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ABSTRACT

Mobile user profiles are a summary of characteristics of user-specific
mobile activities. Mobile user profiling is to extract a user’s interest
and behavioral patterns from mobile behavioral data. While some
efforts have been made for mobile user profiling, existing meth-
ods can be improved via representation learning with awareness
of substructures in users’ behavioral graphs. Specifically, in this
paper, we study the problem of mobile users profiling with POI
check-in data. To this end, we first construct a graph, where a ver-
tex is a POI category and an edge is the transition frequency of a
user between two POI categories, to represent each user. We then
formulate mobile user profiling as a task of representation learning
from user behavioral graphs. We later develop a deep adversarial
substructured learning framework for the task. This framework
has two mutually-enhanced components. The first component is to
preserve the structure of the entire graph, which is formulated as an
encoding-decoding paradigm. In particular, the structure of the en-
tire graph is preserved by minimizing reconstruction loss between
an original graph and a reconstructed graph. The second compo-
nent is to preserve the structure of subgraphs, which is formulated
as a substructure detector based adversarial training paradigm. In
particular, this paradigm includes a substructure detector and an
adversarial trainer. Instead of using non-differentiable substructure
detection algorithms, we pre-train a differentiable convolutional
neural network as the detector to approximate these detection
algorithms. The adversarial trainer is to match the detected sub-
structure of the reconstructed graph to the detected substructure
of the original graph. Also, we provide an effective solution for the
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optimization problems. Moreover, we exploit the learned represen-
tations of users for the next activity type prediction. Finally, we
present extensive experimental results to demonstrate the improved
performances of the proposed method.
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1 INTRODUCTION

Mobile user profiles are a summary of characteristics of user-specific
mobile activities. Mobile user profiling refers to the efforts of extract-
ing a user’s interest and behavioral patterns from mobile activities,
e.g., shopping and commutes. Effective mobile user profiling can
help understand users, provide customized products and services,
improve user satisfactions, and, thus, have widely been applied in
various applications, e.g., customer segmentation, user identifica-
tion, fraud/intrusion detection, and recommendation systems. In
this paper, we study the problem of learning to profile users with
mobile activities data (i.e., mobile activities checkins).

Prior studies in mobile user profiling [6] can be categorized into:
(1) Explicit profile extraction, in which users are profiled by content
features that are explicitly defined and extracted from mobile be-
havioral data (e.g., demographics, website clicks, mobile purchases,
in-App behaviors) [16]. Such profiling methods are highly depended
on the collection of comprehensive user-related information. (2) Im-
plicit profile learning, which includes collaborative methods, latent
factor models, network embedding and deep learning. In partic-
ular, collaborative methods assume that users in the same group
behave similarly, and, thus, share similar profiles [27]. Such meth-
ods suffers from the information sparsity of a target user’s peers.
Latent factor models, such as matrix/tensor factorization or topic


https://doi.org/10.1145/3292500.3330869
https://doi.org/10.1145/3292500.3330869

Research Track Paper

modeling based variants, are developed to model user profiles as
latent factors or categorical distributions representations [18]. Such
methods learn user profiles through optimization with large pa-
rameter space, thus, are easy to overfit. It highly needs domain
knowledge inspired model regularization. More recent studies have
applied deep neural networks to learn the network hidden layer
(embeddings) of users from many end-to-end deep learning tasks,
for example, deep learning based recommender systems [5, 7].

The recent emergence of graph mining, deep learning, adver-
sarial training techniques provides great potentials for us to the
improve existing studies. We next detail our research insights from
four perspectives.

First, human activities, such as shopping, schooling, work, eat,
travel, entertainments, are spatially, temporally, and socially struc-
tural. How can we identify a data structure to better describe a
mobile user’s activities? Traditional methods extract content based
feature vectors, and are not sufficient to address the problem. We
introduce an analogy. As we know, the click through rate of a web-
page is highly depended on both webpage contents and webpage
structure. Similarly, if we regard a mobile user as a webpage, then
the user’s activities can be regarded as webpage contents, and the
user’s transition patterns of activities can be regarded as webpage
structures. Graphs are widely employed to describe structural and
relational knowledge. A mobile user’s profile is indeed an inher-
ently interconnected composition of activities, and can be readily
modeled as a graph. Therefore, we propose to construct a user activ-
ity graph to describe each mobile user, where vertexes are activity
types (i.e., POI categories) and edges are the transition frequencies
between activities (POI categories). In this way, we reformulate mo-
bile user profiling as the problem of learning deep representations
of users from user activity graphs.

