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limits of the theoretically derived estimates®,

Jiang and co-workers’ data, and data from
similar studies, can aid estimates of the global
effect of CO, fertilization. The size of this effect
dependsdirectly onthe sensitivity of carboxyl-
ation efficiency to rising atmospheric CO,
levels; this sensitivity should be similar at the
eucalyptusforest and at all other sitesaround
theglobe, according to atheoretical analysis®.
However, as CO, levels increase, the capacity
of photosynthetic carboxylation to process
more CO,diminishes, lowering the sensitivity
of carboxylationefficiency to further CO,-level
increases. In other words, the CO,-fertiliza-
tion effect is dwindling at the biochemical
level®. To work out the global fertilization
effect, the carboxylation sensitivity is multi-
pliedbytheyearlyincreasein atmospheric CO,
concentration, whichisbecominglarger over
time. The yearly increase in CO, levels offsets
the diminishing CO,-fertilization effect.

Another factor that affects the size of the
global CO,-fertilization effect is the LA,
The change in LAl observed at the Austral-
ianstudy siteinresponse to CO, enrichment
is at the low end of the wide spectrum of
LAl changes that have been observed else-
where*, At the global scale, however, the LAI
isincreasing over time — satellite observa-
tions show that Earth is literally becoming
greener®®, The increase of LAl amplifies the
CO,-fertilization effect.

Theplant carbon-use efficiency reportedin
thecurrentstudyisalsoatthelowend ofawide
range of reported values’, and contributes to
the low CO,-fertilization effect observed in
the study. However, we do not know much
about how plant carbon-use efficiency varies
over time at regional and global scales. This
makesit difficult to assess whether the global
fertilization effect will change because of
shiftsin this efficiency.

Thebottomlineisthatitis currently difficult
to estimate the size of the global CO,-fertiliza-
tion effect accurately. To solve this problem,
we need to know more about hierarchical con-
straints not only across spatial scales, from
ecosystem sites to regions and the globe,
but also across biological scales — from the
molecular level of biochemical reactions, to
the leaf and canopy scale, and through to the
larger scales associated with plant production
and ecosystem carbon pools.
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Al tracks abeating heart’s
functionover time

Partho P. Sengupta & Donald A. Adjeroh

Clinicians use ultrasound videos of heartbeats to assess
subtle changesin the heart’s pumping function. A method
that uses artificial intelligence might simplify these complex
assessments when heartbeats are out of rhythm. See p.252

Theheartisaspecialized muscle that contracts
rhythmically around its closed chambers to
propel blood. However, this pumping func-
tion fluctuates throughout the day as the
circulating blood flow adapts to the body’s
ever-changing metabolic demands'. Under-
standing the variations in cardiac pump
activity with each heartbeat might have rel-
evance for explaining the intricacies of heart
function in health and disease. However, the
tools for scrutinizing such changes remain
imprecise. On page 252, Ouyang et al.’ report
the development of a computational plat-
form that uses an artificial-intelligence (Al)
approach to assess cardiac ultrasound video
and to provide continuous, beat-by-beat
measurement of cardiac pump function.
Clinicians commonly assess cardiac
function using a value termed the ejection
fraction, whichis the percentage of the blood
volumeintheleft heart chamber (the left ven-
tricle) thatis pumped out whenthe heart con-
tracts. In a normal heart, just over half of the
bloodis ejected; thus, the calculated ejection
fractionis more than 50%. Highly trained phy-
sicians can ‘eyeball’ ultrasound video loops of
abeating heart and make a precise estimate
of the ejection fraction®. However, if two iso-
lated frames from the video were presented,
showing only the beginning and the end of
the ejection, even a trained physician would
struggle to estimate the ejection fraction.
Given that training and expertise vary from
person to person, eyeballing is not relied on,
andthe ejection fractionis calculated by trac-
ing the boundaries of the left ventricle on a
digitalimage to estimate theblood volume at
the beginning and end of ejection. Itisrecom-
mended* that clinicians estimate the ejection
fraction of a heart by tracking it over three to
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five heartbeats; however, in typical clinical
practice, often just one beat is assessed.

