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ABSTRACT In order to facilitate flexible network service virtualization and migration, network functions
(NFs) are increasingly executed by software modules as so-called “softwarized NFs” on General-Purpose
Computing (GPC) platforms and infrastructures. GPC platforms are not specifically designed to efficiently
execute NFs with their typically intense Input/Output (I/O) demands. Recently, numerous hardware-
based accelerations have been developed to augment GPC platforms and infrastructures, e.g., the central
processing unit (CPU) and memory, to efficiently execute NFs. This article comprehensively surveys
hardware-accelerated platforms and infrastructures for executing softwarized NFs. This survey covers both
commercial products, which we consider to be enabling technologies, as well as relevant research studies.
We have organized the survey into the main categories of enabling technologies and research studies on
hardware accelerations for the CPU, the memory, and the interconnects (e.g., between CPU and memory),
as well as custom and dedicated hardware accelerators (that are embedded on the platforms); furthermore,
we survey hardware-accelerated infrastructures that connect GPC platforms to networks (e.g., smart network
interface cards). We find that the CPU hardware accelerations have mainly focused on extended instruction
sets and CPU clock adjustments, as well as cache coherency. Hardware accelerated interconnects have been
developed for on-chip and chip-to-chip connections. Our comprehensive up-to-date survey identifies the
main trade-offs and limitations of the existing hardware-accelerated platforms and infrastructures for NFs
and outlines directions for future research.

INDEX TERMS Central Processing Unit (CPU), Hardware Accelerator, Interconnect, Memory, Software
Defined Networking (SDN), Virtualized Network Function (VNF).

I. INTRODUCTION

A. TREND TO RUN SOFTWARIZED NETWORK
FUNCTIONS ON GENERAL-PURPOSE COMPUTING
(GPC) PLATFORMS

Traditionally, the term “network function (NF)” applied pri-
marily to functions of the lower network protocol layers,
i.e., mainly the data link layer (e.g., for the data link layer
frame switching NF, virtual local area network NF, and
medium access control security NF) and the network layer
(e.g., for the datagram routing NF and Internet Protocol
firewall NF). These low-level NFs were usually executed

in specially designed dedicated (and typically proprietary)
networking equipment, such as switches, routers, and gate-
ways. Recently, the definition of an NF has been broadened
to describe networking related tasks spanning from low-level
frame switching and Internet Protocol (IP) routing to high-
level cloud applications [1]–[3]. The area of networking cur-
rently undergoes an unprecedented transformation in moving
towards implementing NFs as software entities—so-called
“softwarized NFs”—that run on General-Purpose Computing
(GPC) platforms and infrastructures as opposed to dedicated
networking equipment hardware.
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In order to motivate this survey on hardware-accelerated
platforms and infrastructures for softwarized NFs, we briefly
introduce the basic concepts of softwarized NFs, including
their computation and management on GPC platforms and
infrastructures, in the following paragraphs. We then explain
the need for hardware-acceleration of softwarized NFs on
GPC platforms and infrastructures in Section I-B, followed
by an overview of the contributions of this survey in Sec-
tion I-C.

1) Network Functions (NFs) and Network Function
Virtualization (NFV)
The term “Network Function (NF)” broadly encompasses
the compute operations (both logical [e.g., bitwise AND or
OR] and mathematical scalar and vector [e.g., integer and
floating point arithmetic]) related either directly or indirectly
to data link layer (Layer 2) frames, network layer (Layer 3)
datagrams or packets, and network application data (higher
protocol layers above Layer 3). For instance, a packet filter
is a direct logical NF that compares header data to allow or
block packets for further processing, while a jitter and latency
estimator function is an example of an indirect arithmetic NF.
An NF that requires dedicated processing with a strict dead-
line, e.g., an NF to verify a medium access control (MAC)
frame error through a Cyclic Redundancy Coding (CRC)
check, is preferably implemented as a hardware component.
On the other hand, an NF with relaxed timing requirements,
e.g., TCP congestion control, can be implemented as a soft-
ware entity.

The push towards “softwarized NFs” is to reduce the
hardware dependencies of NFs for function implementation
so as to maximize the flexibility for operations, e.g., to allow
for the flexible scaling and migration of NF services. Soft-
warized NFs enable compute operations to be implemented
as generic executing programs in the form of applications that
can be run on a traditional OS or isolated environments, such
as Virtual Machines (VMs) [4] or containers [5], on GPC
platforms. Analogous to the broad term “Network Function
(NF)”, the term “Network Function Virtualization (NFV)”
broadly refers to NF implementation as a virtualized entity,
typically as an application (which itself could run inside a
container), and running inside a VM (see Fig. 1). Thus, NFV
is an implementation methodology of an NF; while the term
NF broadly refers to compute operations related to general
packet processing. Moreover, the term “Virtual Network
Function (VNF)” refers to an NF that is implemented with
the NFV methodology.

2) Role of Software Defined Networking (SDN) in the
Management of NFs
Software Defined Networking (SDN) [6]–[9] is a paradigm
in which a logically centralized software entity (i.e., the
SDN controller) defines the packet processing functions on a
packet forwarding node. The notion of centralized decision
making for the function implementation and configuration
of forwarding nodes implies that the network control plane

(which makes the decisions on the packet processing) is
decoupled from the network data plane (which forwards the
packets). Extending the principles of SDN from forwarding
nodes to the broad notion of compute nodes can achieve
more flexibilities in the deployment of NFs on GPC platforms
in terms of scalability and management [10], [11]. More
precisely, SDN can be applied for two primary purposes: i)
macro-scale NF deployments, where the decisions involve
selecting a specific platform for NF deployments based on
decision factors, such as physical location, capabilities, and
availability, and ii) micro-scale NF deployments, where the
decisions involve reconfiguring the NF parameters during on-
going operations based on run-time requirements, such as
traffic loads, failures and their restoration, as well as resource
utilization.

3) Compute Nodes for Running NFs
In general, the compute nodes running the NFs as appli-
cations (VMs and containers) can be deployed on platform
installations ranging from large installations with high plat-
form densities (e.g., cloud and data-centers) to distributed
and singular platform installations, such as remote-gateways,
clients, and mobile nodes. The cloud-native approach [12] is
the most common method of managing the platform installa-
tions for the deployment of NFs that are centrally managed
with SDN principles. While the cloud-native approach has
proven to be efficient for resource management in cloud
and data center deployments of NFs, the applicability of
the cloud-native approach to remote-gateways, clients, and
mobile nodes is yet to be investigated [13].

The wide-spread adoption of Multi-Access Edge Comput-
ing (MEC) [14] with cloud-native management is accelerat-
ing the trend towards softwarized NFs, which run on GPC
platforms. The MEC aims to deliver low-latency services
by bringing computing platforms closer to the users [15]–
[19]. A key MEC implementation requirement is to inherit
the flexibility of hosting a variety of NFs as opposed to a
specific dedicated NF. A GPC platform inherently provides
the flexibility to implement NFs as software entities that
can easily be modified and managed, such as applications,
Virtual Machines (VMs), and containers [20]. In a typical
MEC node deployment, the GPC platform is virtualized by
a hypervisor [21], e.g., Linux Kernel-based Virtual Machine
(KVM), Microsoft HyperV, or VMware ESXi, and then NFs
are instantiated as a VM or container managed by the hyper-
visor. The flexibility of an MEC is achieved by the process
of migrating applications, VMs, and containers to different
locations by an orchestration function [22].

4) Management of NFs
The NF deployment on a compute node (i.e., physical plat-
form) is typically managed through a logically centralized
decision making entity referred to as “Orchestrator”. Based
on SDN principles, the orchestrator defines and sends orches-
tration directives to the applications, VMs, and containers to
run on compute nodes [11], [23]–[28]. OpenStack [29] and
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Kubernetes [30], [31] are the mostly commonly adopted ded-
icated orchestration frameworks in the cloud and data-center
management of resources and applications, including VMs
and containers. In addition to flexibility, the softwarization
and virtualization of NFs can reduce CAPEX and OPEX of
the network operator. In particular, the network operator can
upgrade, install, and configure the network with a centralized
control entity. Thus, MEC and virtualization are seen as key
building blocks of future network infrastructures, while SDN
enables efficient network service management.

B. NEED FOR NF HARDWARE ACCELERATION ON GPC
PLATFORM

The NF softwarization makes the overall NF development,
deployment, and performance characterization at run time
more challenging [11]. Softwarized NFs rely on GPC central
processing units (CPUs) to accomplish computations and
data movements. For instance, data may need to be moved
between input/output (I/O) devices, e.g., Network Interface
Cards (NICs), and system memory. However, the GPC plat-
forms, such as the Intel® x86–64 [32] and AMD® [33]
CPU platforms, are not natively optimized to run NFs that
include routine packet processing procedures across the I/O
path [34]–[37]. The shortcomings of GPC platforms for
NF packet processing have motivated the development of a
variety of software and hardware acceleration approaches,
such as the Data Plane Development Kit (DPDK) [38],
Field Programmable Gate Array (FPGA), Graphics Process-
ing Unit (GPU), and Application Specific Integrated Circuit
(ASIC) [39], to relieve the hardware CPU from compute-
intensive tasks generated by the NFs, such as data link layer
frame switching, IP look-up, and encryption [40].

The deployment of softwarized NFs on GPC platforms
achieves a high degree of flexibility. However, it is important
to note that critical NF functionalities can be compromised
if the hardware and software functional limitations as well
as operational characteristics and capabilities are not care-
fully considered. Generally, the dynamic CPU characteris-
tics can vary over time. For instance, the cache coherency
during memory accesses can introduce highly variable (non-
deterministic) latencies in NF packet processing [41]. More-
over, the CPU power and thermal characteristics can vary
the base operating frequency, introducing variable processing
time behaviors [42]–[44]. Therefore, the softwarization of
NFs must carefully consider the various performance im-
plications of NF acceleration designs to ensure appropriate
performance levels of NFs deployed on hardware-accelerated
GPC platforms. These complex NF performance implications
of hardware-accelerated GPC platforms and infrastructures
motivate the comprehensive survey of this topic area so as to
provide a foundation for the further advancement of the tech-
nology development and research on hardware-accelerated
platforms and infrastructures for NFs.

C. CONTRIBUTIONS AND ORGANIZATION OF THIS
SURVEY
In order to inform the design of hardware acceleration for
the processing of softwarized NFs on GPC platforms, this ar-
ticle comprehensively surveys the relevant existing enabling
technologies and research studies. Generally, the processing
of a software application task is essentially achieved by a set
of hardware interactions. Therefore, understanding hardware
features provides a key advantage in the design of software
applications. In contrast to a generic software application,
an NF involves typically extensive I/O interactions, thus, the
NF compute processing largely depends on hardware support
to achieve high throughput and short latency for NF packet
processing. However, the NF implementation relies not only
on I/O interactions for packet transmission and reception, but
also requires memory for tunneling and encapsulation, stor-
age for applications (e.g., store-and-forwarding of media), as
well as computing (e.g., for cryptography and compression).

This survey provides an authoritative up-to-date survey
of the hardware-accelerated platforms and infrastructures
that speed up the processing of NF applications. The term
“platform” as used in this survey article consolidates all the
physical hardware components that can be used to build a
complete system to support an Operating System (OS) to
drive an application. The platform includes the Basic Input
Output System (BIOS), CPU, memory, storage, I/O devices,
dedicated and custom accelerators, switching fabric, and
power management units. The term “infrastructure” corre-
sponds to the end-to-end connectivity of platforms, such as
network components, switches, Ethernet, and wireless links.
Platform and infrastructure together constitute a complete
hardware framework to support an NF.

Despite the wealth of surveys on NFs and their usage in a
wide variety of networking contexts, to the best of our knowl-
edge, this present survey article is the first comprehensive
survey of hardware-accelerated platform and infrastructure
technologies and research studies for the processing of NFs.
We give an overview of the related surveys in Section I-D and
provide background on the processing of NFs in Section II.
Section III comprehensively surveys the relevant enabling
technologies for hardware-accelerated platforms and infras-
tructures for processing NFs, while Section IV comprehen-
sively surveys the related research studies. For the purpose
of this survey, we define enabling technologies as designs,
methodologies, and strategies that are currently available in
the form of a product in the market place; enabling tech-
nologies are typically developed by industry or commercially
oriented organizations. On the other hand, we define research
studies as investigations that are primarily conducted to
provide fundamental understanding and insights as well as
new approaches and methodologies that aim to advance the
overall field; research studies are primarily conducted by
academic institutions, such as universities and research labs.

Section III classifies the enabling technologies according
to the relevant hardware components that are needed to
support the processing of NFs, namely the CPU, intercon-
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nects, memory, as well as custom and dedicated acceler-
ators on the platforms; moreover, Section III surveys the
relevant infrastructure technologies (SmartNICs and Non-
Transparent Bridging). Section IV categorizes the research
studies into studies addressing the computer architecture,
interconnects, memory, and accelerators on platforms; more-
over, Section IV surveys infrastructure research on Smart-
NICs. Section V summarizes the main open challenges for
hardware-accelerated platforms and infrastructures for pro-
cessing softwarized NFs and Section VI concludes this sur-
vey article.

D. RELATED SURVEYS
This section gives an overview of the existing survey articles
on topics related to NFs and their processing and use in
communication networks. Sections I-D1 through I-D5 cover
topic areas that border on our central topic area, i.e., prior
survey articles on topic areas that relate to our topic area in a
wider sense. Section I-D6 focuses on prior survey articles that
cover aspects of our topic area. Section I-D6 highlights our
original survey coverage of hardware-accelerated platforms
and infrastructures for NFs with respect to prior related
survey articles

1) Softwarization of Network Functions (NFs)
The NF softwarization can be achieved in different forms,
i.e., an NF can be implemented as a software application, as a
Virtual Machine (VM), or as a container image. The concept
of implementing an NF as a VM has been commonly referred
to as Virtualized Network Function (VNF), and Network
Function Virtualization (NFV) as a broader term for the tech-
nology of implementing, deploying, and managing the VNFs.
In general, the NFV concept has been widely discussed in
the survey literature [45]–[47]. The traditional challenges of
NFV deployment are associated with the virtualization pro-
cess of NFs, such as overhead, isolation, resource allocation,
and function management [48]. Herrera et al. [49] have dis-
cussed the resource allocation and placement of applications,
VMs, and containers on GPC platforms. More specifically,
Herrera et al. [49] have surveyed different schemes for the
embedding of virtual networks over a substrate network
along with the chaining of NFs.

The deployment of an NF as a software application, VM,
or container image in the cloud and public networks poses
critical security challenges for the overall NFV service de-
livery. The security aspects and challenges of NFs have been
discussed by Yang et al. [50] and Farris et al. [51] for threats
against NFs on Internet of Things (IoT) networks; while
threat-based analyses and countermeasures for NFV security
vulnerabilities have been discussed by Pattaranantakul et
al. [52]. Furthermore, Lal et al. [53] have presented best
practices for NFV designs against security threats.

2) Software Defined Networking (SDN) for NFs
Software Defined Networking (SDN) provides a centralized
framework for managing multiple NFs that are chained to-

gether to form a network Service Function Chain (SFC) [54]–
[56]. SDN controllers can be used to monitor the resources
across multiple platforms to allocate resources for new SFCs,
and to manage the resources during the entire life time of
a service. The SDN management strategies for NFs have
been summarized by Li et al. [11]. SDN also provides a
platform for the dynamic flow control for traffic steering and
the joint optimization of resource allocation and flow control
for NFV. The main challenges of SDN-based management is
to achieve low control overhead and latency while ensuring
the security during the reconfiguration [57]. In contrast to
surveys of independent designs of SDN and NFV, Bonfim et
al. [58] have presented an overview of integrated NFV/SDN
architectures, focusing on SDN interfaces and Application
Programming Interfaces (APIs) specific to NFV manage-
ment.

3) Network Function Virtualization (NFV) and Network
Slicing

5th Generation (5G) [59]–[61] is a cellular technology
that transforms the cellular infrastructure from hardware-
dependent deployment to software-based hardware-independent
deployment. 5G is envisioned to reduce cost, lower the access
latencies, and significantly improve throughput as compared
to its predecessors [62]–[64]. VNFs are an integral part of the
5G infrastructure as NFs that realize the 5G based core net-
work functionalities are implemented as VNFs. In addition
to NFV, 5G also adopts SDN for the centralized management
of the NFV resources. Yang et al. [65] have presented a
survey of SDN management of VNFs for 5G networks,
while Nguyen et al. [66] have discussed the relative benefits
of different SDN/NFV-based mobile packet core network
architectures. Bouras et al. [67] have discussed the challenges
that are associated with SDN and NFV based 5G networks,
such as scalability and reliability. Costa et al. [68] have
summarized efforts to homogeneously coordinate resource
allocation based on SDN and NFV across both fronthaul and
backhaul networks in the 5G infrastructure.

In conjunction with SDN and NFV, the technique of net-
work slicing provides a framework for sharing common re-
sources, such as computing hardware, across multiple VNFs
while isolating the different network slices from each other.
Afolabi et al. [69] have surveyed the softwarization principles
and enabling technologies for network slicing. As discussed
in the survey by Foukas et al. [70] for VNFs in 5G, for
the design of 5G infrastructure, network slicing provides
an effective management and resource allocation to multi-
ple tenants (e.g., service providers) on the same physical
infrastructure. A more general survey on network slicing
for wireless networks (not specific to 5G wireless networks)
has been presented by Richart et al. [71]. The surveys [72]–
[75] have discussed network slicing and the management of
resources in the context of 5G based on both SDN and NFV.
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4) NFV in Multi-Access Edge Computing (MEC)
In contrast to the deployment of VMs and containers in cloud
networks, fog and edge networks bring the network services
closer to the users, thereby reducing the end-to-end latency.
Yi et al. [76] have presented a survey of NFV techniques
as applied to edge networks. Some of the NFV aspects that
are highlighted by Yi et al. [76] in the context of fog and
edge networks include scalability, virtualization overhead,
service coordination, energy management, and security. As
an extension of fog and edge networks, Multi-Access Edge
Computing (MEC) generalizes the compute infrastructure
at the edge of the access network. A comprehensive MEC
survey has been presented by Tanaka et al. [77], while the
role of NFV in MEC has been surveyed by Taleb et al. [78].
The use of both SDN and NFV provides strategies for ef-
fective management of MEC resources in edge networks as
described by Baktir et al. [79] and Blanco et al. [80].

5) NFV Orchestration
NFV service orchestration involves the management of soft-
ware applications, VMs, and containers which implement
NFs. The NFV management constitutes the storage of VNF
images, the allocation of resources, the instantiation of VNFs
as runtime applications, the monitoring of the NFV perfor-
mance, the migration of the VNFs between different hosts,
and the shutting down of VNFs at the end of their life time.
De et al. [81] have presented a survey of various methods for
managing NFV services. In contrast to NFV management,
the orchestration of service function chaining (SFC) adds
more complexity since an SFC involves the management of
multiple VNFs for a single network service. The SFC com-
plexities, such as compute placement, resource monitoring,
and flow switching have been outlined in a survey article by
Mechtri et al. [82]. Duan et al. [83] have presented a survey
on SDN-based orchestration studies for NFV management.

6) Acceleration of NFs
NFs typically require the routine processing of packets in-
volving intense Input/Output (I/O) activities into and out of
the compute platform [84]. Since GPC platforms are not
fundamentally designed for packet processing, GPC plat-
forms require additional acceleration techniques for effective
high-speed packet processing [85]. Linguaglossa et al. [86]
have provided a tutorial introduction to the broad NFV field
and the overall NFV ecosystem, including tutorial intro-
ductions to software acceleration (inclusive of the related
ecosystem of software stacks) and hardware acceleration
of NFV. The hardware acceleration section in [86] focuses
mainly on a tutorial introduction to the general concept of
hardware offloading, mainly covering the general concepts
of offloading to commodity NICs and SmartNICs; an earlier
brief tutorial overview of hardware offloading had appeared
in [87]. However, a comprehensive detailed survey of specific
hardware offloading technologies and research studies is not
provided in [86]. Zhang [88] has presented an overview of
NFV platform designs; whereby, Zhang defines the term

“NFV platform” to broadly encompass all hardware and
software components involved in providing an NFV service
(in contrast, we define the term “platform” to only refer to
the physical computing entity). Zhang [88] mainly covers
the VNF software and management aspects, i.e., Manage-
ment and Orchestration (MANO) components [89], that are
involved in NFV deployments. Zhang [88] covers hardware
acceleration only very briefly, with only about ten references
in one paragraph. In contrast to [86] and [88], we provide
a comprehensive survey of hardware-accelerated platforms
and infrastructures for NF processing. We comprehensively
cover the technologies and research studies on the hardware
acceleration of CPUs, interconnects, and memory, as well
as the accelerator devices on platforms, and furthermore the
hardware acceleration of infrastructures (which in our classi-
fication encompass SmartNICs) that benefit NF processing.

FPGAs can be programmed with different functions,
thereby increasing design flexibility. FPGA-based accelera-
tion in terms of application performance is limited by the
transistor-gate density and CPU-to-I/O transactions. Addi-
tionally, the FPGA configuration time is relatively longer
than running a compiled executable on a GPU or CPU.
While GPUs are beneficial for running numerous parallel,
yet simple computations, the FPGA advantages include the
support for complex operations which can be a differentiating
factor for compute-intensive workloads [90]. NF applications
that require specialized compute-intensive functions, such
as security, can achieve superior performance with FPGAs
as compared to GPUs and CPUs. Niemiec et al. [91] have
surveyed FPGA designs for accelerating VNF applications
covering the use cases that require compute-intensive func-
tions, such as IPSec, intrusion detection systems, and deep
packet inspection [92]. The Niemiec et al. survey [91] in-
cludes FPGA internals, virtualization and resource slicing of
FPGA, as well as orchestration and management of FPGA
resources specifically for NFV deployments. In contrast, our
survey includes FPGAs operating in conjunction with CPUs,
i.e., FPGAs as platform capability enhancements, to assist
in accelerating general NF applications (that are not limited
to NFV deployments, but broadly encompass arbitrary NF
applications, including e.g., bare-metal applications).

II. BACKGROUND ON NF IMPLEMENTATION
In this section we provide background on Network Functions
(NFs), discuss various forms of NF implementation, and
common acceleration strategies. An NF is a compute oper-
ation on a packet of an incoming traffic stream in a compute
host. NF examples range, for instance, from a simple IP
header look-up for packet forwarding to complex operations
involving security negotiations of an end-to-end connection.
NFs can also be indirect functions, such as statistical analysis
of traffic, network port management, and event monitoring
to detect a Denial-of Service (DoS) attack. Traditionally, an
NF is implemented with dedicated hardware and software
components (see Sec. II-A). Recently, with the softwarization
of NFs, the trend is towards implementing NFs as software
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FIGURE1: Illustration of GPC platform hardware to process Network Functions (NFs). An NF can be implemented as a Bare Metal NF, Application NF (not
shown), Virtual NF (VNF), or Container NF (CNF).

running on General-Purpose Computing (GPC) platforms. A
softwarized NF running on a GPC platform can be designed
as: a bare-metal (BM) implementation on a native OS (as
user application) or as a part of the OS (as kernel module)
(see Sec. II-B), as application running on an OS, i.e., as
user application, or as kernel module as part of the OS (see
Sec. II-C), as Virtual Machine (VM) on a hypervisor (see
Sec. II-D), or as container running on a container engine
(see Sec. II-E). Brief background on general acceleration
strategies for NFs running on GPC platforms is given in
Sec. II-F.

Before we delve into the background on NFs, we give
a brief overview of the terminology used for structures on
GPC processor chips. The term “package” refers to several
hardware components (e.g., CPU, memory, and I/O devices)
that are interconnected and packed to form a system that
is integrated into a single unit with metallic finishing for
physical mounting on a circuit board. That is, a package
is a typical off-the-shelf product that is available as a full
hardware module and that can be plugged into a server-
chassis. A package is often a combination of CPU and non-
CPU components, such as memory (DRAM modules), I/O
devices, and accelerators. A GPC platform consists typically
of multiple packages.

Typically, a commercially available “chip”, such as a
processor chip or a RAM chip, is a full System-on-Chip
(SoC). A GPC processor chip is typically, in the socket form-
factor. We may therefore use the terminology “CPU chip”
and “socket” interchangeably; synonymous terminologies are
“CPU socket” and “CPU slot”. Generally, a package contains
only a single CPU socket (plus other non-CPU components).
Also, a given CPU socket consists generally of only a single

CPU chip, which can contain multiple dies, and each die can
consist of multiple CPU cores. In particular, a single CPU
chip consists typically of multiple interconnected CPU dies.
A die is a single silicon design entity that is etched in one shot
during fabrication. On a CPU chip, there can be multiple dies
interconnected through silicon vias or metallic wires.

A. DEDICATED HARDWARE BASED NF
IMPLEMENTATION
1) Overview
The traditional implementation of an NF was through the
design of dedicated hardware and software, such as off-
the-shelf network switches, routers, and gateways [93]–[95].
Hardware based systems are driven by an embedded soft-
ware (firmware, microcode), with microprocessor, micro-
controller, Digital Signal Processor (DSP), or Application-
Specific Integrated Circuit (ASIC) modules. Embedded soft-
ware for hardware control is generally written in low-level
languages, such as C or assembly. The designs are tightly fo-
cused on a specific prescribed (dedicated) task. For instance,
if the design is to route packets, the embedded hardware and
software components are programmed to route the packets.
Hence, dedicated hardware NF implementations are fixed
implementations that are designed to perform a dedicated
task, except for the management configuration of the device
and NF.

2) Benefits
Implementation with dedicated hardware and software
achieves the best performance for the dedicated task due to
the constrained nature of task processing. As opposed to the
processes and task scheduling in an OS, processes running
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on dedicated hardware use static (fixed) resource allocation,
thereby achieving a deterministic packet processing behavior.
Dedicated NF hardware units are also energy efficient as no
processing cycles are wasted for conversions, e.g., privileges
of execution, modes of operation, and address translations, in
OSs and hypervisors.

3) Shortcomings
A main shortcoming of NF hardware implementation is very
limited flexibility. Reconfigurations require additional ef-
forts, such as intervention by a network administrator. More-
over, NF hardware (HW) is typically locked into vendors due
to proprietary designs, procedures, and protocols. The overall
cost of dedicated hardware products could be relatively high
since the deployment and maintenance require specialized
skills and specialized vendor assistance.

B. BARE-METAL (BM) NF IMPLEMENTATION
1) Overview
Hardware resources that directly host software tasks, e.g.,
applications, for computing and I/O without any additional
abstraction (except for the OS that directly hosts the software
task) are referred to as Bare-Metal (BM) hardware [96]. In
contrast to BM hardware, the other forms of hardware include
abstracted hardware (i.e., virtualized HW). In theory and
practice, there can be multiple layers of abstraction, achiev-
ing nested virtualization [97], [98]. Abstraction of hardware
resources reduces the complexity of operating and managing
the hardware by the application which can help the appli-
cation to focus on task accomplishment instead of managing
the hardware resources. The BM implementation can provide
direct access to hardware for configurability, reducing the
overheads for computing and for hardware interactions for
I/O. The application performance on BM as compared to
abstracted hardware, i.e., on a VM or container, has been
examined in Yamato et al. [99].

2) Benefits
The BM implementation of NFs can achieve relatively higher
performance as compared to NFs running on virtualized and
abstracted environments [99]. The high BM performance
is due to the low overhead during NF compute tasks. The
instruction and memory address translations required by
abstractions are avoided by BM implementations. The BM
implementation also provides direct access to OS resources,
such as the kernel, for managing the memory allocation,
prioritizing the scheduling processing, and controlling I/O
transactions.

3) Shortcomings
The BM implementation of an NF does not provide a secure
and isolated environment to share the hardware resources
with other NFs on the same BM. If multiple NFs run on
the same BM hardware, multiple NFs can interfere with each
other due to the contention for resources, such as CPU, cache,

memory, and I/O resources, resulting in non-deterministic be-
haviors. Running a low number of NFs to avoid interference
among NFs can result in low resource utilization. Hence, the
management of applications could incur additional comput-
ing as well as a higher management cost. NF implementation
on BM with hardware-specific dependencies can result in
reduced scalability and flexibility.

C. APPLICATION AND KERNEL BASED NF
IMPLEMENTATION
1) Overview
In general, NFs are mainly deployed as applications which
implement the overall packet processing functionality. In
contrast to the NF implementation as a user-space applica-
tion, NF tasks can also be embedded into the kernel as a
part of the OS. Generally, there are two types of processes
that are run by the OS on the CPU: i) applications that use
the user-space memory region, and ii) more restrictive kernel
(software) modules that use the kernel-space memory region.
However, a kernel-based NF provides little or no control to
the user for management during runtime. Therefore, NFs are
mainly run as applications in the user-space execution mode
in an OS.

The user-space has limited control over scheduling poli-
cies, memory allocation, and I/O device access. However,
NFs in the user-space are given special permissions through
kernel libraries and can access kernel-space resources (i.e.,
low level hardware configurations). Some NF applications,
such as authentication, verification, and policy management,
may not always require hardware interactions and special
kernel-space access. Therefore, the design of NF applications
should consider the hardware requirements based on the
nature of the task, i.e., whether an NF is time-sensitive (e.g.,
audio packets), memory intensive (e.g., database manage-
ment), or compute intensive (encryption/decryption). Some
examples of high level NF applications with low resource
dependencies are data validation, traffic management, and
user authentication.

2) Benefits
Application based NFs have simple development, deploy-
ment, and management. Most NFs are designed and de-
ployed as user-space application in an OS. User-space ap-
plications generally consume lower compute, memory, and
I/O resources compared to abstraction and isolation based
implementations, such as container and VMs.

3) Shortcomings
NF applications that are implemented in the user-space are
vulnerable to security attacks due to limited OS protection.
Also, user-space applications are not protected from mutual
interference of other NF applications, thus there is no iso-
lation among tasks, resulting in non-deterministic execution
of NF tasks. Moreover, user-space applications fall short
for networking tasks that require near real-time reaction as
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the requests propagate through memory regions and follow
traditional interrupt mechanisms through I/O hardware.

D. VIRTUAL MACHINE (VM) BASED NF
IMPLEMENTATION
1) Overview
To flexibly manage NFs with effective resource utilization
and isolation properties, NFs can be implemented as an
application running on a Virtual Machine (VM). A VM is
typically implemented as a guest OS over a host OS. The host
OS abstracts the hardware resources and presents a virtual-
ized hardware to the guest OS. The software entity (which
could be part of the host OS) that abstracts and manages
the hardware resources is referred to as a hypervisor. An NF
can then be implemented as a kernel module or as a user-
space application on the guest OS. A host OS/hypervisor can
support multiple guest OSs through sliced resource allocation
to each guest OS, thus providing a safe virtual environment
for the NF execution.

2) Benefits
VM based NF implementation provides a high degree of
flexibility in terms of deploying and managing the NFs.
Multiple instances of the same NF can be instantiated through
duplication of VM images for scalability and reliability. VM
images can also be transported easily over the network for
the instantiation at a remote site. Additionally, multiple NFs
can be hosted on the same host OS, increasing the effective
resource sharing and utilization. A VM is a complete OS,
and all the dependent software necessary for the execution of
an NF application is built into the VM, which improves the
compatibility across multiple host OSs and hypervisors.

3) Shortcomings
In general, the performance of an NF implemented as a VM
is lower than BM and OS based implementation, since vir-
tualization incurs both compute and memory overhead [99].
Since a VM is also a fully functional OS, the overall memory
usage and execution processes are complex to design and
manage as compared to a user-application based NF running
on an OS without virtualization. NF software implementation
issues are complex to trace and debug through multiple layers
of abstraction. Deployment cost could be higher due to the
need for specialized support for the VM management [100].

