‘precursor’ CIEs; the latter two are commonly associated with two
different eruptive phases of the Moroccan CAMP (Marzoli et al., 2004;
Hesselbo et al., 2002, 2007; Deenen et al., 2010; Zaffani et al., 2018).
Although much attention has been focused on δ13C evolution across the
TJB, much less is known about the background carbon isotope condi-
tions from the Norian (aside from the aforementioned North American
section) to the early-middle Rhaetian and their possible links to the
faunal extinction patterns and/or climate events documented at this
time.

Herein we present evidence of a significant δ13Corg excursion at the
NRB. A key section representing this excursion is the Pignola-Abriola
section (GSSP candidate for the Rhaetian Stage) (Lagonegro Basin,
Southern Apennines, Italy; Fig. 1), which is a sedimentary NRB suc-
cession deposited in the western portion of the Tethys Ocean (Bazzucchi
et al., 2005; Rigo et al., 2016; Bertinelli et al., 2016). We compare
carbon isotope data from this site with data from other sections located
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at varying latitudes and from both hemispheres, and we associate the
δ13Corg perturbations across the NRB with heightened faunal turnovers,
including ammonoids, conodonts, radiolarians, bivalves, coral reefs,
and terrestrial and marine vertebrates.

2. Geological setting of the studied sections

We have examined and correlated multiple stratigraphic sections
situated in the two hemispheres, on opposite sides of Pangea, and lo-
cated at different latitudes by using chemo- and biostratigraphic con-
straints (Fig. 1).

In particular, we studied three NRB sections that crop out in the
Southern Apennines (Italy) in the Lagonegro Basin, which is considered
a branch of the western Tethys Ocean and part of the Ionian Sea
(Ciarapica and Passeri, 1998; Stampfli et al., 2003) (Fig. 2). In the
Lagonegro Basin, the Upper Triassic is represented by the Calcari con
Selce (i.e., Cherty Limestones) and the overlying Scisti Silicei (e.g.,
radiolarites) formations. The Calcari con Selce Formation consists of
limestones with cherts in nodules and beds, intercalated with marls and
siltstones (rare calcarenites), and rich in conodonts, radiolarians and
thin-shelled pelagic bivalves (e.g., Halobia, Monotis) (e.g. Amodeo,
1999; Bazzucchi et al., 2005; Bertinelli et al., 2005, 2016; Giordano
et al., 2010; Rigo et al., 2012b, 2016) (Fig. 1). The three sections,
Pignola-Abriola, Mt. Volturino and Madonna del Sirino, document a
well-exposed and fairly complete NRB, and they have been investigated
from stratigraphic, sedimentological and biostratigraphic points of view
(e.g. Amodeo, 1999; Bertinelli et al., 2005, 2016; Bazzucchi et al., 2005;

Reggiani et al., 2005; Rigo et al., 2005, 2012a, 2016; Giordano et al.,
2010, 2011) and also for magnetostratigraphy (Pignola-Abriola, Maron
et al., 2015, 2019), geochemistry (Amodeo, 1999; Casacci et al., 2016)
and chemostratigraphy (Trotter et al., 2015; Zaffani et al., 2017)
(Fig. 1). Another section from the western Tethys Ocean is the Kastelli
section (Pindos Zone) that is exposed in the Peloponnese (Greece)
(Degnan and Robertson, 1998), and belonging to the tectono-strati-
graphic terranes of the Hellenides (Brunn, 1956). This section consists
of cherty limestones alternating with shale, with documented slumps
(Drimos Formation), and bears conodonts, foraminifers, and thin-
shelled bivalves belonging to the genus Halobia (Degnan and Robertson,
1998) (Fig. 1). Both the Lagonegro Basin and Pindos Zone were located
in the Northern Hemisphere during the Late Triassic (Fig. 2). The
Kennecott Point (British Columbia) and the New York Canyon (Nevada)
sections were also located in the Northern Hemisphere during the
Norian-Rhaetian time interval, but on the western side of Pangea, fa-
cing the Panthalassa Ocean (Fig. 2). The Kennecott Point section
(Queen Charlotte Islands, British Columbia, Canada) is represented by
black calcareous siltstone and shale, rich in fossils (e.g. bivalves, radi-
olarians), sometimes in bivalve coquina beds, belonging to the Peril
Formation (e.g. Ward et al., 2001, 2004), and deposited in a back-arc
basin (Cameron and Tipper, 1985; Carter, 1993). The New York Canyon
section was also deposited in a back-arc basin before being accreted
onto the western United States (Nevada), and it is represented by the
two facies of the Nun Mine Member and Mount Hyatt Member of the
Gabbs Formation, which are the offshore slope facies in the shale-and-
carbonate succession, and a combination of nearshore facies, both

Fig. 1. Geological setting scheme of the studied sections.
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above and below fair-weather wave base in the carbonate-and-shale
unit (Laws, 1982; Tackett and Bottjer, 2016) (Fig. 1, 2).

The studied sections from the North-West Shelf of Australia
(Wombat and Carnarvon Basins) and New Zealand (Murihiku Terrane)
were instead located in the Southern Hemisphere (southern Tethys) at
that time, although at different paleolatitudes, i.e. 25–30° S for the
North-West Shelf, Australia (Exon and von Rad, 1994) and close to the
South Pole for the New Zealand section (Seton et al., 2012) (Figs. 1, 3).
The Triassic strata of Hole 761C (core R33 to R26) from the Wombat
Basin are dominated by black clayey siltstone at the base, and layers of
calcareous sediments above, representing a proximal slope and evol-
ving into an inner shelf to reefal carbonate margin. These cores of the
Ocean Drilling Program (ODP) have been constrained biostrati-
graphically with dinoflagellate cysts, forams and nannofossils
(Bralower et al., 1992; Brenner et al., 1992; Zaninetti et al., 1992;
Gardin et al., 2012) (Figs. 1, 3). The Northern Carnarvon Basin received
instead a thick fill of fluvio-deltaic sediments during a long-term re-
gression. The predominant lithology corresponds to claystone and
sandstone, with siltstone and some coal interbedded in the Mungaroo
Formation (Norian), whereas claystone becomes more dominant in the