If the accuracy of estimates of ejection
fraction could be improved by having an easy
way toroutinely determine its precise value by
tracking and averaging several heartbeats, this
would be ofimmense benefit, particularly for
people whose hearts are beating out of rhythm
(aconditiontermed arrhythmia). If arrhythmia
occurs, the changing duration of heartbeats
alters the volume of blood filled and ejected
from the left ventricle, thereby resulting in
variationsintheejection fraction (Fig.1). This
variability makes the ejection fraction chal-
lenging to estimate for a type of arrhythmia
known as atrial fibrillation. It is predicted’ that
this condition will affect between 6 millionand
12 million peoplein the United States by 2050,
and17.9 millionin Europe by 2060. Moreover,
ejection fraction needs to be assessed fre-
quentlyin people who have atrial fibrillation,
because heart failure (a state characterized
by a poor ability of the heart to pump blood)
occursinmore than one-third of suchindivid-
uals®. And more than half of people with heart
failure have atrial fibrillation®.

To develop an Al-based method for
assessing ejection fraction, Ouyang et al.
used 10,030 cardiac ultrasound videos. These
videos were stored along with images contain-
ing human-generated tracings that marked
the inner border of the left ventricle at the
beginning and end of the ejection cycle. The
authors used a type of Al architecture called
a convolutional neural network (CNN), first
to perform a semi-automatic detection of
a pattern of pixel-based information (seg-
mentation) to recognize the left ventricle in
the video frames; and second, to track the
borders of the ventricle during the heartbeat



cycle. Using CNN architecture to find the
left-ventricle border in ultrasound images
is not new’®, but the innovation here is that
Ouyang and colleagues evaluated new forms
of three-dimensional CNN. This enabled them
tointegraterecognition of the left-ventricular
border (the spatial information) from the
2D display in single video frames with the
changes over time (the temporal informa-
tion), to determine the information needed
regarding the moving heart border. Forms of
3D CNN have been used previously in realms
asdiverse as general video analysis®'°, assess-
ment of human physical activity” and medical
imaging'. However, Ouyang and colleagues’
workis, to our knowledge, the first attempt to
take this approach in analysing cardiac ultra-
sound information over such astrikingly large
number of videos.

After Ouyang and colleagues had ‘trained’
the 3D CNN using the video data, they com-
pared the Al-generated estimates for the
ejection fraction with human-measured
ejection fractions. Their 3D CNN method esti-
mated the ejection fraction withameanerror
of4.1% and 6%, respectively, for two different
sets of data used for validation. In other words,
on average, using the authors’ proposed
3D CNN method, the ejection fraction was
estimated to within 95.9% and 94%, respec-
tively, of the corresponding ejection-fraction
measurement reported by a clinician. These
reported Al errors are substantially lower
than those reported in previous attempts to
use CNN to estimate the ejection fraction’,and
are well within the inter-observer variability
in ejection-fraction measurements between
experienced clinicians?.

Ouyang et al. then tested a further
55 patients forwhom 2 ultrasound specialists
separately assessed the heartbeat videos. The
authorsfoundthat when the variability in the
human- and Al-generated ejection-fraction
estimates for each patient was compared, the
3D CNN method produced results with the
least variability inthe ejection fractions noted
betweenthe two recorded measurements. Fur-
thermore, results obtained with the 3D CNN
were extremely consistent across different
ultrasound machines, and for measurements
taken on different occasions. These results
alsoindicate theimportance of assessing the
kinetics of cardiac-wall motionin developing
asystem for gauging cardiac function.