E. CONTAINER BASED NF IMPLEMENTATION
1) Overview
The VM based NF implementation creates a large overhead
for simple NFs, such as Virtual Private Network (VPN) au-
thentication gateways. Scaling and migrating VMs requires
large memory duplications, which result in overall long la-
tencies for creating and transporting multiple VM instances.
The concept of workload containerization originated for
application management in data centers and the cloud to
overcome the disadvantages of VMs [101]. Containers have

been designed to create a lightweight alternative to VMs.
A key difference between a VM and a container is that a
container shares the host OS kernel resources with other
containers, while a VM shares the hardware resources and
uses an independent guest OS kernel. The sharing of host
OS resources among containers is facilitated by a Container
Engine (CE), such as Docker. NFs are then implemented as
a user-space application running on a container [102]. The
primary functions of a CE are:

i) Provides Application Programming Interfaces (APIs)
and User Interfaces (UIs) to support interactions be-
tween host OS and containers.

ii) Container image management, such as storing and re-
trieving from a repository.

iii) Configuration to instantiate a container and to schedule
a container to run on a host OS.

2) Benefits
The primary benefits of containerization are the ease of
NF scalability and flexibility. Containers are fundamentally
designed to reduce the VM management overhead, thus facil-
itating the creation of multiple container instances and trans-
porting them to different compute nodes. Container based
NFs support cloud-native implementation, i.e., to inherently
follow the policies applied through a cloud management
framework, such as Kubernetes. Containerization creates a
platform for NFs to be highly elastic to support scaling based
on the demand during run time, resulting in Elastic-Network
Functions (ENFs) [103].

3) Shortcomings
Critical shortcomings of containerization of an NF are:

i) Containers do not provide the high levels of security and
isolation of VMs.

ii) A container can run on BM hardware; whereas, a VM
can run both on a hypervisor and on BM hardware.

iii) Only the subset of NF applications that support a modu-
larized software implementation and have low hardware
dependencies can be containerized.

iv) Containers do not provide access to the full OS envi-
ronment, nor access to a Graphic User Interface (GUI).
Containers are limited to a web-based user interface that
provides simple hypertext markup language (HTML)
rendering for applications that require user interactions,
e.g., for visualizations and decisions based on traffic
analytics.

F. ACCELERATION STRATEGIES FOR NF
IMPLEMENTATION
NF softwarization should carefully consider different design
strategies as one design strategy does not fit all application
needs. In addition to discussed software implementation de-
signs (Sections II-B– II-E), we need to consider acceleration
techniques to facilitate the NF application to achieve optimal
performance in terms of overall system throughout, pro-
cessing latency, resource utilization, energy, and cost, while
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preserving scalability and flexibility. Towards these goals,
acceleration can be provided in either software or hardware.

1) Software Acceleration Methods
a: Overview
Typically, an NF on a GPC infrastructure requires an ap-
plication running on a traditional OS, such as Linux or
Windows, whereby, an application can also be hosted inside
a VM or container for abstraction, security, and isolation
requirements. However, traditional OSs are not natively de-
signed towards achieving high network performance. For
instance, an OS network driver typical operates in interrupt
mode. In interrupt mode, a CPU is interrupted only when
a packet has arrived at the Network Interface Card (NIC),
upon which the network driver process running on the CPU
executes a subroutine to process the packet waiting at the
NIC. If the CPU is in a power-saving deep sleep state due to
inactivity, waking the CPU would take several cycles which
severely lengthens the overall packet processing latency. An
alternative to the interrupt mode is polling. However, polling
of the NIC would significantly reduce the ability of the
CPU to perform other tasks. Thus, the interrupt mode incurs
relatively long latencies, while keeping the CPU and power
utilization low. However, the interrupt mode generally does
not maximize the overall throughput (total packets processed
by the CPU per second), which requires the batching of
packets and is more readily achieved with polling [104].

Some of the examples of software acceleration strategies
are:

i) Polling strategies of I/O devices for offloading task
completions and I/O requests.

ii) Continuous memory allocation, and reduction in mem-
ory copies between processes and threads.

iii) Reduced virtual to physical address translations.
iv) Maintaining cache coherency during memory accesses.
iv) Scheduling strategies for resource monitoring and allo-

cation.

b: Benefits
One of most prominent benefits of software acceleration is
the low cost of adoption in the market, which also reduces
the development to deployment cycle time. Software ac-
celeration requires only very small or no modifications of
the existing infrastructure. Software optimizations also pave
the way to an open source architecture model of software
development. The overall development and deployment of
software acceleration reduces the complexity and need for
sophisticated traditional hardware acceleration designs; and
maximizes the performance and utilization of existing hard-
ware infrastructures.

c: Shortcomings
Software acceleration may not provide the best possible
system throughput as compared to hardware acceleration to
fully utilize the system capacity as the software overhead

may cause bottlenecks in the system, e.g., for memory and
I/O device accesses. Software implementation also increases
the overall energy consumption for a given acceleration as the
processing is done by the CPU through a generic instruction
set. Higher access control (e.g., root privileges) for user-
space applications to achieve software acceleration generally
does not go well with isolation and has security implications
in terms of privacy as multiple applications could interfere
with each other [53]. Also, additional layers of software
abstractions for acceleration add more latency for the overall
task processing as compared to hardware acceleration.

2) Hardware Acceleration Methods
a: Overview
Although software optimizations provide acceleration of
NFs, software is fundamentally limited by the CPU availabil-
ity (i.e., contention with other processes), load (i.e., pending
tasks), and utilization (i.e., average idle time) based on the
active task computing that the CPU is trying to accomplish.
NFs typically require routine tasks, such as IP look-up for
network layer (Layer 3) forward routing operations. For data
link layer (Layer 2) operations, the MAC look-up and port
forwarding that needs to be performed for every frame creates
a high I/O bound workload. Similarly, the encapsulation
and decapsulation of every packet needed for tunnel-based
forwarding constitutes a high memory bound workload. A
more CPU intensive type of task is, for instance, encryption
and decryption of IP packets for security. In order to max-
imize the performance, the CPU has to frequently monitor
the NIC and has to process the IP packets as part of an
NF; both of these actions consume large numbers of CPU
cycles. Therefore, hardware based acceleration is critical for
NF development and deployments.

Hardware acceleration can be broadly categorized into
custom acceleration and dedicated acceleration. Custom ac-
celeration is generic and programmable to application re-
quirements either at run-time or preloaded based on the need.
Examples of custom acceleration are Graphic Processing
Unit (GPU) and Field Programmable Gate Arrays (FPGA).
In contrast, dedicated hardware acceleration is designed and
validated in hardware for a defined function, with little or no
programming flexibility to change the behavior of hardware
at run-time. On the other hand, custom hardware acceleration
is cost effective and easy to configure which helps in devel-
oping new protocols and behaviors that are adapted to the
applications.

b: Benefits
As compared to software acceleration, hardware acceleration
provides more robust advantages in terms of saving CPU
cycles that execute the NF processing tasks than implemen-
tation as a software. Overall, hardware accelerators signif-
icantly improve the system throughput and task latency as
well as energy efficiency for NF implementations [105].

VOLUME 1, 2020 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3008250, IEEE Access

Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for Network Functions

c: Shortcomings
The main shortcomings of hardware accelerations are:

i) Longer time frame for development cycle than for soft-
ware acceleration development.

ii) For every hardware component there is an associated
software component that needs to be developed and
maintained.

iii) Introduction of new technologies, newer specifications
and skills to manage the hardware.

iv) Higher cost of implementation and adoption into mar-
ket.

v) Infrastructure upgrades with new hardware components
are difficult

vi) Locked in vendors for hardware and maintenance sup-
port.

III. ENABLING TECHNOLOGIES FOR
HARDWARE-ACCELERATED PLATFORMS AND
INFRASTRUCTURES FOR NF IMPLEMENTATION
This section comprehensively surveys the enabling technolo-
gies for hardware-accelerated platforms and infrastructures
for implementing NFs. This section is structured according
to the classification structure of the enabling technologies in
Fig. 2, whereby a subsection is dedicated to each of the main
categories of enabling technologies, i.e., CPU, interconnects,
memory, custom accelerators, dedicated accelerators, and
infrastructure.

A. CENTRAL PROCESSING UNIT (CPU)
Traditionally in the current deployments, the CPU performs
nearly all the computing required by an NF. While most
NF computing needs can be met by a CPU, an important
question is to decide whether a CPU is the ideal resource
to perform the NF tasks. For instance, a polling function
only continuously monitors a hardware register or a memory
location; a CPU may not be well suited for such a polling
function. This section comprehensively surveys the enabling
technologies for accelerating the operation of the CPU hard-
ware for processing NFs.

1) Instruction Set Acceleration (ISAcc)
An instruction is a fundamental element that defines a CPU
action. A CPU action can be a basic operation to perform
an arithmetic or logic operation on two variables, to store
or to retrieve data from memory, or to communicate with
an external I/O device. The instruction set (IS) is a set of
instructions that are pre-defined; the IS comprehensively lists
all the CPU operations. In the computing literature, the IS
is also commonly referred to as Instruction Set Architecture
(ISA); for brevity, we use the terminology “Instruction Set
(IS)” and define the acronym “ISAcc” to mean “Instruction
Set Acceleration”. The properties of the IS list distinguish
the type of CPU, typically as either Reduced Instruction
Set Compute (RISC) or Complex Instruction Set Compute
(CISC) [106]. Generally, RISC has a very basic set of limited

TABLE1: CPU Instruction Set Acceleration (CPU-ISAcc) extensions: AES-
NI, DRNG, and AVX-512. CPU-ISAcc optimizes hardware implementations
of software functions, such as random number generation, cryptographic
algorithms, and machine learning, in terms of power and performance.

CPU Instruction Acceleration Function

AES-NI

AESENC One round AES encryp. flow
AESNCLAST Last round AES encryp. flow
AESDEC One round AES decryp. flow
AESDECLAST Last round AES decryp. flow
AESKEYGENASSIST AES round key generation
AESIMC AES Inverse Mix Columns
PCLMLUQDQ Carryless multiply

DRNG RDRAND Hardw.-gen. random value
RDSEED Hardw.-gen. random seed value

AVX-512

VNNI Vector Neural Net. Instr.
GFNI Galois Field New Instr.
VAES Vector AES Instructions
VBMI2 Vector Byte Manip. Instr. 2
BITALG Bit Algorithms

operations, while CISC includes a comprehensive set of
instructions targeted at complex operations. RISC is power
and silicon-space efficient. However, the limited set of RISC
operations generates large amounts of translated machine
opcodes from a high-level programming language which
will reduce performance for complex operations, such as
encryption or compression. On the other hand, CISC can
implement a complex operation in a single CPU instruction
which can result is smaller machine opcodes, improving
the performance for complex operations. However, CISC
generally consumers higher power and requires more silicon-
space than RISC.

Tensilica [107] is an example of low-power DSP pro-
cessor based on the RISC architecture which is optimized
for floating point operations [108]. Tensilica processors are
typically used in the design of I/O devices (e.g., NIC) and
hardware accelerators in the form of new IS definitions and
concurrent thread execution to implement softwarized NFs.
The IS extensions have been utilized to accelerate hashing
NFs [109], [110] and dynamic task scheduling [111]. Similar
IS extensions have accelerated the complex network coding
function [112], [113], [193] in a hardware design [114].

ISAcc [115], [116] provides an additional set of instruc-
tions for RISC and CISC architectures. These additional
instructions enable a single CPU instruction to performs a
specific part of the computation that is needed by an appli-
cation in a single CPU execution cycle. The most important
CPU instructions that directly benefit NF designs are:

a: Advanced Encryption Standard-New Instructions
(AES-NI)
Advanced Encryption Standard-New Instructions (AES-
NI) [117], [118] include IS extensions to compute the cryp-
tography functions of the Advance Encryption Standard
(AES); in particular, AES-NI includes the complete encryp-
tion and decryption flow for AES, such as AES-GCM (AES-
GCM is a type of AES algorithm, and AES-ENC is used in-
ternally for GCM encryption). AES-NI has been widely used
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?

?
CPU, Sec. III-A

Instruction Set Accel.
(ISAcc) [106]–[116]
AES-NI [117], [118]
DRNG [119]
AVX [120]–[123]
SSE [124], [125]
CPU Identi. [126]
VM Ext. [127]–[129]
Deep Learning Boost [32]

CPU Pinning [130], [131]
Cache Coherency
Cache Hierarchy [132]
DDIO [133]

CPU Clock [134]
Base Frequency [135]
Turbo Frequency [136]
Over-clocking [137]
Dyn. Volt. & Freq. Scal. (DVFS) [138]–[141]
Sel. Tech.-Base Freq. (SST-BF) [142], [143]

ARM Arch. in HPC
RISC Design [116]
Hyper-Scale Comp., Neoverse N1® [144], [145]

?
Interconn., Sec. III-B

On-Chip
SDF & SCF [33]
2D Mesh [146]
Netw. on Chip [147]
IOSF [148]
Adv. Ext. Interf. [149]

Chip-to-Chip
Ultra Path [150], [151]
IFIS [33], [152]–[154]
PCIe [155]
CXL [156], [157]
Cache Coh. (CCIX) [158]
Gen-Z [159]
OpenCAPI [160], [161]

?
Memory, Sec. III-C

Direct Mem. Acc.
I/OAT & QDT [162]

DDR5
Dedi. Mode Regi. [163]

Non-volat.-NAND [164], [165]
1 LM [166], [167]
2 LM [167]
Appl.-Direct (DAX) [168]
Ext. Storage [169]
Asyn. DRAM Refr. (ADR) [170]

?
Cust. Acc., Sec. III-D

GPU
RISC Arch. [171]
Task Cmp. [171]

FPGA
FPGA Arch. [172]

?
Dedi. Acc., Sec. III-E

Cryp. & Comp. Acc. [173]

Cavium Nitrox® [174]
[84], [175]
Quick Assist Tech.® (QAT)
[176], [177]

Data Stream Acc. (DSA) [178]
High BW Mem.
Capacity & Access BW [179]
Memory Store Cube [180]

Proc. In-Mem.
Data Movement [181], [182]
Mem. Storage Module [183]
Matrix Operations [184]

HW Que. Mgr.
Shared & Dedicated Queues [185], [186]
Thread Selection [187]

?
Infra.,Sec. III-F

Smart NIC
FPGA Units [188], [189]
High Speed Pkt. Proc. [190]
Adv. Protocols [191]

NTB [192]

FIGURE2: Classification taxonomy of enabling technologies for hardware-accelerated platforms and infrastructure for processing softwarized NFs: The main
platform related categories are hardware accelerations for the CPU, interconnects, and memory, as well as custom and dedicated hardware accelerators that are
embedded on the platform; the infrastructure hardware accelerations focus on network interface cards and bridging.

for securing HTTPS connections needed for end-to-end NFV
instances over networks. HTTP uses the Transport Layer
Security (TLS) Secure Sockets Layer (SSL) protocol (which
incorporates AES) to generate and exchange keys as well as
to perform encryption and decryption. SSL implementations,
such as OpenSSL, provide the interface and drivers to interact
with the AES-NI CPU acceleration instructions.

b: Digital Random Number Generator (DRNG)
The Digital Random Number Generator (DRNG) [119] with
the RDRAND instruction can be used for generating public
and private cryptographic keys. The RSEED instruction can
be used for seeding software-based Pseudorandom Number
Generators (PRNGs) used in cryptography protocols. DRNG
is also extensively used in modeling, analytics for random
selections, large scale system modeling to introduce ran-
domization, natural disturbances, and noises in encryption
and control loop frameworks, which are applicable to SDN
controller-based NF designs.

c: The Advanced Vector Extensions (AVX)
The Advanced Vector Extensions (AVX) [120], [121] imple-
ment an advanced data processing IS for machine learning,
encryption, and signal processing [122]. The vectorization of

the CPU processing significantly improves the data compu-
tations for large vector data sets [123].

d: Streaming SIMD Extensions (SSE)
The Streaming SIMD Extensions (SSE) [124], [125] imple-
ment accelerations aimed at string and text character pro-
cessing, which is essential for searches and comparisons.
NFs rely on JavaScript Object Notation (JSON), extensible
markup language (XML), and text parsing protocols to per-
form management functions. SSE instructions play an impor-
tant role in achieving near-real-time decisions based on text
look-up and comparisons. SSE instructions also implement
compute functions for 32 bit Cyclic Redundancy Checks
(CRC32) which are commonly used in data transfer and
external storage NFs.

e: CPU IDentification (CPUID)
The CPU IDentification (CPUID) [126] instruction provides
the details of CPU specifications, enabling software to make
decisions based on the hardware capabilities. A user can
write a predefined value to the EAX CPU register with the
CPUID instruction to retrieve the processor specific informa-
tion that is mapped to the value indicated by the EAX CPU
register. A comprehensive list of CPU specifications can be
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enumerated by writing values in sequence to the EAX and
reading the EAX (read back the same write register), as well
as the related EBX, ECX, and EDX CPU registers. For in-
stance, writing 0x00h to the EAX provides the CPU vendor
name, whereas writing 0x07h gives information about the
AVX–512 IS capability of the CPU. NF orchestration can
use the CPUID instruction to identify the CPU specifications
along with the ISAcc capabilities to decide whether an NF
can be run on the CPU or not.

f: Virtual Machine Extensions (VMX)
The Virtual Machine Extensions (VMX) [127]–[129] provide
advanced CPU support for the virtualization of the CPU, i.e.,
the support for virtual CPUs (vCPUs) that can be assigned to
VMs running on a Virtual Machine Monitor (VMM) [194],
[195]. In the virtualization process, the VMM is the host OS
which has direct controlled access to the hardware. VMX
identifies an instruction as either a VMX root operation or
a VMX non-root operation. Based on the instruction type
provided by the VMX, the CPU executes a VMX root
operation with direct hardware access, while a VMX non-
root operation is executed without direct hardware access.
The two most important aspects in virtualization are: a)
VM entries, which correspond to VMX transitions from root
to non-root operation, and b) VM exits, which correspond
to VMX transitions from non-root to root operation. NFs
implemented on a virtual platform should be aware of the
VMX principles and whether an NF requires root operations
to take the advantage of performance benefits in root-based
operations.

g: Deep Learning (DL) Boost
The Deep Learning (DL) Boost IS acceleration on Intel®

CPUs [32] targets machine learning and neural network
computations. The traditional implementation of floating
point operations results in extensive Arithmetic and Logic
Unit (ALU) computations along with frequent accesses to
registers, caches, and memory. DL Boost transforms float-
ing point operations to integer operations, which effectively
translates the higher precision floating point multiply and
addition operations to lower precision integer calculations.
The downside is the loss of computation accuracy. However,
for machine learning and neural network computations, a
loss of accuracy is often tolerable. DL Boost can transform
Floating Point 32 bit (FP32) operations to FP16, INT8, and
further down to INT2. DL boost reduces the multiply-and-
add operations, which increases system throughput while re-
ducing latency and power consumption. An NF that requires
low precision floating operation for prediction, estimation,
and machine learning applications can benefit from DL Boot
acceleration of the CPU IS.

2) CPU Pinning
CPU pinning is a resource allocation strategy that allocates
and pins a specific workload to a specific physical CPU core.
Traditionally, in the OS, application threads and processes are
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FIGURE3: Components inside processor chips are generally functionally
separated into core (i.e., CPUs) and uncore elements. Uncore elements
are non-core components, such as clock, memory controllers, integrated
accelerators, interrupt controllers, and interconnects.

dynamically scheduled on the CPU cores based on their rel-
ative priorities and processing states, such as wait and ready-
to-run. As opposed to the OS management of CPU resources,
the dedicated and static allocation of CPU core resources for
the execution of application threads and processes improves
the performance of the pinned application [130], [131]. In ad-
dition to no-contention of resources, the performance benefits
of CPU pinning are attributed to the data cache coherency,
especially at the L1 and L2 cache levels (which reside within
the CPU core), when only one application accesses a memory
location from a given CPU core.

In virtualization, the VMM scheduler allocates the CPU
resources to VMs, i.e., the conversion of instructions to a
virtual CPU (vCPU) to an actual physical CPU (pCPU)
is achieved dynamically at run time. However, the VMM
scheduler may impact the overall performance when there
is resource contention by other VMs running on a VMM;
in addition, VM based cache coherency issues may arise.
Therefore, CPU pinning is an important aspect to consider for
the CPU resource allocation (vCPU or pCPU) to a virtualized
NF (VNF) via CPU pinning.

3) Cache Coherency
Caches play an important role in the overall software ex-
ecution performance by directly impacting the latency of
memory accesses by the CPU. The memory access flow from
a CPU first performs an address translation from a virtual
address to a physical address. If the address translation fails,
then a page fault is registered and a page walk process is
invoked. If the address translation succeeds, then cache levels
are checked. If there is a cache hit, then the data is read
from or written to the cache; whereas, if there is a cache
miss, then an external memory read or write is performed.
A cache miss or an address translation failure page walk
significantly increase the latency and severely impede the
NF performance. Therefore, NF designs have to carefully
consider the cache coherency of data accesses.

a: Cache Hierarchy
The cache hierarchy has been commonly organized as fol-
lows:
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i) The level L1 cache for code is normally closest to the
CPU with the lowest latency for any memory access. A
typical L1 cache for code has a size of around 64 kilo-
bytes (KB), is shared between two cores, and has 2-way
access freedom. The L1 cache for code is commonly
used to store opcodes in the execution flow, whereby a
block of opcodes inside a loop can greatly benefit from
caching.

ii) The level L1 cache for data is a per-core cache which
resides on the CPU itself. The L1 data cache typically
stores the data used in the execution flow with the
shortest access latency on the order of around 3–4 clock
cycles.

iii) A typical level L2 cache is shared between two cores
and has a size of around 1–2 MB. The access latency is
typically around 21 clocks with 1 read for 4 clock cycles
and 1 write for 12 clock cycles.

iv) The level L3 cache is generally referred to as shared
Last Level Cache (LLC), which is shared across all
cores. The L3 cache is typically outside the CPU die,
but still may reside inside the processor die. A typical
processor die consists of core and uncore elements [132]
(see Fig. 3). Uncore elements refer to all the non-
CPU components in the processor die, such as clock,
Platform Controller Hub (PCH), Peripheral Component
Interconnect express (PCIe) root complex, L3 cache,
and accelerators.

b: Data-Direct IO (DDIO)
The Data-Direct IO (DDIO) [133] is a cache access advance-
ment I/O technology. The DDIO allows I/O devices, such
as the PCIe based NIC, GPU, and FPGA, to directly read
and write to the L3 shared LLC cache, which significantly
reduces the latency to access the data received from and sent
to I/O devices. Traditionally, I/O devices would write to an
external memory location which would then be accessed by
the CPU through a virtual to physical address translation and
a page look-up process. NF applications require frequent I/O
activities, especially to read and write packets between NIC
and processor memory. With DDIO, when a packet arrives at
the NIC, the NIC directly writes to the cache location that is
indexed by the physical address of the memory location in
the shared L3 cache. When the CPU requests data from the
memory location (which will be a virtual address for CPU
requests), the address is translated from virtual to physical,
and the physical address is looked up in the cache, where
the CPU finds the NIC packet data. The DIDO avoids the
page walk and memory access for this packet read operation.
A CPU write to NIC for a packet transmission executes the
same steps in reverse. Thus, NF implementations with intense
I/O can greatly benefit from the DDIO cache management.

4) CPU Clock
One of the critical aspects of an NF is to ensure adequate
performance when running on a GPC platform. In addition to
many factors, such as the transistor density, memory access

speeds, and CPU processing pipeline, the CPU operational
clock frequency is a major factor that governs the CPU
throughput in terms of operations per second. However, in
a GPC platform, the CPU clock frequency is typically dy-
namically scaled to manage the thermal characteristics of the
CPU die [134]. The CPU clock frequency directly impacts
the total power dissipated as heat on the CPU die.

a: Base Frequency
The base frequency [135] is the normal CPU operational fre-
quency suggested by the manufacturer to guarantee the CPU
performance characteristics in terms of number of operations
per second, memory access latency, cache and memory read
and write performance, as well as I/O behaviors. The base
frequency is suggested to achieve consistent performance
with a nominal power dissipation to ensure sustainable and
tolerable thermal features of the CPU die.

b: Turbo Frequency
The turbo frequency technique [136] automatically increases
the platform and CPU operational frequency above the base
frequency but below a predefined maximum turbo frequency.
This frequency increase is done opportunistically when other
CPUs in a multi-core system are not active or operating at
lower frequencies. The turbo frequency is set according to the
total number of cores running on a given CPU die, whereby
the thermal characteristic of the CPU die is determined by
the aggregated power dissipated across all the cores on the
CPU die. If only a subset of the cores on the CPU die
are active, then there is an extra thermal budget to increase
the operational frequency while still meeting the maximum
thermal limits. Thus, the turbo frequency technique exploits
opportunities for automatically increasing the CPU core fre-
quencies for achieving higher performance of applications
running on turbo frequency cores.

c: Over-clocking
Over-clocking [137] manually increases the CPU clock fre-
quency above and beyond the manufacturer’s suggested max-
imum attainable frequency, which is typically, higher than
the maximum turbo frequency. Over-clocking changes the
multipliers of the fundamental CPU clock frequency. A clock
multiplier on the uncore part of the CPU die generally
converts the lower fundamental frequency into the operating
base and turbo frequencies. Over-clocking manually alters
the multipliers of the clock frequency to reach the limits
of thermal stability with an external cooling infrastructure.
The thermal budget of the CPU die is forcefully maintained
through a specialized external cooling infrastructure (e.g.,
circulating liquid nitrogen) that constantly cools the CPU die
to prevent physical CPU damage from overheating. The high-
est CPU performance can be achieved through successful
over-clocking procedures; however, the cost and maintenance
of the cooling infrastructure limit sustained over-clocked
operations. Hence only few applications can economically
employ over-clocking on a consistent basis.
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which indicate the overall CPU state; additionally, when the CPU is active
(i.e., in C0), then core-specific Power states (P-States) indicate the opera-
tional frequencies of the cores that are actively executing instructions.

d: Dynamic Voltage and Frequency Scaling (DVFS)
Dynamic Voltage and Frequency Scaling (DVFS) [138]–
[140] defines a system and a set of procedures that control
the operational frequency and voltage in a CPU subsystem.
Typically, CPU manufactures provide several operational
states (see Fig. 4) including: C0: CPU is actively executing
instructions; C1: CPU in halt state with no instruction exe-
cution, capable of instantaneously transitioning into C0 state;
C2: Stop-Clock, transition to C1 and C0 takes longer; C3: C3
and higher CPU states can be defined as sleep states without
power.

In addition to the C states, which define the CPU power
characteristics, P states define the performance characteris-
tics of the individual CPU cores, typically when the CPU is in
C0. The P states include: P0: CPU core is operating in turbo
frequency mode, the highest performance can be achieved by
a specific core; P1: CPU core is operating at a guaranteed
(base) frequency, a sustained performance can be achieved
by all cores; P2: CPU core is operating in OS managed lower
frequency and voltage, i.e., in low performance modes for P2
and subsequent P states; T : Thermal control is applied to the
CPU cores, as the CPU die has reached the safe operating
temperature.

The transitions between different C states and P states are
managed by the DVFS subsystem. The DVFS, in conjunction
with the OS and BIOS through the Advanced Configuration
and Power Interface (ACPI) [141], tries to attain the best
performance for the lowest possible power consumption.

e: Speed Select Technology-Base Frequency (SST-BF)
The Intel® Speed Select Technology-Base Frequency (SST-
BF) [142] enhances the application performance by increas-
ing the base frequency of the CPU. SST-BF increases the
base frequency on demand so as to adaptively boost the
application performance. SST-BF is thus particularly well
suited for NF acceleration, e.g., for quickly handling bursty
network traffic through increasing the base frequency when
a traffic burst occurs. In contrast to the turbo frequency
technique (see Section III-A4b), which increases the CPU
frequency opportunistically, SST-BF increases the CPU fre-
quency deterministically when there is a need. An NF run-
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FIGURE5: The Intel® Speed Select Technology-Base Frequency (SST-BF)
technology [142] deterministically modifies the operating base frequency on
specific cores to increase or decrease the base frequencies of the cores at run-
time based on the need to provide adequate performance to NF applications
running on the cores. In the depicted example scenario, the operating base
frequency of two cores is increased to 2.7 GHz while four cores slowed
down to 2.1 GHz such that the average operating base frequency across all
six cores remains around 2.3 GHz.

ning on a GPC platform is susceptible to variations of the
CPU clock frequency; thus, running an NF application with
the opportunistic turbo frequency technique cannot guarantee
the Quality-of-Service (QoS) for the NF. Most NFV deploy-
ments require prescribed worst case performance guarantees
in order to deliver the services to the users [143]. A high
deterministic CPU clock frequency as achieved by SST-BF
is an important factor to guarantee the QoS performance.

SST-BF segregates the CPU cores into SST-BF supported
and non-supported cores based on their relative distance in
terms of their thermal characteristics. A system configuration
during the start-up enables SST-BF on the supported cores.
When the application requests an increased base frequency,
the OS sends a configuration command to the supported
cores to increase their base frequency (could be maximum
supported value as suggested by the manufacturer). At the
same time, the operating frequencies of the SST-BF non-
supported CPU cores are reduced so as to maintain the
overall average frequency of the cores and to keep the thermal
budget of the CPU die within the safe operational range.
For instance, if there are 6 cores in a CPU die operating
with a normal base frequency of 2.3 GHz (see Fig. 5), and
2 of the SST-BF supported cores request an increased base
frequency, the operational frequencies for these two cores
would be changed to the maximum base frequency, e.g.,
2.7 GHz, while reducing the operational frequencies of the
other 4 cores to 2.1 GHz. The OS and the orchestrator can
decide which applications to run on the SST-BF supported
cores and when to switch the operational frequencies to the
supported maximum base frequency on the supported cores.

5) ARM Architectures in High Performance Computing
(HPC)

RISC and CISC compute architectures with ISAcc support
have recently been merging their boundaries to achieve
the benefits from both architectures. The demand for low
power consumption while achieving high performance has
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FIGURE6: Overview of ARM® Nervosa N1 architecture [144]: (a) Illustration of ARM CPU functional blocks along with CPU interconnect, Memory
Management Unit (MMU), power management, and security components in relation to third-party memory and I/O components. Nervosa N1 can be
extended to server-scale deployments with specifications of Server Base System Architecture (SBSA), Server Base Boot Requirements (SBBR), and Advanced
Microcontroller Bus Architecture (AMBA) [149]. ARM Neoverse N1 CPU sits on the ARM SoC backplane (uncore) along with Coherent Mesh Network
(CMN) and power control kit. Memory and I/O are third-party modules that interface with ARM designs through interfaces (green and blue blocks are from
ARM, while brown and gray color blocks are third-party blocks). The left part of (a) shows the general template arranged as layers of components, such as
backplane, ARM CPUs, memory, and I/O devices; while the right part shows the actual scalable view, with a flexibly scalable number of CPUs on top of
the CMN, supported by common functional blocks, such as virtualization, security, and power control. (b) Layout overview of N1 CPU cores supported by
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prompted RISC architectures to support High Performance
Computing (HPC) capabilities. For instance, the ARMv7
RISC architecture contains the THUMB2 extensions for 16-
bit instructions similar to CISC, and the x86 ISAcc per-
forms micro-operation translations that are similar to RISC.
Yokoyama et al. [116] have surveyed the state-of-the-art
RISC processor designs for HPC computing and compared
the performance and power consumption characteristics of
the ARMv7 based server platforms to the Intel server plat-
forms. The results from over 400 workload executions in-

dicate that the state-of-the-art ARMv7 platform is 2.3-fold
slower than the Sandy Bridge (Intel), 3.4-fold slower than
Haswell (Intel), and nearly 7% faster than Atom (Intel).
However, the Sandy Bridge (Intel) platform consumes 1.2-
fold more power than the ARMv7.