overlying Brigadier Formation (Rhaetian), where the depositional en-
vironment had a major estuarine influence. Both formations are dated
by palynomorphs (Woodside Energy Ltd., 1977; Hocking et al., 1987;
Longley et al., 2002) (Figs. 1, 3). The Kiritehere section crops out on the
western Tasman Sea coast of the central North Island (New Zealand),
and it consists of a volcaniclastic sedimentary rock succession with
slumps dominated by fine sandstone and siltstone rich in bivalve co-
quinas (Arawi Shellbeds Formation), grading into thin siltstones and
shales (Ngutunui Formation), rich in bivalves (Grant-Mackie, 1981,
2013). This succession is interpreted to represent a mid-shelf environ-
ment that accumulated in an elongate forearc basin marginal to an
active, subduction-related volcanic arc that lay to the west of Kir-
itehere, along the edge of Gondwana (Grant-Mackie, 2013) (Figs. 1, 3).

3. Geochemistry – materials and methods

3.1. Methods for δ13Corg of bulk organic matter

Prior to acidification, all samples were washed in high-purity water
and selected to avoid sampling of unrepresentative portions (e.g.,

Fig. 2. Position of the studied sections in the Northern Hemisphere. 1) Lithostratigraphy and Sr isotope ratio for the New York Canyon section (Nevada) are after
Tackett et al. (2014). The δ13Corg is illustrated here for the first time. 2) Information of the Kennecott point section is from Ward et al. (2004). 3) Litho-, bio- and
chemostratigraphy of the Lagonegro sections (Pignola-Abriola, Mt. Volturino and Madonna del Sirino) are from Zaffani et al. (2017 and references herein). Dashed
line in Pignola-Abriola represents δ13Corg new data (modified after Zaffani et al., 2017). 4) Kastelli section (Greece) is illustrated with new litho-, bio- and che-
mostratigraphic data. Dashed lines in δ13Corg indicate gaps due to slumps.
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fracture-filling mineralization, bioturbation, diagenetic alteration). A
few grams of each sample were reduced to a fine powder using a Retsch
RM0 grinder or manually, using an agate mortar, and dried overnight at
40 °C. All the pulverized rock samples were then acid-washed with 10%
HCl overnight (at least 12 h). Successively, the solution was discarded
after centrifuging. Samples were then neutralized in deionized water,
dried at 40°C overnight and wrapped in tin capsules.

The δ13Corg analyses were undertaken using a Delta V Advantage
mass spectrometer connected to a Flash HT Elemental Analyzer. For
every set of analyses, multiple blank capsules and isotope standards
(IAEA CH-6 = -10.45‰, IAEA CH-7 = -32.15‰) (Coplen et al., 2006)
were included. Raw data were corrected for the blank contribution and
then were calibrated against IAEA CH-6 and IAEA CH-7 following the
two-point calibration method. The standard deviation of the in-house
standard (δ13Corg = -26.00‰) during the period of analyses was better
than 0.2‰.

The δ13Corg analyses refer to the δ13C composition of bulk organic
matter. Organic matter can be made up of a number of components,
such as bacteria, phytoplankton, zooplankton, pollen and/or other
terrestrial biomass. Each of these components has a characteristic value
of δ13Corg. As a result, changes in relative contributions of these com-
ponents could affect the δ13Corg record, without necessarily requiring
changes in the isotopic composition of the ocean and/or the atmosphere
(Van de Schootbrugge et al., 2008; Fio et al., 2010; Bartolini et al.,
2012). Nevertheless, if similar coeval trends occur at distant locations,
the robust correlation between δ13Corg excursions can indicate regional,
or, if more extensive, global interpretation. In fact, the amplitude and
absolute values of coeval δ13Corg changes may be amplified or dam-
pened by local environmental conditions and source control, i.e., the

contribution of marine relative to terrestrial organic matter, and pro-
found changes in the composition of standing biomass, i.e., the terres-
trial floras or phytoplankton communities (Van de Schootbrugge et al.,
2008). Despite regional differences in absolute value, the similarity
between two or more coeval trends in the δ13Corg profile likely indicates
a regional or global history (Bartolini et al., 2012).

3.2. Compound specific isotope analysis (CSIA)

The aromatic compounds were isolated by small-scale silica gel li-
quid chromatography, dissolved in n-hexane (see also Maslen et al.,
2011), and analysed by compound specific isotope analyses. A Thermo
Scientific Trace GC Ultra connected to a Thermo Scientific Delta V
Advantage irMS via a GC Isolink and Conflo IV was used for the stable
carbon compound specific isotope analysis (CSIA) by gas chromato-
graphy – isotope-ratio mass spectrometry (GC-irMS). For each fraction,
1 μL of solution was injected into a split-splitless injector that operates
in splitless mode, held at 280 °C. The compounds were separated
chromatographically on a wall-coated open tubular (WCOT) fused silica
capillary column (60 m X 0.25 mm internal diameter) with a 0.25 μm
5% phenyl-methyl-silicon stationary phase (DB-5). The temperature of
the GC oven was programmed from 40 to 325 °C (at 3 °C/min) and was
held isothermally for 45 minutes at 325 °C. Compound identification
was achieved by comparing the mass spectra and the available litera-
ture. Helium was used as the carrier gas at a constant flow of 1.5 mL/
min. GC column outflow passed through the GC Isolink combustion
reactor (copper oxide and nickel oxide, held at 1000 °C), which com-
busted each peak to a separate peak of CO2. The δ13C values are ex-
pressed in parts per mil (‰) relative to the International Vienna Peedee