Second, after studying many user activity graphs, we identify
another important type of structural information, which we call
substructure. Substructure refers to a subgraph with a specific topol-
ogy. Such substructures indeed indicate the unique personalized
activity patterns of a mobile user, and imply the social attributes
and preferences of the user. For example, young people prefer to
transit between work complex, restaurants, and cinemas, while en-
trepreneurs prefer to transit between business plazas. In this paper,
we focus on two substructures: high-frequency vertexes and circle,
of user activity graphs. Figure 1 shows two examples of user activ-
ity graphs that are extracted from users’ mobile checkin event set:
{< event id, user id, datetime, POI category, longitude, latitude >
}. The red circle shows the user’s transition between different POI
categories routinely in the working days, and the cyan independent
vertexes are visited frequently by this user during work. Differ-
ent users show different substructures from their activity graphs.
Apparently, Figure 1(a) shows the activity graph of a faculty with
young kids, in which the user transits between home, office, and
preschool, and frequently visit college-related POI categories during
his work; while Figure 1(b) shows the activity graph of a financial
professional, in which the user transits between home, commercial
plaza, and restaurants, and frequently visit gyms and coffee shops
after work.

Third, the identification of the substructure in user activity
graphs creates a new challenge: how can we integrate the substruc-
ture patterns into representation learning from user activity graphs?
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(a) The user activity graph of a faculty with (b) The user activity graph of a financial
young kids. professional.
Figure 1: The user activity graphs of two users. These two
examples show that different users may have different

substructures due to their personal unique patterns.
We highly need a unified learning framework to jointly model both

the entire graph and the substructure information. An intuitive
method is to use embedding techniques, e.g., Auto-Encoder, to learn
the representations of the entire graph. Then, the substructure in-
formation is formulated as a regularization term of the optimization
objective. However, as shown in Figure 1, the activity substructures
of different users are of different topology (high-frequency vertexes,
circles); the activity substructures of these users are dynamically
distributed in different locations of a graph. A regularization term
in a loss function can not tackle these challenges (varying topology
and distributions) in training. The emergence of generative adver-
sarial networks provides great potential to solve the problem. We
propose to convert the integration of substructure into an adver-
sarial substructured learning paradigm. This paradigm includes an
auto-encoder that is to preserve the structure of entire graphs, a
substructure detector that is to detect substructures in a graph, and
an adversarial trainer that is to incorporate substructured regular-
ization via adversarial attacks.

Fourth, it seems that the proposed adversarial substructured
learning paradigm can strategically solve the challenges. But, we
later find that if we use traditional subgraph detection algorithms
(e.g., deep first search) to serve as a detector, these detection algo-
rithms are usually not differentiable. This creates another challenge
for the optimization of the adversarial substructured learning frame-
work: it is impossible to back propagate the gradient. To tackle the
problem, we propose to pre-train a convolutional neural network
to capture the patterns of substructure in order to approximate
traditional non-differentiable substructure algorithms.

Along these lines, in this paper, we develop an adversarial sub-
structured learning framework for mobile user profiling. Specifi-
cally, our contributions are as follows: (1) We create user activity
graphs to describe the characteristics, patterns, and preferences of
mobile users. (2) We reformulate mobile user profiling as a prob-
lem of learning deep representations of user activity graphs. (3)
We identify another structure information: substructures in user
activity graphs and develop an adversarial substructured learning
paradigm, including an auto-encoder, a detector, and an adversarial
trainer, to preserve both the entire graph and substructure infor-
mation. (4) We pre-train a convolutional neural network (CNN) to
approximate traditional subgraph detection algorithms to solve the
non-differentiable issue. (5) We apply the user profiling results to
the application of next activity type prediction, and present exten-
sive experiments to demonstrate the enhanced performance of the
proposed method with real-world mobile checkin data.
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Figure 2: An overview of user profiling via adversarial substructured learning,.