Figure 6 presents an overview of the Neoverse N1 [144]
CPU architecture targeted for edge and cloud infrastructures
to support hyper-scale computing. The N1 platform can scale
from 8 to 16 cores per chip for low computing needs, such
as networking, storage, security, and edge compute nodes,
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whereas, for server platforms the architecture supports more
than 120 cores. For instance, a socket form factor of N1
consists of 128 cores on an 8 × 8 mesh fabric. The chip-
to-chip connectivity (e.g., between CPU and accelerator) is
enabled by the CCIX® (see Sec. III-B2e) through a Coherent
Mesh Network (CMN) interfacing with the CPU. The latency
over the CMN is around 1 clock cycle per Mesh Cross Point
(XP) hop. The N1 supports 8 DDR channels, up to 4 CCIX
links, 128 MB of L3 cache, 1 MB of private cache along
with 64 kB I-cache and 64 kB D-cache. The performance
improvements of N1 as compared to the predecessor Cortex-
A72 are: 2.4-folds for memory allocation, 5-folds of ob-
ject/array initializations, and 20-folds for VM initiation. The
Neoverse N1 has been commercially deployed on Amazon
Graviton [145] servers, where the workload performance
per-vCPU shows an improvement of 24% for HTTPS load
balancing with NGNIX and 26% for X.264 video encoding as
compared to the predecessor M5 server platforms of Amazon
Graviton.

6) Summary of CPU
In summary, the CPU provides a variety of options to control
and enable the features and technologies that specifically
enhance the CPU performance for NF applications deployed
on GPC platforms. In addition to the OS and hypervisors
managing the CPU resources, the NF application designers
can become aware of the CPU capabilities through the CPU
instruction CPUID and develop strategies to run the NF appli-
cation processes and threads on the CPU cores at desired fre-
quency and power levels to achieve the performance require-
ments of the NF applications. In general, a platform consists
of both CISC and RISC computing architectures, whereby
CISC architectures (e.g., x86 and AMD) are predominantly
used in hyper-scale computing operations, such as server
processors, and RISC architectures are used for compute
operations on I/O devices and hardware accelerators.

The CPU technologies discussed in Sec. III-A along with
the general CPU technology trends in support of diverse
application demands [196], [197] enable increasing numbers
of cores within a given silicon area such that the linear
scaling of CPU resources could—in principle—improve the
overall application performance. However, the challenges of
increasing the core density (number of cores per die) include
core-to-core communication synchronization (buffering and
routing of messages across interconnects), ensuring cache
coherency across L3 caches associated with each core, thread
scheduling such that the cache coherency is maximized and
inter-core communication is minimized. Another side effect
of the core-density increase is the higher thermal sensitivity
and interference in multi-core computing, i.e., the load on
a given core, can impact the performance and capacity of
adjacent cores. Therefore, in a balanced platform, the com-
pute (processes and threads) scheduling across different cores
should consider several external aspects in terms of spatial
scheduling for thermal balancing, cache coherency, and inter-
core communication traffic.
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B. INTERCONNECTS
An interconnect is a physical entity for a point-to-point
(e.g., link) connection between two hardware components,
or a point-to-multi-point (e.g., star, mesh, or bus) connection
between three or more hardware components. Commonly,
an interconnect, which can exist within a given chip (i.e.,
on-chip) or between multiple chips (i.e., chip-to-chip), is
a physical path between two discrete entities for data ex-
changes. On the other hand, an interface is a logical stateful
connection between two components following a common
protocol, such as the Universal Serial Bus (USB) or PCIe
protocol, to exchange data among each other. (Interfaces
have mainly been defined for point-to-point; the PCIe has
some point-to-multi-point broadcast messages, however only
for control and enumeration of devices by the OS.) More
specifically, an interface is the logical stateful connection,
e.g., a time slot structure, that exists on a physical path (i.e.,
the interconnect) between two discrete physical components.
For instance, there exists a USB interface on a physical USB
interconnect; similarly, there exists a logical PCIe interface
(e.g., slot structure) on a PCIe interconnect [200].

Physical interconnects between hardware components of-
ten limit the maximum achievable performance of the entire
system due to bottlenecks, e.g., the memory transaction path
limits the access of applications to shared resources. The NF
design should pay close attention to interconnects and inter-
faces since NF application can easily saturate an interconnect
or interface between hardware components, limiting the NF
performance. Several interconnect and interface technologies
can connect different components within a die, i.e., on-chip,
and connect components die-to-die, i.e., external to the chip.

1) On-Chip Interconnects
On-chip interconnects, which are also referred to as on-die
interconnects, connect various hardware components within
a chip, such as core, accelerator, memory, and cache, that
are all physically present inside the chip. On-die intercon-
nects can be broadly categorized into core-to-core, core-
to-component, and component-to-component, depending on
the end-point use cases. The typical design of an on-die
interconnect involves a mesh topology switching fabric built
into the silicon die, which allows multiple components to
simultaneously communicate with each other. The mesh
topology switching fabric achieves high overall throughout
and very low latency.

a: Scalable Data Fabric (SDF) & Scalable Control Fabric
(SCF)
The Infinity Scalable Data Fabric (SDF) and Scalable Control
Fabric (SCF) [33] (see Fig. 7) are the AMD® proposed
switching fabrics for on-die component communications.
SDF and SCF are responsible for the exchange of data and
control messages between any endpoint on the chip. The
separation of data and control paths allows the fabric to prior-
itize the control communications. The SCF functions include
thermal and power management on-die, built-in self-tests,

security, and interconnecting external hardware components
(whereby a hardware component is also sometimes referred
to as a hardware Intellectual Property (IP) in this field). SDF
and SCF are considered as a scalable technology supporting
large numbers of components to be interconnected on-die.
Similarly, Infinity Fabric On-Package (IFOP) provides die-
to-die communication within a CPU socket i.e., on the same
package.

b: 2D Mesh
The Intel® 2D mesh [146] (see Fig. 8) interconnects multiple
core components within a socket. A core component along
with a Cache Homing Agent, Last Level Cache (LLC), and
Snooping Filter corresponds to a “Tile” in the CPU design. A
tile is represented as a rectangular block that includes a core,
CHA, and SF as illustrated in the Xeon® CPU overview in
Fig. 8. The 2D mesh technology implements a mesh based
interconnect to connect all the cores on a given die, i.e., single
CPU socket.

In previous Intel® core architecture generations, the Home
Agent (HA) was responsible for the cache management. In
the current generation, each mesh stop connects to a tile, enu-
merated as logical number, i.e., as tile0/CHA0, tile1/CHA1,
and so on; thereby effectively moving from a centralized
HA to distributed CHA agents. When a memory address is
accessed by the CPU, the address is hashed and sent for
processing by the LLC/CHA/SF residing at the active mesh
stop that is directly connected to the tile that makes the
memory request. The CHA agent then checks the address
hash for data presence in an LLC cache line, and the Snoop
Filter (SF) checks the address hash to see if the address
is cached at other LLC locations. In addition to cache line
and SF checks, the CHA makes further memory read/write
requests to the main memory and resolves address conflicts
due to hashing.

In summary, the Infinity Fabric SDF and SCF (Fig. 7), and
the 2D mesh (Fig. 8) are part of core-to-core and core-to-
component designs which directly interact with the CPU on-
die. On the other hand, most accelerator hardware compo-
nents are external to CPUs and come as discrete components
that can be (i) embedded on the CPU die (on-chip), but are
(ii) externally connected to the CPU through I/O interfaces,
such as PCIe.

c: Network on Chip (NoC)
A Network on Chip (NoC) [147] (see Fig. 9) implements an
on-die communication path similar to the network switching
infrastructure in traditional communication networks. On-
die communications over a switching fabric uses a custom
protocol to package and transport data between endpoints;
whereas, the NoC uses a common protocol for the trans-
port and physical communication layer transactions. The
data is commonly packetized, thus supporting variably bit-
widths through serialization. An NoC provides a scalable
and layered architecture for flexible communication among
nodes with a high density on a given die area. An NoC has
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FIGURE9: Overview of Network on Chip (NoC) [147] where each Com-
pute Element (CE) connects to a router: The NoC comprises a fabric of
interconnects that provides on-chip communication to compute and memory
elements which are connected to routers. The NoC provides homogeneous
connection services as opposed to heterogeneous interconnects based on
different technologies, such as DDR and PCIe for on-chip components. The
NoC fabric is extensible and can be easily scaled as the number of compute
elements increases.

three layers: i) transaction, which provides load and store
functions; ii) transport, which provides packet forwarding,
and iii) physical, which constitutes wires and clocks. A pitfall
to avoid is excessive overhead due to high densities of com-
munication nodes on the NoC which can impact the overall
throughput performance due to overhead. Additionally, an
NoC can pose a difficult challenge to debug in case of a
transaction error.

d: Intel® On-Chip System Fabric (IOSF)
The Intel® On-Chip System Fabric (IOSF) [148] provides
a proprietary hierarchical switching fabric that connects
multiple hardware components for on-chip communications.
The IOSF characteristics include: i) Modular design: The
IOSF can be applied and extended to multiple devices and
applications by reusing and extending the IOSF design in
the hardware components of the devices and applications;
ii) Compatibility with the PCIe: The IOSF can convert PCIe
transaction packets to IOSF packets by using a PCIe com-
patible switch; and iii) IOSF provides a sideband interface
for error reporting and Design for Text/Debug (DFX) proce-
dures.

e: Advanced eXtensible Interface (AXI)
The Advanced eXtensible Interface (AXI) as defined in
the ARM® Advanced Micro-controller Bus Architecture
(AMBA) AXI and AXI-Coherency Extension (ACE) speci-
fication [149] provides a generic interface for on-chip com-
munication that flexibly connects various on-die components
(see Fig. 10). The AXI interconnect provides master and
slave based end-to-end connections; operations are initiated
by the master, and the slaves respond to the requested op-
eration. As opposed to operations, transfers on AXI can be
mutually initiated. Dedicated channels are introduced for
multiple communication formats, i.e., address and data. Each
channel is essentially a bus that is dedicated to send the
message of similar type: i) Address Write (AW), ii) Address
Read (AR), iii) Write Data (W), iv) Read Data (R), and

AXI Slave [7]

AXI Master [0]

AXI Slave [1-6]AXI Slave [0-5]

AXI Slave [1-3]
AXI Interconnect Matrix

EBI 
External 

Bus Interface AXI2APB
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EEPROM)
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GPIO

Processor
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Watchdog

Timer
12C
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FIGURE10: Overview of Advanced eXtensible Interface (AXI) [149]: The
AXI provides an on-chip fabric for communication between components.
The AXI operates in a master and slave model, the slave nodes read and
write data between components as directed by master nodes. The AXI
also provide cache coherency with the AXI-Coherency Extension (ACE)
specification [149] to keep the device cache coherent with CPU cores.
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FIGURE11: Overview of Skylake Scalable Performance (SP) [150], [151]
with Intel® Ultra Path Interconnect (UPI): The UPI is a point-to-point pro-
cessor interconnect that enables socket-to-socket (i.e., package-to-package)
communication. Thus, with the UPI, a single platform can employ multiple
CPU sockets: (a) 2 socket platform inter-connected by 2 or 3 UPI links per
CPU socket, (b) 4 socket platform interconnected by 2 or 3 UPI links per
CPU socket, and (c) 8 socket platform interconnected by 3 UPI links per
CPU socket.

v) Write Response (R). These dedicated channels provide
an asynchronous data transfer framework that allows con-
currency in read and write requests simultaneously between
master and slave. If there are multiple components with
caches associated with each IP, ACE provides an extension
to AXI that provides cache coherency between multiple IPs
(i.e., components on-die) by maintaining coherence across
multiple caches. Cache coherency is only applied to compo-
nents that act as the master in the AXI transactions.

2) Chip-to-Chip
While on-chip interconnects provide connectivity between
hardware components inside a chip or a die, chip-to-chip
interconnects extend physical interconnects outside the chip
for extending communication with an external IP component,
i.e., hardware block present on another chip.
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FIGURE12: Overview of AMD® Infinity Fabric [33], [152]–[154] for on-
chip and chip-to-chip interconnects an accelerator chip: (a) shows the
overview of interconnects between CPU and GPU through the Scalable
Control Fabric (SCF), (b) shows the interconnects from core-to-core within
a die for relative comparison, and (c) shows the overall fabric extensions at
the socket, package, and die levels.

a: Ultra Path Interconnect (UPI)
The Intel® Ultra Path Interconnect (UPI) [150], [151] im-
plements a socket-to-socket interconnect that improves upon
its predecessor, the Quick Path Interconnect (QPI). The UPI
allows multiple processors to access shared addresses with
coordination and synchronization, which overcomes the QPI
scalability limitations as the number of cores increases. In co-
ordination with the UPI, a Caching and Home Agent (CHA)
maintains the coherency across the cores of multiple sockets,
including the management of snoop requests from cores
with remote cache agents Thus, the UPI provides a scalable
approach to support high socket densities on a platform while
supporting cache coherency across all the cores. The UPI
supports 10.4 Giga Transfers per second (GT/s), which is
effectively 20.8 GB/s. The UPI can interconnect processor
cores over multiple sockets in the form of 2-way, 4-way, and
8-way Symmetric Multiprocessing (SMP), with 2 or 3 UPI
interconnects on each socket, as illustrated in Fig. 11 for
Intel® Skylake processors.

b: Infinity Fabric InterSocket (IFIS)
The Infinity Fabric InterSocket (IFIS) [33], [152]–[154]
of AMD® implements package-to-package (i.e., socket-to-
socket) communication to enable two-way multi-core pro-
cessing. A typical IFIS interconnect has 16 transmit-receive
differential data lanes, thereby providing bidirectional con-
nectivity with data rates up to 37.93 GBs. IFIS is imple-
mented with a Serializer-Deserializer (SerDes) for inter-
socket physical layer transport whereby data from a parallel
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FIGURE13: Overview of Peripheral Component Interconnect express
(PCIe) [155] interface which is an extension to PCI technology: PCI oper-
ated as a parallel bus with limited throughput due to signal synchronization
among the parallel buses. The PCIe implements a serial communication per
bus without any synchronization among parallel buses, resulting in higher
throughput. The PCIe is a universal standard for core-to-I/O device commu-
nications. The PCIe protocol defines a point-to-point link with transactions
to system memory reads and writes by the I/O devices, which are referred to
as “end points” and controlled by the Root Port (RP). The RP resides at the
processor as an uncore component (see Fig. 3). The PCIe switches extend
a primary PCIe bus to multiple buses for connecting multiple devices and
route messages between source and destination. A PCIe bridge extends the
bus from PCIe to PCI so as to accommodate legacy PCI I/O devices.

bus of the on-chip fabric is serialized to be transported over
IFIS interconnect; the deserializer then parallelizes the data
for the on-chip fabric. One key IFIS property is to multiplex
data from other protocols, such as PCIe and Serial AT Attach-
ment (SATA), which can offer transparent transport of PCIe
and SATA packets over multiple sockets.

Due to their high physical complexity and cost, UPI
and IFIS are only employed for inter-socket communication
between CPU sockets. However, the vast majority of the
compute pipeline hardware components, such as memory
and I/O devices, could lie outside of the CPU socket chip,
depending on the compute package design of the GPC plat-
form. Therefore, it is critical for NF performance to consider
general chip-to-chip interconnects beyond CPU sockets. The
dominant general state-of-the-art hardware chip-to-chip in-
terconnects are the Peripheral Component Interconnect ex-
press (PCIe) and Compute eXpress Link (CXL) which are
summarized below.

c: Peripheral Component Interconnect express (PCIe)
The Peripheral Component Interconnect express (PCIe) [155]
(see Fig. 13) is a chip-to-chip interconnect and interface
protocol that enables an external system-on-chip component,
e.g., the PCIe enables a non-CPU chip (such as NIC or disk)
to connect to a main CPU socket. The PCIe can connect
almost any I/O device, including FPGA, GPU, custom accel-
erator, dedicated accelerator (such as ASIC), storage device,
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TABLE2: Summary of PCIe lane rates compared across technology gener-
ations from Gen 1.1 through Gen 5: The raw bitrate is in Giga Transfers
per second, and the total bandwidth in Giga Byte per second is given for 16
parallel lanes in both directions for application payload (without the PCIe
transaction, link layer, and physical layer overheads).

PCIe
Gen.

Raw
Bitrate
(GT/s)

BW per lane
per direc. (App.)

(GB/s)

Total BW for
16-lane Link
(App.) (GB/s)

1.1 2.5 0.25 8
2.0 5 0.50 16
3.0 8 1 32
4.0 16 2 64
5.0 32 4 128

and networking device (including NIC). The current PCIe
specification generation is 5.0 which offers a 4 GB/s speed
for each directional lane, and an aggregated total throughput
over 16 lanes of 128 GB/s, as shown in Table 2.

The PCIe follows a transactional protocol with a top-
down tree hierarchy that supports serial transmissions and
unidirectional links running in either direction of the PCIe
link. The PCIe involves three main types of devices: Root
Complex (RC): A RC is a controller that is responsible for
direct memory access (DMA), address look-up, and error
management; End Point (EP): An endpoint is a device that
connects to the PCIe link; and Switch: A switch is an ex-
tension to the bus to which an endpoint (i.e., device) can be
connected. The system BIOS enumerates the PCIe devices,
starting from the RC, and assigning identifiers referred to as
“Bus:Device:Function” or “BDF” for short, a 3 tuple to locate
the device placement in the PCIe hierarchy. For instance, a
system with a single root complex could have the identifier
of 00:00:1, with bus ID 00, device ID 00, and function 1.

The PCIe does not support sideband signaling; hence, all
the communication has to be conducted in a point-to-point
fashion. The predecessor of the PCIe was the PCI, which had
lower throughput due to skew across the parallel bus width;
however, to maintain backward compatibility, the PCIe al-
lows PCI devices to be connected via a PCIe-to-PCI bridge.
There are almost no PCI devices in the recent platforms, as
the PCIe provides both cost efficiency and performance ben-
efits. However, the OS recognizes PCIe switches as bridges
to keep backward compatibility with the software drivers and
hence can be seen in the enumeration process of the PCIe.
Essentially, every switch port is a bridge, and hence appears
so in the OS listing of all PCIe devices.

d: Compute eXpress Link (CXL)
The Compute eXpress Link (CXL) [156] (see Fig. 14)
presents a PCIe compliant interconnect focusing primarily on
providing cache coherency across either side of the CXL link.
The CXL link is targeted for accelerators on the platform as
current chip-to-chip interconnects that connect accelerators
do not support cache-to-cache coherency between the CPU
LLC and the local cache of the accelerator. As the computing
demands increase, there will be accelerators with large pro-
cessing units (i.e., local CPU), large local memory (i.e., local
to accelerator), and an associated local cache. As the PCIe
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FIGURE14: Overview of Compute eXpress Link (CXL) [156] interconnect
(which uses the PCIe as its interface): The CXL provides a protocol specifi-
cation over the PCIe physical layer to support memory extensions, caching,
and data transactions from I/O devices, while concurrently supporting the
PCIe protocol. I/O devices can use either the PCIe protocol or the CXL.
The CXL transactions include CXL.io which provides the instructions
for traditional PCIe I/O transactions, i.e., Memory Mapped I/O (MMIO),
CXL.cache which provides the instructions for cache coherency and
management, and CXL.mem provides the instructions for memory read and
write between I/O device memory and system memory.

does not provide any support to manage the coordination
between the main CPU, memory, and cache, on the one hand,
and the accelerator-local CPU, memory, and cache, on the
other hand, the CXL extends the PCIe function to coordinate
resources on either side of the CXL link. As a result, a
diverse range from compute-intensive to memory-intensive
accelerators can be flexibly supported over the CXL without
compromising performance. The CXL provides speeds up to
3.938 GB/s for 1 lane and 63.01 GB/s for 16 lanes.

The CXL provides different protocol sets to coordinate
data I/O, memory, and cache while being fully compatible
with the PCIe. The CXL.io protocol defines the PCIe trans-
action procedures which are also used for discovery, enu-
meration, and error reporting, CXL.mem for memory access,
and CXL.cache for caching mechanisms. Low latency and
high bandwidth access to system resources are the key CXL
advantages over the traditional PCIe. The CXL specifications
also define a Flex Bus which supports a shared bus to
commonly transport the CXL and PCIe protocols. The Flex
Bus [157] mode of operation is negotiated during boot up as
requested by the device/accelerator (an external component
to the CPU). The Flex Bus operates on the PCIe electrical
signal characteristics as well as the PCIe form factors of an
add-in card.

e: CCIX®: Cache Coherent Interconnect for Accelerators

One factor that limits the hardware accelerator performance
in accelerating softwarized NFs is the memory transaction
bottleneck between system memory and I/O device. Data
transfer techniques between system memory and I/O device,
such as DDIO (see Sec. III-A3), utilize a system cache to
optimize the data transactions between the system memory
and I/O device. For I/O transactions, a cache reduces the
latencies of memory read and write transactions between
the CPU and system memory; however, there is still a cost
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TABLE3: Comparison of Cache Coherent Interconnects [201].

Standard PHY Layer Topology Unidirectional BW Coherence
Compute eXpress
Link (CXL) [156] PCIe PHY p2p Switched 32–50 Gb/s (×16) CXL.cache based coherency

between processor and accelerator
Cache Coherent Interconnect

for Accelerators (CCIX) [158] PCIe PHY p2p Switched 32–50 Gb/s (×16) Full cache coherency
between processor and accelerator

Generation-Z
(Gen Z) [159]

IEEE 802.3 Short &
Long Haul PHY p2p Switched

Signaling Rates:
16, 25, 28,

and 56 GT/s;
Mult. link widths:

1 to 256 lanes

Does not specify cache coherent agent
operations, but does specify protocols

that support cache coherent agents.

Open Coherent Accelerator
Processor Interface
(OpenCAPI) [161]

Bluelink 25 Gb/s
PHY used for OpenCAPI

& NVLINK
p2p 25 Gb/s (×8)

Coherent access to memory
cache coherence not supported

until v4.0
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FIGURE15: Overview of coherent interconnects for hardware accelerators supporting cache coherency across common switching fabric: (a) Cache Coherent
Interconnect for Accelerators (CCIX)® [158] defines a protocol to automatically synchronizes caches between CPU and I/O devices. (b) and (c) Gen-Z [159]
defines a common interface and protocol supporting coherency for various topologies ranging from on-chip and chip-to-chip to long-haul platform-to-platforms.
The media/memory controller is moved from the CPU complex to the media module such that Gen-Z can independently support memory transfers across Gen-
Z switches and the Gen-Z fabric. (d) Open Coherent Accelerator Processor Interface (OpenCAPI) [160] homogeneously connects devices to a host platform
with a common protocol to support coherency with memory, host interrupts, and exchange messages across devices.

associated with the data transactions between the I/O device
and system memory. This cost can be reduced through a
local device-cache on the I/O device, and by enabling cache
coherency to synchronize between the CPU-cache and the
device-cache.

While the CXL/PCIe based protocols define the oper-
ations supporting cache coherency between the CPU and
I/O devices, the CXL/PCIe protocols define strict rules
for CPU/core and I/O device endpoint specific opera-
tions. The Cache Coherent Interconnect for Accelerators
(CCIX®) [158] (pronounced “See 6”) is a new interconnect
design and protocol definition to seamlessly connect comput-
ing nodes supporting cache coherency (see Fig. 15(a)).

Another distinguishing CCIS feature (with respect to
CXL/PCIe) is that the CCIX defines a non-proprietary pro-
tocol and interconnect design that can be readily adopted by
processors and accelerator manufacturers. The CCIX proto-
col layer is similar to the CXL in terms of the physical and
data link layers which are enabled by the PCIe specifica-
tion; whereas, the transactions layer distinguishes between
CCIX and PCIe transactions. While the cache coherency

of the CXL protocol is managed by invoking CXL.cache
instructions, the CCIX protocol automatically synchronizes
the caches such that the operations are driver-less (no soft-
ware intervention) and interrupt-less (i.e., no CPU attention
required). The automatic synchronization reduces latencies
and improves the overall application performance. The CCIX
version 1.1 supports the maximum bandwidth of the PCIe 5.0
physical layer specification of up to 32 Giga Transactions
per second (GT/s). Figure 15(a) illustrates the protocol layer
operations in coexistence with the PCIe, and shows the differ-
ent possible CCIX system topologies to flexibly interconnect
processors and accelerators.

f: Generation-Z (Gen-Z)

The Gen-Z Consortium [159] (see Fig 15(b)) has proposed
an extensible interconnect that supports on-chip, chip-to-
chip, and platform-to-platform communication. As opposed
to the CXL and CCIX, Gen-Z has defined: i) direct connect,
ii) switched, and iii) fabric technologies for homogeneously
connecting compute, memory, and I/O devices. For cross-
platform connections, Gen-Z utilizes networking protocols,
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such as InfiniBand, to enable connections via traditional opti-
cal Ethernet links. More specifically, Gen-Z supports DRAM
memory extensions through persistent memory modules with
data access in the form of byte addressable load/store, mes-
saging (put/get), and I/O block memory. Gen-Z provides
management services for memory disaggregation and pool-
ing of shared memory, allowing flexible resource slicing and
allocations to the OS and applications. In contrast to other
interconnects, Gen-Z inherently supports data encryption as
well as authentication for access control methods to facilitate
the long-haul of data between platforms. Gen-Z preserves
security and privacy through Authenticated Encryption with
Associated Data (AEAD), whereby AEAD encryption is
supported by the AES-GCM-256 algorithm. To support a
wide range of connections, the Gen-Z interconnect supports
variable speeds ranging from 32 GB/s to more than 400 GB/s.

g: Open Coherent Accelerator Processor Interface
(OpenCAPI)
The Open Coherent Accelerator Processor Interface (Open-
CAPI) [160] (see Fig. 15(c) and (d)) is a host-agnostic
standard that defines procedures to coherently connect de-
vices (e.g., hardware accelerator, network controller, memory
module, storage controller) with the host platform. A com-
mon protocol is applied across all the coherently connected
device memories to synchronize with the system memory to
facilitate accelerator functions with reduced latency. In ad-
dition to cache coherency, OpenCAPI supports direct mem-
ory access, atomic operations to host memory, messages
across devices, and interrupts to the host platform. High fre-
quency differential signaling technology [161] is employed
to achieve high bandwidth and low latency connections be-
tween hardware accelerators and CPU. The address transla-
tion and coherency cache access constructs are encapsulated
by OpenCAPI through serialization which is implemented on
the platform hardware (e.g., CPU socket) to minimize the
latency and computation overhead on the accelerator device.
As compared to the CXL, CCIX, and Gen-Z, the transaction
as well as link and physical layer attributes in OpenCAPI
are aligned with high-speed Serializer/Deserializer (SerDes)
concept to exploit parallel communication paths on the sili-
con. Another aspect of OpenCAPI is the support for virtual
addressing, whereby the translations between virtual to phys-
ical addresses occur on the host CPU. OpenCAPI supports
speeds up to 25 Gbps per lane, with extensions up to 32 lanes
on a single interface. The CXL, CCIX®, and OpenCAPI
interconnects are compared in Table 3.

3) Summary of Interconnects and Interfaces
Interconnects provide a physical path for communication
between multiple hardware components. The characteristics
of on-chip interconnects are very different from chip-to-chip
interconnects. NF designers should consider the aspects of
function placement, either on the CPU die or on an external
chip. For instance, an NoC provides a scalable on-chip fabric
to connect the CPU with accelerator components, and also

to run a custom protocol for device-to-device or device-
to-CPU communication on top of the NoC transport and
physical communication layers. The PCIe provides a univer-
sal physical interconnection system that is widely supported
and accepted; whereas, the CXL provides cache coherency
functionalities if needed at the device (i.e., accelerator com-
ponent).

One of the key shortcomings of existing interconnects
and interfaces is the resource reservation and run-time re-
configuration. As the density of platform hardware compo-
nents, such as cores, memory modules (i.e., DRAM), and
I/O devices, increases, the interconnects and interfaces that
enable physical connections are multiplexed and shared to
increase the overall link utilization. However, shared links
can cause performance variations at run-time, and can re-
sult in interconnect and interface resource saturation during
high workloads. Current enabling technologies do not pro-
vide a mechanism to enforce Quality-of-Service (QoS) for
the shared interconnect and interface resources. Resource
reservation strategies based on workload (i.e., application)
requirements and link availability should be developed in
future work to provide guaranteed interconnect and interface
services to workloads.

C. MEMORY
Although the expectation with high-speed NICs, large CPU
compute power, as well as large and fast memory is to achieve
improved network performance, in reality the network per-
formance does not scale linearly on GPC platforms. The
white paper [202] has presented a performance bottleneck
analysis of high-speed NFs running on a server CPU. The
analysis has identified the following primary reasons for
performance saturation: i) interrupt handling, buffer man-
agement, and OS transitions between kernel and user ap-
plications, ii) TCP stack code processing, and iii) packet
data moves between memory regions and related CPU stalls.
Towards addressing these bottlenecks, factors that should
be considered in conjunction with memory optimizations
that relate to data transfers between I/O devices and system
memory are: a) interrupt moderation, b) TCP checksum of-
floading and TCP Offload Engine (TOE), and c) large packet
transfer offloading. We proceed to survey efficient strategies
for memory access (i.e., read and write) which can mitigate
the performance degradations caused by packet data moves.

1) Direct Memory Access (DMA)
Memory transactions often take many CPU cycles for routine
read and write operations from or to main memory. The
Direct Memory Access (DMA) alleviates the problem of
CPU overhead for moving data between memory regions,
i.e., within a RAM, or between RAM and an I/O device, such
as a disk or a PCIe device (e.g., an accelerator). The DMA
offloads the job of moving data between memory regions
to a dedicated memory controller and engine. The DMA
supports the data movement from the main system memory
to I/O devices, such as PCIe endpoints as follows. The system
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TABLE4: Summary of Double Data Rates (DDR) Synchronous Data Ran-
dom Access Memory (SDRAM) rates. The buffer size indicates the mul-
tiplying factor to the Single Data Rate SDRAM prefetch buffer size. The
chip density corresponds to the total number of memory-cells per unit chip
area, whereby each memory cell can hold a bit. The DDR rates are in Mega
Transfers per second (MT/s). For DDR4 and DDR5, the access to DRAM
can be performed in the group of memory cells which are logically referred
to as memory banks. That is, a single read/write transaction to DRAM can
access the entire data present in a memory bank.

DDR Ver. DDR1 DDR2 DDR3 DDR4 DDR5
Release Date 2000 2003 2007 2012 2019

Vol. (V) 2.5 1.8 1.5 1.2 1.1
Buffer Size 2 4 8 8 16

Chip Den. (Gb) 0.128–1 0.128–4 0.512–8 2–16 8–64
Data Rate (MT/s) 200–400 400–800 800–2133 1600–3200 3200–6400

Bank Groups 0 0 0 4 8

configures a region of the memory address space as Memory
Mapped I/O (MMIO) region. A read or write request to the
MMIO region results in an I/O read and write action; thereby
supporting the I/O operations of write and read to and from
external devices.

a: I/O Acceleration Technology (I/OAT)
The Intel® I/O Acceleration Technology (I/OAT), as part of
the Intel® QuickData Technology (QDT) [162], advances
the memory read and write operations over I/O, specifically
targeted for NIC data transfers. I/OAT provides the NIC
direct access to the system DMA for read write access in
the main memory region. When a packet arrives to the NIC,
traditionally, the packet is copied by the NIC DMA to the
system memory (typically at the kernel space). Note that
this DMA is present on the I/O device/endpoint (an external
entity) and then an interrupt is sent to the CPU. The CPU
then copies the packet into application memory, which could
be achieved by initiating a second DMA request, this time on
the system DMA, for which the packet is intended. With the
proposed QDT, the NIC can request that the system DMA
further copies the data onto the application memory without
CPU intervention, thus reducing a critical bottleneck in the
packet processing pipeline. DMA optimizations have also
been presented as part of the Intel® QuickData Technology
(QDT) [162].