Fig. 3. Position of the studied sections in the Southern Hemisphere. 1) Norian-Rhaetian interval at Site 761C hole C (Wombat Basin, NW Australia), with nannofossils
distribution from Gardin et al. (2012), forams from Zaninetti et al. (1992), and dinoflagellates from Brenner et al. (1992). Dashed lines in δ13Corg indicate gaps in core
recovery. 2) Lithostratigraphy, selected bivalve bioevents and δ13Corg of the Kiritehere section, North Island, New Zealand. 3) Evidence of isotopic perturbations in
wells from the Northwest Shelf of Australia. a) δ13C values for the kerogen, total organic carbon content (TOC) and phenanthrene (Phe) for source rock samples from
the Delambre-1 well in the Dampier sub-Basin. b) δ13C of fluoranthene (fla), benzofluoranthenes (Bfla) and pristane (Pr)/phytane (Ph) ratios for source rock samples
from the North Rankin - 5 well in the Dampier sub-Basin. δ13C of fluoranthene from Cesar and Grice (2017). Norian-Rhaetian boundary from Woodside Energy Ltd.
(1981) and Marshall and Lang (2013). δ13C data from the Delambre-1 well from Marshall and Lang (2013).
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Belemnite (VPDB) standard and were calculated by Thermo Isodat
software from the integration of the 44, 45 and 46 mass ion currents.
For every two sample measurements, a mixture of standards with
known δ13C values was analysed in order to ensure instrument accu-
racy. Peaks co-eluting, as well as those at very low concentrations, were
not considered for our interpretations. Only target compounds with a
standard deviation of less than 0.4‰ were taken into account.

Kerogen and total organic carbon (TOC) δ13Corg values were mea-
sured in a Delambre-1 well using a 20/20 ion ratio mass spectrometer
and Roboprep preparation system, manufactured by Europa PDZ, UK.
Ground samples were placed in a tin capsule and dropped onto a fur-
nace at 1000 °C while in an oxygen atmosphere. Combustion products
were passed through a second furnace (600 °C) where excess oxygen
was absorbed, and nitrogen oxide was reduced to nitrogen. The samples
were also passed over magnesium perchlorate to trap the water. The
system was calibrated using known δ13C international laboratory
standards (Grice et al., 2005).

4. Results

4.1. Lagonegro Basin, Pignola-Abriola section

A total of 14 new samples were prepared and analyzed to augment
the organic carbon δ13C set across the NRB. The results are consistent
with the samples analysed previously for the same time interval, fitting
the δ13Corg curve presented in Zaffani et al. (2017) and illustrated in
Fig. 2. Values for the Mt. Volturino and Madonna del Sirino sections are
those reported in Zaffani et al. (2017) (Fig. 2) (Table S1).

4.2. Pindos Zone (Peloponnese, Greece), Kastelli section

Only 30 of the 99 samples collected from this section provided a
δ13Corg signal; the carbon content of the remaining samples was too low
for carbon isotope analysis. Therefore, the resolution of the δ13Corg

profile is lower than expected, but some trends can be outlined and may
be related to the biostratigraphic data. The δ13Corg curve depicts three
trends corresponding to portions of the three perturbations (S1, S2 and
S3) described by Zaffani et al. (2017). These are, in ascending strati-
graphic order: i) a decrease through the conodont Mockina bidentata
Zone below the FO of Misikella hernsteini Zone (ca. 6‰) that was in-
terpreted as equivalent to S1 (Zaffani et al., 2017); ii) a positive trend
within the Misikella hernsteini Zone, representing the return to positive
values of the S2 recorded in the Lagonegro Basin (Zaffani et al., 2017);
and iii) a negative shift starting in the upper M. hernsteini Zone and
intersecting the FO of Misikella posthernsteini, corresponding to the S3
negative shift (Zaffani et al., 2017) (Fig. 2) (Table S1).

4.3. Nevada – USA, New York Canyon section

Eighteen shale samples were analysed to describe the variation of
the δ13Corg across the NRB in the New York Canyon section, though we
note that the position of the NRB in the New York Canyon section is not
tightly constrained by current biostratigraphy. The resulting δ13Corg

profile shows a negative CIE coinciding with the negative 87Sr/86Sr shift
documented within the Mount Hyatt Member of the upper Gabbs
Formation (Tackett et al., 2014). These trends are similar to those re-
corded in other coeval sections (Korte et al., 2003). In the lower part of
the section, a general trend towards more positive δ13Corg values is
documented; this trend ends with a δ13C value of ca. -25‰. Subse-
quently, a δ13C depletion of ca. 2.5‰ is recorded, with a successive
return to more positive values (Fig. 2) (Table S1).

4.4. Wombat Basin (northwestern Australia), ODP SITE 761C

A total of 25 shale samples (and rare shaley marls) from cores 33
(Section 1-2), 32 (1, 2, 3) and 31 (3, 4, 5) collected during the ODP

were analysed. Despite the low core recovery at Hole 761C, a decrease
in the δ13Corg profile of ca. 3.5‰ at the Norian-Rhaetian transition was
detected and was placed between 32R and 33R by the occurrence of the
typical Rhaetian nannofossil Euconusphaera zlambachensis in core 32R
Section 3 (Gardin et al., 2012) (Fig. 3) (Table S1).

4.5. Murihiku Terrane – Zealandia (New Zealand), Kiritehere section

The 34-metre thick Kiritehere section was studied in great detail.
Sixty-eight samples of shales and thin siltstones from the upper part and
bivalve coquinas from the lower part were collected and analysed for
organic stable carbon isotopes (δ13Corg). In the lower part of the section,
a severe negative shift of ca. 5‰ was detected, preceded by a short
positive peak with respect to background values of ca. -28‰. The NRB
is placed between the δ13Corg negative shift and the disappearance of
the bivalve Monotis. It is noteworthy that the δ13Corg curve after the
NRB perturbation follows rapid positive-negative oscillations (Fig. 3)
(Table S1).

