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Due to the lack of free neutron targets, studies of the structure of the neutron are typically made 
by scattering electrons from either 2H or 3He targets. In order to extract useful neutron information 
from a 3He target, one must understand how the neutron in a 3He system differs from a free neutron 
by taking into account nuclear effects such as final state interactions and meson exchange currents. 
The target single spin asymmetry A0

y is an ideal probe of such effects, as any deviation from zero 
indicates effects beyond plane wave impulse approximation. New measurements of the target single 
spin asymmetry A0

y at Q 2 of 0.46 and 0.96 (GeV/c)2 were made at Jefferson Lab using the quasi-elastic 
3He↑(e, e′n) reaction. Our measured asymmetry decreases rapidly, from > 20% at Q 2 = 0.46 (GeV/c)2 to 
nearly zero at Q 2 = 0.96 (GeV/c)2, demonstrating the fall-off of the reaction mechanism effects as Q 2

increases. We also observed a small ε-dependent increase in A0
y compared to previous measurements, 

particularly at moderate Q 2. This indicates that upcoming high Q 2 measurements from the Jefferson 
Lab 12 GeV program can cleanly probe neutron structure from polarized 3He using plane wave impulse 
approximation.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
One of the fundamental goals of nuclear physics is to under-
stand the structure and behavior of strongly interacting matter 
in terms of its basic quark and gluon constituents. Understand-
ing the internal structure of nucleons is an important step towards 
this goal. Scattering electrons from light nuclei has been a proven 
method to probe these interactions [1]. While the structure of the 
proton is readily accessed by direct scattering of electrons on hy-
drogen targets, this technique cannot be used for neutrons since 
free neutron targets do not exist. Instead, scattering on particular 
nuclei is exploited, e.g. on 2H by virtue of its weak proton-neutron 
binding or 3He due to its spin properties being largely governed by 
the neutron [2]. In order to extract the properties of the neutron 
from such studies, nuclear effects must be accurately taken into 
account. This drives the need to measure observables sensitive to 
such effects.

Assumptions made in the nuclear models can have a large ef-
fect on the extraction of the neutron form factors. In the late 
1990s, there was a discrepancy between extractions of the elec-
tric form factor of the neutron, Gn

E , using the plane wave impulse 
approximation (PWIA) applied to data by electron scattering from 
deuterium [3,4] and 3He [5–7]. This discrepancy was largely re-
moved when full Faddeev calculations were used to extract the 
form factor instead of PWIA [8]. These calculations accounted for 
nuclear effects such as final state interactions (FSI) and meson ex-
change currents (MEC), which are ignored in PWIA.

The target single-spin asymmetry obtained by scattering elec-
trons from a target polarized in two opposite directions transverse 
to the incoming electrons, A0

y , is sensitive to these higher-order 
effects. This asymmetry is defined as

A0
y = 1

Pt

N↑ − N↓
N↑ + N↓

, (1)

where Pt is the polarization of the target and N↑ (N↓) is the num-
ber of normalized 3He↑(e, e′n) events when the target is polar-
ized parallel (anti-parallel) to the normal of the incoming electron 
beam. In PWIA, this asymmetry is exactly zero [9]. Early predic-
tions expected contributions from FSI and MEC to be large at low 
negative four-momentum transfer squared (Q 2) until dropping off 
at Q 2 of about 0.2 (GeV/c)2 [9]. The first experimental test of A0

y
done at NIKHEF showed this asymmetry to be 5.9σ larger than ex-
Fig. 1. Hall A experimental set-up, where ŷ is pointed along the vertical direction 
and ẑ along the beam.

pected [10]. Another measurement was later performed at MAMI, 
which extended the measured Q 2 range up to 0.67 (GeV/c)2 [11]
with the same conclusion. Using full Faddeev calculations that cor-
rectly incorporated the significant effects of FSI, the predictions of 
Golak et al. agreed with the observed asymmetries [12]. This mea-
surement of A0

y provides unprecedented precision and extends up 
to Q 2 of 0.96 (GeV/c)2. It provides new constraints on models used 
to extract neutron physics from electron scattering from 3He nu-
clei, and shows clear evidence of the dominance of nuclear effects 
across Q 2.