2) Dual Data Rate 5 (DDR5)
As technologies that enable NFs, such as NICs, increase
their network connectivity data speeds to as high as 100–
400 Gbps, data processing by multiple CPUs requires very
fast main memory access. Synchronous Dynamic Random
Access Memory (SDRAM) enables a main system memory
that offers high-speed data access as compared to storage I/O
devices. SDRAM is a volatile memory which requires a clock
refresh to keep the stored data persistently in the memory.
The Dual Data Rate (DDR) improves the SDRAM by allow-
ing memory access on both the rise and fall edges of the
clock, thus doubling the data rate compared to the baseline
SDRAM. The DDR 5th Generation is the current technology
of DDR-SDRAM that is optimized for low latency and high
bandwidth, see Table 4. The DDR5 addresses the limitations

of the DDR4 mainly on the bandwidth per core, as multiple
cores share the bandwidth to the DDR.

The higher DDR5 data rate is achieved through several
improvements, including improvements of the Duty Cycle
Adjuster (DCA) circuit, oscillator circuit, internal reference
voltages, and read training patterns with dedicated mode
registers [163]. The DDR5 also increases the total number
of memory bank groups to twice of the DDR4, see Table 4.
Overall, the DDR5 maximum data rate is twice the DDR4
maximum data rate, see Table 4. The DDRs are connected
to a platform in the form of Dual In-line Memory Module
(DIMM) cards with 168-pins to 288-pins. In addition to
memory modules, DIMMs are a common form of connectors
for high speed storage modules to CPU cores.

3) Non-Volatile NAND (NV-NAND)
In general, memory (i.e., DRAM) is expensive, provides
fast read/write access by the CPU, and offers only small
capacities; whereas, storage (i.e., disk) is relatively cheap,
offers large capacities, but only slow read/write access by the
CPU. Read/write access by the CPU to DRAM is referred to
as memory access; while disk read/write access follows the
procedures of I/O mechanisms requiring more CPU cycles.
The slow disk read/write access introduces an I/O bottleneck
in the overall NF processing pipeline, if the NF is storage
and memory intensive. Some NF examples that require in-
tensive memory and storage access are Content Distribution
Networks (CDN) and MEC applications, such as Video-on-
Demand and Edge-Live media content delivery.

The Non-Volatile NAND (NV-NAND) technology [164]
strives to address this bottleneck through so-called Persistent
Memory (PM), whereas NV-RAM is a type of Random
Access Memory (RAM) that uses NV-NAND to provide
data-persistence. In contrast to DRAM, which requires a syn-
chronous refresh to keep the memory active (persistent) on
the memory cells, NV-NAND technology retains the data in
the memory cells in the absence of a clock refresh. Therefore,
NV-NAND technology has been seen as solution to growing
demand for larger DRAM and faster access to disk storage.
Non-Volatile DIMMs (NVDIMMs) in conjunction with the
3D crosspoint technology can create NAND cells with high
memory cell density in a given package [165], achieving
memory cell densities that are many folds higher as compared
to the baseline 2D NAND layout design. PM can be broadly
categorized into: i) Storage Class Memory (SCM) 1 Level
Memory (1LM), i.e., PM as a linear extension of DRAM, ii)
Storage Class Memory (SCM) 2 Level Memory (2LM), i.e.,
PM as main memory and DRAM as cache, iii) Application-
Direct mode (DAX), i.e., PM as storage in NVDIMM form,
and iv) PM as external storage, i.e., disk.

NVDIMMs can operate as both modes of memory, i.e.,
DRAM and storage, based on the application use. As op-
posed to actual storage, the Storage Class Memory (SCM)
is a memory featured in NVDIMMs that provides the
DRAM class operational speeds at storage size. SCM tar-
gets memory-intensive applications, such as Artificial Intelli-
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FIGURE16: Overview of Intel® Optane DC persistent Memory configured as
2 Level Memory (2LM) where the DRAM is used as cache to store only the
most frequently accessed data and NVDIMM is used as an alternative to the
DRAM with the Byte-Addressable Persistent Memory (B-APM) technique.

gence (AI) training and media content caching. The memory
needs could further differ in terms of use, for instance, AI ap-
plications are transactions-driven due to CPU computations,
while media content caching is storage driven. Therefore,
SCM is further categorized into 1LM and 2LM.

a: 1 Level Memory (1LM)
In the 1LM memory [166], [167] operational mode, the OS
sees NVDIMM PM memory as an available range of memory
space for reads and writes. The CPU uses normal load and
store instructions that are used for DRAM-access to access
the PM NVDIMM memory. However, the data reads and
writes over the PM are significantly slower compared to the
DDR DRAM access.

b: 2 Level Memory (2LM)
In the 2LM [167] mode (see Fig. 16), the DRAM is used
as cache which only stores the most frequently accessed
data, while the NVDIMM memory is seen as larger capacity
alternative to the DRAM with the Byte-Addressable Persis-
tent Memory (B-APM) technique. The caching operation and
management are provided by the memory controller of the
CPU unit. Although data stored in NVDIMM is persistent,
the memory controller invalidates the memory upon power
loss or at an OS restart while operating in memory mode.
2LM technologies are also the type of Storage Class Mem-
ory (SCM) that is used for data-persistent storage usage of
memory, as they provide the large capacity of disks while
operating at close to memory speeds.

c: Application-Direct (DAX)
In the Application-Direct (DAX) [167], [168] mode, the
NVDIMMs are seen as an independent PM memory type that
can be used by the OS. The Non-Volatile RAM (NV-RAM)
memory regions can be directly assigned to applications for
direct access of memory through block level memory access
by the memory controller to support the OS file system. In
DAX mode, the applications and OS have to be PM memory
aware such that dedicated CPU load and store instructions
specific to PM memory access are used for the transactions
between CPU and NVDIMMs. Essentially, applications on

the OS see PM NVDIMMs in DAX mode as a storage
memory space in the platform for OS file-system store usage.
Traditional disk access by the application involves a kernel
mode transition and disk I/O request and interrupt on comple-
tion of the disk read process which adds up as a significant
overhead for storage-intensive applications. Therefore, PM
offers an alternative to storage on NVDIMMs with block
memory read capabilities close to the DDR DRAM access
speeds.

d: External Storage

In contrast to PM, NVM express (NVMe) is also NAND
based storage which exists in a PCIe form factor and has
an on-device memory controller along with I/O DMA. Since
NVMe operates as an external device to the CPU, the OS
has to follow the normal process of calling kernel procedures
to read the external device data [169]. Therefore, storage
devices in the NVDIMM form factors outperform NAND
based Solid State Disks (SSDs) because of utilizing the DDR
link instead of the standard PCIe based I/O interface, as well
as the proximity of the DIMMs to the CPU cores.

e: Asynchronous DRAM Refresh (ADR)

Asynchronous DRAM Refresh (ADR) [170] is a platform
feature in which the DRAM content can be backed up within
a momentary time duration powered through super capacitors
and batteries just before and after the power state is down on
the system platform. The ADR feature targets DDR-SDRAM
DIMMs to save the last-instant data by flushing the data
present in buffers and cache onto SDRAM and putting the
SDRAM on self-refresh through power from batteries or
super capacitors. The ADR is an OS-aware feature, where the
data is recovered for the analysis of a catastrophic error which
brought down the system, or to update the data back to the
main memory when the power is restored by the OS. There
types of data need to be saved in case of a catastrophic error
or power outage are: i) CPU cache ii) data in the memory
controller, and iii) I/O device cache, which will be saved to
the DRAM during the ADR process. In case of NVDIMMs,
the DRAM contents can be flushed to PM storage such that
the data can be restored even after an extended power-down
state.

4) Summary of Memory

The networking workloads that run on GPC platforms de-
pend on memory for both compute and storage actions. The
overall NF performance can be compromised due to satura-
tion on the memory I/O bus and high read/write latencies.
Therefore, in this section we have surveyed state-of-art strate-
gies that directly improve the NF performance that directly
improve the memory performance so as to aid NFs. DMA
strategies help haul packets that arrive at the NIC (an external
component) to memory, and DDR memory offers DIMMs
based high-speed low-latency access to the CPU for compute
actions on the packet data. For storage and caching based
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network applications, the PM based NVDIMM can offer very
large memory for storage at close to DRAM speeds.

The pitfalls that should be considered in the NF design
are the asymmetric memory latency speeds between DRAM
and NVDIMM PM. Also, the 2LM memory mode of op-
erations needs to be carefully considered, when there is no
requirement for caching, but a need for very low latency
transactions.

The shortcomings of memory enabling technologies in-
clude asymmetric address translation and memory read la-
tencies arising from the non-linear characteristics of address
caching (Translation Lookahead Buffers [TLB]) and data
caching (e.g., L3). The asymmetric read and write latencies
cause over-provisioning of DRAM and cache resources (for
VM deployments) to ensure a minimum performance guaran-
tee. In addition, the memory controller is commonly shared
among all the cores on a die, whereby the read/write requests
are buffered to operate and serve the requester (CPU or I/O
devices) at the DDR rates. Hence, as an enhancement to
current enabling technologies, there is a need for memory
controller based resource reservation and prioritization ac-
cording to the workload (application) requirements.

D. CUSTOM ACCELERATORS
This section surveys hardware accelerator devices that are
embedded on the platforms or infrastructures to speed up NF
processing; typically, these hardware accelerators relieve the
CPU of some of the NF related processing tasks. The major
part of the NF software still runs on the CPU, however, a
characteristic, i.e., a small part of the NF (e.g., compression
or cryptography) is offloaded to the hardware accelerator, i.e.,
the hardware accelerator implements a small part of the NF as
a characteristic. In a custom accelerator, a software program
is typically loaded on a GPU or FPGA to perform a specific
acceleration function (e.g., a cryptography algorithm), which
is a small part of the overall NF software.

1) Accelerator Placement
Hardware accelerator devices (including GPU and FPGA)
can be embedded on the platforms and infrastructures with
various placements based on the design requirements. The
hardware design of an acceleration device includes an Intel-
lectual Property of the Register Transistor Logic (RTL) logic
circuit, processors (e.g., RISC) for general purpose com-
puting, along with firmware and microcodes to control and
configure the acceleration device, as well as internal memory
and cache components. In general, all the components that
realize an acceleration function in a hardware acceleration
device are commonly referred to as “acceleration IP”.

The acceleration IP (a blue print of the hardware acceler-
ator device) can be embedded on a silicon chip with differ-
ent placements: i) on-core, ii) on-CPU-die, iii) on-package
(socket chip), iv) on-memory, or v) on-I/O device (e.g., PCIe
or USB), as illustrated in Figure 17. The on-core, on-CPU-
die, and on-package accelerator placements are referred to
as an “integrated I/O device”. Regardless of the accelerator
device placement, the CPU views the hardware accelerator
as an I/O device (during OS enumeration of the accelerator
function) to maintain the application and software flexibility.

The placement of a hardware accelerator is governed by
i) the original ownership of the acceleration IP, and ii) the
IP availability and technical merit to the CPU and memory
manufacturers to have an integrated device embedded with
the CPU or memory module. The placement of an accelerator
I/O device as an external component to the CPU has the
disadvantages of longer latencies and lower bandwidths as
compared to the on-core, on-die, on-package, or on-memory
placement of a hardware acceleration device as an integrated
I/O device. On the other hand, the integrated I/O device
requires area and power on the core, die, or package.

2) Graphic Processing Unit (GPU)
CPUs have traditionally been designed to work on a se-
rial set of instructions on data to accomplish a task. Al-
though the computing requirements of most applications fit
the computation method of CPUs. i.e., the serial execution
of instructions, some applications require a high degree of
parallel executions. For instance, in graphic processing, the
display rendering across the time and spatial dimensions are
independent for the display data for each pixel. Serialized
execution of instructions to perform computations on each
independent pixel would be inefficient, especially in the time
dimension.

Therefore, a new type of processing unit, namely, the
General-Purpose Graphic Processing Unit (GP-GPU) was
introduced to perform a large number of independent tasks
in parallel, for brevity, we refer to a GP-GPU as a “GPU”. A
GPU has a large a number of cores, supported by dedicated
cache and memory for a set of cores; moreover, a global
memory provides shared data access, see Fig. 18. Each GPU
core is equipped with integer and floating point operational
blocks, which are efficient for arithmetic and logic compu-
tations on vectored data. CPUs are generally classified into

VOLUME 1, 2020 25



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3008250, IEEE Access

Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for Network Functions

Control
ALU
ALU

ALU
ALU

 Cache
DRAM

DRAM

L2 Cache

L2 
Cache

Shared 
Memory

Thread

DRAM

Instruction Cache
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32,768 x 32 - bit)

Core Core Core Core LD/ST
SFU

Core Core Core Core LD/ST

Core Core Core Core LD/ST

Core Core Core Core LD/ST

Core Core Core Core LD/ST SFU

SFU

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

CPU GPU

Thread
Per -Thread 

Private
Local Memory

Thread Block
Per - Block

Shared 
Memory

Grid 0

Grid 1

Per 
App.

Context
Global

Memory

CUDA hierarchy of threads, blocks and grids with corresponding 
per-thread private, per-block shared, and per- application global 

memory spaces.

SP: Streaming Processor 
LD/ST: Load/Store Unit
SFU Special Function Unit

Dispatch Port
Operand Collector

FP Unit FP Unit

Result Queue

CUDA Core

(a) CPU vs GPU ALU Density

(b) Fermi Mem. Hierarchy

(c) Fermi Streaming Multiprocessor (FSM)
(d)

FIGURE18: Overview of typical Graphics Processing Unit (GPU) architecture: (a) Illustration of Arithmetic Logic Units (ALUs) specific to each core in a CPU
as compared to a GPU; a GPU has a high density of cores with ALUs with relatively simple capabilities as opposed to the more capable ALUs in the relatively
few CPU cores, and (b) Overview of memory subsystem of Fermi architecture with a single unified memory request path for loads and stores, one L1 cache
per SM multiprocessor, and a unified L2 cache. (c) Overview of Fermi Streaming Microprocessor (FSM) which implements the IEEE 754–2008 floating-point
standard, with a Fused Multiply-Add (FMA) instruction for single and double precision arithmetic. (d) Overview of CUDA architecture that enables Nvidia
GPUs to execute C, C++, and other programs. Threads are organized in thread blocks, which in turn are organized into grids [171].

RISC and CISC in terms of their IS features. In contrast,
GPUs have a finite set of arithmetic and logic functions that
are abstracted into functions and are not classified in terms
of RISC or CISC. A GPU is generally considered as an
independent type of computing device.

To get a general idea of GPU computing, we present
an overview of the GPU architecture from Nvidia [171]
(see Fig. 18) which consists of Streaming Multiproces-
sors (SMs), Compute Unified Device Architecture (CUDA)
Core, Load/Store (LD/ST) units, and Special Function Units
(SFUs). A GPU is essentially a set of SMs that are configured
to execute independent tasks, and there exist several SMs
(e.g., 16 SMs) in a single GPU. An SM is an individual block
of the execution entity consisting of a group of cores (e.g.,
32 cores) with a common register space (e.g., 1024 registers),
and shared memory (e.g., 64KB) and L1 cache. A core within
an SM can execute multiple threads (e.g., 48 threads). Each
SM has multiple (e.g., 16) Load/Store (LD/ST) units which
allow multiple threads to perform LD/ST memory actions
per clock cycle. A GPU thread is an independent execution
sequence on data. A group of threads is typically executed
in a thread block, whereby the individual threads within
the group can be synchronized and can cooperate among
themselves and with a common register space and memory.

For GPU programming, the CPU builds a functional unit
called “kernel” which is then sent to the GPU for instantiation
on compute blocks. A kernel is a group of threads working
together to implement a function, and these kernels are
mapped to thread blocks. Threads within a block are grouped
(e.g., 32 threads) into warps and an SM schedules these warps

on cores. The results are written to a global memory (e.g.,
16 GB per GPU) which can be then copied back to the system
memory.

Special Function Units (SFUs) execute structured arith-
metic or mathematical functions, such as sine, cosine, recip-
rocal, and square root, on vectored data with high efficiency.
An SFU can execute only one function per clock cycle,
per thread, and hence should be shared among multiple
threads. In addition to SFUs, a Texture Mapping Unit (TMU)
performs application specific functions, such as image rotate,
resize, add distortion and noise, and performs 3D plane object
movements.

Packet processing is generally a serialized execution pro-
cess because of the temporally ordered processing of packets.
However, with several ongoing flows whereby each flow
is an independent packet sequence, GPUs can be used for
parallelized execution of multiple flows. Therefore, NF ap-
plications which operate on large numbers of packet flows
that require data intensive arithmetic and logic operations can
benefit from GPU acceleration.

Traditionally, GPUs have been connected through a PCIe
interface, which can be a bottleneck in the overall system
utilization of the GPU for parallel task computing [203].
Therefore, Nvidia has proposed a new NVlink intercon-
nect to connect multiple GPUs to a CPU. Additionally,
the NVSwitch is a fabric of interconnects that can connect
large numbers of GPUs for GPU-to-GPU and GPU-to-CPU
communication.
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FIGURE19: (a) Overview of FPGA architecture: Configurable logic blocks (CLBs) are interconnected in a two-dimensional programmable routing grid, with
I/O blocks at the grid periphery. (b) Illustration of a traditional island-style (mesh based) FPGA architecture with CLBs; the CLBs are “islands in a sea of
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blocks in the programmable routing network, which connects to I/O blocks. (c) Illustration of hierarchical FPGA (HFPGA) with recursively grouped clusters
of logic blocks, whereby Sboxes ensure routability depending on the topologies [172].

3) Field Programmable Gate Arrays (FPGA)

CPUs and GPUs provide a high degree of flexibility through
programming frameworks and through executing compiled
executable code at run-time. To support such programming
frameworks, CPUs and GPUs are built to perform general-
purpose computing. However, in certain applications, in addi-
tion to programming flexibility there is a greater requirement
for performance which is typically achieved by dedicated
hardware. Field Programmable Gate Array (FPGA) architec-
tures attempt to address both requirements of programmabil-
ity and performance [172]. As illustrated in Fig. 19, the main
architectural FPGA blocks are: i) logic blocks, ii) routing
units, and iii) I/O blocks. Logic blocks are implemented
as Compute Logic Blocks (CLBs) which consist of Look-
up Tables (LUTs) and flip-flops. These CLBs are internally
connected to form a matrix of compute units with a pro-
grammable switching and routing network which eventually
terminates at the I/O blocks. The I/O blocks, in turn, connect
to external system interconnects, such as the PCIe, to com-
municate with the CPU and other system components.

The FPGA programming technology determines the type
of device and the relative benefits and disadvantages. The
standard programming technologies are: i) Static RAM, ii)
flash, and iii) anti-fuse. Static-RAM (SRAM) is the most
commonly implemented and preferred programming tech-
nology because of its programming flexibility and CMOS
silicon design process for the FPGA hardware. In SRAM
based FPGA, static memory cells are arranged as an array
of latches which should be programmed on power up. The
SRAM FPGAs are volatile and hence the main system must
load a program and configure the FPGA computing block to
start the task execution.

The flash technique employs non-volatile memory cells,
which do not require the main system to load the configura-
tion after a power reset. Compared to SRAM FPGAs, flash-
based FPGAs are more power efficient and radiation tolerant.

However, flash FPGAs are cost ineffective since flash does
not use standard CMOS silicon design technology.

In contrast to the SRAM and flash techniques, the anti-fuse
FPGA can be programmed only once, and offers lower size
and power efficiency. Anti-fuse refers to the programming
method, where the logic gates have to be burned to conduct
electricity; while “fuse” indicates conduction, anti-fuse indi-
cates the initial FPGA state in which logic units do not exhibit
conduction.

The programmable switching and routing network inside
an FPGA realizes connectivity among all the involved CLBs
to complete a desired task through a complex logic operation.
As illustrated in Fig. 19, the FPGA switching network can
be categorized into two basic forms: i) island-style rout-
ing (Fig. 19(b)), and ii) hierarchical routing (Fig. 19(c)).
In island-style routing, Switch Boxes (SBs) configure the
interconnecting wires, and connect to a Connection Box
(CB). CBs connect CLBs, whereas SBs connect CBs. In a
hierarchical network, multiple levels of CLBs connect to a
first level of SBs, and then to second level in a hierarchical
manner. For better performance and throughput, the island-
style is commonly used. State-of-the-art FPGA designs have
transceiver I/O speeds above 28 Gbps, RAM blocks, and
Digital Signal Processing (DSP) engines to implement signal
processing routines for packet processing.

NFs can significantly benefit from FPGAs due to their
high degree of flexibility. An FPGA can be programmed
to accelerate multiple protocols or part of a protocol in
hardware, thereby reducing the overall CPU load. However,
the data transactions between the FPGA, NIC, and CPU need
to be carefully coordinated. Importantly, the performance
gain from FPGA acceleration should exceed the overhead
of packet movement through the multiple hardware compo-
nents.
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4) Summary of Custom Accelerators
Custom accelerators provide the flexibility of programma-
bility while striving to achieve the hardware performance.
Though there is gap in the degree of flexibility and perfor-
mance, technological progress has produced hybrid solutions
that approach the best of both worlds.

The GPU implementation [204] of NF applications is
prudent when there are numerous independent concurrent
threads working on independent data. It is important to keep
in mind that GPU implementation involves a synchronization
overhead when threads want to interact with each other. A
new GPU compute request involves a kernel termination and
the start of a new kernel by the CPU which can add signif-
icant delays if the application was to terminate and restart
frequently, or regularly triggered for each packet event.

FPGA implementation provides a high degree of flexibility
to define a custom logic on hardware. However, most FPGAs
are connected to the CPU through the PCIe, which can be a
bottleneck for large interactive computing between host CPU
and FPGA [205]. The choice of programming technology,
I/O bandwidth, compute speed, and memory requirements of
the FPGA determines which NF applications can be acceler-
ated on an FPGA to outperform the CPU.

A critical shortcoming of current custom accelerator tech-
nologies is their limited effective utilization of GPUs and
FPGAs on the platform during the runtime of application
tasks resulting from the heterogeneous application require-
ments. The custom accelerators that are programmed with
a characteristic (small part of an overall NF) to assist the
NF (e.g., TCP NF acceleration) are limited to perform the
programmed acceleration until they are reprogrammed with
a different characteristic (e.g., HTTPS NF acceleration).
Therefore, static and dynamic reconfigurations of custom
accelerators can result in varying hardware accelerator uti-
lization. One possible solution is to establish an open-source
marketplace for the acceleration libraries, software-packages,
and application-specific binaries, to enable programmable
accelerators which can be reconfigured at runtime to be-
gin acceleration based on dynamic workload demands. One
effort in this direction are the FPGA designs to support
dynamic run-time reconfiguration through binary files which
are commonly referred to as partial reconfiguration [206]
for run-time reconfiguration processes, and personas [207]
for binary files. A further extension of partial reconfiguration
and personas is to enable applications to dynamically choose
personas based on application-specific hardware acceleration
requirements for both FPGAs and GPUs, and to have com-
mon task scheduling between CPUs and custom accelerators.

E. DEDICATED ACCELERATORS
Custom GPU and FPGA accelerators provide a platform to
dynamically design, program, and configure the accelerator
functionalities during the system run-time. In contrast, the
functionalities of dedicated accelerators are fixed and built
to perform a unique set of tasks with very high efficiency.
Dedicated accelerators often exceed the power efficiency

and performance characteristics of CPU, GPU, and FPGA
implementations. Therefore, if efficiency is of highest pri-
ority for an NF implementation, then the NF computations
should be offloaded to dedicated accelerators. Dedicated
hardware accelerators are implemented as an Application
Specific Integrated Circuit (ASIC) to form a system-on-chip.
ASIC is a general technology for silicon design which is
also used in the FPGA silicon design; therefore, ASICs can
be categorized as: i) full-custom, which has pre-designed
logic circuits for the entire function acceleration, and ii)
semi-custom, where only certain logic blocks are designed
as an ASIC while allowing programmability to connect and
configure these logic blocks, e.g., through an FPGA.

A dedicated accelerator offers no programming flexibility
due to the hardware ASIC implementation. Therefore, ded-
icated accelerators generally implement a set of character-
istics (small parts of overall NFs) that can used by heteroge-
neous applications. For instance, for hardware acceleration of
the AES-GCM encryption algorithm, this specific algorithm
can be programmed on an FPGA or GPU; in contrast, on a
dedicated accelerator there would be a list of algorithms that
are supported, and we select a specific algorithm based on the
application demands.

A wide variety of dedicated hardware accelerators have
been developed to accelerate a wide range of general com-
puting functions, e.g., simulations [208] and graph process-
ing [209]. To the best of our knowledge, there is no prior
survey of dedicated hardware accelerators for NFs. This
section comprehensively surveys dedicated NF hardware ac-
celerators.

1) Cryptography and Compression Accelerator (CCA)
Cryptography encodes clear (plain-text) data into cipher-text
with a key such that the cipher-text is almost impossible to
decode into clear data without the key. As data communi-
cation has become an indispensable part of everyday living
(e.g., medical care and business activities), two aspects of
data protection have become highly important: i) privacy, to
protect data from eavesdropping, and to protect the sender
and receiver information; and ii) data integrity to ensure
the data was not modified by anyone other than sender
or receiver. One of the most widely known cryptography
applications in NF development is HTTPS [173] for securing
transmissions of content between two NFs, such as VNF to
VNF, Container Network Function (CNF) to CNF, and CNF
to VNF. While cryptography mechanisms address privacy
and integrity, compression addresses the data sparsity in
binary form to reduce the size of data by exploiting the source
entropy. Data compression is widely used from local storage
to end-to-end communication for reducing disk space usage
and link bandwidth usage, respectively. Therefore, cryptog-
raphy and compression have become of vital importance
in NF deployment. However, the downside of cryptography
and compression are the resulting computing requirement,
processing latency, and data size increase due to encryption.
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interconnect.

a: Cavium Nitrox®

Nitrox [174] is a hardware accelerator from Cavium (now
Marvell) that is external to the CPU and connects via the
PCIe to the CPU for accelerating cryptography and com-
pression NFs. The acceleration is enabled through a software
library that interfaces via APIs with the device driver and
applications. The APIs are specifically designed to support
application and network protocol specific security and com-
pression software libraries, such as OpenSSL, OpenSSH,
IPSec, and ZLib. In a typical end-to-end implementation, an
application makes a function call (during process/thread exe-
cution on CPUs) to an application-specific library API, which
then generates an API call to the accelerator-specific library,
which offloads the task to the accelerator with the help of
an accelerator-device driver on the OS. Nitrox consists of 64
general-purpose RISC processors that can be programmed
for different application-specific algorithms. The processor
cores are interconnected with an on-chip interconnect (see
Sec. III-B) with several compression engine instances to
achieve concurrent processing. Nitrox acceleration per device
achieves 40 Gbps for IPsec, 300K Rivest-Shamir-Adleman
(RSA) Operations/second (Ops/s) for 1024 bit keys, and
25 Gbps for GZIP/LZS compression along with support for
single root input/output virtualization (SR-IOV) [84], [175]
virtualization.

b: Intel® Quick Assist Technology®

Similarly, to address the cryptography and compression
computing needs, the Intel® Quick Assist Technology®

(QAT) [176] provides a hardware acceleration for both cryp-
tography and compression specifically focusing on network
security, i.e., encryption and decryption, routing, storage,
and big data processing. The QAT has been specially de-
signed to perform symmetric encryption and authentication,
asymmetric encryption, digital signatures, Rivest-Shamir-
Adleman (RSA), Diffie-Hellman (DH), and Elliptic-curve
cryptography (ECC), lossless data compression (such as DE-
FLATE), and wireless standards encryption (such as KA-
SUMI, Snow3G and ZUC) [177]. The QAT is also used for
L3 protocol accelerations, such as IPSec, whereby the packet
processing for encryption and decryption of each packet is

TABLE5: Summary of Data Stream Accelerator (DSA) Opcodes.

Operations Type Description

Move

Memory Transfer data from src. to dst. (range: main memory or MIMO)
CRC Generation Generate CRC checksum on the transferred data

DIF Data Integrity Field (DIF) check
DIF insert, strip or update while data transfer

Dualcast Copy data simultaneously to two destination locations

Compare

Memory Two source buffers and return whether the buffers are identical
Delta Record Creator Contains the difference between the original and modified buffers

Delta Record Merge Merge delta record with the original source buffer to produce a
copy of the modified buffer at the destination location

Pattern/Zero Detect Special case of compare where instead of the second input buffer,
an 8-byte pattern is specified.

Flush Cache Evict all lines in given address range from all levels of CPU caches
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FIGURE21: Illustration of high-level blocks within the Intel® DSA device
at a conceptual level. In DSA, the receiving of downstream work requests
from clients and upstream work requests, such as read, write and address
translation operations, are accessed with the help of I/O fabric interfaces.
The inclusion of configuration registers and Work Queues (WQ) helps in
holding of descriptors by software, while arbiters implement QoS and fair-
ness policies. Batch descriptors are processed through the batch processing
unit by reading the array of descriptors from the memory and the work
descriptor is composed of multiple stages to read memory, perform data
operations, and write data output [178].

performed by the QAT. A key differentiation of the QAT
from Nitrox is the QAT support for CPU on-die integrated
device acceleration, such that the power efficiency and I/O
performance can be higher with the QAT as compared to the
CPU-external Nitrox accelerator.

2) Data Streaming Accelerator (DSA)
The management of softwarized NF entities depends mainly
on the orchestration framework for the management of soft-
warized NFs. The management of softwarized NFs typically
includes the instantiation, migration, and tear-down (termina-
tion) of NFs on GPC infrastructures. These NF management
tasks are highly data driven as the management process
involves the movement of an NF image in the form of an
application executable, Virtual Machine (VM) image, or a
container image from a GPC node to another GPC node.
Such an NF image movement essentially results in a memory
transaction operation on a large block of data, such as copy,
duplicate, and move, which is traditionally performed by a
CPU. Therefore, to assist in these CPU intensive memory
operations, a dedicated hardware Data Streaming Accelerator
(DSA) [178] has been introduced. The DSA functions are
summarized in Table 5, and the internal DSA blocks have
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been illustrated in Fig. 21.
The DSA functions that are most relevant for NF manage-

ment are:

i) The memory move function helps with moving an NF
image from one memory location to another within the
DRAM of a system, or on an external disk location.

ii) The dualcast function helps with simultaneously copy-
ing a NF image on memory to multiple locations, for
instance, for scaling up of VMs or containers to multiple
locations for load balancing.

iii) The memory compare function compares two memory
regions and provides feedback on whether the two re-
gions match or not, and where (memory location) the
first mismatch occurs. This feature is useful for check-
ing if a VM or container image has been modified or
updated before saving or moving the image to a different
location.

iv) The delta record creator function creates a record of
differences between two memory regions, which helps
with capturing the changes between two VM images.
For instance, the delta record function can compare a
running VM or container with an offline base image on
a disk. The offline base image will be made to run by the
OS, which has the running context. Then, we can save
the VM or container as a new “base” image, so as to
capture changes during run-time to be used later.

v) The delta record merge function applies the delta-
record generated by the delta record create function
consisting of differences between two memory re-
gions to equate two of the involved memory regions.
This function helps with VM and container migration,
whereby the generated delta-record can be applied to
the VM/Container base image to equate between run-
ning image at one node/location to another, essentially
migrating a VM/container.