2 PRELIMINARIES

2.1 Definitions and Problem Statement

Definition 2.1. User Activity Graph. A mobile user’s activities
are represented as a user activity graph, in which vertexes are ac-
tivity types (i.e., POI categories) and edges are the transit frequency
between POI categories. Figure 1 shows user activity graphs can
describe the behavioral structural information of user activities.

Definition 2.2. Structure of the entire graph (entire-structure).

Given a user activity graph G = (V, E), where V is the vertex set and
E is the edge set, the structure of the entire graph (entire-structure
for short) is defined as the global topological representation of the
entire graph. The entire-structure preserves the relationships be-
tween vertexes and edges. For mobile users, the entire-structure can
capture the general preferences patterns over all POI categories.

Definition 2.3. Structure of the subgraph (substructure). The
structure of subgraphs (substructure for short) is defined as the
topological representation of subgraphs that can feature the unique
behavioral patterns of a user’s activities. In this paper, we focus on
two types of substructures: (1) high-frequency vertexes, of which
the cumulative visit frequency is above the pre-defined threshold,;
(2) circles. Specifically, a high-frequency vertex in a user activity
graph represents the personalized preference for a specific type of
activities; a circle in a user activity graph represents the personal-
ized preference for a close-loop consecutive activity pattern. Both
high-frequency vertexes and circles can imply the unique activity
patterns of a user in his/her daily life.

Definition 2.4. Problem Statement. In this paper, we study the
problem of learning to profile users with mobile activity data. We
aim to automatically learn a profile vector to represent the activity
patterns of a user. We extract a user activity graph from mobile ac-
tivity data, i.e., POI check-in data, to represent the activity patterns
of a mobile user. We therefore formulate the problem as a task of
learning deep representations of users with user activity graphs.
While a user activity graph presents the overall activity profile
of a user, a user’s unique activity patterns are usually implied by
various substructures of the activity graph. Therefore, this task is
a joint objective of preserving both overall activity patterns and
substructure patterns of a user in representation learning.

Formally, given a set of user activity graphs, we aim to find a
mapping function f : x — z that takes a user activity graph x as the
input, and outputs the vectorized representation z of the user, while
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subject to the preservation constraints of both the entire-structure
and substructure.

2.2 Framework Overview

Figure 2 shows an overview of our proposed framework that in-
cludes the following essential tasks: (i) constructing user activity
graphs to represent the profiles of mobile users; (ii) developing an
adversarial substructured learning framework to learn user repre-
sentations from user activity graphs; (iii) evaluating the learned
user representation in the application of next activity type predic-
tion. In the first task, given the mobile checkin sequences of users,
we construct a user activity graph for each user. In the second task,
the adversarial substructured learning framework is developed for
a joint objective of (1) modeling the entire-structure of user activity
graphs, (2) constructing a differentiable substructure detector, (3)
exploit adversarial training to integrate substruture regularization
into representaton learning. In the last task, we apply our proposed
method to profile mobile users for next activity type prediction.

3 ADVERSARIAL SUBSTRUCTURED
LEARNING

Figure 3 shows the framework of the adversarial substructured
learning for deep representation of user activity graphs.

3.1 Model Intuition

We represent a user as an activity graph. We learn representations
of activity graphs on the following intuitions.

Intuition 1: Entire-Structure Preservation. The entire-structure
of an activity graph represents how user activities interact with
each other. The interaction can be strong link, weak link, no link.
Consequently, we should preserve global behavioral patterns.

Intuition 2: Substructure Preservation. There are unique
substructures in an activity graph, such as high-frequency activities
and activity transition circles, which can uniquely feature a user’s
profiles. We should preserve substructural behavioral patterns.

Intuition 3: Integration of Entire-structures and Substruc-
tures. Intuitively, we can model entire-structure by network em-
bedding and capture substructures by optimization regularizations.
However, different users could exhibit different activity types, topolo-
gies, and spatial distributions in their substructures. We need a new
learning paradigm to unify entire-structures and substructures.