4.6. Dampier sub-Basin, Carnarvon Basin, North-West Australia

A core from the Delambre-1 well demonstrates a trend of depleted
isotopic values for the kerogen and total organic carbon, just below the
NRB (Fig. 3). The recovery follows a positive excursion, and subse-
quently, the isotopic profiles become more stable. We also investigated
the δ13C of select polycyclic aromatic hydrocarbons (PAHs) such as
phenanthrene and source-specific PAHs, including fluoranthene and
benzofluoranthenes, which are combustion products from land plants
(Jiang et al., 1998; Grice et al., 2007; Cesar and Grice, 2017). Phe-
nanthrene shows depleted δ13C values (comparable with the δ13C of
kerogen and TOC) at the NRB in the Delambre-1 well, even though this
signal might be overprinted by multiple sources (marine and terrestrial)
of this compound. However, if we consider source specific compounds,
i.e., fluoranthene and benzofluoranthenes, the negative isotope excur-
sion is more evident in a core from the North Rankin-5 well, im-
mediately above the NRB. In the North Rankin-5 well, these isotopic
trends are corroborated by a record of anoxia (isoprenoids ratio Pris-
tane/Phytane < 1) (Fig. 3) (Table S1).

5. Discussion

5.1. Extinction record across the NRB

Here we review the nature of extinctions that took place across the
NRB and during the early-middle Rhaetian. Most of these extinctions
were long conflated as a single mass extinction at the end of the
Triassic, the so-called ETE at the TJB (e.g., Sepkoski Jr., 1982, 1996;
Olsen and Sues, 1986; Olsen et al., 1987; Kiessling et al., 1999, 2007;
Tomašových and Siblík, 2007; Wignall et al., 2007; Vazquez and
Clapham, 2017). However, recent developments in marine (e.g.,
McRoberts, 2010; O’Dogherty et al., 2010; Orchard, 2010; Rigo et al.,
2018) and non-marine biostratigraphy, magnetostratigraphy (e.g.,
Muttoni et al., 2010; Kent et al., 2017; Maron et al., 2019), radio-
isotopic dating (e.g., Wotzlaw et al., 2014; Davies et al., 2017) and
other dating methods (e.g. Maron et al., 2015) have allowed a much
more detailed sequencing of biotic events during the NRB and TJB in-
tervals than was possible 20 years ago (cf. Hallam, 2002; Tanner et al.,
2004; Lucas and Tanner, 2008, 2015, 2018). These developments en-
able the identification of significant extinctions of marine pelagic biota
across the NRB and during the Rhaetian, and the interpretation of tet-
rapod extinctions on land across the same boundary.

Nevertheless, we add the caveat that better stratigraphic resolution
is needed for many of the taxa across the NRB. Thus, some of the ex-
tinctions at the NRB identified here are likely subject to the compiled
correlation effect, meaning that there may be within-late Norian or
within-Rhaetian events that are condensed into an apparent, single NRB
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extinction. Thus, further work is needed to better resolve the timing of
some biotic events across the NRB. Nonetheless, we do believe that
there is a strong signal, and that there were substantial extinction
events across the NRB, here referred to as the NRB extinction.

5.1.1. Marine extinctions across the NRB.
In the marine realm, there were striking and extensive extinctions

among several biotic groups across the NRB, almost all of which were
members of marine pelagic communities. Most striking, and long
known, are the ammonoid extinctions. It has long been clear that the
largest extinction of Late Triassic ammonoids took place at the end of
the Norian, not at the end of the Triassic (Kummel, 1957; House, 1963;
Kennedy, 1977; Newell, 1967; Teichert, 1988; Whiteside and Ward,
2011; Lucas, 2018a). After this extinction, only a few ammonoid taxa
populated the Rhaetian seas, limited to heteromorphs and some Ar-
cestaceae and Clydonictacea (Wiedmann, 1973). The Late Triassic
ammonoid extinctions were a succession of diversity drops, with the
last, most substantial drop at the end of the Norian, not at the end of the
Triassic. Thus, ammonoid extinctions across the TJB are best described
as stepwise (Wiedmann and Kullman, 1996; Lucas, 2018a).

A compilation of ammonoid global diversity at the stage level in-
dicates that, after a Norian (mostly Alaunian) peak in diversity, the
most substantial extinction of ammonoid families and genera took place
across the NRB (Lucas, 2018a). This is best documented in the New
York Canyon area of Nevada, USA, where Taylor et al. (2000, 2001),
Guex et al. (2002, 2003), and Lucas et al. (2007) plotted ammonoid
distribution based on decades of collecting and study. Their work
documents a two-phase latest Triassic ammonoid extinction, one ex-
tinction phase in the late Norian followed by a phase of low diversity
Rhaetian ammonoid fauna that became extinct by the end of the
Triassic (also see Lucas and Tanner, 2008, 2018). Thus, the ammonoid
extinction across the NRB is profound and evident in both abundance
data and stratigraphic ranges.

Recent analysis of marine bivalve diversity across the TJB, based on
a generic compilation at the stage level, shows that generic diversity
peaked during the Norian and was followed by a sharp drop into the
Rhaetian and Hettangian (Ros, 2009; Ros and Echevarria, 2011; Ros
et al., 2011, 2012). Extinction rates were high during the Rhaetian, and
origination rates were low. This is consistent with more detailed studies
(local and regional) of Late Triassic marine bivalve stratigraphic dis-
tributions (e.g., Allasinaz, 1992; McRoberts, 1994; McRoberts and
Newton, 1995; McRoberts et al., 1995; Wignall et al., 2007). The latter
studies identified multiple and selective bivalve extinction events
within the Norian, Rhaetian, and across the TJB, with a particularly
important extinction at the NRB. This extinction of bivalves included
the virtual disappearance of the cosmopolitan and abundant pectina-
cean Monotis (Dagys and Dagys, 1994; Hallam and Wignall, 1997) in-
cluding the two dwarf Rhaetian species (McRoberts, 2007; Krystyn
et al., 2007; McRoberts et al., 2008). McRoberts’ (2007, 2010) sum-
maries of the Late Triassic diversity dynamics of ‘flat clams’ (halobiids
and monotids) indicate these organisms suffered their largest extinction
at the NRB. Allasinaz (1992) also drew attention to the end-Norian
turnover of megalodontid bivalves and concluded that the marine bi-
valve extinction at the NRB was larger than the extinction at the TJB,
during which megalodontids decreased in size before their extinction
(Todaro et al., 2017, 2018).