3) High Bandwidth Memory (HBM)

The memory unit (i.e., DDR) is the closest external com-
ponent to the CPU. The memory unit typically connects to
the CPU with a very high speed interconnect as compared to
all other external interconnects (e.g., PCIe) on the platform.
While the scaling of computing by adding more cores is rel-
atively easy to design, the utilization of larger memory hard-
ware is fundamentally limited by the memory access speed
over the interconnect. Therefore, increasing the bandwidth
and reducing the latency of the interconnect determines the
effective utilization of the CPU computing capabilities. High
Bandwidth Memory (HBM) [179] has been introduced by
AMD® to increase the total capacity as well the total access
bandwidth between the CPU and memory. For instance, the
DDR5 with two memory channels supports peak speeds of
51.2 GB/s per DRAM module; whereas, the latest HBM2E
version is expected to reach peak speeds of 460 GB/s. The
increase in memory density and speed is achieved through
vertical DRAM die-stacking, up to 8 DRAM dies high. The
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FIGURE22: Illustration of high-bandwidth memory (HBM) with low power
consumption and ultra-wide bus width. Several HBM DRAM dies are ver-
tically stacked (to shorten the propagation distance) and interconnected by
“through-silicon vias (TSV)”, while “microbumps” connect multiple DRAM
chips [179] The vertically stacked HBMs are plugged into an interposer, i.e.,
an ultra-fast interconnect, which connects to a CPU or GPU [179].

resulting 3D memory store cube is interconnected by a novel
Through-Silicon Vias (TSVs) [180] technology.

4) Processing In-Memory (PIM) Accelerator
Likewise, to memory, bandwidths and latencies of external
interconnects (e.g., PCIe) define the overall benefit of an ac-
celerator (especially considering that the computing capacity
of an accelerator can be relatively easily scaled up). The
system data processing pipeline also involves the memory
transactions between external components and the system
memory unit (i.e., DRAM), which involves two intercon-
nects, namely between the DDR and CPU, and between CPU
and external component (e.g., PCIe). If the application that
is being accelerated by an external hardware is data inten-
sive and involves large memory transactions between the
DRAM and the external hardware, then significant amounts
of CPU/DMA cycles are needed for the data movement.

Processing-In-Memory (PIM) [181], [182] envisions to
overcome the data movement problem between accelerator
and memory by implementing an acceleration function di-
rectly on the memory. This PIM may seem to be a simple
solution that solves many problems, including memory move
and interconnect speeds. However, the current state-of-art of
PIM is limited to basic acceleration functions that can be
implemented on memory units under consideration of the
packaging and silicon design challenges which require the
3D integration of acceleration function units onto the mem-
ory storage modules [183]. The current applications of PIM
accelerations are large-scale graph processing with repeated
memory updates as part of machine learning computations as
well as neural network coefficient updates with simple opera-
tions involving multiplications and additions of data in static
memory locations (for the duration of application run-time),
such as matrix operations [184]. A PIM architecture proposed
by Ahn et al. [181] achieved ten-fold throughput increases
and saved 87% of the energy. NF application can potentially
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greatly benefit from in-memory computation which avoids
packet movements between memory and accelerators.

5) Hardware Queue Manager (HQM)
The normal OS and application operations involve interac-
tions of multiple processes and threads to exchange informa-
tion. The communication between processes and threads in-
volves shared memory, queues, and dedicated software com-
munication frameworks. NF applications share the packet
data between multiple threads to process multiple layers of
the networking protocol stack and applications. For instance,
the TCP/IP protocol functions are processed by one process,
while the packet data is typically exchanged between these
processes through dedicated or shared queues. Dedicated
queues require large memory along with queue management
mechanisms. On the other hand, shared queues require syn-
chronization between multiple threads and processes while
writing and reading from the shared queue. Allocating a
dedicated queue to every process and thread is practically
impossible; therefore, in practice, despite the synchronization
requirement, shared queues are extensively used because of
their relatively easy implementation and efficient memory
usage. However, as the number of threads and processes
accessing a single shared queue increases, the synchroniza-
tion among the threads to write and read in sequence incurs
significant delays and management overhead.

The Hardware Queue Manager (HQM) accelerator [185],
[186] proposed by Intel® implements the shared and dedi-
cated queues in hardware to exchange data and information
between threads and processes. The HQM implements hard-
ware queue instances as required by the applications such
that multiple producer threads/processes write to queues,
and multiple consumer threads/processes read from queues.
Producer threads/processes generate the data that can be
intended for multiple consumer threads/processes. The HQM
delivers the data then to the consumer threads for data
consumption following policies that optimize the consumer
thread selection based on power utilization [187], workload
balancing, and availability. The HQM can also assist in the
scheduling of accelerator tasks by the CPU threads and
processes among multiple instances of hardware accelerators.

6) Summary of Dedicated Accelerators
Dedicated accelerators provide the highest performance both
in terms of throughput and latency along with power sav-
ings due to the efficient ASIC hardware implementation as
compared to software execution. The common downsides of
hardware acceleration are the cost of the accelerator support
and the lack of flexibility in terms of programming the
accelerator function.

A critical pitfall of dedicated accelerators is the limitation
of hardware capabilities. For instance, a dedicated cryptog-
raphy and compression accelerator only supports a finite set
of encryption and compression algorithms. If an application
demands a specific algorithm that is not supported by the
hardware, then acceleration has to fallback to software exe-

cution which may increase the total execution cost even with
the accelerator.

Another key pitfall is to overlook the overhead of the
hardware offloading process which involves memory trans-
actions from the DRAM to the accelerator for computing
and for storing the result. If the data computation that is
being scheduled on an accelerator is very small, then the total
overhead of moving the data between the accelerator and
memory might outweigh the offloading benefit. Therefore, an
offload engine has to determine whether it is worthwhile to
use an accelerator for a particular computation.

Dedicated accelerators perform a finite set of operations
very efficiently in hardware as opposed to software imple-
mentations running on the CPU. Therefore, the limitations
of current dedicated accelerators are: i) acceleration support
for only a finite set of operations, and ii) finite acceleration
capacity (i.e., static hardware resources). One way to address
these limitations is to design heterogeneous modules within
a dedicated hardware accelerator device to support a large
set of operations. Also, the dedicated hardware accelerator
device should have increased hardware resources; however,
the actually utilized hardware modules (within the device)
should be selected at run-time based on the application
requirements to operate within supported I/O link capacities
(e.g., PCIe).

F. INFRASTRUCTURE

1) SmartNIC

The Network Interface Card (NIC, which is also referred to as
Network Interface Controller) is responsible for transmitting
and receiving packets to and from the network, along with
the processing of the IP packets before they are delivered
to the OS network driver for further processing prior to
being handed over to the application data interpretation.
Typical network infrastructures of server platforms connect
a GPC node with multiple NICs. The NICs are external
hardware components that are connected to the platform via
the PCIe interfaces. NICs implement standard physical (PHY,
Layer 1), data link (MAC, Layer 2), and Internet Protocol
(IP, Layer 3) protocol layer functions. The IP packets are
transported from the local memory of the PCIe device to the
system memory as PCIe transactions in the network downlink
direction (i.e., from the network to the application).

If there is an accelerator in the packet processing pipeline,
e.g., for decrypting an IP Security (IPSec) or MAC Security
(MACSec) packet, the packet needs to be copied from the
system memory to the accelerator memory once the PCIe
DMA transfer to the system memory is completed. The
system memory to accelerator memory copying adds an
additional memory transfer step which contributes towards
the overhead in the overall processing pipeline. Embedding
an acceleration function into the NIC allows the packets to
be processed as they arrive from the network at the NIC
while avoiding this additional memory transfer step, thereby
improving the overall packet processing efficiency.
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FIGURE23: Overview of Linux server with Non-Transparent Bridges
(NTBs) [192]: The memory regions of servers A and B can be inter-
mapped across platforms to appear as their own physically addressed mem-
ory regions. An NTB physically interconnects platforms in 1 : 1 fashion
through a PCIe physical interface. In contrast to the traditional PCIe Root
Port (RP) and Switch (SW) based I/O device connectivity, the NTB from
one platform connects non-transparently to the NTB interface on another
platform, which means that either side of the NTB appears as end-point to
each other, supporting memory read and write operations, without having
transparency on either side. In contrast, a normal PCIe switch functions
essentially as a non-Non-Transparent-Bridge, i.e., as a transparent bridge,
by giving transparent views (to CPU) of I/O devices, PCIe Root Port, and
switches. On the other hand, the NTB hides what is connected beyond the
NTB, a remote node only sees the NTB, and the services offered by the NTB,
such as reading and writing to system memory (DRAM) or disk (SSD PCIe
endpoint) without exposure of the device itself.

A Smart-Network Interface Controller (SmartNIC) [188],
[189] not only implements dedicated hardware acceleration
at the NIC, but also general-purpose custom accelerators,
such as FPGA units, which can be programmed to perform
user defined acceleration on arriving packets. FPGAs on
SmartNICs can also be configured at run-time, resulting
in a dynamically adaptive packet processing engine that
the responsive to application needs. An embedded-Switch
(eSwitch) is another acceleration function that implements a
data link layer (Layer 2) switch function on the SmartNIC
to forward MAC frames between NIC ports. This method
of processing the packets as they arrive at the NIC is also
termed “in-line” processing, whereas the traditional method
with the additional memory transfer to the accelerator mem-
ory is termed “look-aside” processing. In addition to pro-
grammability, the current state-of-the-art SmartNICs are ca-
pable of very high-speed packet processing on the order of
400 Gbps [190] while supporting advanced protocols, such
as Infiniband and Remote-DMA (RDMA) [191].

2) Non-Transparent Bridge (NTB)

A PCIe bridge (or switch) connects different PCIe buses
and forwards PCIe packets between buses, whereby buses
are typically terminated with an endpoint. As opposed to a
PCIe bridge, a Non-Transparent Bridge (NTB) [192] extends
the PCIe connectivity to external platforms by allowing two
different platforms to communicate with each other. The
“Non-Transparent” properties are associated with the NTB
in that CPUs that connect to an NTB appear as endpoints
to each other More specifically, for the regular bridge, all

components, e.g., memory, I/O devices, and system details,
on either side of the regular bridge are visible to either
side across the regular bridge. In contrast, with the non-
transparent bridge, one side can only interact with the CPU
on other side; CPUs on either side do not see any I/O devices,
nor the Root Ports (RPs) at the other side. However, the
“non-transparent bridge” itself is visible to the OS running
on either side.

A PCIe memory read or write instruction translates to a
memory access from a peer node, thereby enabling platform-
to-platform communication. The NTB driver on an OS can
be made aware to use doorbell (i.e., interrupt) notifications
through registers to gain the remote CPU’s attention. A set
of common registers are available to each NTB endpoint as
shared memory for management.

The NTB benefits extend beyond the support of the PCIe
connectivity across multiple platforms; more generally, NTB
provides a low-cost implementation of remote memory ac-
cess, can seek CPU attention on another platform, can offload
computations from one CPU to another CPU, and gain indi-
rect access to remote peer resources, including accelerators
and network connectivity. The NTB communication over
the underlying PCIe supports higher line-rate speeds and is
more power efficient than traditional Ethernet/IP connectivity
enabled by NICs; therefore NTB provides an economical
solution for short distance communication via the PCIe inter-
faces. One of the key application of NTB for NF applications
is to extend the NTB to support RDMA and Infiniband proto-
cols by running as a Non-Transparent RDMA (NTRDMA).

3) Summary of Infrastructure
Infrastructure enables platforms to communicate with ex-
ternal computing entities through Ethernet/IP, SmartNIC,
and NTB connections. As NF applications highly depen-
dent on communication with other nodes, the communi-
cation infrastructure should be able to flexibly reconfigure
the communications characteristics to the changing needs of
applications. The SmartNIC is able to provide support for
both NIC configurability and acceleration to offload CPU
computations to the NIC. However, the SmartNIC should
still be cost efficient in improving overall adaptability. The
programmability of custom acceleration at the NIC should
not incur excessive hardware cost to support a wide range of
functions ranging from security to switching, and to packet
filtering applications

In contrast to the SmartNIC, the NTB is a fixed implemen-
tation that runs on the PCIe protocol which supports much
higher bandwidth than point-to-point Ethernet connections;
however, the NTB is limited to a very short range due to the
limited PCIe bus lengths. Additional pitfalls of acceleration
at the SmartNIC include misconfiguration and offload costs
for small payloads.

Traditionally, infrastructure design has been viewed as an
independent development domain that is decoupled from the
platform components, mainly CPU, interconnects, memory,
and accelerators. For instance, SmartNIC design considera-
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tions, such as supported bandwidth and protocol technolo-
gies (e.g., Infiniband), traditionally do not consider the CPU
architectural features, such as Instruction Set Acceleration
(ISAcc, Section III-A1), or system memory capabilities, such
as NV-NAND persistent memory (Section III-C3). As a
result, there is a heterogeneous landscape of platform and
infrastructure designs, whereby future infrastructure designs
are mainly focused on programmable data paths and sup-
porting higher bandwidth with lower latencies. An inter-
esting future development direction is to exploit synergies
between platform component and infrastructure designs to
achieve cross-component optimizations. Cross-component
design optimizations, e.g., in-memory infrastructure process-
ing or ISAcc for packet and protocol processing, could poten-
tially improve the flexibility, latency, bandwidth, and power
efficiencies.

G. SUMMARY AND DISCUSSION
In Sec. III we have surveyed enabling technologies for
platform and infrastructure components for the deployment
of NFs on GPC infrastructures. A critical pitfall of NF
softwarization is to overlook strict QoS constraints in the
designs; QoS constraints are critical as software entities
dependent on OSs and hypervisors for resource allocation to
meet performance demands. OSs are traditionally designed
to provide best effort services to applications which could
severely impede the QoS of NF applications in the presence
of saturated workloads on the OS.

CPU strategies, such as ISAcc, CPU pinning, and CPU
clock frequency speed-ups enable NFs to achieve adequate
performance characteristics on GPC platforms. Along with
CPU processing enhancements, memory access to load and
store data for processing by the CPU can impact the overall
throughput and latency performance. Memory access can be
improved with caching and higher CPU-to-memory inter-
connect bandwidth. Cache coherency is a strategy in which
caches at various locations, such as multiple cache levels
across cores and PCIe device caches, are updated with the
latest updates of modified data across all the caches. Cache
coherency across multiple cores within the same socket is
maintained by 2D mesh interconnects (in case of Intel®) and
Scalable Data Fabric (SDF) (in case of AMD®). Whereas,
coherency across sockets is achieved through UPI intercon-
nects, and for I/O devices through AXI ACL or CXL links.

The DDR5 and PCIe Gen5 provide high bandwidths for
large data transactions to effectively utilize compute re-
sources at CPUs as well as custom and dedicated acceler-
ators. NV-NAND technology provides cost effective solu-
tions for fast non-volatile memory that can be used as an
extension to DRAM, second-level memory for DRAM, or
as a storage unit assisting both CPU and accelerators in
their computing needs. In-Memory accelerators extend the
memory device to include accelerator functions to save the
data transfer time between accelerator and memory device. A
custom accelerator GPU provides programmability for high
performance computing for concurrent tasks, while an FPGA

provides close to hardware level performance along with
high degrees of configurability and flexibility. In contrast
to custom accelerators, dedicated accelerators provide the
best performance at the cost of reduced flexibility. Based
on all the enabling technologies offered on a platform, an
NF function design should comprehensively consider the
hardware support to effectively run the application to achieve
the best performance.

IV. RESEARCH STUDIES ON
HARDWARE-ACCELERATED PLATFORMS AND
INFRASTRUCTURES FOR NF IMPLEMENTATION
This section surveys the research studies on hardware-
accelerated platforms and infrastructures for implementing
NFs. While the enabling technologies provide the underlying
state-of-the-art techniques to accelerate NFs, we survey the
enhancements to the enabling technologies and the investi-
gations of the related fundamental trade-offs in the research
domain in this section. The structure of this section follows
our classification of the research studies as illustrated in
Fig. 24.

A. COMPUTING ARCHITECTURE
The computing architecture advances in both CISC and RISC
directly impact the execution of software, such as applica-
tions and VMs that implement NFs. The CISC architecture
research has mainly focused on enhancing performance,
while the RISC architecture research has mainly focused on
the power consumption, size of the chip, and cost of the
overall system.

1) CISC
Generally, computing architecture advances are driven by
corporations that dominate the design and development of
computing processors, such as AMD®, Intel®, and ARM®.
One such enhancement was presented by Clark et al. of
AMD® [210], [211] who designed a new Zen computing
architecture to advance the capabilities of the x86 CISC ar-
chitecture, primarily targeting Instruction Set (IS) computing
enhancements. The Zen architecture aims to improve CPU
operations with floating point computations and frequent
cache accesses. The Zen architecture includes improvements
to the core engine, cache system, and power management
which improve the instruction per cycle (IPC) performance
up to 40%. Architecturally, the Zen architecture core com-
prises one floating point unit and one integer engine per core.
The integer clusters have six pipes which connect to four
Arithmetic Logic Units (ALUs) and two Address Generation
Units (AGUs), see Fig. 25.

The ALUs collaborate with the L1-Data (L1D) cache to
perform the data computations, while the Address Genera-
tion Units (AGUs) collaborate with the L1-Instruction (L1-I)
cache to perform the address computations. Table 6 compares
the cache sizes and access ways of different state-of-the-
art x86 CISC architectures. The enhancements of the Zen
architecture are applied to the predecessor family of cores
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Hardware-Accelerated Platforms & Infrastructures for NFs, Research Studies, Sec. IV

??

Comp. Arch., Sec. IV-A

CISC [210], [211]
RISC
Pkt. Manip. Proc. (PMP). [212]
Data Plane Repli. [213]
SW Func. Test [214]
RISC based CPU Arch. [215]

Multi-Core Opti.
SIMD [216]
Lat. Opti. [217]
Cache Part. [218]

Core Power & Perf.
Energy Saving [219]
Power Profile [220]
Sel. Algo. [221]
Power Perf. [222]

CPU-FPGA
RISC-Five [223]
FPGA Mem. [224]
Task Sche. [225]
Web Search Engi. [226]
Packet Classi. [227]
FPGA Sim. [228]

CPU-GPU
Task Alloc. [229]
Multi Pkt. Flow [230]
Anomaly Det. [231]

?

Interconn., Sec. IV-B

Reconfig.
HyCUBE [232]
CGRA [233]
Intercon. Overhead [234]
FPGA Virt. [235]

3D On-Chip
3D-MoT [236]

NoC
NoC-Interconn. [237]
Bi NoC [238]
Adap. Mem. Access. [239]

3D NoC
Aging Proc. [240]
Routing Algo. [241]

Wireless NoC
HyWIN [242]–[246]
Wide-BW-G band [247], [248]

SD-NoC
Prog. eX. Model. [249]–[251]
On-the-fly Intercon. [252], [253]

Optical [254]–[257]
Ckt.-Sw. ONoC [258], [259]
WDM [260], [261]
Thermal Char. [262], Interfer. Char. [263]
SDN Control [264]
QPI [265]

Memory, Sec. IV-C

DRAM
Access Latency [266]
Access Strategy [267]
3D Stacking [180]
LISA [268]
Scramble & Remapping
[269], [270]

NV Mem.
NVM Perf. [271]
STTRAM [272]
3rd gen. V-NAND [273]

?

Accelerators, Sec. IV-D

Data Processing
Graph Analytics [274]
Config. Cloud [275], [276]
Parallel Proc. [277]
Hoplite NoC [278]
MapReduce [279]
Net. Data Ana. [280]
Big Data in CPU+FPGA. [281]

Deep-Learning
QoS Esti. [282]
Cambricon-X [283]
DianNao Imple. [284]
Boltzmann Machines [285]
Configurable Spatial Accelerator (CSA) [286]
Standard Compilers [287]
MPI [288]

GPU-RDMA [289]
Crypto
AES Encryption [290]
Config. Network Proc. [291]
SAED [292]

In-Memory
Bulk Bitwise Operations [293]
Overview of NVM Acc. [294]
Pinatubo Proc. Arch. [295]

?

Infra., Sec. IV-E

SmartNIC
Perf. of SmartNIC [296]
Unisec Method [297]
Lynx Arch. [298]

FIGURE24: Classification taxonomy of research studies on hardware-accelerated platforms and infrastructures for processing softwarized NFs.

referred to as AMD® Bulldozer; the Zen implements address
computing to access system memory based on AGUs with
two 16-byte loads and one 16-byte store per cycle via a
32 KB 8-way set associative write-back L1D cache. The
load/store cache operations in the Zen architecture have
exhibited lower latency compared to the AMD® Bulldozer
cores. This unique Zen cache design allows NF workloads
to run in both high precision and low precision arithmetic
based on the packet processing computing needs. For in-
stance, applications involving low precision computations,
such as packet scheduling, load balancing, and randomization
can utilize the integer based ALU; while high precession
computing for traffic shaping can run on the floating point
ALUs.

2) RISC

In contrast to the CISC architectures which focus typically
on large-scale general-purpose computations, e.g., for lap-
top, desktop, and server processors, the RISC architectures
have typically been adopted for low-power processors for
applications that run on hand-held and other entertainment
devices. Concomitantly, the RISC architecture has typically,
also been adopted for small auxiliary computing units for

TABLE6: Cache technologies directly impact the memory access times
which are critical for latency-sensitive networking applications as well as
for delivering Ultra Low Latencies (ULL) as outlined in the 5G standards.
The state-of-art enhancements to cache technologies are compared in the
table, whereby larger cache sizes and larger cache access ways, improve
the capabilities of the processor to support low latency workloads. The
L1 Instruction (L1I) cache allows the instructions that correspond to NF
application tasks to be fetched, cached, and executed locally on the core,
while the L1 Data (L1D) cache supports the corresponding data caching.

Cache
Level

Bulldozer®

FX-8150 ZEN® Broadwell-E®

i7-6950X
Skylake®

i7-6700K

L1l 64 KB 2-Way
per module 64 KB 4−Way 32 KB 8−way 32 KB 8−way

L1D 16 KB 2-Way
Write Through

32 KB 2-Way
Write Back

32 KB 8-Way
Write Back

32 KB 8-Way
Write Back

L2 2 MB 16-Way
per module 512 KB 8-way 256 KB 8-way 256 KB 4-way

L3 1 MB/core
64-way

1/2 MB/core
16-way

2.5 MB/core
16/20-way

2 MB/core
16-way

module controllers and acceleration devices. The RISC ar-
chitecture provides a supportive computing framework for
designing acceleration computing units that are tradition-
ally implemented as custom accelerators, such as the Intel®

QAT® and DSA (see Sec. III-E), due to the power and space
efficient RISC architectural characteristics.

Typically, network applications involve direct packet pro-
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FIGURE25: (a) Overview of ZEN Micro architecture [210], [211]: The Zen
micro architecture has 3 modules: i) Front End Module, ii) Integer and
Floating-Point Modules, and iii) Memory Subsystem Module. Each core
performs instruction fetching, decoding (decodes 4 instructions/cycle into
the micro-op queue), and generating Micro-Operation (Micro-Ops) in the
front end module. Each core is independent with its own floating-point and
integer units. The Zen micro architecture has split pipeline design at the
micro-op queue which runs separately to the integer and floating point units,
which have separate schedulers, queues, and execution units. The integer
unit has multiple individual schedulers which splits the micro-ops and feeds
them to the various ALU units. The floating-point unit has a single scheduler
that handles all the micro-ops. In the memory subsystem module, the data
from the Address Generation Units (AGUs) is fed into the execution units via
the load and store queue. (b) The Zen architecture has a single pipeline cache
hierarchy for each core which reduces the overall memory access latency.
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FIGURE26: An overview of the RISC based Packet Manipulation Processor
(PMP) [212] which implements a programmable packet header matching
table based on atomic operations. The table can be dynamically updated
by multiple processes running on the CPU without impacting the matching
operations.

cessing at the NIC to support line-rate speeds. To address the
present needs of NFs, specifically with the proliferation of
Software Defined Networking (SDN), reconfigurable com-
pute hardware is almost a necessity. However, reconfigurable
computing infrastructures reserve a fraction of the hardware
resources to support flexibility while dedicated computing in-
frastructures (i.e., proprietary networking switches and gate-
ways) utilize the entire hardware resources for computing
purposes. To address this challenge of retaining flexibility to

reconfigure as well as achieving effective hardware resource
utilization, Pontarelli et al. [212] have proposed a Packet
Manipulation Processor (PMP) specifically targeting line-
rate processing based on the RISC architecture. The RISC
compute architecture is adapted to perform fast match oper-
ations in an atomic way, while still being able to reconfigure
(update) the matching table, thus allowing programmability
of routing and forwarding functions. Fig. 26 illustrates the
RISC based PMP processor functional blocks tailored to
perform packet processing. A given packet is parsed and
passed through several matching tables before finally being
processed by the PMP array to be transmitted over the link.
The PMP array feeds back the criteria for matching and
selection to the ingress input mixer.

Moving routine software tasks, such as NF packet process-
ing, from the CPU to dedicated hardware lowers overheads
and frees up system resources for general-purpose applica-
tions. However, large scale distributed applications, such as
big data analysis and data replications, are considered as user
space applications, and decoupled from the packet processing
framework (e.g., Ethernet, switches and routers). As a result,
the replication of data across a large number of compute and
storage network platforms would consume large amounts of
network bandwidth and computing resources on the given
platform involved in data replication, storage, and process-
ing tasks. To address this problem, Choi et al. [213] have
proposed a data-plane data replication technique that utilizes
RISC based processors to perform the data replication. More
specifically, a SmartNIC consisting of 56 RISC processors
implements data plane functions to assist in the overall end-
to-end data-replication at the application layer. The proposed
framework involves three components: i) a master node that
requests replications using store and retrieve, ii) a client node
that assists in maintaining connections, and iii) data plane
witnesses that store and retrieve the actual data. The RISC
computations are optimized to perform the simultaneous op-
erations of replication, concurrent with packet parsing, hash-
ing, matching, and forwarding. A testbed implementation
showed significant benefits from the RISC based SmartNIC
approach as compared to software implementation: the data
path latency is reduced to nearly half and the overall system
throughput is increased 6.7-fold.

Focusing on validation and function verification of NF
application hardware architectures, Herdt et al. [214] have
proposed a framework to test software functions (which can
be extended to NFs) on RISC architectures. The proposed
Concolic Testing Engine (CTE) enumerates the parameters
for the software functions which can be executed over an
instruction set simulator on a virtual prototype emulated as
a compute processor. The evaluations in [214] employed
the FreeROTS TCP/IP network protocol layer stack for NF
testing to effectively identify security vulnerabilities related
to buffer overflows.

NFs are supported by OS services to meet their demands
for packet processing. As a result, NF applications running on
computing hardware (i.e., a CPU) rely on OS task scheduling
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services. However, as the number of tasks increases, there is
an increased overhead to align the tasks for scheduling to be
run on CPU based on scheduling policies, especially in meet-
ing strict latency deadlines for packet processing. Some of the
mitigation techniques of scheduling overhead involve using
simple scheduling strategies, such as round robin and random
selection, or to accelerate the scheduling in hardware. While
hardware accelerations are promising, the communication
between the CPU and the acceleration component would
be a limiting factor. One way to reduce the communication
burden between the CPU and the acceleration component is
to enable the CPU to implement scheduling using Instruc-
tion Set (IS) based accelerations as proposed by Morais et
al. [215]. Morais et al. [215] have designed a RISC based
CPU architecture with a custom instruction as part of the IS
to perform scheduling operations for the tasks to be run by
the OS on the CPU. A test-bed implementation demonstrated
latency reductions to one fifth for an 8-core CPU compared
to serial task executions. NF applications typically run in
containers and VMs on a common infrastructure that require
highly parallel hardware executions. The proposed IS based
optimization of task scheduling can help in enforcing time
critical latency deadlines of tasks to run on CPUs with low
overhead.

3) Multi-Core Optimization
Most systems that execute complex software functions are
designed to run executions in concurrent and parallel fashion
on both single and multiple computing hardware components
(i.e., multi-core processors). A key aspect of efficient multi-
core systems is to effectively schedule and utilize resources.
Optimization techniques are necessary for the effective re-
source allocation based on the system and application needs.
On a given single core, Single Instruction Multiple Data
(SIMD) instructions within a given compute architecture
(i.e., RISC or CISC) allow the CPU to operate on multiple
data sets with a single instruction. SIMD instructions are
highly effective in the designs of ultra-fast Bloom filters
which are used in NF applications, such as matching and
detecting operations relevant to the packet processing [216].
Due to the nature of multiple data sets in the SIMD instruc-
tion, the execution latency is relatively longer compared to
single datasets.

In an effort to reduce the execution latency, Zhou et
al. [217] have proposed a latency optimization for SIMD
operations in multi-core systems based on Ant-Colony Opti-
mization (ACO). The Zhou et al. [217] ACO maps each core
to an ant while the tour construction is accelerated by vec-
tor instructions. A proportionate selection approach named
Vector-based Roulette Wheel (VRW) allows the grouping
of SIMD lanes. The prefix sum for data computations is
evaluated in vector-parallel mode, such that the overall per-
formance execution time can be reduced across multiple
cores for SIMD operations. The evaluations in [217] indicate
50-fold improvements of the processing speed in comparison
to single-thread CPU execution. NF applications can greatly

benefit from SIMD instructions to achieve ultra-low latency
in packet processing pipelines.

Latencies in multi-core systems affect the overall system
performance, especially for latency-critical packet process-
ing functions. In multi-core systems, the processing latencies
typically vary among applications and cores as well as across
time. The latencies in multi-core systems depend strongly on
the last level cache (LLC). Therefore, the LLC design is a
very important issue in multi-core systems. Wang et al. [218]
have proposed a latency sensitivity-based cache partitioning
(LSP) framework. The LSP framework, evaluates a latency-
sensitivity metric at runtime to adapt the cache partitioning.
The latency-sensitivity metric considers both the cache hit
rates as well as the latencies for obtaining data from off-chip
(in case of cache misses) in conjunction with the sensitivity
levels of applications to latencies. The LLC partitioning
based on this metric improves the overall throughput by
an average of 8% compared to prior state-of-the-art cache
partitioning mechanisms.

4) Core Power and Performance
While it is obvious that multi-core systems consume higher
power compared to single-core systems, the system manage-
ment and resource allocation between multiple cores often re-
sults in inefficient power usage on multi-core systems. Power
saving strategies, such as power gating and low power modes
to put cores with no activity into sleep states, can mitigate
energy wastage. NF applications require short response times
for processing the incoming packets. Short response times
can only be ensured if the processing core is in an active state
to immediately start the processing; whereas, from a sleep
state, a core would have to go through a wake-up that would
consume several clock cycles.

The energy saving technique proposed by Papadimitriou
et al. [219] pro-actively reduces the voltage supplied to
the CPUs (specifically, ARM® based cores) of a multi-
core system without compromising the operational system
characteristics. In the case of too aggressive reduction of
the voltage level supplied to CPUs, uncorrectable system
errors would lead to system crashes. Therefore, a sustainable
level of voltage reduction just to keep the core active at
all times even when there is no application processing can
be an identified by analyzing the system characterizations.
The evaluations in [219] based on system characterizations
show that energy savings close to 20% can be achieved, and
close to 40% savings can be achieved if a 25% performance
reduction is tolerated.