Intuition 4: Differentiable Substructure Detector. Traditional
subgraph detection algorithms are non-differentiable. If these de-
tection algorithms are integrated into deep learning framework,
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it is difficult to apply gradient descent for optimization. There-
fore, we need a differentiable substructure detector to approximate
non-defferentiable detection algorithms.

3.2 General Idea

Figure 3 shows our proposed adversarial substructured learning
framework that includes a deep autoecoder, an approximated sub-
structure detector, a discriminator, and an adversarial trainer. The
autoencoder is to preserve entire-structure and derive the represen-
tation of a graph. We use traditional subgraph detection algorithms
to detect substructure labels, and then use these labels to pre-train a
CNN to approximate traditional subgraph detection algorithms. The
discriminator is to classify the substructures from original graphs
(real substructure set) and the substructures from reconstructed
graphs (generated substructure set). The adversarial trainer is to
integrate substructure awareness by forcing the autoencoder to pay
specific attentions to preserving substructures in the reconstructed
graph, in order to confuse the discriminator.

3.3 Preserving Entire-Structures

We exploit a deep auto-encoder [3] to preserve the global behavioral
structures of users in the representation learning. Specifically, the
auto-encoder includes an encoding step and a decoding step. The
encoding step take a user activity graph as input and output a user
feature vector. The decoding step use the user feature vector to
reconstruct the user activity graph. The user feature vector captures
the global behavioral structures via minimizing reconstruction loss.

Formally, given the i‘" graph, we flatten the graph by linking the
neighbor connectivity information of each node into a single vector,
denoted by x;, which indeeds capture the global structure of the
graph. Lety!, y%, - - , y° be the latent feature representations of the
graph at hidden layers 1,2, - - - , 0 in the encoding step respectively.
The embedding representation of the user activity graph is a d-
dimentional vector, denoted by z; € R?. The encoding step is
formulated as:

y} = O'(Wlxi + bl),
y& = o(Wkykl 4 bk) vk e (2,3, 0}, 1)
7 — O'(Wo+1y? +bo+1)'

The decoding step takes the embedding representation z; (i.e.,
the output of the encode step) as input, and output a reconstructed
graph, denoted by %;. The latent feature vectors at each hidden
layers are 7, }7‘1.’_1, e ,}7%. The decoding step is formulated as:

}“7? — O'(WO+IZ,‘ +Bo+1),

ck-1 _ _irkek o Dk

Vi =o(W Vi +b*),Vk € {2,3, ,0}, )
% =o(Wlgl+bl).

where Ws and bs are the weight matrices and bias terms to be
learned in the model.

We minimize the loss between the original graph x and the
reconstructed graph %. Formally, the loss function is

1 & 2
Lap=3 ;nm - %), 3)

3.4 Approximating Substructure Detector

Traditional substructure detection algorithms, e.g., deep first search
based subgraph detection, are non-differentiable. The gradients of
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neural networks cannot be passed by through back-propagation.
Therefore, we propose use a pre-trained Convolutional Neural Net-
work (CNN) to approximate the traditional substructure detector.
Formally, let Fyet, denote a traditional substructure detector, and
Fenn denote a CNN based detector. The approximation objective is
to let Fenn = Fyetr through a two-step process:
Step 1: Generating substructures (labels). We take an activity graph
x as the input of Fge, to generate corresponding real substructure
Sreal as a label.
Step 2: Training Fenp to approximate F,,. We take x as the input
and s, as the label to train Fenp. Specifically, the architecture of
Fenn includes two patches of {Conv, Relu, MaxPooling}, where the
kernel size of Conv is 5, and the kernel size of MaxPooling is 2. Let
§ denote the output of Fenp, the training objective is to minimize
the loss:

1 & L
Lenn = 5 ;”(Sreal - s)”j (4)

Finally, we obtain the pre-trained Fcnp as a differentiable and
approximated substructure detector.