A major turnover in radiolarians took place across the TJB, and this
has been widely considered as an important component of a marine
mass extinction. Like the ammonoid and bivalve extinctions, this ‘mass
extinction’ also has important components that precede the TJB. Global
compilations indicate a substantial drop in radiolarian generic diversity
from the Norian into the Rhaetian (e.g., O’Dogherty et al., 2010;
Kiessling and Danelian, 2011). At the best-studied and most complete
radiolarian record across the TJB (Queen Charlotte Islands in western
Canada, recently renamed Haidi Gwaii), Carter (1993, 1994) estab-
lished the Proparvicingula moniliformis Zone and the Globolaxtorum tozeri

Zone to encompass the lower and upper Rhaetian radiolarian assem-
blages. Over half of the 160 radiolarian species present at the base of
the P. moniliformis Zone disappear by the top of this zone; this is a
substantial within-Rhaetian radiolarian extinction (Longridge et al.,
2007). Biostratigraphic ranges of 156 radiolarian species in the Triassic
deep-sea sections from Japan show a dramatic increase in extinction
rates in the end-middle Norian following the Manicouagan impact
event (Hodych and Dunning, 1992; Ramezani et al., 2005), and during
the late Rhaetian (Onoue et al., 2016).

Conodonts also underwent substantial extinctions across the NRB.
Micropaleontologists have long known that the Late Triassic witnessed
a stepwise decline in conodont diversity as extinction rates were rela-
tively high and origination rates were low (e.g., Clark, 1980, 1981,
1983; Sweet, 1988; Kozur and Mock, 1991; Aldridge and Smith, 1993;
De Renzi et al., 1996). The single largest Late Triassic extinction of
conodonts took place during the Carnian (at the Julian/Tuvalian
boundary) when nearly all platform conodonts disappeared (Rigo et al.,
2007, 2018; Rigo and Joachimski, 2010). Conodont diversity recovered
somewhat through the Norian to decline again into the Rhaetian.
Within the Rhaetian, nearly all conodont taxa disappeared before the
TJB, with only one or two taxa found in the youngest Rhaetian con-
odont assemblages (Mostler et al., 1978; Kozur and Mock, 1991;
Orchard, 2003, 2010; Orchard et al., 2007; Bertinelli et al., 2016; Rigo
et al., 2016; Du et al., 2020). Karádi et al. (2019) show Rhaetian con-
odont diversity dynamics as a stepwise extinction of four genera.

In the aftermath of the end-Permian extinctions, the Triassic was a
time when the marine fish fauna changed from the chondrichthyan-rich
faunas of the late Paleozoic to the actinopterygian-dominated fish
faunas of the Mesozoic-Cenozoic (e.g., Romano et al., 2013). The Late
Triassic saw the diversification of neopterygian actinopterygians, and
the origin of durophagous feeders. A global compilation by Romano
et al. (2013) suggests that marine fish generic diversity dropped from
the Norian into the Rhaetian, but the records of Norian fish fossils from
Lagerstätten and the absence of similar deposits from the Rhaetian (cf.
Tintori and Lombardo, 2018) make it difficult to determine if the di-
versity drop is real or an artifact of preservation and hence collection
bias.

Similarly, marine reptiles show an ‘evolutionary bottleneck’ across
the NRB (Renesto and Dalla Vecchia, 2018). This is represented by a
diversity crash among the ichthyosaurs and the extinction of the tha-
lattosaurs and the tanystropheids. However, like the fish record, the
marine reptile record is affected by biases, particularly the general re-
duction of shallow marine platforms during the Rhaetian, which were
the preferred habitats and sites of fossil preservation of the marine
reptiles. Thus, the evolutionary bottleneck of marine reptiles across the
NRB may in part reflect this bias (Renesto and Dalla Vecchia, 2018).

The extinctions in the reef community at the end of the Triassic are
best documented in the Tethys, where the reef ecosystem collapsed at
the end of the Triassic; carbonate sedimentation nearly ceased, and
earliest Jurassic reefal facies are rare (see Lucas and Tanner, 2018 and
references cited therein). However, whether this was a global event
remains unclear. Notably, Stanley et al. (2018) presented a compelling
analysis that shows a reduction in corallite integration across the TJB,
which is a morphological simplification in response to environmental
stress similar to that seen in the ammonoids and radiolarians across the
TJB (cf. Guex, 2016). Clearly, the reef crisis in the Tethys began at the
end of the Norian when the scleractinian coral reefs (which produce
planktotrophic larvae today) reached their peak of diversity, structural
complexity and distribution, to diminish through the Rhaetian to a
sudden collapse at the TJB (e.g., Kiessling et al., 1999; Kiessling, 2001;
Flügel, 2002; Flügel and Kiessling, 2002). There was also an extinction
of most microbial reefs and of algal reefs across the NRB (Flügel and
Senowbari-Daryan, 2001).

In conclusion, significant extinctions took place in the marine realm
across the NRB, particularly among ammonoids, bivalves, radiolarians
and conodonts. Similar extinctions likely took place among
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actinopterygian fishes, marine reptiles and in the reef community,
though their records suffer from problems of taphonomy, facies and
provinciality that make these extinctions more difficult to interpret.

5.1.2. Terrestrial extinctions across the NRB.
Evaluating terrestrial extinctions across the NRB has long been

confounded by the difficulty of identifying and correlating the base of
the Rhaetian in non-marine sections (e.g., Lucas and Tanner, 2007;
Kozur and Weems, 2010; Lucas et al., 2012; Lucas and Tanner, 2015).
Nevertheless, the extinctions that took place across the NRB in the
terrestrial realm do not appear to have been extensive or sudden. Land
plants, both palynomorphs and megaflora, show no significant extinc-
tion across the NRB (e.g., Barbacka et al., 2017; Lucas and Tanner,
2018; Kustatscher et al., 2018), though there were diversity crashes of
local and regional extent. These are best seen in the palynological re-
cord in Western Europe and in the Newark Supergroup in eastern North
America where many vessicate palynomorphs disappear during the late
Norian or at the NRB (Lucas and Tanner, 2007, 2015 and references
cited therein). However, the broad significance of these events remains
to be demonstrated, and we are not able to correlate them to any
turnover in the megaflora.