A more robust way to control the power characteristics is
through dynamic fine-grained reconfiguration of voltage and
frequency. However, the main challenge in dynamic reconfig-
uration is that different applications demand different power
scaling and hence the requirements should be averaged across
all applications running on a core. Dynamic runtime recon-
figuration of voltage and frequency is typically controlled
by the OS and the system software (i.e., BIOS, in case of
thermal run-off). On top of reconfiguration based on averaged
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requirements, there would still be some scope to improve
the overall voltage and frequency if the run-time load can be
characterized in advance before the processes are scheduled
to run on the cores. Bao et al. [220] have proposed several
such techniques where the power profile is characterized
specifically for each core, which is then used for voltage
and frequency estimations based on the application needs.
Subsequently, Bao et al. [220] have evaluated power savings
based on profiling of both core power characterizations and
the application run-time requirements. The evaluations have
shown significant benefits compared to the standard Linux
power control mechanism.

More comprehensive search and select algorithms for the
optimal voltage and frequency settings for a given core have
been examined by Begum et al. [221]. Begum et al. [221]
have broadly classified the algorithms into: i) search meth-
ods: exhaustive and relative, and ii) selection methods: best
performance and adaptive. Exhaustive search sweeps through
the entire configuration space to evaluate the performance.
Relative search modifies the current configuration and mon-
itors the relative performance changes with the overall goal
to incrementally improve the performance. In the best per-
forming selection, the configuration is tuned in a loop to
identify the configuration that results in the best performance;
whereas, in adaptive selection, the tuning is skipped, and
configuration values are applied to achieve a performance
within tolerable limits. NF applications can utilize these
techniques based on the application needs so as to meet either
a strict or a relaxed deadline for packet processing.

Other strategies to support the power and performance
characteristics of NF applications, in addition to dynamic
voltage and frequency include CPU pinning, as well as
horizontal and vertical scaling. CPU pinning corresponds
to the static pinning of applications and workloads to a
specific core (i.e., no OS scheduling of process). Horizontal
scaling increases the resources in terms of the number of
allocated systems (e.g., number of allocated VMs), while
vertical scaling increases the resources for a given system
(e.g., VM) in terms of allocated CPU core, memory, and
storage. Krzywda et al. [222] have evaluated the relative
power and performance characteristics for a deterministic
workload across voltage, frequency, CPU pinning, as well
as horizontal and vertical scaling. Their evaluations showed
a marginal power improvement of about 5% for dynamic
voltage and frequency in underloaded servers; whereas on
saturated servers, 20% power savings can be achieved at the
cost of compromised performance. Similarly, CPU pinning
was able to reduce the power consumption by 7% at the cost
of compromised performance. The horizontal and vertical
scaling reduced latencies, however only for disproportion-
ately large amounts of added resources. Krzywda et al. also
found that load balancing strategies have a relatively large
impact on the tail latencies when horizontal scaling (i.e.,
more VMs) are employed.

Power and performance is a critical aspect to NF applica-
tions in meeting the latency demands, and therefore should be
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FIGURE27: Taiga computing architecture with reconfigurable design using
FPGA [223]. The compute logic units, such as ALU, BRanch unit (BR),
Multiply (MUL), and Division (DIV), are implemented with independent
circuitry, i.e, with Instruction Level Parallelism (ILP). Block RAM (BRAM)
and BRanch PREDiction (BR PRED) assist in the ILP opcode fetch. The
numbers on top of the logic units are processing latencies in terms clock cy-
cles, and below are the throughputs in number of instructions per clock cycle.
The + indicates that numbers shown are minimum latency and throughput
values, whereas / indicates dual instruction flow paths for execution.

carefully considered while balancing between power savings
and achieving the highest performance. Aggressive power
saving strategies can lead to system errors due to voltage
variations, which will cause the system to hang or reboot.
Allowing applications to control the platform power can
create isolation issues. For instance, a power control strategy
applied by one application, can affect the performance of
other applications. This vulnerability could lead to catas-
trophic failures of services as multiple isolated environments,
such as containers and VMs, could fail due to an overall
system failure.

5) CPU-FPGA
Reconfigurable computing allows compute logic to be modi-
fied according to the workload (application) needs to achieve
higher efficiency as compared to instruction set (IS) based
software execution on a general-purpose processor. Matthews
et al. [223] (see Fig. 27) have proposed a design enhance-
ment called Taiga for the RISC-V (pronounced “RISC-Five”)
architecture, an open source RISC design. In their design
enhancement, the IS processor core is integrated with pro-
grammable custom compute logic (i.e., FPGA) units, which
are referred to as reconfigurable function units. The processor
supports a 32 bit base IS capable of multiply and divide op-
erations. Reconfigurable function units can be programmed
to have multiple functions that can be defined during run
time, and can then be interfaced with the main processors.
This approach can lead to a high degree of Instruction Level
Parallelism (ILP) supported by a fetch logic and load store
unit that are designed with translation look-aside buffers
(TLBs) and internal cache support. Different variants have
been proposed, e.g., a full configuration version which has
1.5× the minimum configuration version resources based on
the overall density of Look Up Tables (LUTs), hardware
logic slices, RAM size, and DSP blocks. The evaluations
in [223] successfully validated the processor configurations
and identified the critical paths in the design: The write-back
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algorithm evaluates all possible paths and estimates the best path in terms of
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data path is the critical path in the minimum configuration
system, and the tag hit circuit for address translations through
the TLB is the critical path for the full configuration version.

An FPGA component can be interfaced with the main
compute component (i.e., core) in the CPU through multiple
interfaces. If the FPGA is placed on the fabric that connects
to the core, then the applications can benefit from the data
locality and cache coherency with the DRAM and CPU. If
the FPGA is interfaced with the compute component (core)
through a PCIe interface, then there is a memory decoupling,
i.e., the device-specific FPGA internal memory is decoupled
from CPU core memory (system memory DRAM). Hence,
there are significant latency implications in each model of
FPGA interfacing with the CPU based on FPGA presence
on the core-mesh fabric or I/O interfaces, such as PCIe
and USB. Choi et al. [224] have quantitatively studied the
impact of the FPGA memory access delay on the end-to-
end processing latency. Their study considers the Quick Path
Interconnect (QPI) as FPGA-to-core communication path in
case of FPGA presence on the processor die (coherent shared
memory between CPU and FPGA) and the PCIe interface
(private independent memory for both CPU and FPGA) for
the external (FPGA) device connectivity. Their evaluations
provide insights into latency considerations for meeting ap-
plication demands. In summary, for the PCIe case, the device
to CPU DMA latency is consistently around 160 µs. For
the QPI case, the data access through the (shared) cache
results in latencies of 70 ns and 60 ns for read and write
hits, respectively. The read and write misses correspond to
system memory accesses which result in 355 ns and 360 ns
for read and write miss, respectively. The latency reduction
from 160 µs down to the order of 70 to 360 ns is a signifi-
cant improvement to support NF applications, especially NF
applications that require ultra-low latencies on the order of
sub-microseconds.

Abdallah et al. [225] (see Fig. 28) have proposed an inter-
esting approach to commonly schedule the tasks among het-
erogeneous compute components, such as CPU and FPGA.
This approach allows a software component to use the com-
pute resources based on the relative deadlines and compute
requirements of the applications. Genetic algorithms, such
as chromosome assignment strategies and a Modified Ge-

netic Algorithm Approach (MGAA), have been utilized to
arrive at combinatorial optimization solutions. The goal of
the optimization is to allocate tasks across Multi-Processor
SoC (MPSoC) for maximizing the resource utilization and
minimizing the processing latency of each task. Their eval-
uations show that common scheduling across heterogeneous
compute processors not only improves the application perfor-
mance, but also achieves better utilization of the computing
resources. Their work can be extended to different types of
computing resources other than FPGA, such as GPU and
ASICs.

NF applications are particularly diverse in nature with
requirements spanning from high throughput to short latency
requirements; effectively utilizing the heterogeneous com-
puting resources is a key aspect in meeting these diverse
NF demands. For instance, Owa et al. [226] have proposed
an FPGA based web search engine hardware acceleration
framework, which implements the scoring function as a deci-
sion tree ensemble. A web search engine involves processing
pipelined functions of computing, scoring, and ranking po-
tential results. The optimization of these pipelines involves
reducing intermediate data transfers and accelerating pro-
cesses through hardware. Evaluations based on optimizations
on FPGA based hardware accelerations show a two-fold
performance improvement compared to CPU solutions.

In another example, Kekely et al. [227] proposed an
FPGA based packet classification (matching) hardware ac-
celeration to increase the system throughput. Typically, the
packet processing pipelines are implemented in parallel to
match several packets in one clock cycle so as to decrease
the process latency. However, parallel computations require
dedicated resources when accelerating on FPGA, decreasing
the overall system throughput. Therefore, Kekely et al. [227]
have implemented a hashing based exact match classification
on FPGA which can match packets in parallel while utilizing
less resources (e.g., memory). As compared to the baseline
FPGA implementation, the results show up to 40% memory
savings while achieving 99.7% of the baseline throughput.

The performance of an end-to-end application running on
an FPGA accelerated system depends on both software and
hardware interactions. The overall performance is dictated by
the bottlenecked functions which may exist in both software
and hardware sub-components. Since it is challenging to
run an application and then profile the performance metrics
across various processing stages, Karandikar et al. [228] have
proposed FirePerf, an FPGA-Accelerated hardware simula-
tion framework. FirePerf performs a hardware and software
performance profiling by inserting performance counters in
function pipelines such that processing hot spots can be
identified so as to find the system bottleneck. FirePerf is an
out-of-band approach in which the actual simulation process
does not impact the running application. The capabilities of
FirePerf were demonstrated for an RISC-V Linux kernel-
based optimization process which achieved eight-fold im-
proved network bandwidth in terms of application packet
processing.
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6) CPU-GPU
Similar to the study by Abdallah et al. [225], Nie et al. [229]
(see Fig. 29) have proposed a task allocation strategy to
schedule tasks between heterogeneous computing resources,
specifically, CPU and GPU. While a GPU is a general-
purpose compute processor designed to execute parallel
threads that are independent of each other, not all workloads
(application requirements) are suited for parallel execution.
For instance, NF applications that simultaneously perform
relatively simple operations on multiple packet flows can
run in parallel processing threads entirely on GPUs [230].
However, the performance characterizations by Yi et al. [230]
considered the performance of a GPU alone to show the
benefits in comparison to a CPU (but not the performance
of the GPU in conjunction with a CPU).

Generally, a given workload cannot be categorized into
either fully parallel threaded or fully single threaded in a
strict sense. Therefore, there is a scope for task partitioning
into parallel and single-threaded sub-tasks [231]; whereby a
given task is split into two different task types, namely task
types suitable for GPU (parallel threaded) execution and task
types for CPU (single-threaded) execution. The evaluation
of the task partitioning method proposed in [231] considers
adaptive Sparse Matrix-Vector multiplication (SpMV). A
given task is divided into multiple slave processes and these
slave processes are scheduled to run either on a CPU or on
a GPU depending on the needs of these slave processes. The
task computing on the GPU is limited by the data movement
speeds between CPU system memory (DRAM) and GPU
global memory. To overcome this limitation, the proposed
architecture involves double buffering in either direction of
the data flow (into and out of the GPU) as well as on either
side of the memory regions, i.e., CPU DRAM and GPU
global memory. The evaluations indicate 25% increases in
the total number of (floating point) operations. Sparse matrix
computations are widely used in NF applications, specifically
for anomaly detection in traffic analysis [231] which is ap-
plied in packet filtering and DoS attack mitigation.

7) Summary of Computing Architectures
The computing architecture of a platform defines its com-
puting performance for given power characteristics. Some
applications, such as data collection and storage, can tolerate
some performance degradations (resulting from CPU load)
and are not latency sensitive; whereas, other applications,
e.g., the sensor data processing for monitoring a critical

event, are both latency and performance sensitive. Generally,
the power constraints on the platform are decoupled from
the applications. More specifically, the platform initiatives,
such as changes of the CPU characteristics, e.g., reduction
of the CPU operational frequency to conserve battery power,
are generally not transparent to applications running on the
CPU. As a result, the applications may suffer from sudden
changes of the platform computing performance without any
prior notifications from the platform or the OS. Future re-
search should make the platform performance characteristics
transparent for the application such that applications could
plan ahead to adapt to changing platform characteristics.

Typically, the platform cores are designed following a
homogeneous computing architecture type, i.e., either CISC
or RISC. Accordingly, the applications are commonly com-
piled to run optimally on a specific architecture type. Several
studies [299]–[301] have investigated heterogeneous archi-
tectures that combine both CISC and RISC computing in
a single CPU, resulting in a composite instruction set ar-
chitecture CPU. While heterogeneous architectures attempt
to achieve the best of both the RISC (power) and CISC
(performance) architecture types, identifying threads based
on their requirements and scheduling the threads appropri-
ately on the desired type of core is critical for achieving
optimal performance. Therefore, multi-core optimizations
should consider extensions to heterogeneous CPUs, as well
as GPUs and FPGAs.

B. INTERCONNECTS
Interconnects allow both on-chip and chip-to-chip compo-
nents to communicate with short latencies and high band-
width. To put in perspective, the I/O data rate per lane on
the DDR1 was 1 Gbps and for the DDR5 it is 5 Gbps
(see Table 4), whereby there are 16 lanes per DDR chip.
These data rates are scaled significantly with 3D stacking of
memory [as in the case of High Bandwidth Memory (HBM),
see Section III-E3]; for example, the total bandwidth scales
up to 512 Gbps for a 4 stack die with 128 Gbps bandwidth
per die [302]. Therefore, the support for these speeds on-chip
and chip-to-chip in an energy-efficient manner is of utmost
importance. Towards this goal, Mahajan et al. [303], [304]
have proposed a Embedded Multi-Die Interconnect Bridge
(EMIB) to support high die-to-die interconnect bandwidth
within a given package. The key differentiator of EMIB
is the confined interconnect area usage inside the package.
EMIB allows interconnects to be run densely between silicon
endpoints, enabling very high data rates (i.e., aggregated
bandwidth). EMIB uses thin pieces of silicon with multi-
layer Back-End-Of-Line (BEOL) which could be embedded
within a substrate to enable localized dense interconnects.
NF applications benefit from highly efficient interconnects
in supporting both high throughput and short latencies. For
instance, Gonzalez et al. [305] have adapted PCIe links to
flexibly interface the accelerators with the compute nodes
(25 Gb/s) to support NF applications, such as cognitive
computing.
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1) Reconfigurable Interconnect
Existing interconnect designs do not support configurabil-
ity, mainly due to performance issues and design com-
plexities. The compiler complexity increases when translat-
ing programs onto reconfigurable functional units (FUs) on
an underlying static fabric (which imposes constraints on
the placement of inter-communicating FUs). Karunaratne et
al. [232] have proposed HyCUBE, a reconfigurable multi-
hop interconnect, see Fig. 30. HyCUBE is based on a Coarse-
Grained Reconfigurable Array (CGRA), which consists of a
large array of function units (FUs) that are interconnected by
a mesh fabric [233]. An interconnect register based commu-
nication, in place of buffer queues, can provide single cy-
cle communication between distant FUs. HyCUBE achieves
1.5× the performance-per-watt as compared to a standard
NoC and 3× as compared to a static CGRA. The reconfig-
urability of the interconnect in HyCUBE allows application-
based interconnect design between the FUs to be captured
through the compiler and scaled according to the NF applica-
tion needs.

One way to improve the reconfigurable computing effi-
ciency of FPGAs is to effectively manage the data flow
between the FUs on the FPGAs. Jain et al. [234] have
proposed a low-overhead interconnect design to improve the
data movement efficiency. The design reduces overheads by
re-balancing the FU placement based on Data Flow Graph
(DFG) strategies. Also, the design exploits interconnect flex-
ibility (i.e., programmability) to effectively counter the data
move inefficiencies, e.g., by funneling data flows through
linearized processing layers, i.e., in a single direction, either
horizontal or vertical, with a minimum number of hops.
The proposed design has been applied to develop a DSP
compute acceleration methodology, namely a DSP-based ef-
ficient Compute Overlay (DeCO). DeCO evaluations indicate
up to 96% reduced Look Up Table (LUT) requirements as
compared to standard DSP based FPGA implementation,
which translates to reduced interconnect usage between FUs.
Most NF applications that involve data processing, such as
traffic analysis, event prediction, and routing path computa-
tion, would require DSP operations. Therefore, DSP function
acceleration is an important aspect of NF application deploy-
ment.

Yazdanshenas et al. [235] have studied the impact of
interconnect technologies in the case of virtualization of
FPGAs in data centers. NF applications in cloud-native de-
ployments use FPGAs in virtualized environments, therefore
understanding the relative interconnect performances helps
in designing virtualized NF deployments on FPGA based
computing nodes with desired interconnect features. Typical
challenges in the virtualization of FPGAs are the inher-
ent FPGA features, such as board-specific characteristics,
system-level integration differences, and I/O timing, which
should be abstracted and hidden from the applications. To-
wards this end, a shell based approach abstracts all the FPGA
component, except the FUs and interconnect fabric, which
results in an easy and common interface for virtualization and

resource allocation to applications. More specifically, a shell
consists of components, such as external memory controller,
PCIe controller, Ethernet, power and subsystem manage-
ment units. Several interconnect technologies, such as soft
(i.e. programmable) NoC and hard (i.e., non-programmable)
NoC, have been considered in the performance evaluation
of shell virtualization in [235]. The evaluations show that
shell based virtualization of the traditional bus-based FPGA
interconnects results in a 24% reduction of the operating
frequency and a 2.78× increase of the wire demand as
well as significant routing congestion. With the soft NoC,
the operating frequency can be increased compared to the
traditional bus-based implementation, but the increased wire
demand and routing congestion remain. However, the hard
NoC system outperforms both the soft NoC and the bus-
based FPGA implementation. The hard NoC is therefore
recommended for data center deployments.

2) 3D On-Chip Interconnect
3D chip design allows for the compact packaging of SoCs to
effectively utilize the available chip area. However, the higher
density of chip components in a SoC comes at the cost of
complex interconnect designs. Through Silicon Vias (TVS)
is an interconnect technology that runs between stacked chip
components. Using TVS technology, Kang et al. [236] have
proposed a new 3D Mesh-of-Tree (MoT) interconnect design
to support the 3D stacking of L2 cache layers in a multi-core
system, see Fig. 31. The 3D MoT switches and interconnects
are designed to be reconfigurable in supporting the power-
gating (i.e., turn off/on voltage supply to the component) of
on-chip components, such as cores, memory blocks, and the
routing switches themselves. The adaptability of 3D MoT
allows the on-chip components (e.g., L2 cache) to be mod-
ulated as the application demands vary with time. The evalu-
ations in [236] demonstrate that the reconfigurable 3D MoT
interconnect design can reduce the energy-delay product by
up to 77%. As with the dynamic nature of traffic arrivals
for the NF processing, the hardware scaling of resources as
the demand scales up and the power gating of components
as demand falls can provide an efficient platform to design
power-efficient NF processing strategies.

3) NoC
As the core count of the traditional computing nodes and
Multiprocessor System on Chips (MPSoCs) increases to ac-
commodate higher computing requirements of the applica-
tions, the interconnects pose a critical limiting path for over-
all performance increases. Typically, the core-to-core com-
munication is established through high-bandwidth single-
and multi-layer bus architecture interconnects. The present
state-of-the-art core-to-core communication involves mesh
architecture-based interconnects. However, for mesh inter-
connects, core-to-core communications have not been specif-
ically designed to support other computing components, such
as memory, cache, and I/O devices (e.g., GPU and FPGA). A
Network-on-Chip (NoC) is able to support both core-to-core
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communications and other computing components through
standard interconnects and switches.

The cost-efficient design of NoC interconnects has been
comprehensively discussed in Coppola et al. [237], where
the programmability has been extended to interconnects in
addition to compute units, resulting in an Interconnect Pro-
gramming Unit (IPU). However, traditional NoCs have static
bandwidth for the interconnects which can cause perfor-
mance bottlenecks. Addressing this issue, Tsai et al. [238]
have proposed a Bi-directional NoC (BiNoC) architecture
which supports dynamically self-reconfigurable bidirectional
channels. The BiNoC architecture involves common in-out
ports fed by data in either direction with a self-loop-path
through the internal crossbars while the input flow is sup-
ported by an input buffer. This BiNoC design allows the
traffic to loop-back within the same switch and port. For a
given workload, the bandwidth utilization over the BiNoC is
typically significantly lower than over a traditional NoC. NF
applications that require high data-rate processing can benefit
from the high data-rate I/O through the compute components
provided by the BiNoC.

Goehringer et al. [239] have proposed an adaptive memory

access design to facilitate data movements between multiple
FPGA compute processors (cores). Typically, memory access
to the system memory is serialized, resulting in increased
memory read and write latencies when many clients try to si-
multaneously access the memory. In the adaptive memory ac-
cess design, the adaptive memory-core manages the resource
allocation to each FPGA core. Each FPGA core (client) is
allocated a priority, whereby the priority of each processor
can be changed dynamically. Additionally, the number of
processors connected to the adaptive memory-core can vary
based on the application demands. The adaptive memory-
core separates the memory into regions that are core-specific
individually accessed by the NoC fabric. Also, the adaptive
memory-core maintains a separate address generator for each
core, thereby allowing multiple FPGA cores to simultane-
ously access memory regions.

4) 3D NoC
Traditional NoCs connect compute nodes on a 2D planar
routing and switching grid, thus limiting the total number
of compute notes that can be supported for a given sur-
face area. A 3D NoC extends the switching network to the
third dimension, thus supporting several 2D planar girds
for a given surface area dimension, increasing the density
of the total number of compute nodes. However, one of
the challenges of the 3D NoC design is the performance
degradation over time due to the aging of circuits primarily
from Bias Temperature Instability (BTI) causing gate-delay
degradation. Furthermore, continued operations of a 3D NoC
with higher gate-delays could result in the failure of the
interconnect fabric. A potential solution to retain the 3D
NoC performance is to increase the voltage; however, an
increased voltage accelerates the circuit aging process. In
addition to an increased voltage, electro-migration (gradual
movement of charged particles due to momentum transfer)
on the 3D Power Delivery Network (PDN) also reduces the
chip lifetime. Raparti et al. [240] have evaluated the aging
process of the interconnect circuit as well as PDN network,
and proposed a run time framework, ARTEMIS, for applica-
tion mapping and voltage-scaling to extend the overall chip
lifetime. Typically, the use of an 3D NoC is asymmetric due
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The ARTEMIS aging-aware runtime application mapping framework for
3D NoC-based chip multiprocessors [240] considers both PDN and voltage
degradations.

to uneven scheduling of computing tasks, leading to uneven
aging of the 3D NoC, as illustrated in Fig. 32. ARTEMIS
enables the application to use 3D NoC symmetrically through
an optimization process, thereby spreading out the aging
process evenly throughout the 3D NoC grid. ARTEMIS
evaluations show that the chip lifetime can be extended by
25% as compared to uneven aging of 3D NoC.

Similar to the uneven aging of circuits and PDN network, a
single transistor failure in a 3D NoC impacts the performance
of the entire chip due to the tight coupling of networks
in a 3D NoC. Therefore, a 3D NoC design should include
resilient features for a large number of transient, intermittent,
and permanent faults in the 3D NoC grid. To this end,
Ahmed et al. [241] have presented a novel routing algorithm
and an adaptive fault-tolerant architecture for multi-core 3D
NoC systems. More specifically, the architecture proposed
by Ahmed et al. [241] implements a Random-Access-Buffer
mechanism to identify the faulty buffers on the switching
network and to isolate them in a routing algorithm that
avoids invalid paths. Though the reliability of the 3D NoC is
improved, the design costs 28% in terms of area and 12.5%
in power overhead.

5) Wireless NoC
A Heterogeneous System Architecture (HSA) allows dif-
ferent computing components, such as CPU, GPU, and
FPGA, to co-exist on the same platform to realize a single
system. These heterogeneous components require heteroge-
neous connectivities. Also, the run-time interconnect require-
ments typically change dynamically with the load. Moreover,
when the distance (number of hops in mesh) between two
heterogeneous components increases, the communication la-

L2 WI

Core

Core

Core

Core

EU

EU

EU EU

EU EU

EU

EU

L2
L2 L2 L2

L2 L2 L2

L2 L2 L2

L3 
0

L3 
1

L3 
2

L3 
3

GPU L3 Crossbar

LLC Crossbar

WI

L3 
0

L3 
1

L3 
2

L3 
3

Main Memory Crossbar

MC 0 MC 1 On Package Memory

(a)
(b)

(c)

(d)

CPU Core+L1
GPU Execution Unit+L1
Cache Node (CPU L2/GPU L3/LLC)
WI Gateway
GPU L2
Cluster for Cache/Memory
Memory Node
Antenna

FIGURE33: Illustration of wireless NoC HyWin [242]: (a) The CPU subsys-
tem with CPU cores (along with their respective L1 caches) is connected to a
BUS interface; the L2 cache is shared between all CPU cores. (b) The GPU
subsystem with shared L2 cache at the center connects multiple execution
units in a star topology; all shared L2 caches are connected through a mesh
topology. The WI gateway at the center initiates the communication between
the blocks. (c) and (d) The required program data are stored in the shared
cache subsystem and main memory subsystem.

tency often increases. Gade at al. [242] have proposed a
Hybrid Wireless NoC (HyWin), as illustrated in Fig. 33,
to address the latency and flexibility of NoC interconnects
for an HSA. The HyWin architecture consists of sandboxed
(i.e., inside a securely isolated environment) heterogeneous
sub-networks, which are connected at a first (underlying)
level through a regular NoC. Processing subsystems are then
interconnected through a second level over millimeter (mm)
wave wireless links. The resource usage of a physical (wired)
link at the underlying level avoids conflicts with the wireless
layer. The wireless link is especially helpful in establishing
long-range low-latency low-energy inter-subsystem connec-
tivity, which can facilitate access to system memory and
lower level caches by the processing subsystems. The CPU-
GPU HSA testbed evaluations in [242] show application
performance gains of 29% and latency reductions to one half
with HyWin as compared to a baseline mesh architecture.
Moreover, HyWin reduces the energy consumption by ap-
proximately 65% and the total area by about 17%. A related
hybrid wireless NoC architecture has been proposed in [243],
while other recent related studies have examined scalabil-
ity [244], low-latency [245], and energy efficiency [246].

Similarly, for planar interconnected circuits (commonly
used for chip-to-chip packaging), Yu et al. [247] have pro-
posed a wide-bandwidth G (millimeter) band interconnect
with minimized insertion loss. The proposed interconnect
design is compatible with standard packaging techniques,
and can be extended to THz frequencies supported by a low
insertion loss of 4.9 dB with a 9.7 GHz frequency and 1 dB
bandwidth. Further advances in millimeter wave NoCs have
recently been reviewed in [248].
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A common pitfall for wireless NoC design is to not con-
sider the wireless errors, as the errors can increase the end-
to-end latency over wireless links, resulting from retransmis-
sions. More specifically, the protocols to correct the trans-
mission errors beyond the forward error corrections require
higher layer flow control, with acknowledgment mode oper-
ations (e.g., Automatic Repeat Request protocols or TCP).
The reporting of errors back to the source and receiving
the retransmissions would increase the overall memory-to-
memory transactions (moves or copies) of data through a
wireless NoC.

6) Software Defined NoC (SD-NoC)
Software Defined Networking (SDN) separates the control
plane from the data plane of routing and forwarding ele-
ments. The control plane is further (logically) centralized
to dynamically evaluate the routing policies [306]. The ex-
tension of the SDN principles to an NoC is referred to as
Software Defined NoC (SD-NoC). Application needs can be
captured by the control plane of the NoC routers, which
then program the data-plane routing policies across the in-
terconnects between the compute components. One of the
bottlenecks in SDN designs is the control plane complexity
when there are many routing elements.

In the case of Chip Multi-Processors (CMP) with several
thousand cores, the SD-NoC design becomes particularly
challenging. Additionally, when the threads running on each
of these cores try to exchange data with each other, the
interconnect usage can saturate, reducing the overall CMP
benefits. Addressing this problem, Scionti et al. [249], [250]
have presented an SD-NoC architecture based on data-driven
Program eXecution Models (PXMs) to reconfigure the inter-
connect while retaining the hard-wired 2D mesh topology.
More specifically, virtual topologies, such as local and global
rings [307], are generated and overlayed on the hard-wired
2D mesh to support changing application demands. This
approach has resulted in power savings of over 70% while
the chip area was reduced by nearly 40%. A related SD-NoC
based on the Integrated Processing NoC System (IPNoCSys)
execution model [308], [309] has been examined in [251].

Generally, the SD-NoC designs are configured to be spe-
cific to an application in use, and cannot be reused across
multiple applications. To overcome this limitation, Sandoval
et al. [252] have proposed an SD-NoC architecture that
enables on-the-fly reconfiguration of the interconnect fabric.
This on-the-fly reconfiguration design can be adapted to
other applications with minimal changes, reducing the non-
recurring engineering cost. The main feature of their archi-
tecture is configurable routing which is achieved through a
two-stage pipeline that can buffer and route in one clock
cycle, and arbitrate and forward in the other cycle. The
controller and switch were designed to support flow-based
routing with flow IDs. Global average delay, throughput,
and configuration time were evaluated for various simple
routing algorithms and a wide range of packet inject rate
patterns. Deterministic/fixed routing between processing el-

ements was shown to perform better than adaptive routing.
Deterministic/fixed routing has a map of the routing path
between every source and destination pair; the routing paths
are programmed into the NoC fabric and remain active for
the entire system life time. In contrast, fully adaptive routing
dynamically adapts the packet routing based on the injection
rates. For high packet inject rates, the path evaluations select
longer and disjoint paths to effectively spread the packets
throughout the fabric so as to accommodate the increasing
traffic; which may not result in a efficient end-to-end path
for packet flow. In both cases, deterministic/fixed routing
and adaptive routing, the on-the-fly reconfiguration enables
the NoC to be programmed, i.e., the fabric logic to change
according to the traffic demands, so that even the determinis-
tic/fixed paths are reconfigured based on need. A distributed
SDN architecture for controlling the reconfigurations in an
efficient scalable manner has been examined in [253].

These advanced reconfigurations of on-chip interconnects
allow NF applications to adapt to varying networking loads
in order to achieve desired processing responses latencies for
arriving packet while employing restrictive resource usage to
save power and improve overall efficiency.

7) Optical Interconnects
Interconnects based on Silicon Photonic (SiPh) technologies
achieve—for the same power consumption—several orders
of magnitude higher throughput than electrical interconnects.
Therefore, optical interconnects are seen as a potential so-
lution for meeting the demands of applications requiring
large data transactions between computing elements [254]–
[256]. SiPh offers solutions for both on-chip and chip-to-chip
interconnects. For instance, Hsu et al. [257] have proposed a
2.6 Tbits/sec on-chip interconnect with Mode-Division Mul-
tiplexing (MDM) with a Pulse-Amplitude Modulation (PAM)
signal. To achieve the speeds of 2.6 Tbits/sec, 14 wavelengths
in three modes supporting 64 Gbps are aggregated with hard
decision forward-error-correction threshold decoding.

Gu et al. [258] have proposed a circuit-switched on-chip
Optical NoC (ONoC) architecture providing an optical inter-
connect grid with reuse of optical resources. As compared
to a traditional NoC, an ONoC does not inherently support
buffers within routers to store and forward; therefore, the
transmissions have to be circuit switched. The ONoC dis-
advantages include high setup-time overhead and contention
for the circuit-switched paths. Gu et al. [258] have proposed a
Multiple Ring-based Optical NoC (MRONoC) design which
uses ring based routing, as well as redundant paths to re-
use the wavelength resources without contentions. (A related
circuit-switched ONoC with a hierarchical structure based
on a Clos-Benes topology has been examined in [259].)
The MRONoC thus enables ultra-low cost, scalable, and
contention-free communication between nodes.