3.5 Integrating Substructure Awareness via
Adversarial Training

Figure 3(b) shows that we develop an adversarial learning strategy
that includes a generator, a discriminator, and an adversarial trainer,
in order to integrate substructure awareness.

The Generator. Figure 3(b) shows that the generator links a deep
auto-encoder with a pre-trained CNN based detector. Specifically,
we attach the pre-trained CNN to the last layer of the decoder, so
that the CNN takes the reconstructed graph %;, which is output by
the decoder, as input. The CNN detects and outputs a substructure,
denoted by §;, from the reconstructed graph. Let G denote the
generator, then the mapping procedure can be denoted as

$i = G(xi) ®)
The Discriminator. Figure 3(b) shows the discriminator is a multi-
layer percetron D(s; ), where 6 is parameters, D(s) outputs a
probability, indicating how likely the substructure s is from the real
substructure set s;, rather than the generated substructure set 8.
The Adversarial Training Strategy. We simultaneously train G
and D by playing the two-player minimax game. Specifically, D is
trained to maximize the accuracy of classifying real substructures
and reconstructed substructures generated from G. G is trained
to minimize the accuracy of D for classifying the reconstructed
substructure set generated from G.

Formally, let p,e,1(s) denote the distribution over the real sub-
structure set sye,), and px(x) denote the distribution over the orig-
inal graph set x. Then, the minimax function of the adversarial
training can be represented as

minmax V (D, G) = Ey-p,.,(5)[108 D(®)]+Ex, ( [l0g(1-D(G ()]

(6)
Specifically, the discriminator accuracy £Lp can be represented as
1 m
Lp = — > [log D(s;) +log(1 - D(G(xi))], ()
i=1
and the generator loss L can be represented as
1 m
L = — Y log(1 - D(G(x:))]. (8)
=
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Second, we integrate the substructure into the representation z via adversarial training. Third, we utilize the well-trained
encoder to generate representations of mobile user profiles.

The objective is to maximize £p and minimize LG concurrently.

3.6 Solving The Optimization Problem

The loss function of the model includes: (i) minimizing the re-
construction loss (Equation 3); (ii) maximizing the discriminator
accuracy (Equation 7), and (iil) minimizing the generator loss (Equa-
tion 8). The objective is to minimize the overall loss £ as follows:

©

where Ap, Ag, and A4f are the weights of Lp, Lp, and Lag
respectively.

In the training stage, we use stochastic gradient descent for
optimizing L. Specifically, we first update the Auto-Encoder by:

(10)

We update the generator while keeping the parameters of the pre-
trained detector Fyey, fixed. The parameters of the generator 0, are
the same as the parameters of the Auto-Encoder 64f. In another
word, 05 = 04. We update the generator by:

L =-ApLp+AcL;+AaELAE

N 2
Vo, ll(xi = %),

1 )
Vour ; log(1 - D(G(x))). (11)
We update the discriminator by:
1 & ; .
-Vo,— Z[logD(S’) +log(1 - D(G(x")))] (12)
m

i=1

In the testing stage, Figure 3(c) shows we use the substructure-
aware encoder to learn the representation of a user activity graph.

3.7 Discussion

In recent studies, there are some works related to representation
learning with respect to preserving structural information. For ex-
ample, Wang et al. propose to model the first-order proximity (i.e.
the local pairwise similarity only between the vertexes linked by
edges) and the second-order proximity (i.e., similarity of the ver-
texes’ neighborhood structures) in the representation learning [38].
Yu et al. propose to capture the network structure through jointly
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considering both locality-preserving and global reconstruction con-
straints with adversarially regularized auto-encoders [48]. The dif-
ference between these works and our paper is that our work aims to
integrate the substructure (i.e., the structure of subgraphs) into the
entire-structure (i.e., the structure of the entire graph), while these
previous works jointly model the local structure (i.e., the structure
of neighbors) and the global structure.