There is no evidence of terrestrial arthropod extinctions across the
NRB. Indeed, diverse analyses of the fossil record of insects detect no
evidence of a diversity crash during the Late Triassic or across the TJB
(Clapham and Karr, 2012; Condamine et al., 2016; Grimaldi and Engel,
2005; Karr and Clapham, 2015; Labandeira, 2005; Labandeira and
Sepkoski Jr., 1993). Grimaldi and Engel (2005, p. 73) concluded, “there
seems to have been little differentiation between insect faunas of the
Late Triassic and Early Jurassic”.

The record of terrestrial tetrapods does indicate some turnover
across the NRB. Most of the large temnospondyl amphibians were ex-
tinct by the end of the Norian, with capitosaurs disappearing just before
the NRB (Lucas, 2018b). Among reptiles, two groups of herbivores – the
rhynchosaurs and dicynodonts – that had been significant components
of Middle Triassic-Carnian tetrapod communities, became extinct late

in the Norian (Spielmann et al., 2013; Racki and Lucas, 2018). The
traversodontid cynodonts, a diverse group of Gondwanan synapsid
herbivores, also disappeared at or just before the NRB (Abdala and
Gaetano, 2018).

The classic concept of a TJB tetrapod extinction was largely pre-
dicated on the disappearance of the ‘thecodonts,’ subsequently referred
to as the crurotarsans and more specifically (during the Late Triassic)
encompassing the rauisuchians, aetosaurs and phytosaurs.
Rauisuchians became extinct during the late Norian, aetosaurs were of
low diversity after the NRB and became extinct during the Rhaetian or
at the TJB, and phytosaur diversity crashed across the NRB although
they apparently survived at low diversity across the TJB (Maisch and
Kapitzke, 2010; Lucas and Heckert, 2011; Lucas and Tanner, 2015;
Lucas, 2018b). Therefore, we can only interpret some turnover in the
terrestrial tetrapods, and mostly late Norian extinctions or NRB di-
versity crashes. These are parts of a stepwise extinction of tetrapod taxa
across the TJB that presaged the dinosaur-dominated terrestrial com-
munities of the Jurassic-Cretaceous (Lucas, 2018b).

In brief, the evidence for a terrestrial extinction across the NRB is
limited. Some tetrapod groups went extinct between the late Norian
and late Rhaetian, and there are some local turnover events in the
palynofloral record across the NRB. The significance and synchroneity
of these events merits further study, particularly to calibrate their
timing more precisely.

5.2. Correlation and magnitude of CIE

In the uppermost Norian sections, multiple δ13Corg perturbations are
associated with increases in bulk sediment TOC at locations ranging
from the western Tethys (Rigo et al., 2016; Zaffani et al., 2017) to the
Panthalassa Ocean (Ward et al., 2001).

Immediately below the NRB, which is defined by the first occur-
rence of the conodont Misikella posthernsteini (Krystyn, 2010; Rigo et al.,
2016; Bertinelli et al., 2016; Zaffani et al. 2017), a negative δ13Corg

excursion of up to 5 ‰ occurs at three localities in the western Tethys

Fig. 4. Chemostratigraphic profiles of Norian/Rhaetian boundary. Paleomap of Pangea during the NRB (Late Triassic) with localities and δ13Corg curves cited in the
text. The Norian/Rhaetian boundary constraints are illustrated for each section. Grey areas indicate the global δ13Corg negative shift.
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(Pignola-Abriola, Mt Volturino and Madonna del Sirino sections in the
Lagonegro Basin). Intra-basinal δ13Corg correlations rely on integrating
biostratigraphy (conodonts, radiolarians) to obtain time-constrained
successions for comparisons. As a result, the δ13Corg decrease across the
Norian-Rhaetian transition is a feature identified as common to all
studied sections of the Lagonegro Basin (Fig. 4).

It is noteworthy that the three Lagonegro Basin sections document
the δ13Corg negative shift at the NRB from different lithologies (Zaffani
et al., 2017), as the Lagonegro Basin was progressively falling below the
CCD during the latest Triassic to Early Jurassic (e.g., Amodeo, 1999;
Bertinelli et al., 2005; Rigo et al., 2012b), thereby demonstrating that
the excursions are not a diagenetic artifact (Jiang et al., 2019). More-
over, the δ13Corg negative trend documented at the NRB at these three
Lagonegro Basin localities was also identified in another Tethyan site,
the Kastelli section, which crops out in the Pindos Zone, on the Pelo-
ponnese Peninsula of Greece (Kafousia et al., 2011) (Fig. 4), thus ex-
tending the correlation within the western Tethys. Of greater im-
portance, this event is not limited to the Tethys, but occurs also in
western Canada at Kennecott Point (British Columbia) (Ward et al.,
2001, 2004; Whiteside and Ward, 2011) and at the New York Canyon
section, Nevada (USA), both of which were located on the far side of the
Panthalassa Ocean during the Late Triassic (Fig. 4).

This CIE is also now documented in Southern Hemisphere sections,
including the Dampier sub-Basin (Northern Carnarvon Basin) on the
Northwest Shelf of Australia (Grice et al., 2005, 2007; Cesar and Grice,
2017) and for the first time in the Wombat Basin (NW Australia, ODP
Site 761C, Core 33R-32R-31R) and the Kiritehere section (North Island
of New Zealand), the latter of which was located at a high latitude
during the Late Triassic (Fig. 4). In the Northern Carnarvon Basin, the
most depleted δ13C values of kerogen and TOC are recorded just below
the NRB in the Delambre-1 well (Fig. 4), followed by more positive δ13C
values. This positive δ13Corg peak was also identified in British Co-
lumbia, close to the near extinction of the bivalve Monotis (Ward et al.,
2004; Wignall et al., 2007; Whiteside and Ward, 2011), and interpreted
as the result of a slowing of ocean circulation with a consequent de-
crease in oxygenation (Sephton et al., 2002; Ward et al., 2004). The
δ13C was measured in select polycyclic aromatic hydrocarbons (PAHs)
from the Northern Carnarvon Basin, such as phenanthrene (Delambre-1
well), and source-specific PAHs, such as fluoranthene and benzo-
fluoranthenes (North Rankin-5 well). Importantly, these compounds are
produced by the combustion of land plants (Jiang et al., 1998; Grice
et al., 2007; Cesar and Grice, 2017), and both exhibit a negative CIE
excursion at or immediately above the NRB (Fig. 4) as defined by pa-
lynomorphs, thereby correlating the events from the marine and ter-
restrial realms. The amplitude and values of the δ13Corg curves differ
among the different basins due to variations in the type of organic
matter, but the similarity of the δ13Corg curves suggests an event of
global extent (Fig. 4).