We report measurements on A0
y up to Q 2 of 0.96 (GeV/c)2, 

performed at the Thomas Jefferson National Accelerator Facility 
(JLab) in Experimental Hall A from April-May 2009. In the exper-
iment, E08-005, a longitudinally-polarized electron beam with a 
current of 10 μA was incident on a polarized 3He gas cell. The 
beam helicity was flipped in a pseudorandom quad pattern every 
33.3 ms [13]. The target single-spin asymmetry measurement ef-
fectively assumed an unpolarized beam as events were summed 
over both helicity states. The small time frame of 33 ms between 
pseudorandom flips ensured than changes in luminosity between 
the two electron helicity states was negligible. The beam, at ener-
gies of 2.4 GeV and 3.6 GeV, was incident on a 40-cm-long 3He 
cell that was polarized in the vertical ŷ direction, as shown in 
Fig. 1. Scattered electrons were detected in the high-resolution 
spectrometer (HRS) and knocked-out neutrons were detected us-
ing the Hall A Neutron Detector (HAND) [14,15]. This experiment 
ran concurrently with multiple experiments that measured quasi-
elastic structure on polarized 3He [16–19].

The 3He target was polarized through spin-exchange optical 
pumping (SEOP) [20–24]. An average target polarization of 51.4 ±
0.8 ± 4.6% normal to the electron scattering plane was achieved. 

http://creativecommons.org/licenses/by/4.0/
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Table 1
Displayed are the kinematics settings for the A0

y
measurements. Listed are the central four-momentum 
transfer, 〈Q 2

〉
; beam energy, E0; the HRS central an-

gle, θe′ ; the HRS central momentum, p0; and the 
HAND central angle, θn . The angles are defined as in 
Fig. 1.〈

Q 2
〉

(GeV/c)2
E0

(GeV)
θe′
(◦)

p0

(GeV/c)
θn
(◦)

0.46 2.425 17.0 2.170 62.5
0.96 3.605 17.0 3.070 54.0

In order to reduce systematic uncertainties, the direction of the 
target spin was flipped by 180◦ every 20 minutes throughout the 
experiment, providing ‘up’ and ‘down’ target spin states.

Electrons quasi-elastically scattered from the 3He nuclei were 
detected in a high-resolution spectrometer that consisted of three 
quadrupole magnets and one dipole magnet in a QQDQ optical 
chain, a pair of trigger scintillators, vertical wire drift chambers 
(VDC), a gas Cherenkov detector, and lead-glass calorimeters [25]
for particle identification. The HRS calibration was identical to that 
in [26].

Neutrons knocked out from 3He were detected by the Hall A 
neutron detector, a non-standard piece of equipment used previ-
ously in a short-range correlation experiment [27]. It consisted of 
an array of plastic scintillators, each connected to photo-multiplier 
tubes on both ends. Electrons detected in the HRS acted as a trig-
ger for HAND, which opened a timing window to detect correlated 
neutrons.

Since neutrons do not carry charge, they are not directly mea-
sured by the scintillator; however, they will produce a hadronic 
shower in the plastic scintillating detectors, which is detected. 
Since protons and neutrons are similar in mass, protons scat-
tered from 3He will arrive at the detector at approximately the 
same time as neutrons. A proton will always deposit a signal in 
the 2-cm-thick veto bars whereas a neutron will most likely pass 
through the thin veto counter without interacting. However, for 
this experiment the thin veto layer was often flooded with acci-
dentals that diluted the hadron time-of-flight spectrum and mak-
ing proton rejection using the veto layer inefficient, particularly at 
low Q 2. In order to accurately identify neutrons, each layer of the 
HAND was used as a veto layer for the bars behind it, effectively 
creating a cascading veto layer. In addition at the highest Q 2 set-
ting, a 9.08 cm thick wall made of 4 cm of iron casing surrounding 
5.08 cm of lead was placed in front of the HAND that greatly re-
duced the number of background γ events.