Several avenues of possible future work
building on thisresearch should be explored.
Efforts to reduce the overall computational
burden would be welcome, so that the tech-
nique could be performed inexpensively
and instantaneously during an ultrasound
examination. Ouyang and colleagues’
approach required 0.05 seconds per video
frame, which they reported as being faster
than the estimation speed of human experts.
However, this is not yet as fast as real time,
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Figure 1| A computational approach for assessing cardiac pump function over several heartbeats.
Ouyang et al.’ report the development of a method that uses artificial intelligence (Al) to monitor a standard
clinical measurement of cardiac function. This measurement is called the ejection fraction (EF), and it is the
percentage of the volume of blood in the left ventricle (one of the heart’s chambers) that is pumped out of
the chamber when the heart contracts. The authors developed a system that can analyse ultrasound video
frames to determine the EF by continuously comparing changes in the borders of the left ventricle over
space and time, using an Al architecture called a 3D convolutional neural network. a, Regular heartbeats
have a fairly uniform EF. b, By contrast, irregularities (arrhythmic heartbeats) might resultin shorter
heartbeat cycles and a lower EF. The automation of heartbeat assessment by the use of Al (rather than
depending on a clinician to monitor this) would make it easier to track several heartbeats. The averaging of
EF over multiple heartbeats would provide a better heartbeat assessment for a person with arrhythmia than
would be the case for the measurement of a single heartbeat. (Graphs based on Fig. 3 of ref. 2.)

which would be less than 0.02 seconds per
video frame (for arate of 64 framesin1.28 sec-
onds). A careful look at the different stages
in the overall architecture of the 3D-CNN
deep-learning approach will be needed to
determine the best architecture for use in
existing cardiac-ultrasound technologies,
such as 3D echocardiography and ultrafast
cardiac ultrasound. Moreover, the choice of
computational approach for handling videos
that contain suboptimal images, or those in
which the image quality has been improved
by the injection of image-enhancing agents,
will need to be considered.

This tool for the continuous assessment of
cardiac pumping has the potential to affect
other areas of cardiology. For example, suchan
approach might be adapted to monitor ultra-
sound changes in ejection fraction in people
undergoing complex medical procedures,
suchas catheter-based cardiacinterventions,
surgery or when receiving medication or
mechanical circulatory support for a condi-
tion termed acutely decompensated heart
failure.

Furthermore, the use of 3D CNN to track
other parameters that are more sensitive
than ejection fraction for determining early
changesin cardiac function (such as physical
measures of heart-muscle deformation or
changes in cardiac shape or geometry) that
develop before aperson shows disease symp-
toms might lead to new ways of measuring or
identifying cardiac biomarkers (hallmarks
of disease)™". Such automated approaches
might be particularly relevant for the bur-
geoning ‘multi-omics’ approaches for data
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integration that incorporate different layers
of biological information to define different
stages of cardiac dysfunction®.

In this regard, we applaud the authors for
making available to the research commu-
nity a large data set of annotated ultrasound
videos (presented stripped of information that
could identify the individuals). This resource
will be extremely useful, and will probably
spur yet more innovations in automated
analysis that will boost our understanding of
cardiac function. Moreover, such steps will
be needed to achieve greater consistency
in results obtained using different imaging
systems for assessing cardiac function (such
ascardiacultrasound, computed tomography
and magnetic resonance imaging).

The ongoing efforts to improve the accu-
racy of automated measurements and disease
prediction will, undoubtedly, ultimately free
up extra time for physicians, enabling them to
provide higher-quality clinical care and have
better interactions with patients. Given the
high health-care burden of cardiovascular dis-
ease worldwide, Ouyang and colleagues’ work
istimely, and hints at an ensuing technological
revolution that could have a profound effect
onrisk prediction of cardiovascular disease
and onroutine clinical decision-making.
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Mutationsin colon cancer
match bacterial signature

Ye Yang & Christian Jobin

Studies have pointed to alink between colon cancer and a

gut bacterium that produces DNA-damaging molecules. The
discovery of amutational signature linked to these bacteriain
human colon cancer supports this association. See p.269

Understanding what causes colorectal cancer
(CRC) could help to combat this disease of the
colon. On page 269, Pleguezuelos-Manzano
etal'report evidence that strengthens a pre-
viously suspected connection toatype of gut
bacterium. The authorsimplicate this microbe
by pinpointing bacterial ‘fingerprints’in DNA
alterations found in CRC cells.

Certainbacteria produce genotoxic molec-
ules —those capable of damaging DNA. These
molecules can cause mutations if, for exam-
ple, mistakes occur during the DNA-repair
process that tries to fix genotoxic damage. In
2006, a genotoxin called colibactin, which is
made by certain strains of the gut-dwelling
bacterium Escherichia coli, was discovered”.
That original description also shed light on
how colibactinis produced by E. coli, identify-
ing a key region of bacterial DNA, termed the
pksisland (the microbes that have this island
are called pks® E. coli), which encodes various
components of an ‘assembly line’ that makes
colibactin.