Based on the profiles presented here (e.g., Lagonegro Basin), a short
positive excursion from background δ13Corg values is documented at the
base of the radiolarian Proparvicingula moniliformis Zone (uppermost
Norian), followed by the rapid onset of a significant negative shift that
lasted ca. 1 Myr (Maron et al., 2015), and ended close to the base of the
Rhaetian (= LO of conodont M. posthernsteini) (Rigo et al., 2016;
Bertinelli et al., 2016; Zaffani et al., 2017). This negative shift in δ13Corg

is also associated with the virtual disappearance of the cosmopolitan,
standard-sized pelagic bivalve Monotis (Ward et al., 2004) (Fig. 4).
Following this negative shift, the δ13Corg curve recovers quickly as a
positive peak to near background for ca. 300 k.y. (Pignola-Abriola
section), or slightly more negative values (e.g., Southern Hemisphere
sections). This is followed by a chaotic interval that is characterized by
short oscillations in δ13Corg and the presence of small (also referred to
as dwarf) species of the bivalve Monotis. At the base of this chaotic
interval, the standard-sized Monotis disappears, but the perturbation of
the system persisted until the stabilization that is observed at the FO of
the conodont M. ultima (Zaffani et al., 2017) (Fig. 4).

5.3. Potential causes of the CIE

The worldwide low δ13Corg interval associated with a strong faunal
turnover at the NRB likely resulted from multiple mechanisms that may
have included some combination of decreased primary productivity,
enhanced magmatic activity and outgassing (including pyrogenic vo-
latiles), dissociation of clathrates, thermal degradation of peatland,
and/or input of 12C from an extraterrestrial object, any of which may
potentially create a global signal (e.g., Kent et al., 2003; Jenkyns, 2010;
Schaller et al., 2012; Meyers, 2014; Zaffani et al., 2017; Clapham and
Renne, 2018). We thus propose that a large volume of 13C-depleted CO2

entered the ocean-atmosphere system just before the NRB (grey area in
Fig. 4).

Although the impact of a large extraterrestrial object has not been
proposed as a cause of the NRB extinction, such an event could have
produced the negative shift of δ13Corg, reflecting consequent decreased
primary productivity (D'hondt et al., 1998). The largest impact known
for the Late Triassic formed the 90-km diameter Manicouagan structure
(Spray et al., 2010), but repeated dating of the structure by various
methods has consistently yielded middle Norian ages (Hodych and
Dunning, 1992; Ramezani et al., 2005; van Soest et al., 2011; Clutson
et al., 2018), nearly 10 million years prior to the NRB (Fig. 5). The
radioisotopically constrained U-Pb age of 205.7 Ma for the NRB
(Wotzlaw et al., 2014) is close to radiometric ages from melt rock at the
Rochechouart impact crater (< 50 km diameter) in south-central
France; Schmieder et al. (2010) provided an 40Ar/39Ar age of
203 ± 2 Ma (recalculated to the decay constants of Renne et al.,
2011), and Cohen et al. (2017) presented an 40Ar/39Ar age of
206.92 ± 0.20/0.32 Ma (Fig. 5). However, geochemical evidence of
the iron meteorite impactor (Tagle et al., 2009) combined with the lack
of carbonate-rich target rocks (Lambert, 2010) suggests that the volume
of climatically active gases (e.g., CO2) released from the impact site
would not have had an appreciable environmental effect that could
have triggered the NRB extinction. Moreover, there have been no re-
ports of impact debris (shock-metamorphosed quartz, melt-glass
spherules or anomalous levels of Ir) associated with NRB sections.
Hence, we discount the likelihood of a bolide impact as the driver of the
NRB environmental event.

The concentration of marine extinctions at the NRB in the pelagic
realm (planktonic, nektonic, benthic) suggests that the negative δ13Corg

excursion records decreased productivity. Although the largest known
impacts (e.g., Chicxulub) are considered capable of disrupting the
trophic system by blocking photosynthetically active radiation (PAR),
the Rochechouart structure was produced by an impactor nearly an
order of magnitude too small to have been effective on a global scale.
Thus, eruption of a LIP, with resultant outgassing, seems a far more
likely candidate. As has been suggested for the TJB, large-scale volcanic
outgassing is capable of producing short-term temperature reductions,
due to the effects of sulfuric acid (H2SO4) aerosols formed from out-
gassed sulphur dioxide (SO2), followed by longer-term warming forced
by increased atmospheric pCO2 (Tanner et al., 2004; Lucas and Tanner,
2018).

Previous workers have documented global-scale drops in both the
87Sr/86Sr and 187Os/188Os ratios in the earliest Rhaetian (Kuroda et al.,
2010; Callegaro et al., 2012; Onoue et al., 2018). Such excursions result
from changes in the sedimentary input to the ocean, either through
reduction of continental input due to cooling and decreased precipita-
tion, or through increased input from the weathering of mafic igneous
sources (Callegaro et al., 2012). Notably, emplacement of a LIP is
capable of producing both effects. Acid fallout of H2SO4 aerosols, and
outgassed chlorides and fluorides could produce abrupt short-term
decreases in the pH of surface waters, impacting planktonic autotrophs
and the entire marine trophic system (e.g. Hönisch et al., 2012; Greene
et al., 2012). Aside from slowing ocean circulation, subsequent
warming also can affect the marine realm in the longer term through
enhanced chemical weathering that leads to increased delivery of
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nutrients to the ocean, with an increase in %TOC, as is seen in the
Lagonegro Basin (Rigo et al., 2016; Zaffani et al., 2017) and in British
Columbia (Ward et al., 2001, 2004).