The kinematics used during this experiment are shown in Ta-
ble 1. The number of knocked-out neutrons was determined using 
the cascading veto method described above along with a 1.5 ms 
timing window triggered by the scattered electrons. Within that 
window, a ±25 ns cut was made on the time-of-flight (TOF) peak 
to identify neutrons and to separate them from the γ peak. Ac-
cidentals outside of twice this cut (±50 ns) and outside of the 
nearby γ peak were used to estimate and remove background 
events from the TOF. An example of the TOF spectrum is shown 
in Fig. 2. The neutrons were then separated by the orientation of 
the target spin, identifying those neutrons knocked out when the 
target spin was ‘up’ as S↑ and those when ‘down’ as S↓ . Each of 
these was scaled by the respective cumulative beam charge, C↑(↓) , 
and electronic live-time, L↑(↓) , to obtain the yields, Y↑(↓) , defined 
by

Y↑(↓) = S↑(↓)

C · L . (2)

↑(↓) ↑(↓)
Fig. 2. Neutrons were identified using the cascading veto method and a time-of-
flight spectrum, in this case at Q 2 = 0.96 (GeV/c)2. The neutron peak (cross-
hatched) was identified using a ±25 ns cut, and the accidentals background esti-
mated using a linear fit (dashed line) on the background events outside of the cut, 
shown as BGL and BGR (hatched). The small γ peak is also visible near 710 ns.

Table 2
Contamination due to nitrogen in the target cell 
(DN2 ) and mis-identification of protons (Dp ) were 
used to scale the measured asymmetry into the 
physics asymmetry. The large decrease in Dp at the 
highest Q 2 is largely due to the addition of a Pb 
wall in front of HAND that caused a larger number 
of mis-identified protons.〈

Q 2
〉
(GeV/c)2 DN2 (×10−2) Dp (×10−2)

0.46 97.9 ± 0.3 66.7 ± 0.4
0.96 97.2 ± 1.2 50.8± 0.5

Combined with the polarization of the target, Pt , the raw mea-
sured asymmetry, Ameas , was defined as

Ameas = 1

Pt

(
Y↑ − Y↓
Y↑ + Y↓

)
. (3)

The true physics asymmetry, A0
y , is scaled due to dilution fac-

tors from nitrogen (DN2 ) and proton contamination (Dp). When 
these dilutions are taken into consideration, the physics asymme-
try takes the form of

A0
y = Ameas

DN2Dp
. (4)

To aid in the SEOP pumping of the 3He target, a small amount 
of N2 was added to inhibit polarization relaxation due to radiation 
trapping [20]. The dilution factor from nitrogen contamination was 
calculated using the pressure curve method [28] and is shown for 
each kinematic setting in Table 2, where the percentage of nitrogen 
in the cell is 1 − DN2 .

Due to the nature of neutron detection in HAND, there is a pos-
sibility that some protons will be misidentified as neutrons, even 
when utilizing the cascading veto layers method. The number of 
identified neutrons (NT ) contains both measured neutrons (Nn) 
and misidentified protons (Np ),

NT = Nn + Np . (5)

This relates to the number of neutrons that enter the detector 
(nn), the neutron detection efficiency (εn), the number of protons 
that enter the detector (np), and the ratio of misidentified protons 
(rmis),

NT = nnεn + nprmis. (6)

rmis was measured by applying neutron cuts on H(e, e′p) scattering 
and identifying the total number of measured protons (PT ) and 
protons misidentified as neutrons (Pn),

rmis = Pn = pnεn
. (7)
PT PT
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Table 3
Neutron detector efficiency determined 
for each kinematic setting.〈

Q 2
〉
(GeV/c)2 εn (×10−2)

0.46 5.7
0.96 28.5

The number of protons in the detector during 3He(e, e′n) scat-
tering was estimated by calculating the ratio of protons to neu-
trons (rp:n) using the Rosenbluth formula ( dσd� ) and Kelly fits 
[29,30],

rp:n = pexp
nexp

=
2
(
dσ
d�

)
p(

dσ
d�

)
n

, (8)

and comparing it to the number of neutrons,

np = nnrp:n, (9)

giving

NT = nnεn + nnrp:nrmis. (10)

To address having one equation and two unknowns, a tight x ≈ 1
cut and a θ : φ cut was made such that the scattered electrons 
(ET ) were both quasi-elastic and sent the nucleons toward HAND 
(nn and np). The same electron cuts were made when HAND was 
included above in NT to measure proton dilution. From this,