Wavelength Division Multiplexing (WDM) allocates dif-
ferent modulated wavelengths to each communicating node
to reduce the contention. Hence, in general, an ONoC system
based on WDM is limited by the number of wavelengths; the
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wavelength reuse in MRONoC mitigates this limitation. The
simulation evaluations in [258] indicate a 133% improve-
ment of the saturated bandwidth compared to a traditional
mesh ONoC. Related statistical multiplexing strategies for
ONoC channels have been investigated in [260], while NoC
wavelength routing has been studied in [261]. Moreover,
recent studies have explored the thermal characteristics of
ONoCs [262], the interference characteristics in optical wire-
less NoCs [263], and the SDN control for optical intercon-
nects [264].

Further evolutions of integrated photonics and optical in-
terconnects have been applied in quantum computing tech-
nologies. Wang et al. [265] have developed a novel chip-to-
chip Quantum Photonic Interconnect (QPI) which enables
the communication between quantum compute nodes. The
QPI meets the demands of very high speed interconnects
that are beyond the limits of single-wafer and multi-chip
systems offered by state-of-the-art optical interconnects. The
main challenge that is overcome in QPI is to maintain the
same path-entangled states on either chip. To achieve this, a
two-dimensional grating coupler on each chip transports the
path-entangled states between the communicating nodes. The
simulation evaluations show an acceptable stability of the
QPI on quantum systems with a high degree of flexibility. As
NF applications are ready to exploit quantum technologies
capable of very large computations, the research efforts on
interconnects enable platform designers to build heteroge-
neous systems that exploit the benefits of diverse hardware
infrastructures.

8) Summary of Interconnects
In conjunction with computing architecture advancements of
CPUs and I/O devices, whereby both the core numbers and
the processing capacities (operations per second) have been
increasing, the interconnects and interfaces that establish
communication among (and within) I/O devices and CPUs
play an important role in determining the overall platform
performance [310]. Therefore, future interconnect designs
should focus not only on the individual performance of an
interconnect in terms of bandwidth and latency, but also
the flexibility in terms of supporting topologies (e.g., mesh,
star, and bus) and reconfigurability in terms of resource
reservation. 3D interconnects enable vertical stacking of the
on-chip components so as to support high density processing
and memory nodes. However, the high density 3D SoC
components may have relatively higher failure rates as com-
pared to 2D planar designs, due to aging and asymmetric
interconnects usage.

While physical (wired) interconnects exhibit aging prop-
erties, wireless and optical interconnects appears to be a
promising solution against aging. Wireless interconnects
reach across longer distances and are not limited by the
end-to-end metallic and silicon wires between interconnected
components. However, the downsides of wireless intercon-
nects include the design, operation, and management of
wireless transceivers that include decisions on wireless link

parameters, such as carrier frequencies, line-of-sight oper-
ation, and spectrum bandwidth. Similarly, optical intercon-
nects have promising features in terms of supporting high
bandwidth and short latencies using Visible Light Commu-
nications (VLC) and guided optical paths [311]. The design
of optical interconnects is challenging as it requires extreme
precision in terms of transceiver design and placements
which is integrated into SoC components such that there is
a guided light path or line-of-sight operation.

In addition to data path enhancements of the interconnects,
future interconnect designs should address the management
of interconnect resources through dedicated control plane
designs. To this end, Software-Defined Network-on-Chip
(SD-NoC) [253] designs include a dedicated controller. The
dedicated controller could be employed in future research to
reconfigure the NoC fabric in terms of packet (interconnect
data) routing and link resource reservations so as to achieve
multi-interconnect reconfiguration that spans across multiple
segments, e.g., CPU and memory. While such reconfigu-
ration is not supported today, SD-NoC provides a general
framework to enable demand based interconnect resource
allocation between processing (CPUs), memory (DRAM),
and I/O devices (e.g., storage) components. A related future
research direction is to develop Software Defined Wireless
NoC (SD-WNoC), whereby the wireless link properties are
configured based on decisions made by the SDN controller
to meet application requirements and available wireless in-
terconnect resources.

C. MEMORY

1) DRAM

Understanding the latency components of DRAM memory
accesses facilitates the effective design of NF applications to
exploit the locality of data within DRAM system memory
with reduced latency. Chang et al. [266] have comprehen-
sively investigated the DRAM access latency components,
which are: i) activation, ii) precharge, and iii) restoration.
The latency variations across these components are due to
manufacturing irregularities, which result in memory cells
with asymmetric latency within the same DRAM chip. A
shortcoming of the traditional DRAM memory access ap-
proaches is to assume that all memory cells are accessible
with uniform latency. Chang et al. [266] have performed
a quantitative study of DRAM chips to characterize the
access latencies across memory cells, and then to exploit
their relative latency characteristics to meet the application
needs. Interestingly, the memory cells that exhibit longer
latencies also exhibit spatial locality. Thus, the long-latency
memory cells are in some localized memory regions that can
be isolated and demarcated. Based on this insight, Chang et
al. [266] proposed a Flexible-LatencY DRAM (FLY-DRAM)
mechanism that dynamically changes the access to memory
regions based on the application’s latency requirements. The
evaluations in [266] have shown nearly 20% reduction of the
average latencies.
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Utilizing similar techniques to reduce DRAM access la-
tency, Hassan et al. [267] have proposed a DRAM access
strategy based on the memory controller timing changes so
as to achieve latency reductions up to 9%. Conventionally,
DRAM is accessed row by row. After an initial memory
access in a row, other locations in the same memory row can
be accessed faster due to the precharge (applied during the
initial access) than locations in other rows. The ChargeCache
mechanism proposed in [267] tracks the previously accessed
memory addresses in a table. Then, any new address loca-
tions that map to the same row are accessed with tight timing
constraints, resulting in reduced access latencies.

In terms of increasing the DRAM memory density and
performance, 3D package technology allows memory cells
to be stacked in the third dimension and interconnected by
Through Silicon Vias (TSVs). Jeddeloh et al. [180] have pro-
posed such a 3D stacking technology to stack heterogeneous
dies close to each other with numerous interconnects between
stack layers, reducing the latencies due to the short distances
that signals propagate.

Bulk transfers of data blocks are common in data pro-
cessing applications. However, data transfers are generally
implemented through the CPU, whereby, data is first moved
from the DRAM source to the CPU and then moved back
to a new DRAM destination. As a result, the applications
suffer from degraded performance due to i) limited DDR link
capacity (whereby the DDR link connects the DRAM to the
CPU bus), and ii) CPU usage for moving the data. Existing
connectivity wires within a DRAM array can provide a
wide internal DRAM bandwidth for data transfers. However,
these data transfers are not possible out of DRAM arrays.
Overcoming this limitation, Chang et al. [268] have proposed
a Low-cost Inter-Linked SubArrays (LISA) scheme to enable
fast inter-subarray data transfers across large memory ranges.
LISA utilizes the existing internal wires, such as bitlines,
to support data transfers across multiple subarrays with a
minuscule space overhead of 0.8% of DRAM area. Experi-
ments showed that LISA improves the energy efficiency for
memory accesses and reduces the latency of workloads that
involve data movements.

The performance of NF applications depends directly on
the DRAM throughput and latency. The DRAM latency and
throughput are degraded by data-dependent failures, whereby
the data stored in the DRAM memory cells are corrupted due
to the interference, especially when the DRAM has long re-
fresh intervals. The DRAM-internal scramble and remapping
of the system level address space makes it challenging to
characterize the data-dependent failures based on the existing
data and system address space. To address this challenge,
several techniques have been proposed based on the observed
pre-existing data and failures [269], [270]. In addition to
the mapping of data-dependent failures, it is also critical to
dynamically map the failures with respect to the memory
regions with a short time scale (high time resolution) so that
applications as well as the OS and hypervisors can adapt to
the failure characteristics. Hence, to enhance the performance

of NF applications, the memory access reliability should be
improved by minimizing the data-dependent failures.

2) Non-Volatile Memory (NVM)
In contrast to DRAM, the Non-Volatile Memory (NVM)
retains memory values without having to refresh the memory
cells. NVM is traditionally based on NAND technology.
Emerging technologies that offer superior performance of
NVM in terms of read and write speeds, memory density,
area, and cost have been discussed by Chen et al. [271].
Some of the NVM technologies that are being considered
as potential solution to the growing needs of applications,
such as neuromorphic computing and hardware security, in-
clude Phase Change Memory (PCM), Spin-Transfer-Torque
Random Access Memory (STTRAM) [272], Resistive Ran-
dom Access Memory (RRAM), and Ferroelectric Field Ef-
fect Transistor (FeFET). The investigative study of Chen et
al. [271] indicated that a scalable selector of the memory
module is a critical component in the architecture design. The
NVM challenges include high-yield manufacturing, material
and device engineering, as well as the memory allocation op-
timization considering both the NVM technology constraints
and application needs.

As compared to 2D planar NAND technology, 3D Vertical-
NAND (V-NAND) technology supports higher density mem-
ory cells and provides faster read/write access speeds. How-
ever, the challenges of further scaling of V-NAND include
poor Word Line (WL) resistance, poor cell characteristics,
as well as poor WL-WL coupling, which degrades perfor-
mance. Overcoming these challenges, Kang et al. [273] have
proposed a 3rd generation V-NAND technology that supports
256 Gb with 3 b/cell flash memory with 48 stacked WLs.
In particular, Kang et al. [273] have implemented the V-
NAND with reduced number of external components; also,
an external resistor component is replaced by an on-chip
resistor to provide I/O strength uniformity. A temperature
sensing circuit was designed to counter the resistor tem-
perature variation such that resistance characteristics are
maintained relatively constant. Compared to the previous
V-NAND implementation generation, a performance gain
of 40% was observed, with the write throughput reaching
53.3 MB/s and a read throughput of 178 MB/s.

3) Summary of Memory
The NF performance on GPC infrastructures is closely cor-
related with the memory sizes and access speeds (latency).
Therefore, both research and enabling technology develop-
ment (Sec. III-C) efforts have been focused on increasing
memory cell density in a given silicon area, and improving
the access (read and write) speeds of memory cells. Towards
this end, 3D NAND technology improves the memory cell
density through 3D vertical stacking of memory cells as com-
pared to 2D planar linear scaling. The relatively recent NV-
NAND technology defines persistent memory blocks that—
in contrast to DRAM—retain data without a clock refresh
(i.e., without a power supply) [312]. Without a clock refresh,
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the NV-NAND memory cells can be packed more densely
than DRAM, resulting in large (by many folds compared
to regular DRAM) persistent memory blocks. However, the
main downsides of NV-NAND memory components are the
slower read and write access speeds as compared to DRAM.

In addition to the physical aspects of memory, other con-
siderations for memory performance include address trans-
lation, caching, paging, virtualization, and I/O device to
memory accesses. Close examinations of accessing data
from DRAM memory cells have found asymmetric latencies,
whereby the data belonging to the same row of the memory
cells can be accessed faster than rows that have not been
accessed in recent DRAM refresh cycles. These asymmetric
latencies can result in varying (non-deterministic) read and
write latencies for applications with memory-intensive oper-
ations, such as media processing.

The proximity of the DRAM to the CPU determines
the overall computing latency of the applications, therefore,
memory blocks should be integrated in close proximity of the
CPU. For instance, memory blocks can be integrated within
the socket, i.e., on-package, and possibly even on-die. The
tight integration of the DRAM with the CPU impacts the
application performance when there is a inter-die and inter-
socket memory transactions due to Non-Uniform Memory
Access (NUMA) [313]. Illustrating the benefits of integrated
DRAM, Zhang et al. [314] have proposed a method to
integrate memory cells into compute modules (i.e., CPUs
and accelerators) based on phase change memory (PRAM)
modules [315]. PRAM is a memory storage cell type that
can be incorporated in the DRAM, but also directly inside
the accelerators and CPUs. For DRAM-less designs, the
PRAM memory cells are integrated inside the accelerators
and CPUs, resulting in a DRAM-less acceleration framework
that achieves an improvement of 47% as compared to accel-
eration involving DMAs to DRAM [314].

An important memory-related bottleneck that needs to
be addressed in future research is to improve the effective
utilization of system memory when shared by multiple plat-
form components, such as CPUs (inter- and intra-socket) and
I/O devices (e.g., hardware accelerators and storage). More
specifically, the interactions between CPUs, I/O devices, and
system memory (DRAM) are shared by a common memory
controller and system bus (DDR). The DRAM allows a single
path data read and write into memory cells, whereby the
memory requests (from both CPUs and I/O devices) are
buffered and serialized at the memory controller when data
is written to and read from the DRAM. One possible future
research direction is to design a parallel request handler,
which enables concurrent reads and writes with the DRAM
memory cells. The concurrent reads and writes enable mul-
tiple CPUs and I/O devices to simultaneously interact with
the memory cells, improving the overall throughput of the
memory access. A key challenge to overcome with this con-
current memory access approach is to ensure synchronization
when the same memory location is concurrently accessed by
multiple components (i.e., memory accesses collide) and to

avoid data corruption. Colliding memory accesses need to be
arbitrated by serializing the memory accesses in a synchro-
nization module. On the other hand, non-colliding concurrent
memory accesses by multiple components to different mem-
ory locations, i.e., concurrent reads and writes to different
DRAM locations, can improve the memory utilization.

D. ACCELERATORS
1) Data Processing Accelerators
Specialized hardware accelerators can significantly improve
the performance and power efficiency of NFs. Ozdal et
al. [274] have designed and evaluated a hardware accelerator
for graph analytics, which is needed, e.g., for network traf-
fic routing, source tracing for security, distributed resource
allocation and monitoring, peer-to-peer traffic monitoring,
and grid computing. The proposed architecture processes
multiple graph vertices (on the order of tens of vertices)
and edges (on the order of hundreds of edges) in parallel,
whereby partial computing states are maintained for vertices
and edges that depend on time-consuming computations. The
computations for the different vertices and edges are dynam-
ically distributed to computation execution states depending
on the computational demands for the different vertices and
edges. Moreover, the parallel computations for the different
vertices and edges are synchronized through a specialized
synchronization unit for graph analytics. Evaluations indicate
that the developed graph analytics accelerator achieves three
times higher graph analytics performance than a 24 core CPU
while requiring less than one tenth of the energy.

While the accelerator of Ozdal et al. [274] is specifically
designed for graph analytics, a generalized reconfigurable
accelerator FPGA logic referred to as Configurable Cloud
for arbitrary packet NFs as well as data center applications
has been proposed by Caulfield et al. [275], [276]. The
Configurable Cloud structure inserts a layer of reconfig-
urable logic between the network switches and the servers.
This reconfigurable logic layer can flexibly transform data
flows at line rate. For instance, the FPGA layer can encrypt
and decrypt 40 Gb/s data packet flows without loading the
CPU. The FPGA layer can also execute packet operations
for Software-Defined Networking (SDN). Aside from these
packet networking related acceleration functions, the FPGA
layer can accelerate some of the data center processing tasks
that are ordinarily executed by the data center CPUs, such as
higher-order network management functions.

Gray [277] has proposed a parallel processor and accel-
erator array framework called Phalanx. In Phalanx, groups
of processors and accelerators form shared memory clus-
ters. Phalanx is an efficient FPGA implementation of the
RISC-V IS (an open source instruction set RISC processor
design), achieving high throughput and I/O bandwidth. The
clusters are interconnected with a very-high-speed Hoplite
NoC [278]. The Hoplite NoC is a 2D switching fabric that
is reconfigurable (for routing), torus (circular ring), and di-
rectional. Compared to a traditional FPGA routing fabric,
Hoplite provides a better area × delay product. The Phalanx
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FPGA processor design was successfully implemented to
boot with 400 cores, run a display monitor, perform billions
of I/O operations, as well as run AES encryption. Platforms
with large numbers of parallel processors and high intercon-
nect bandwidth can perform both many independent tasks as
well as handle large amounts of inter-thread communications.
Such architectures are uniquely positioned to run NF applica-
tions that operate on a flow basis. Thereby, one or more cores
can be dedicated to process a single packet flow, and scale up
the resources based on dynamic flow requirements.

MapReduce performs two operations on a data set: i) map
one form of data to another, and ii) reduce the data size
(e.g., by hashing) and store the reduced data as key-value
pairs (tuples) in a database. MapReduce typically operates
on large data sets and employs a large number of distributed
computing nodes. Networking applications use MapReduce
for various data analysis functions, such as traffic (packet
and flow statistics) analysis [279] and network data analytics
(e.g., related to users, nodes, as well as cost and efficiency
of end-to-end paths) [280], especially in the centralized
decision making of SDN controllers. Therefore, hardware
acceleration of MapReduce in a platform further enhances
the performance of NF applications that perform network
traffic and data analytics. Towards this goal, Neshatpour
et al. [281] have proposed the implementation of big data
analytics applications in a heterogeneous CPU+FPGA ac-
celerator architecture. Neshatpour et al. have developed the
full implementation of the HW+SW mappers on the Zynq
FPGA platform. The performance characterization with re-
spect to core processing requirements for small cores (e.g.,
Intel® Atom) and big cores (e.g., Intel® i7) interacting with
hardware accelerators that implement MapReduce has been
quantified. In case of small cores, both SW and HW accel-
erations are required to achieve high benchmarking scores;
while in case of big cores, HW acceleration alone yields
improved energy efficiency.

2) Deep-Learning Accelerator
Neural Networks (NNs) have been widely used in applica-
tions that need to learn inference from existing data, and
predict an event of interest based on the learned inference. NF
applications that use NNs for their evaluations include traffic
analysis NFs, such as classification, forecasting, anomaly
detection, and Quality-of-Service (QoS) estimation [282].
Generally, NN computations require large memory and very
high computing power to obtain results in a short time-frame.
To this end, Zhang et al. [283] have proposed a novel accel-
erator, Cambricon-X, which exploits the sparsity and irregu-
larity of NN models to achieve increased compute efficiency.
Cambricon-X implements a Buffer Controller (BC) module
to manage the data in terms of indexing and assembling to
feed into Processing Elements (PE) that compute the NN
functions. With sparse connections, Cambricon-X achieves
544 Giga Operations Per second (GOP/s), which is 7.2×
the throughput of the state-of-the-art DianNao implementa-
tion [284], while Cambricon-X is 6.4× more energy efficient.
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FIGURE34: Overview of Configurable Spatial Accelerator (CSA) for sup-
porting CPUs with large data graph computations as required for NF
applications related to deep learning, data analytics, and database man-
agement [286]: Highly energy-efficient data-flow processing elements (for
integer and fused multiply-add (FMA) operations) with independent buffers
are interconnected by multiple layers of switches.

Deep learning and NN based applications require large
numbers of parallel compute nodes to run their inference and
prediction models. To meet this demand, massive numbers of
high performance CPUs, custom accelerator GPUs and FP-
GAs, as well as dedicated accelerators, such as Cambricon-
X [283] have been utilized by the software models. However,
a critical component that limits the scaling of computing is
memory in terms of both the number of I/O transactions
and the capacity. The I/O bound transactions that originate
collectively from the large number of threads running on
numerous cores in CPUs, GPUs, and FPGAs use a Message
Passing Interface (MPI) for inter-thread communications. In
some cases, such as large-scale combinatorial optimization
applications, each thread needs to communicate with every
other thread, resulting in a mesh connection that overloads
the MPI infrastructure. Mahdi et al. [285] have proposed
a dedicated hardware accelerator to overcome the memory
I/O and capacity bottlenecks that arise with the scaling of
computing resources. In particular, a hardware accelerator
is designed based on the Resistive Random Access Mem-
ory (RRAM) technology [316] to support the compute and
memory requirements of large-scale combinatorial optimiza-
tions and deep learning applications based on Boltzmann
machines. The RRAM based accelerator is capable of fine-
grained parallel in-memory computations that can achieve
57-fold compute performance improvements and 25-fold en-
ergy savings as compared to traditional multi-core systems.
In comparison to Processing In-Memory (PIM) systems (see
Sec. III-E4), the RRAM based accelerator shows 6.9-fold
and 5.2-fold performance improvement and energy savings,
respectively.

Traditional CISC based IS architecture CPUs are not
optimized to run compute-intensive workloads with mas-
sive data parallelism, e.g., deep learning and data analyt-
ics. Therefore, to supplement the specialized and dedicated
computing infrastructures in the parallel processing of large
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data, hardware offloading based on FPGA and GPU can em-
ployed. However, hardware offloading generally comes with
the following challenges: i) application specific for a given
configuration, ii) memory offloading, and iii) reconfigura-
tion delay. The present reconfigurable hardware components,
such as FPGA and GPU, require a standardized programming
model, synthesis, and configuration of FPGA and GPU; this
hardware reconfiguration does not support short (near run-
time) time scales. As application requirements change much
faster than the typical FPGA and GPU configuration cycles,
a CPU based acceleration could offer faster adaption to
changing needs. The Configurable Spatial Accelerator (CSA)
(CSA) [286] architecture (see Fig. 34) was proposed to
accelerate large parallel computations. The CSA consists of
high density floating point and integer arithmetic logic units
that are interconnected by a switching fabric. The main CSA
advantages are: i) the support of standard compilers, such as
C and C++, which are commonly used for CPUs, and ii)
short reconfiguration times on the order of nanoseconds to
a few microseconds [287]. The CSA can directly augment
existing CPUs, whereby the CSA can use the CPU memory
without having to maintain a separate local memory for
computing as compared to external accelerators. In partic-
ular, the CSA can be adopted as an integrated accelerator
in the form of a CSA die next to the CPU die in the same
socket and package; CSA memory read/write requests will
be forwarded through inter-die interconnects and (intra-CPU
die) 2D mesh to the CPU memory controller. Figure 34
illustrates the architectural CSA components consisting of
a switching network, Integer Processing Elements (Int PEs),
and Fused Multiply-Add (FMA) PEs. A large number of Int
PEs and FMA PEs are interconnected via switches to form
a hardware component that can support compute-intensive
workloads. The CSA adapts quickly to varying traffic de-
mands at fine-grained time-scales so that NF applications can
adapt to changing requirement through hardware acceleration
reconfiguration.

In terms of stress on the interconnects, deep learning and
inference software models implement large numbers of inter-
communicating threads, resulting in significant interconnect
usage. Typically, the thread communication is enabled by a
Message Passing Interface (MPI) provided by the OS kernel.
However, as the numbers of threads and compute nodes
increase, the OS management of the MPI becomes challeng-
ing. Dos et al. [288] have proposed a hardware acceleration
framework for the MPI to assist the CPU with the inter-thread
communications. The MPI hardware acceleration includes
a fuzzy matching of source and destination to enable the
communication links with a probable partial truth rather than
exact (deterministic) connections at all times. Fuzzy based
hardware acceleration for link creation reduces the overhead
on the interconnect with reduced usage of communication
links for both control and actual data message exchanges
between threads. Evaluations of the hardware-accelerated
MPI have shown 1.13 GB in memory (DRAM) savings,
and a matching time improvement of 96% as compared to

GPU

GPU
RAM

CPU

CPU
RAM

NIC

GPU

GPU
RAM

CPU

CPU
RAM

NIC

GPU

GPU
RAM

CPU

CPU
RAM

NIC

Traditional GPUDirect RDMA GPUrdma

(a) (b) (c)
Control Path Data Path

FIGURE35: Evolution of GPU-RDMA techniques [289]: (a) traditional
method of GPU accessing RDMA with assistance from CPU, (b) GPU
accesses RDMA directly from NIC, but CPU still performs the connection
management for the GPU, and (c) GPU interacts with NIC independent of
CPU, thereby reducing the CPU load for GPU RDMA purposes.

a software-based MPI library.

3) GPU-RDMA Accelerator
Remote Direct Memory Access (RDMA) enables system
memory access (i.e., DRAM) on a remote platform, usually
either via the PCIe-based NTB (see Sec. III-F2) or Ethernet-
based network connections. The Infiniband protocol embed-
ded in the NIC defines the RDMA procedures for transferring
data between the platforms. Typically, the CPU interacts
with the NIC to establish end-to-end RDMA connections,
whereby the data transfers are transparent to applications.
That is, the external memory is exposed as a self-memory
of the CPU such that if a GPU wants to access the remote
system memory, the GPU requests the data transfer from
the CPU. This process is inefficient as the CPU is involved
in the data transfer for the GPU. In an effort to reduce the
burden on the CPU, Daoud et al. [289] have proposed a
GPU-side library, GPUrdma, that enables the GPU to directly
interact with the NIC to perform RDMA across the network,
as shown in Fig. 35(c). The GPUrdma implements a Global
address-space Programming Interface (GPI). The GPUrdma
has been evaluated for ping-pong and multi–matrix-vector
product applications in [289]. The evaluations showed 4.5-
fold faster processing as compared to the CPU managing the
remote data for the GPU.

4) Crypto Accelerator
Cryptography functions, such as encryption and decryption,
are computationally intensive processes that require large
amounts of ALU and branching operations on the CPU.
Therefore, cryptography functions cause high CPU utiliza-
tions, especially in platforms with relatively low computing
power. In mobile network infrastructures, such as in-vehicle
networks, the computing power is relatively lower compared
to traditional servers. In-vehicle networks require secure on-
board data transactions between the sensors and computing
notes, whereby this communications is critical due to vehicle
safety concerns. While cryptography is commonly adopted
in platforms with low computing resources, hardware cryp-
tography acceleration is essential. In-vehicle networks also
require near-real-time responses to sensor data, which fur-
ther motivates hardware-based acceleration of cryptography
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functions to meet the throughput and latency need of the
overall system. An in-vehicle network design proposed by
Baldanzi et al. [290] includes a hardware acceleration for
the AES-128/256 data encryption and decryption. The AES
accelerator was implemented on an FPGA and on 45 nm
CMOS technology. The latency of both implementations was
around 15 clock cycles, whereby the throughput of the FPGA
was 1.69 Gbps and the CMOS achieved 5.35 Gbps.

Similarly, Intrusion Detection Systems (IDSs) perform
security operations by monitoring and matching the sensor
data. In case of NF applications, this is applicable to network
traffic monitoring. Denial-of-Service attacks target a system
(network node) with numerous requests so that genuine
requests are denied due to resource unavailability. A CPU-
based software IDS implementation involves i) monitoring of
traffic, and ii) matching the traffic signature for an anomaly,
which is computationally expensive. Aldwairi et.al [291]
have proposed a configurable network processor with string
matching accelerators for IDS implementation. In particu-
lar, the hardware accelerator architecture includes multiple
string-matching accelerators on the network processor to
match different flows. Simulation results showed an overall
performance up to 14 Gbps at run-time wire speed while
supporting reconfiguration.

Although encryption and decryption hardware acceleration
improve the overall CPU utilization, the performance of hard-
ware offload is significant only for large data (packet) sizes.
For small data sizes, the offload cost can outweigh the gains
of hardware accelerations. To address this trade-off, Zhong
et al. [292] have proposed a Self-Adaptive Encryption and
Decryption Architecture (SAED) to balance the asymmetric
hardware offload cost by scheduling the crypto computing
requests between CPU and Intel® Quick Assist Technology®

(a hardware accelerator, see Sec. III-E1). SAED steers the
traffic to processing either by the CPU or the hardware
accelerator based on the packet size. SAED improves the
overall system performance for security application in terms
of both throughput and energy savings, achieving around
80% improvement compared to CPU processing alone, and
around 10% improvement compared to hardware accelerator
processing alone.

5) In-Memory Accelerator
An in-memory accelerator utilizes DRAM memory cells to
implement logical and arithmetic functions, thus entirely
avoiding data movements between the accelerator device
and DRAM (i.e., system memory). The CPU can utilize the
high bandwidth DDR to communicate with the acceleration
function residing at DRAM memory regions. While it is
challenging to design complex arithmetic functions inside the
DRAM, simple logic functions, such as bitwise AND and
OR operations, can be implemented with minimal changes
to existing DRAM designs. Seshadri et al. [293] have pro-
posed a mechanism to perform bulk bitwise operations on
a commodity DRAM using a sense amplifier circuit which is
already present in DRAM chips. In addition, inverters present

in the sense amplifiers can be extended to perform bitwise
NOT operations. These modifications to DRAM require only
minor changes (1% of chip area) to the existing designs.
The simulation evaluations in [293] showed that performance
characteristics are stable, even with these process variations.
In-memory acceleration for bulk bitwise operations showed
32-fold performance improvements and 35-fold energy con-
sumption savings. High Bandwidth Memory (HBM) with 3D
stacking of DRAM memory cells has shown nearly ten-fold
improvements. Bulk bitwise operations are necessary for NF
applications that rely heavily on database functions (search
and lookup). Thus, in-memory acceleration provides a sig-
nificant acceleration potential to meet the latency and energy
savings demands of NFs relying on database functions.

Generally, the DRAM capacity is limited and therefore the
in-memory acceleration capabilities in terms of supporting
large datasets for data-intensive applications fall short in
DRAM. Non-Volatile Memory (NVM) is seen as a poten-
tial extension of existing DRAM memory to support larger
system memory. It is therefore worthwhile to investigate in-
memory acceleration in NVM memory cells. Li et al. [294]
have presented an overview of NVM based in-memory based
acceleration techniques. NVM can support wider function
acceleration, such as logic, arithmetic, associative, vector.
and matrix-vector multiplications, as compared DRAM due
to the increased NVM memory and space availability.

For instance, Li et al. [295] have proposed the Pinatubo
processing-in-memory architecture for bulk bitwise opera-
tions in NVM technologies. Pinatubo reuses the existing
circuitry to implement computations in memory as opposed
to new embedded logic circuits. In addition to bitwise logic
operations between one or two memory rows, Pinatubo also
supports one-step multi-row operations which can be used for
vector processing. As a result, Pinatubo achieves 1.12× over-
all latency reductions and 1.11× energy savings compared to
a conventional CPU for data intensive graph processing and
database applications.

6) Summary of Accelerators
Custom accelerators, such as FPGA and GPU, provide high
degrees of flexibility in terms of programming the function
of the accelerators. In contrast, dedicated accelerators imple-
ment specific sets of functions on the hardware which limits
the flexibility. NFs have diverse sets of function acceleration
requirements, ranging for instance from security algorithm
implementation to packet header lookup, which results in
heterogeneous characteristics in terms of supporting parallel
executions and compute-intensive tasks. Regardless of all the
options available for hardware acceleration, the overall accel-
erator offloading efficiency depends on memory transactions
and tasks scheduling. One possible future research direction
towards increasing accelerator utilization is to compile the
application with “accelerator awareness” such that a given
task can be readily decomposed into subtasks that are specific
to FPGAs, GPUs, and dedicated accelerators. Accelerator-
specific subtasks can be independently scheduled to run on

VOLUME 1, 2020 49



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3008250, IEEE Access

Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for Network Functions

the hardware accelerators to coordinate with the main task
(application) running on the CPU. Future research should de-
velop common task scheduling strategies between hardware
accelerators and CPU, which could improve the utilization of
hardware accelerators but also enable applications to reap the
individual benefits of each accelerator component.

Other open research challenges in the design of accel-
erators include supporting software definable interconnects
and logic blocks [317] with run-time reconfiguration and
dynamic resource allocation. In contrast to an FPGA, a GPU
can switch between threads at run-time and thus can be
instantaneously reconfigured to run different tasks. However,
the GPU requires a memory context change for every thread
scheduling change. To overcome this GPU memory con-
text change requirement, High Bandwidth Memory (HBM)
modules integrated with a GPU can eliminate the memory
transactions overhead during the GPU processing by coping
the entire data required for computing to the GPU’s local
memory. HBM also enables the GPUs to be used as a
remote accelerator over the network [318]–[320]. However,
one limitation of remote accelerator computing is that results
are locally evaluated (e.g., analytics) on a remote node in
a non-encrypted format. The non-encrypted format could
raise security and privacy concerns as most GPU applications
involve database and analytics applications that share the data
with remote execution nodes.