By producing colibactin, pks® E. coli can
accelerate tumour formation in animal
models®. Moreover, these bacterial strains
are more prevalent in close association
with the epithelial cells in the mucosa of the
colonin people who have CRC than in those
who don’t®. However, the complexity of the
colibactin-producing assembly line and the
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molecule’s considerable instability pose
substantial challenges to researchers trying
to decode the workings of the pksisland and
to characterize colibactin’s structure.

There are several questions tobe answered.
Forexample, what is the mechanism of action
of colibactin? What types of change might it
make to DNA nucleotides? And does colibactin
activity have relevance to human cancer? It
is known* that pks* E. coli damages the DNA

“Thefindings depicta
potential pathway by which
agenotoxicbacterium
could contribute to the
development of cancer.”

of cells it infects by causing adenine nucleo-
tides toundergo a type of modification called
alkylation. Subsequent evidence proposing
asymmetrical colibactin structure indicates
that the molecule has two ‘warheads’ made of
astructure called cyclopropane, which target
adenines®. How common pks"* E. coli is in the
gut of human populations is not fully known.

To determine the details of DNA changes
that might be induced by pks* E. coli,
Pleguezuelos-Manzano and colleagues turned
toa‘mini-gut’ cellular system that mimics the
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humanintestine (Fig.1). Thisapproachusesa
clump of human epithelial cells grown in vitro
called an organoid or, specifically, acolonoid,
becauseitis made of colon cells. The authors
exposed colonoids either to pks* E. coliisolated
from a person with CRC or to an engineered
version of the bacterium that did not make
colibactin. This set-up enabled the bacteria
tointeract withthetype of cellular surfacethey
would encounter in the lumen of the colon.
Whole-genome sequencing of colonoid cells
enabled the authors to compare the mutations
in cells exposed to E. coli that produced coli-
bactin or that were defective in producing it.

From this analysis, the authors determined
a unique colibactin mutational signature —
specific patterns of DNA alterations that arose
in the presence of colibactin. This signature
predominantly included two types of change.
One type is the substitution of a single DNA
nucleotide base for a different nucleotide
(single-base substitutions, termed SBS-pks).
These were skewed towards achange described
as T>N, in which a thymine (T) nucleotide is
replaced by any other type of nucleotide (N).

The other type of change is a small inser-
tion or deletion of nucleotides, character-
ized by deletions of single nucleotides in
stretches of thymine nucleotides (known as
T homopolymers). This sort of alteration is
termed ID-pks. Interestingly, both SBS-pks
and ID-pks occur preferentially downstream
of adenine nucleotides, consistent with the
proposed mode of action of colibactin, with
two warheads targeting adenine nucleotides
thatarelocated in close proximity on opposite
strands of the DNA (one warhead targets an
adenine upstream of the site of damage and
the other targets the site of damage)*”.

To determine whether this colibactin-
associated mutational signature might be rel-
evant to human disease, the researchers ana-
lysed a data set® of whole-genome sequences
for 496 human CRC tumours thathad migrated
from their primary site in the colon to form
secondary growths termed metastases.
Remarkably, the authors found that SBS-pks
and ID-pks mutations were presentin 7.5% and
8.8%, respectively, of CRC metastases, whichis
more frequent thanin metastases of cancers of
other primary origins. Forexample, SBS-pksand
ID-pks mutations were found in 2.1% and 4.2%,
respectively, of metastases of urinary-tract
cancers, and in 1.6% and 1.6%, respectively, of
head and neck tumour metastases. This pattern
is consistent with the probability of exposure
topks' E. coliat these different body sites, con-
sidering that the urinary tract, head and neck
are only occasionally exposed to E. coli. When
the authors assessed 2,208 predominantly
primary CRC tumours from an independent
data set (see go.nature.com/3déutsx), 5.0%
and 4.4% of the tumours, respectively, had
high SBS-pksand ID-pks signatures, which sup-
ports the idea that pks®E. coli are involved in