ET = nn + np, (11)

since no neutron cuts are made and the total electrons counted are 
scattered from the total knocked-out neutrons and protons. Again, 
the number of protons are related to the number of neutrons by 
np = nnrp:n , giving

ET = nn + nnrp:n. (12)

This was re-arranged to get nn in known terms,

nn = ET

1+ rp:n
. (13)

Plugging this back into Eq. (10),

NT =
(

ET

1+ rp:n

)
εn +

(
ET

1+ rp:n

)
rp:nrmis, (14)

where εn is determined by

εn = NT (1 + rp:n)
ET

− rmisrp:n. (15)

Values for εn are shown in Table 3 and agreed well with a 
GEANT4 [31] simulation that utilized the cascading veto method 
for neutron identification.

The proton dilution factor is determined by

Dp = Nn

NT
= nnεn

NT
, (16)

Dp = 1− ET Pnrp:n
NT PT (1+ rp:n)

(17)

with results given in Table 2.
There were three leading systematic contributions to the total 

uncertainty of the measurements. The leading contributor was the 
uncertainty on the target polarization, δPt , which was 4.7%. The 
Table 4
Experimental contributions to systematic un-
certainty from the target polarization, nitro-
gen dilution, and proton dilution, each scaled 
by 10−2.〈

Q 2
〉
(GeV/c)2 0.46 0.96

δDt 2.15 0.13
δDN2 0.069 0.017
δDp 0.14 0.014

δAsys
y 2.15 0.13

Fig. 3. Current measurements of A0
y at 0.46 and 0.96 (GeV/c)2 plotted as a function 

of the energy transfer, ν . The dotted lines indicate the center of the quasi-elastic 
peak.

uncertainties due to the nitrogen and proton dilutions, δDN2 and 
δDp , are shown in detail in Table 4. A summary of all of these 
contributions to the systematic uncertainty (δAsys

y ) is presented in 
Table 4.

In Fig. 3, A0
y is plotted as a function of the energy transfer, ν . 

To further minimize effects from the elastic peak at small ν , only 
data sitting directly on the quasi-elastic peak were included.

Results from our experiment are presented along with the 
world data as a function of Q 2 in Table 5 and Fig. 4. As discussed, 
the non-zero values of A0

y measured indicates contributions from 
final state interactions and meson exchange currents. The origi-
nal Laget calculations [9,10], calculated using a modified PWIA, 
greatly underestimated A0

y . Full Faddeev calculations provided by 
the Bochum group provided reasonable predictions of A0

y values to 
both the historical and current data [11]. Faddeev calculations are 
not available above a Q 2 of approximately 0.4 (GeV/c)2 since rela-
tivistic effects are not included in the calculations. This experiment 
is unique in that it reaches unprecedented precision up to Q 2 of 
0.96 (GeV/c)2, and was also done at much larger ε = (1 + 2(1
+ Q 2/4M2) tan2 θe/2)−1 than previous results, a region that has 
been shown to be sensitive to effects beyond the Born approx-
imation such as two-photon exchange [32,16]. A0

y is large at low 
Q 2, where FSI and MEC are significant, and drops off exponentially 
to the 10−2 level as Q 2 approaches 1 (GeV/c)2, where contribu-
tions from FSI and MEC are greatly reduced. Any extractions of the 
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Table 5
Experimental results for A0

y scaled by 10−2.〈
Q 2

〉
(GeV/c)2 A0

y ± δAstat
y ± δAsys

y

0.46 23.5 ± 1.58 ± 2.15
0.96 1.42 ± 0.43± 0.13

Fig. 4. Current A0
y measurements, along with the NIKHEF [10] and MAMI [11] data, 

plotted as a function of Q 2 alongside the values of ε for each data point. Error bars 
represent the total uncertainties. The uncertainties for these data can be found in 
Table 5. The dot-dashed cross represents the modified PWIA approach used by Laget 
[9,10], the dotted and solid crosses represent the non-relativistic Faddeev calcula-
tions including FSI and, in the case of the solid cross, MEC [11]. Only the Faddeev 
calculations, which fully account for FSI, represent the data. The dotted line is an 
exponential fit of the current world data.

neutron’s electromagnetic form factors from 3He scattering must 
account for these effects.
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