Dedicated accelerators provide an efficient way of accel-
erating NFs in terms of energy consumption and hardware
accelerator processing latency. However, the downsides of
dedicated accelerators include: i) the common task offloading
overheads from CPU, i.e., copying data to accelerator internal
memory and waiting for results through polling or interrupts,
and ii) the management of the accelerators, i.e., sharing
across multiple CPUs, threads, and processes. To eliminate
these overheads, in-memory accelerators have been proposed
to include (embed) the logic operations within the DRAM
memory internals such that a write action to specific memory
cells will result in compute operations on the input data and
results are available to be read instantaneously. While this
approach seems to be efficient for fulfilling the acceleration
requirements of an application, the design of in-memory ac-
celerators that are capable of arithmetic (integer and floating
point) operations is highly challenging [321], [322]. Arith-
metic Logic Units (ALUs) would require large silicon areas
within the DRAM and to include ALUs at microscopic scale
of memory cells is spatially challenging. Another important
future direction is to extend the in-memory acceleration to
3D stacked memory cells [183] supporting HBM-in-memory
acceleration.

E. INFRASTRUCTURE
1) SmartNIC
SmartNICs enable programmability of the NICs to assist
NFs by enabling hardware acceleration in the packet pro-
cessing pipeline. Ni et al. [296] have outlined performance
benefits of SmartNIC acceleration for NF applications. How-
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ever, the accessing and sharing of hardware functions on a
SmartNIC by multiple applications is still challenging due
to software overheads (e.g., resource slicing and virtual-
ization). Yan et al. [297] have proposed a UniSec method
that allows software applications to uniformly access the
hardware-accelerated functions on SmartNICs. More specif-
ically, UniSec provides an unified Application Program-
ming Interface (API) designed to access the high-speed se-
curity functions implemented on the SmartNIC hardware.
The security functions required by NF applications include
for instance Packet Filtering Firewall (PFW) and Intrusion
Detection System (IDS). The implementation of UniSec is
classified into control (e.g., rule and log management) and
data (i.e., packet processing) modules. Data modules parse
packets and match the header to filter packets. UniSec con-
siders stateless, stateful, and payload based security detection
on the packet flows on a hardware Security Function (hSF). A
virtual Security Function (vSF) is generated through Security
Function (SF) libraries, as illustrated in Fig. 36. UniSec
reduces the overall code for hardware re-use by 65%, and
improves the code execution (CPU utilization) by 76% as
compared to a software-only implementation.

Traditionally hardware acceleration of software compo-
nents is enabled through custom accelerators, such as GPUs
and FPGAs. However, in large-scale accelerator deploy-
ments, the CPU and NIC become the bottlenecks due to
increased I/O bound transactions. To reduce the load on
the CPU, SmartNICs can be utilized to process the network
requests to perform acceleration on the hardware (e.g., GPU).
Tor et al. [298] have proposed a SmartNIC architecture,
Lynx, that processes the service requests (instead of the
CPU), and delivers the service requests to accelerators (e.g.,
GPU), thereby reducing the I/O load on the CPU. Figure 37
illustrates the Lynx architecture in comparison to the tradi-
tional approach in which the CPU processes the accelera-
tor service requests. Lynx evaluations conducted by Tor et
al. [298] where GPUs communicate with an external (remote)
database through SmartNICs show 25% system throughput
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increases for a neural network workload as compared to the
traditional CPU service requests to the GPU accelerator.

2) Summary of Infrastructures

Infrastructures consist of NICs, physical links, and network
components to enable platforms to communicate with ex-
ternal compute nodes, such as peer platforms, the cloud,
and edge servers. SmartNICs enhance existing NICs with
hardware accelerators (e.g., FPGAs and cryptography accel-
erators) and general purpose processing components (e.g.,
RISC processors) so that functional tasks related to packet
processing that typically run on CPUs can be offloaded to
SmartNICs. For instance, Li et al. [323] have implemented a
programmable Intrusion Detection System (IDS) and packet
firewall based on an FPGA embedded in the SmartNIC. Be-
locchi et al. [324] have discussed the protocol accelerations
on programmable SmartNICs.

Although state-of-the-art SmartNIC solutions focus on im-
proving application acceleration capabilities, the processing
on the SmartNICs is still coordinated by the CPU. Therefore,
a interesting future research directions is to improve the
independent executions on the SmartNICs with minimized
interactions with the CPU. Independent executions would
allow the SmartNICs to perform execution and respond to
requests from remote nodes without CPU involvement.

F. SUMMARY AND DISCUSSION OF RESEARCH
STUDIES
Research studies on infrastructures and platforms provide
perspectives on how system software and NF applications
should adapt to the changing hardware capabilities. Towards
this end, it is important to critically understand both the
advantages and disadvantages of the recent advances of

hardware capabilities so as to avoid the pitfalls which may
negatively impact the overall NF application performance.

In terms of computing, there is a clear distinction between
CISC and RISC architectures: CISC processors are more
suitable for large-scale computing and capable of supporting
high-performing platforms, such as servers. In contrast, RISC
processors are mainly seen as an auxiliary computing option
to CISC, such as for accelerator components. Therefore, NF
applications should decouple their computing requirements
into CISC-based and RISC-based computing requirements
such that the respective strengths of CISC- and RISC-based
computing can be harnessed in heterogeneous platforms.

As the number of cores increases, the management of
threads that run on different cores becomes more complex.
If not optimally managed, the overheads of operating mul-
tiple cores may subdue the overall benefit achieved from
multiple cores. In addition, extensive inter-thread commu-
nication stresses the core-to-core interconnects, resulting in
communication delay, which in turn decreases the application
performance. Therefore, applications that run on multiple
cores should consider thread management and inter-thread
communication to achieve the best performance.

The power control of platform components is essential to
save power. However, severe power control strategies that
operate on long time-scales can degrade the performance
and induce uncorrectable errors inside the system. There-
fore, power and frequency control strategies should carefully
consider their time-scale of operation so as not to impact
the response times for the NF applications. A long-time-
scale power control would take numerous clock cycles to
recover from low performance states to high performance
states. Conversely, a short-time-scale power control is highly
reactive to the changing requirements of NF applications
(e.g., changing traffic arrivals); however, short time-scales
result in more overheads to evaluate requirements and control
states.

While several existing strategies can increase both on-chip
and chip-to-chip interconnect capabilities, future designs
should reduce the cost and implementation complexity. The
Network-on-Chip (NoC) provides a common platform, but
an NoC increases the latency as the number of components
increases. In contrast, 2D mesh interconnects provide more
disjoint links for the communications between the compo-
nents. Millimeter wireless and optical interconnects provide
high-bandwidth, long-range, and low-latency interconnects,
but the design of embedded wireless and optical transceivers
on-chip increases the chip size and area. A 3D NoC pro-
vides more space due to the vertical stacking of compute
components, but power delivery and heat dissipation become
challenging, which can reduce the chip lifespan.

V. OPEN CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
Building on the survey of the existing hardware-accelerated
platforms and infrastructures for processing softwarized NFs,
this section summarizes the main remaining open challenges
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and outlines future research directions to address these chal-
lenges. Optimizing hardware-accelerated platforms and in-
frastructures, while meeting and exceeding the requirements
of flexibility, scalability, security, cost, power consumption,
and performance, of NF applications poses enormous chal-
lenges. We believe that the following future directions should
be pursued with priority to address the most immediate
challenges of hardware-accelerated platforms and infrastruc-
tures for NF applications. The future designs and methods
for hardware-accelerated platforms and infrastructures can
ultimately improve the performance and efficiency of soft-
warized NF applications.

We first outline overarching grand challenges for the
field of hardware-accelerated platforms and infrastructures,
followed by specific open technical challenges and future
directions for the main survey categories of CPUs, memory,
interconnects, accelerators, and infrastructure. We close this
section with an outlook to accelerations outside of the im-
mediate realm of platforms and infrastructures; specifically,
we briefly note the related fields of accelerations for OSs and
hypervisors as well as orchestration and protocols.

A. OVERARCHING GRAND CHALLENGES
1) Complexity
As the demands for computing increase, two approaches can
be applied to increase the computing resources: i) horizontal
scaling and ii) vertical scaling. In horizontal scaling, the
amount of computing resources are increased, such as in-
creasing the number of cores (in case of multi processors)
and number of platforms. The main challenges associated
with horizontal scaling are the application management that
runs on multiple cores to maintain data coherency (i.e., cache
and memory locality), synchronization issues, as well as the
scheduling of distributed systems in large scale infrastruc-
tures. In vertical scaling, the platform capacities are im-
proved, e.g., with higher core computing capabilities, larger
memory, and acceleration components. The main challenges
of vertical scaling are the power management of the higher
computing capabilities, the management of large memories
while preserving locality (see Sec. IV-C1), and accelerator
scheduling. In summary, when improving the platform and
infrastructure capabilities, the complexity of the overall sys-
tem should still be reasonable.

2) Cost
The cost of platforms and infrastructures should be signif-
icantly lowered in order to facilitate the NF softwarization.
For instance, the 3D stacking of memory within compute pro-
cessors incurs significant fabrication costs, as well as reduced
chip reliability due to mechanical and electrical issues due to
the compact packaging of hardware components [325]. Hard-
ware upgrades generally replace existing hardware partially
or completely with new hardware, incurring significant cost.
Large compute infrastructures also demand high heat sinking
capacities with exhausts and air circulation, increasing the
operational cost. Therefore, future research and design needs

to carefully examine and balance the higher performance-
higher cost trade-offs.

3) Flexibility
Hardware flexibility is essential to support the diverse re-
quirements of NF applications. That is, an accelerator should
support a wide range of requirements and support a function
that is common to multiple NF applications such that a single
hardware accelerator can be reused for different applica-
tions, leading to increased utilization and reduced overall
infrastructure cost. A hybrid interconnect technology that can
flexibly support different technologies, such as optical and
quantum communications, could allow application designers
to abstract and exploit the faster inter-core communications
for meeting the NF application deadlines. For instance, a
common protocol and interface definition for interconnect
resource allocation in a reconfigurable hardware would help
application designers to use Application-Specific Interfaces
(APIs) to interact with the interconnect resource manager for
allocations, modification, and deallocations.

4) Power and Performance
Zhang et al. [326] have extensively evaluated the perfor-
mance of software implementations of switches. Their eval-
uations show that performance is highly variable with appli-
cations (e.g., firewall, DoS), packet processing libraries (e.g.,
DPDK), and OS strategies (e.g., kernel bypass). As a result, a
reasonable latency attribution to the actions of the switching
function in the software cannot be reasonably made for a
collection of multiple scenarios (but is individually possi-
ble). While there exist several function parameter tuning
approaches, such as increasing the descriptor ring (circular
queue) sizes, disabling flow control, and eliminating MAC
learning in the software switches, hardware acceleration pro-
vides better confidence in terms of performance limitations
of any given function.

Software implementations also consume more power as
compared to dedicated hardware implementations due to the
execution on CPUs. Therefore, software implementations of
NF applications are in general more power expensive than
hardware implementations. Nevertheless, it is challenging
to maintain the uniformity in switching and forwarding la-
tency of a software switch (an example of NF application).
Hence a pitfall to avoid is to assume uniform switching and
forwarding latencies of software switches when serving NF
applications with strict deadline requirements.

On the other hand, hardware implementations generally do
not perform well if offloading is mismanaged, e.g., through
inefficient memory allocation. Also, it is generally inefficient
to offload relatively small tasks whose offloading incurs more
overhead than can be gained from the offloading.

B. CPU AND COMPUTING ARCHITECTURE
1) Hardware based Polling
As the number of accelerator devices increases on a platform,
individually managing hardware resources becomes cumber-
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some to the OS as well as the application. In particular, the
software overheads in the OS kernel and hypervisor (except
for pass-through) increase with the task offloading to increas-
ing numbers of accelerator devices; moreover, increasing
amounts of CPU resources are needed for hardware resource
and power management. One of the software overheads
is attributed to polling based task offloading. With polling
based task offloading, the CPU continuously monitors the
accelerator status for task completion, which wastes many
CPU cycles for idle polling (i.e., polling that fetches a no
task completion result). Also, as the number of applications
that interact with the accelerator devices increases, there is
an enormous burden on the CPU. A solution to this prob-
lem would be to embed a hardware-based polling logic in
the CPU such that the ALU and opcode pipelines are not
used by the hardware polling logic. Although this hardware
polling logic solution would achieve short latencies due to
the presence of the hardware logic inside CPU, a significant
amount of interconnect fabric would still be used up for the
polling.

2) CPU based Hardware Acceleration Manager
The current state-of-the-art management techniques for ac-
celerating an NF application through utilization of a hard-
ware resource (component) involve the following steps: the
OS has to be aware of the hardware component, a driver has
to initialize and manage the hardware component, and the
application has to interact with user-space libraries to sched-
ule tasks on the hardware component. A major downside to
this management approach is that there are multiple levels of
abstraction and hardware management. An optimized way is
to enable applications to directly call an instruction set (IS)
to forward requests to the hardware accelerator component.
Although, this optimization exists today (e.g., MOVDIR and
ENQCMD ISs from Intel [327]), the hardware management
is still managed by the OS, whereby only the task submis-
sion is performed directly through the CPU IS. A future
enhancement to the task submission would be to allow the
CPU to completely manage the hardware resources. That
is, an acceleration manager component in the CPU could
keep track of the hardware resources, their allocations to NF
applications, and the task management on behalf of the OS
and hypervisors. Such a CPU based management approach
would also help the CPU to switch between execution on the
hardware accelerator or on the CPU according to a compre-
hensive evaluation to optimize NF application performance.

3) Thermal Balancing
In the present computing architectures, the spatial charac-
teristics of the chip and package (e.g., the socket) are not
considered in the heterogeneous scheduling (see Sec. IV-A5)
of processes and tasks. As a result, on a platform with an
on-chip integrated accelerator (i.e., accelerator connected to
CPU switching fabric, e.g., 2D mesh), a blind scheduling of
tasks to accelerators can lead to a thermal imbalance on the
chip. For instance, if the core always selects an accelerator

in its closest proximity, then the core and accelerator will be
susceptible to the same thermal characteristics. A potential
future solution is to consider the spatial characteristics of the
usage of CPUs and accelerators in the heterogeneous task
scheduling. A pitfall is to avoid the selection of accelerators
and CPUs that create lot of cross-fabric traffic. Therefore, the
spatial balancing of the on-chip thermal characteristics has
to be traded off with the fabric utilization while performing
CPU and accelerator task scheduling.

4) API based Resource Control
Although there exists frequency control technologies and
strategies (see Sec. III-A4), the resource allocation is typi-
cally determined by the OS. For instance, the DVFS tech-
nique to control the voltage and CPU clock is in response
to chip characteristics (e.g., temperature) and application
load. However, there are no common software Application
Programming Interfaces (APIs) for user space applications to
request resources based on changing requirements. A future
API design could create a framework for NF applications to
meet strict deadlines. A pitfall to avoid in API based resource
control is to ensure isolation between applications. This
application isolation can be achieved through fixed maximum
limits on allocated resources and categorizing applications
with respect to different (priority) classes of services along
with a best effort (lowest priority) service class.

C. INTERCONNECTS
1) Cross-Chip Interconnect Reconfiguration
In accelerator offload designs, the path between CPU and
accelerator device for task offloading and data transfer may
cross several interconnects (see Sec. III-B). The multiple seg-
ments of interconnects may involve both on-chip switching
fabrics and chip-to-chip interconnects of variable capacities.
For instance, an accelerator I/O interacting with a CPU
can encompass the following interconnects: i) accelerator
on-chip switching fabric, ii) core-to-core interconnect (e.g.,
2D mesh), iii) CPU to memory interconnect (i.e., DDR).
In addition to interconnects, the processing nodes, such as
CPU and memory controllers, are also shared resources that
are shared by other system components and applications. A
critical open challenge is to ensure a dedicated interconnect
service to NF applications across various interconnects and
processing elements. One of the potential future solutions is
to centrally control the resources in software-defined manner.
Such a software-defined central interconnect control requires
monitoring and allocation of interconnect resources and as-
sumes that interconnect technologies support reconfigurabil-
ity. However, a pitfall to avoid would be a large control
overhead for managing the interconnect resources.

D. MEMORY
1) Heterogeneous Non-Uniform Memory Access (NUMA)
Sieber et al. [328] have presented several strategies applied
to cache, memory access, core utilization, and I/O devices
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to overcome the hardware level limitations of the NFV
performance. The main challenge that has been stressed is
to ensure the performance guarantees of a softwarized NF.
Specific to NUMA node strategies, there can be I/O devices
in addition to memory components that can be connected to
CPU nodes. The cross node traffic accessed by I/O devices
can significantly impact the overall performance. That is, a
NIC connected to CPU1 (socket 1), trying to interact with
the cores of CPU2 (socket 2) would have lower effective
throughput as compared to a NIC that is connected to CPU1
and communicates with the CPU1 cores. Therefore, not
only the I/O device interrupts need to be balanced among
the available cores to distribute the processing load across
available cores, but balancing has to be specific to the CPU
that the NIC has been connected into. An important future
research direction is to design hardware enhancements that
can reduce the impact of NUMA, whereby a common fabric
extends to connect with CPUs, memory, and I/O devices.

2) In-Memory Networking
Processing In-Memory (PIM) has enabled applications to
compute simple operations, such as bit-wise computations
(e.g., AND, OR, XOR), inside the memory component,
without moving data between CPU and memory. However,
current PIM technologies are limited by their computing
capabilities as there is no support for ALUs and floating point
processors in-memory. While there are hardware limitations
in terms of size (area) and latency of memory access if a
memory module is implemented with complex logic circuits,
many applications (see Sec. IV-D5) are currently considering
to offload bit-wise operations, which are a small portion
of complex functions, such as data analytics. On the other
hand, most NF packet processing applications, e.g., header
lookup, table match to find port id, and hash lookup, are bit-
wise dominant operations; nevertheless, packet processing
application are not generally considered as in-memory ap-
plications as they involve I/O dominant operations. That is,
in a typical packet processing application scenario, packets
are in transit from one port to another port in a physical
network switch, which inhibits in-memory acceleration since
the data is in transit. Potential applications for packet based
in-memory computing could be virtual switches and routers.
In virtual switches and routers, the packets are moved from
one memory location to another memory location which is an
in-memory operation. Hence, exploring in-memory acceler-
ation for virtual switches and routers is an interesting future
research direction.

E. ACCELERATORS
1) Common Accelerator Context
As the demands for computing and acceleration grow, plat-
forms are expected to include more accelerators. For exam-
ple, a CPU socket (see Sec. III-B1) can have four integrated
acceleration devices (of the same type), balancing the design
such that an accelerator can be embedded on each socket
quadrant, interfacing directly with CPU interconnect fabric.

On a typical four-socket system, there are then a total of
16 acceleration devices of the same type (e.g., QAT®). In
terms of the PCIe devices, a physical device function can
be further split into many virtual functions of similar types.
All of these developments attribute to a large number of
accelerator devices of the same type on a given platform. A
future accelerator resource allocation management approach
with a low impact on existing implementation methods could
share the accelerator context among all other devices once an
application has registered with one of these accelerator func-
tions (whereby an accelerator function corresponds to either
a physical or virtual accelerator device). A shared context
would allow the application to submit an offload request to
any accelerator function. A pitfall to avoid is to consider the
security concerns of the application and accelerator due to the
shared context either through hardware enhancements, such
as the Trusted Execution Environment (TEE) or Software
Guard eXtensions (SGX) [329].

As hardware accelerators are more widely adopted for ac-
celerating softwarized NFs, the platforms will likely contain
many heterogeneous accelerator devices, e.g., GPU, FPGA,
and QAT® (see Secs. III-D and III-E). In large deployments
of platforms and infrastructures, such as data centers, the
workload across multiple platforms often fluctuates. Pro-
vided there is sufficient bandwidth and low latency con-
nectivity between platforms with high and low accelerator
resource utilization, there can be inter-platform accelerator
sharing through a network link. This provides a framework
for multi-platform accelerator sharing, whereby the accel-
erators are seen as a pool of resources with latency cost
associated with each accelerator in the pool. A software
defined acceleration resource allocation and management can
facilitate the balancing of loads between higher and lower
utilization platforms while still meeting application demands.

2) Context based Resource Allocation
In terms of the software execution flow, an NF application
which intends to communicate with an accelerator device for
task offloading is required to register with the accelerator,
upon which a context is given to the application. A “context”
is a data-structure that consists of an acknowledgment to
the acceleration request with accelerator information, such as
accelerator specific parameters, policies, and supported capa-
bilities. An open challenge to overcome in future accelerator
design and usage is to allocate the system resources based on
context. Device virtualization techniques, such as Scalable
I/O virtualization (SIOV) [175], outline the principles for I/O
device resource allocation, but do not extend such capabilities
to system-wide resource allocation. When an application
registers with the accelerator device, the accelerator device
can make further requests to system components, such as
the CPU (for cache allocation) and memory controller (for
memory I/O allocation), on behalf of application. To note, ap-
plications are typically not provided with information about
the accelerators and system-wide utilization for security con-
cerns, and therefore cannot directly make reservation re-
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quests based on utilization factors. Therefore, the accelerator
device (i.e., driver) has to anchor the reservation requests
made by the application, to coordinate with the accelerator
device, CPU, and other components (such as interconnects
and memory) to confirm back to the application with the
accepted class of service levels. The NF application makes
request to the accelerator during registration and the accepted
class of service will be provided in the “context” message
returned to the NF application.

F. INFRASTRUCTURE

1) SmartNIC Offline Processing Without CPU

Traditional systems process packets in two modes (see
Sec. II-F1): i) polling mode, such as DPDK Poll Mode Driver
(PMD), and ii) interrupt mode. Most of the widely adopted
strategies for network performance enhancement focus on
improving the network throughput by: i) batching of packets
in the NIC during each batch-period before notifying the
poller, and ii) deferring the interrupt generation for a batch-
period by the NIC (e.g., New API [NAPI] of Linux).

The basic trade-offs between state-of-art based interrupts
and polling methods are: i) Polling wastes CPU cycle re-
sources when there are no packets arriving at the NIC; how-
ever, when a packet arrives, the CPU is ready to process the
packet almost instantaneously. The polling method achieves
low latency and high throughput. However, the polling by the
application/network-driver is agnostic to the traffic class, as
the driver has no context of what type of traffic and whose
traffic is arriving over the link (in the upstream direction) to
the NIC. ii) Interrupts create overhead at the CPU through
context switches, thereby reducing the overall system effi-
ciency, especially for high-throughout scenarios. Although,
there exist packet steering and flow steering strategies, such
as Receive Side Scaling (RSS) at the NIC, interrupt genera-
tion results in significant overheads for heavy network traffic.
To note, either through polling-alone or interrupts-alone, or
through hybrid approaches: The common approach of the
NICs keeping the CPUs alive for delay tolerant traffic im-
poses an enormous burden on the overall power consumption
for servers and clients [330]. Thus, future SmartNICs should
recognize the packets of delay-tolerant traffic, and decide not
to disturb the CPUs for those specific packet arrivals while
allowing the CPU to reside in sleep states, if the CPU is
already in sleep states. The packets can directly be written to
memory for offline processing. Extending this concept, future
SmartNICs should be empowered with more responsibilities
of higher network protocol layers (transport and above),
such that the CPUs intervention is minimal in the packet
processing. A pitfall to consider in the design is to ensure the
security of offline packet processing by the SmartNIC such
that the CPU is not distracted (or disrupted) by the SmartNIC
and memory I/O operations, as most security features on
the platform are coordinated by the CPU to enable isolation
between the processes and threads.

G. NF ACCELERATION BEYOND PLATFORMS AND
INFRASTRUCTURES
1) Operating Systems and Hypervisors
The Operating System (OS) manages the hardware resources
for multiple applications with the goal to share the plat-
form and infrastructure hardware resources and to improve
their utilization. The OS components, e.g., kernel, process
scheduler, memory manager, and I/O device drivers, them-
selves consume computing resources while managing the
platform and infrastructure hardware resources for the NF
applications. For instance, moving packet data from a NIC
I/O device to application memory requires the OS to handle
the transactions (e.g., kernel copies) on behalf of the appli-
cations. While the OS management of the packet transaction
provides isolation from operations of other applications, this
OS management results in an overhead when application
throughput and hardware utilization is considered [331].
Therefore, several software optimizations, such as zero copy
and kernel bypass, as well as hardware acceleration strate-
gies, such as in-line processing [189], have been developed
to reduce the OS overhead.

Similarly for hypervisors, the overhead of virtualization
severely impacts the performance. Virtualization technolo-
gies, such as single root and scalable I/O Virtualization
(IOV) [84], [175], mitigate the virtualization latency and
processing overhead by directly allocating fixed hardware de-
vice resources to applications and VMs. That is, applications
and VMs are able to directly interact with the I/O device—
without OS or hypervisor intervention—for data transactions
between the I/O device (e.g., NIC) and system memory of
the virtualized entity (e.g., VM). In addition to the data,
the interrupt and error management in terms of delivering
external I/O device interrupts and errors to VMs through the
hypervisors (VMM) should be optimized to achieve short
application response times (interrupt processing and error
recovery latencies) for an event from the external I/O devices.
For instance, external interrupts that are delivered by the I/O
devices are typically processed by the hypervisor, and then
delivered to VMs as software based message interrupts. This
technique generates several transitions from the VM to the
hypervisor (known as VM exits) to process the interrupts.
Therefore, the mechanism to process the interrupts to the VM
significantly impacts the performance of applications running
on a VM.

A comprehensive up-to-date survey of both the software
strategies and hardware technologies to accelerate the func-
tions of the OS and hypervisors supporting NF applications
would be a worthwhile future addition to the NF performance
literature.

2) Orchestration and Protocols
Typically, applications running on top of the OS are sched-
uled in a best-effort manner on the platform and infrastruc-
ture resources, with static or dynamic priority classes. How-
ever, NF applications are susceptible to interference (e.g.,
cache and memory I/O interference) from other applications
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running on the same OS and platform hardware. Applica-
tions can interfere even when software optimizations and
hardware acceleration are employed, as these optimization
and acceleration resources are shared among applications.
Therefore, platform resource management technologies, such
as the Resource Director Technology (RDT) [332], enable the
OS and hypervisors to assign fixed platform resources, such
as cache and memory I/O, for applications to prevent inter-
ference. Moreover, the availability of heterogeneous compute
nodes, such as FPGAs, GPUs, and accelerators, in addition
to CPUs results in complex orchestration of resources to
NF applications. OneAPI [333] is an enabling technology
in which applications can use a common library and APIs
to utilize the hardware resources based on the application
needs. Another technology enabling efficient orchestration
is Enhanced Platform Awareness (EPA) [334], [335]. EPA
exposes the platform features, such as supported hardware
accelerations along with memory, storage, computing, and
networking capabilities. The orchestrator can then choose
to run a specific workload on a platform that meets the
requirements.

In general, an orchestrator can be viewed as a logically
centralized entity for decision making, and orchestration is
the process of delivering control information to the platforms.
As in the case of the logically centralized control decisions
in Software Defined Networking (SDN) [28], protocol op-
erations (e.g., NF application protocols, such as HTTP and
REST, as well as higher layer protocol operations, such as
firewalls [336], IPSec, and TCP) can be optimized through
dynamic reconfigurations. The orchestration functions can
be accelerated in hardware through i) compute offloading of
workloads, and ii) reconfiguration processes that monitor and
apply the actions on other nodes. Contrary to the centralized
decision making in orchestration, decentralized operations
of protocols, such as TCP (between source and destination),
OSPF, and BGP, coordinate the optimization processes which
requires additional computations on the platforms to improve
the data forwarding. Thus, hardware acceleration can benefit
the protocol function acceleration in multiple ways, including
computation offloading and parameter optimizations (e.g.,
buffer sizes) for improved performance.

In addition to orchestration, there are plenty of protocol-
specific software optimizations, such as Quick UDP In-
ternet Connections (QUIC) [337], and hardware accelera-
tions [338], [339] that should be covered in a future survey
focused specifically on the acceleration of orchestration and
protocols.

VI. CONCLUSIONS
This article has provided a comprehensive up-to-date survey
of hardware-accelerated platforms and infrastructures for
enhancing the execution performance of softwarized network
functions (NFs). This survey has covered both enabling tech-
nologies that have been developed in the form of commercial
products (mainly by commercial organizations) as well as
research studies that have mainly been conducted by aca-

demically oriented institutions to gain fundamental under-
standing. We have categorized the survey of the enabling
technologies and research studies according to the main
categories CPU (or computing architecture), interconnects,
memory, hardware accelerators, and infrastructure.

Overall, our survey has found that the field of hardware-
accelerated platforms and infrastructures has been domi-
nated by the commercial development of enabling tech-
nology products, while academic research on hardware-
accelerated platforms and infrastructures has been conducted
by relatively few research groups. This overall commercially-
dominated landscape of the hardware-accelerated platforms
and infrastructures field may be due to the relatively high
threshold of entry. Research on platforms and infrastruc-
tures often requires an expensive laboratory or research
environment with extensive engineering staff support. We
believe that closer interactions between technology devel-
opment by commercial organizations and research by aca-
demic institutions would benefit the future advances in this
field. We believe that one potential avenue for fostering
such collaborations and for lowering the threshold of entry
into this field could be open-source hardware designs. For
instance, programmable switching hardware, e.g., in the form
of SmartNICs and custom FPGAs, could allow for open-
source hardware designs for NF acceleration. Such open-
source based hardware designs could form the foundation for
a marketplace of open-source designs and public repositories
that promote the distribution of NF acceleration designs
among researchers as well as users and service providers to
reduce the costs of conducting original research as well as
technology development and deployment. Recent projects,
such as RISC-V, already provide open-source advanced hard-
ware designs for processors and I/O devices. Such open-
source hardware designs could be developed into an open-
source research and technology development framework that
enables academic research labs with limited budgets to con-
ducted meaningful original research on hardware-accelerated
platforms and infrastructures for NFs. Broadening the re-
search and development base can aid in accelerating the
progress towards hardware designs that improve the flexibil-
ity in terms of supporting integrated dedicated acceleration
computation (on-chip), while achieving high efficiency in
terms of performance and cost.

Despite the extensive existing enabling technologies and
research studies in the area of hardware-accelerated plat-
forms and infrastructures, there is a wide range of open chal-
lenges that should be addressed in future developments of re-
fined enabling technologies as well as future research studies.
The open challenges range from hardware based polling in
the CPUs and CPU based hardware acceleration management
to open challenges in reconfigurable cross-chip interconnects
as well as improved heterogeneous memory access. More-
over, future technology development and research efforts
should improve the accelerator operation through creating
a common context for accelerator devices and allocating
accelerator resources based on the context. We hope that the

56 VOLUME 1, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3008250, IEEE Access

Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for Network Functions

thorough survey of current hardware-accelerated platforms
and infrastructures that we have provided in this article will
be helpful in informing future technology development and
research efforts. Based on our survey, we believe that near-
to-mid term future development and research should address
the key open challenges that we have outlined in Section V.

More broadly, we hope that our survey article will inform
future designs of OS and hypervisor mechanisms as well as
future designs of orchestration and protocol mechanisms. As
outlined in Section V-G, these mechanisms should optimally
exploit the capabilities of the hardware-accelerated platforms
and infrastructures, which can only be achieved based on
a thorough understanding of the state-of-the-art hardware-
accelerated platforms and infrastructures for NFs.

Moreover, we believe that it is important to understand
the state-of-the-art hardware-accelerated platforms and in-
frastructures for NFs as a basis for designing NF applications
with awareness of the platform and infrastructure capabil-
ities. Such an awareness can help to efficiently utilize the
platform and infrastructure capabilities so as to enhance the
NF application performance on a given platform and infras-
tructure. For instance, CPU instructions, such as MOVDIR
and ENQCMD [327], enable applications to submit acceler-
ation tasks directly to hardware accelerators, eliminating the
software management (abstraction) overhead and latency.
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