4 WHAT TO DO NEXT: USER PROFILING FOR
FORECASTING NEXT ACTIVITY TYPE

As an application, we use the proposed method to profile user ac-
tivity graphs and infer next activity types, in order to evaluate the
performances. Specifically, we first regard a POI category as an ac-
tivity type. Then, the preference for next activity type is represented
by a visit probability distribution over POI categories, denoted by
= (phl pi2 pi-k

visit” * visit’ visit

i

visit
visit frequency over each POI category for next day. Here,
kth

} , which indeed is the normalized
Pi’.k is

visit

bl

the probability that user u; will visit the POI category.

Definition 4.1. The What To Do Next Problem. Given the his-
torical POI check-in records of users, the objective is to forecast a user’s
next activity type by inferring the probabilities of POI categories that
a user will visit in next day.

Specifically, for each user u;, we first construct a user activity
graph G;, where a vertex is a POI category, and the weight an edge is
the frequency of visit transitions from a POI category to another POI
category. Then, we exploit our method to learn the representation
z; of the user u;. Later, we train a fully connected neural network
NN with z; as input, in order to forecast the preference for next
activity type for each user: NN : z; — P\izisit‘ Finally, we rank POI
categories based on their visit probabilities to generate a candidate
list R;.

5 EXPERIMENTAL RESULTS

This section details our empirical evaluation of the proposed method
on real-world data.
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Figure 4: Overall comparison.
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5.1 Data Description

Table 1 shows the statistics of our two check-in datasets [45] from
two cities: New York and Tokyo. Each dataset includes User ID,
Venue ID, Venue Category ID, Venue Category Name, Latitude,
Longitude, and Time.

Table 1: Statistics of the experimental data.

City # Check-ins | # POI Categories Time Period
New York 227428 251 12 April 2012 to 16 February 2013
Tokyo 573703 247 12 April 2012 to 16 February 2013

5.2 Evaluation Metrics

We evaluate the model performances in terms of two metrics:

(1) Precision@N: is the precision of forecasting next preexisted
activity types that have been historically performed by a user. Let R;
denote the topK predicted POI category list ranked in a descending
order based on the corresponding predicted visit probabilities, R;
denote the visited POI category list, and U denote the user set. Then,
Precision@N can be represented as

|R,N N R;|

IR (13)

1
Precision@N = —
Ul ugU

135

(2) Precision™®" @N: is the precision of forecasting next new ac-
tivity types that have NEVER been historically performed by a user.
Let R}®Y denote the visited POI category list that user u; has not
visited in the training set, but will be visited in the testing set. Then,
Precision™W @N can be denoted as

1
U Z

u;eU

IRN N Rpev|

s s New _
Precision™" @N = R |
13

(14)

5.3 Baseline Algorithms

We compare the performances of our method (namely “StructRL”)
against the following baseline algorithms.

(1) Auto-Encoder. The Auto-Encoder model [3] minimizes the
loss between the original feature representations and reconstructed
ones. In the experiments, we set the number of hidden layers = 3,
the size of middle layer = 50.

(2) DeepWalk. The DeepWalk model [32] extends the word2vec
model [28] to the scenario of network embedding. DeepWalk uses
local information obtained from truncated random walks to learn
latent representations. In the experiments, we set the number of
walks = 50, the size of representation = 50, the walk length = 40,
and the window size = 10.

(3) LINE. The LINE model optimizes the objective function that
preserves both the local and global network structures with an
edge-sampling algorithm [37]. In the experiments, we set the size
of representation = 50, the number of negative samples = 5, and
the starting value of the learning rate = 0.0005.

(4) CNN. The CNN model refers to Convolutional Neural Network,
which projects original feature space into a new space via a variation
of multilayer perceptrons [23]. In the experiments, the CNN has
three patches of {Conv, Relu, MaxPooling}, where with the kernel
size of Conv is 4, and the kernel size of MaxPooling is 2.

In the experiment, we split the datasets into two non-overlapping
sets: for each user, the earliest 80% of check-ins are the training set
and the remaining 20% check-ins are testing set. All the evaluations
are performed on a x64 machine with Intel E5-1680 3.40GHz CPU
and 128GB RAM. The operation system is CentOS 7.4.