Therefore, a possible trigger for the Norian-Rhaetian conditions
could have been vast emissions of greenhouse gases during large-scale
volcanic activity, such as the emplacement of a Large Igneous Province
(LIP). Two LIPs documented during the latest Triassic–earliest Jurassic
are the CAMP (the Central Atlantic Magmatic Province) and the vol-
canics of the Angayucham Terrane. The CAMP is represented by the
subaerial tholeiitic basalts and intrusive bodies (ca. 1.5–3 million km3),
emplaced in the central portion of the supercontinent Pangaea, strad-
dling the palaeoequator (e.g., Marzoli et al., 2018). The NRB has been
astronomically intercalibrated (Maron et al., 2015) and radio-
isotopically dated (Wotzlaw et al., 2014) at 205.7 Ma, while the oldest
known radiometrically dated CAMP igneous rocks (Kakoulima layered
mafic intrusion, Guinea) yield an age of ca. 201.63 Ma (Davies et al.,
2017). Therefore, CAMP is ca. 4 Ma too young to have caused the CIE
across the NRB (Fig. 5).

The other known Late Triassic LIP is the Angayucham oceanic pla-
teau and oceanic islands complex accreted onto the Brooks Range
(Pallister et al., 1989), cropping out in Alaska, with an estimated age of
214 ± 7 Ma (Ernst and Buchan, 2001; Prokoph et al., 2013). The es-
timated total volume of the Angayucham LIP, evaluated from the areal
extent of ophiolite outcrops, ranges between 225 and 450 × 103 km3

(Ernst and Buchan, 2001; Prokoph et al., 2013). Considering the un-
certainty of the age of the Angayucham LIP and the estimated age of ca.
207 Ma for the beginning of both the δ13Corg and the stepwise extinc-
tion, the Angayucham LIP seems a potential candidate for triggering the
events recorded across the NRB (Fig. 5). It is noteworthy that the

exposed Alaskan rocks likely greatly under-represent the original vo-
lume of volcanic basalts as a consequence of the obduction of the An-
gayucham terrane onto the Brooks Range continental margin (Pallister
et al., 1989). Moreover, the radiometric age of 214 ± 7 Ma (Ernst and
Buchan, 2001; Prokoph et al., 2013) probably represents only a portion
of the entire LIP, and younger material is either not preserved or has not
yet been radioisotopically calibrated.

The inconsistencies in age estimates for the onset of the
Angayucham basalts lead to two possible scenarios for the perturbation
of the δ13C curve around the NRB. In the first scenario, an as-yet un-
documented LIP body was emplaced at ca. 207 Ma (post-Angayucham,
pre-CAMP), close to the base of the Rhaetian, during the Sevatian (late
Norian). The onset of this volcanism played the role of the main trigger
for the NRB climatic and geochemical perturbation. This scenario is
compatible with the stepwise turnover of major Triassic marine groups
such as conodonts, radiolarians, ammonoids, and cosmopolitan bi-
valves (Tanner et al., 2004; Lucas and Tanner, 2018), starting drama-
tically around the NRB and culminating just before the TJB (Hallam,
2002; Tanner et al., 2004; Wignall et al., 2007) (Fig. 5). In the second
scenario, undocumented late Norian volcanic activity was part of the
geodynamic evolution of Pangaea during the Late Triassic-Early Jur-
assic, which included Central Atlantic rifting previously documented
from the late Norian (Cleveland et al., 2008). This scenario does not
involve the Angayucham or CAMP basalts, other than the role of the
latter in the late Rhaetian ETE, as documented by radioisotopic age
determinations (Blackburn et al., 2013).

Lastly, we note that destabilization of clathrates has been cited as a
contributing factor toward the negative CIE associated with the ETE
(e.g., Pálfy et al., 2001; Van de Schootbrugge et al., 2008), which could

Fig. 5. Schematic diagram of events occurred close to the Norian/Rhaetian boundary (NRB), including faunal and floristic turnovers, impact craters, Large Igneous
Provinces (LIPs), and simplified δ13Corg curve of the latest Triassic – earliest Jurassic (not in scale).
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have been triggered variously by volcanic activity or a bolide impact
(Fig. 5). Tanner et al. (2004) noted the difficulties associated with this
hypothesis, however, not least amongst them the lack of supporting
evidence. Moreover, the later part of the Norian stage (Sevatian) is
generally considered an interval of overall warm climate based on the
δ18O of conodont apatite (Trotter et al., 2015) and other sedimentary
evidence (Tanner, 2018), which calls into question the depth and mass
of clathrate available in the deep ocean for dissociation. More sig-
nificantly, the abrupt positive shift of δ18O values early in the Rhaetian
indicates a cooling episode, contra-indicating the sudden release of
methane. At present, we find no evidence to support this mechanism as
the driver of the negative CIE at the NRB.

6. Conclusions

In summary, our data document the global extent of a substantial
perturbation to the carbon cycle that spanned the NRB. The CIE de-
scribed herein extended across the Panthalassa Ocean to both sides of
the Pangaean supercontinent and is recorded in both the Northern and
Southern Hemispheres. The onset of the stepwise Late Triassic extinc-
tions coincided with this NRB carbon perturbation, indicating that the
combination of climate and environmental changes impacted the biota
at this time. We suggest that the most likely proximal cause of the
negative shift in δ13Corg at the NRB was a large-volume emission of
greenhouse gases from a large-scale volcanic event pre-dating the NRB.
As no LIP dated to this time is yet known, we acknowledge that alter-
native sources of greenhouse gas emissions, or other mechanisms of
carbon-cycle disruption, are possible. Further investigation is needed to
better understand the dynamics that induced the disturbance of the
carbon cycle during the Late Triassic.
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