5.4 Overall Performance

We compare our method with the baseline methods in terms of
Precision@N and Precision@N"¢"V. In general, Figure 4 shows our
model achieves the best performance over both the New York and
Tokyo dataset. In the task of forecasting next pre-existed activity
types, we observe that the accuracy of our method is much better
than the baseline algorithms when K is getting larger. In the task
of forecasting next new activity types, our method still outperform
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Figure 8: Training loss.

the baseline methods on discovering new POI categories that users Specifically, we denote (1) StructRL-Node: a variant of our frame-
never visit. work that only consider discrete vertexes substructure; (2) StructRL-
The results validate that the substructure is essential for user pro- Circle: a variant of our framework that only consider as circle sub-
filing. Specifically, the substructure of user activity graphs implies structure; (3) StructRL: our proposed method that consider both.
some particular patterns of user activities. For example, circle sub- Figure 7 shows the performances of StructRL-Circle always slightly
structures can feature the activity transition patterns over specific outperforms StructRL-Node; in other words, the substructure of cir-
POI categories, while node structures can feature a user’s prefer- cle is more effective than the substructure of discrete vertexes for
ences over several independent POI categories. Our proposed frame- describing user activity patterns. The substructure of circle shows a
work effectively considers both substructure and entire-structure user’s circle activity transition patterns, while the substructure of
via adversarial training. However, Auto-Encoder, DeepWalk, CNN, independent vertexes shows some independent POI categories that
and LINE are not able to learn representations with awareness of users highly and intensively prefer. Therefore, the substructure of
substructures, thus degrade their predictive performances. circle can describe the correlations among POI categories to imply a

user’s particular lifestyle patterns, which is more informative than
the substructure of independent vertexes.

5.5 Robustness Check

To conduct robustness check, we apply our method to different 5.7 Study of Training Loss

subgroups of data to examine the variance of our performances. Figure 8 shows the training loss of our method with respect to
Specifically, we equally split the dataset into five time periods, different substructures and different dataset. The reconstruction
including (1) 12 Apr. 2012 - 12 Jun. 2012, (2) 13 Jun. 2012 - 13 Aug. loss indicates the effectiveness of preserving a graph’s global struc-
2012, (3) 14 Aug. 2012 - 14 Oct. 2012, (4) 15 Aug. 2012 - 15 Oct. 2012, tural patterns. The adversarial training loss indicates the learning
and (5) 16 Oct. 2012 - 16 Feb. 2013. We set the last day’s activities process of integrating the substructure into the entire-structure.
of each time period as a predictive target to conduct evaluations. We can observe that the reconstruction loss will converge while
We evaluate the forecasting performances in terms of Precision@N conducting the adversarial training simultaneously. In other words,
and Precision@N"" over both the New York and Tokyo dataset. integrating substructure information into global structure can help
Figure 5 and Figure 6 show that the performances of our method to ensure the convergence of training loss.

can achieve a small variance and are relatively stable, especially

when K is small. 6 RELATED WORK

Representation learning. Representation learning, also known as
graph/network embedding, aims to learn a low-dimensional vector
to represent vertexes or graphs. Technically, representation learn-
ing algorithms can be categorized into three main approaches: (1)
the probabilistic models, (2) the geometrically motivated manifold-
learning approaches, and (3) the reconstruction-based algorithms

5.6 Study of Substructure Preserving

We introduce two types of substructures: independent vertexes and
circles. Therefore, we examine how the two different substructure
types impact the performances of our method on use profiling.
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related to auto-encoder. The key idea of the probabilistic model
based approaches is to learn a hierarchy of features one level at a
time by Bayesian Inference [35, 43, 49]. In the second category, the
majority of the algorithms adopt a non-parametric approach, based
on a training set nearest neighbor graph [2, 19]. In the third category,
the auto-encoder based methods project the instances in original
feature representations into a lower-dimensional feature space via
a series of non-linear mappings, by minimizing the loss between
original and reconstructed feature spaces [9, 20, 25]. Specifically,
spatio-temporal representation learning is the elevation of represen-
tation learning in the spatio-temporal contexts [14, 15, 26, 41, 46].
Wang et al. developed a geographical learning method to find proper
representations of communities to mimic the spatial structure [42].
Wang et al. proposed a collective embedding framework to learn
the community structure from multiple periodic spatial-temporal
graphs of human mobility [40].

User Profiling User profiling refers to the efforts of extracting
a user’s interest and behavioral patterns from users’ activities. Gen-
erally speaking, the user profiling techniques can be categorized
into two groups: (1) static profiling and (2) dynamic profiling. Static
profiling refers to learn representations of users based on the ag-
gregated dataset that depends on the temporal perspective [11].
For example, Farseev et al. proposed to learn user profile via in-
tegration of multiple data sources from Twitter, Foursquare and
Instagram [13]. Farseev et al. proposed multi-source individual user
profile learning framework named “TweetFit” that can handle data
incompleteness and perform wellness attributes inference from sen-
sor and social media data simultaneously [12]. On the other hand,
dynamic profiling refers to modeling user representations consid-
ering the temporal effects that user profiles may change over time.
Akbari et al. proposed an approach which directly learns the em-
bedding from longitudinal data of users that simultaneously learns
a low-dimensional latent space as well as the temporal evolution
of users in the wellness space [1]. Du et al. proposed a framework
which connects self-exciting point processes and low-rank models
to capture the recurrent temporal patterns in a large collection of
user-item consumption pairs [10]. Zhao et al. proposed a spatial-
temporal latent ranking (STELLAR) method that capture the impact
of time on successive POI recommendation [50]. Xiao et al. pro-
posed to quantify user influence from user interactions in social
networks tp explain price stock [44].

Generative Adversarial Networks Generative Adversarial Net-
works (GAN) [17] are deep neural net architectures comprised of
two networks that simultaneously trained to compete against each
other, where the discriminator is trained to distinguish between
real samples and generated samples, and the generator is trained
to make false examples to fool the discriminator. The adversarial
learning paradigm has inspired many works, with applications on
image generation [30], image super-resolution [24], image trans-
lation [21, 34], and network embedding [4, 39]. Technically, there
are three types of variants, including (1) varying objective of the
discriminator, (2) varying objective of the generator, and (3) vary-
ing architecture [47]. For varying objective of the discriminator,
Nowozinet al proposed to utilize the f-divergence to as the objective
function for for computing likelihoods or for marginalization [31].
Springenberg et al. proposed to utilize an entropy based objective to
improve the robustness of the classifier [36]. For varying objective
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of the generator, Larsen et al. combined a variational autoencoder
with a generative adversarial network that replaces element-wise
errors with feature-wise errors for better generation capability. [22].
Mirza et al. proposed to condition on the generator by simply feed-
ing the data [29]. For varying architecture, Radford et al. proposed
to introduce fully convolutional downsampling/upsampling layers
in the architecture that can learn a hierarchy of representations [33].
Denton et al. constructed the adversarial training paradigm based
on a cascade of convolutional networks within a Laplacian pyramid
framework for generating images [8].

7 CONCLUSION REMARKS

We study the problem of automated mobile user profiling. We rep-
resent a user as a activity graph, and reformulate the user profiling
problem as a task of representation learning from user activity
graphs. After analyzing numerous user activity graphs, we found
that it is essential to preserve both the entire-structure and the
substructure of a graph. We observe that the contents, topology,
and locations of substructures in a graph can dynamically vary over
different users. We propose an adversarial substructured learning
method to jointly model both the entire-structure and substructure
(i.e., implying unique personalized activity patterns of a mobile user)
in the representation learning. Specifically, we first adopt Auto-
Encoder to model the entire-structure by minimizing the graph
reconstruction loss. Besides, we pre-train a CNN to approximate
the nondifferentiable substructure detectors, so the substructure
detectors can cooperate with Auto-Encoder. Moreover, we design
the generator by attaching the pre-trained CNN to the last layer
of the Auto-Encoder to generate substructures. In addition, we in-
tegrate substructure awareness via adversarial training by jointly
minimizing the graph reconstruction loss and generator loss and
maximizing the discriminator loss. Moreover, we apply our method
to the applications of forecasting next activity types. We present
intensive experimental results with NYC and Tokyo data to demon-
strate the effectiveness of our method.
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