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Abstract: This paper presents a framework for studying design thinking. Three paradigmatic 

approaches are described to measure design cognitive processes: design cognition, design 

physiology and design neurocognition. Specific tools and methods serve each paradigmatic 

approach. Design cognition is explored through protocol analysis, black-box experiments or 

surveys and interviews. Design physiology is measured with eye-tracking, electrodermal 

activity (EDA), heart rate and emotion tracking. Design neurocognition is measured using EEG, 

fNIRS and fMRI. Illustrative examples are presented to describe the types of results each 

method provides about characteristics of design thinking, such as design patterns, design 

reasoning, design creativity, design collaboration, the co-evolution of the problem solution 

space, or design analysis and evaluation. The triangulation of results from the three 

paradigmatic approaches to studying design thinking provides a synergistic foundation for the 

understanding of design cognitive processes. Results from such studies generate a source of 

feedback to designers, design educators and researchers in design science. New models, new 

tools and new research questions emerge from the integrated approach proposed and lay down 

future challenges in studying design thinking.  
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1 Introduction 

In the past 50 years, design protocol studies shaped the characteristics of design cognition 

research. Eastman’s seminal work on cognitive design processes (Eastman, 1969; 1970) paved 

the way for numerous protocol studies on design cognition (Hay et al. 2017a, 2017b; Jiang & 

Yen, 2009). The protocol analysis methodology aims to study design cognition by analyzing 

verbal utterances of participants during a set experiment (Ericsson & Simon, 1984; Van 

Someren et al., 1994) or in situ. Recent studies focused on designers’ physiological signals such 

as eye-movements, electrodermal activity (EDA that corresponds to the activation of sweat 

glands in the skin) or heart rate variability (HRV that is the variation in the interval between 

two heart beats) while performing a design task (Sun et al., 2014; Leinikka et al., 2016; Yu and 

Gero, 2018). Techniques from neuroscience to analyze brain behavior during design thinking 

processes offer ways to better understand human behavior while designing (Alexiou et al., 2009; 

Shealy et al., 2018). The interest in using new methods from other research field provides 

opportunities to better understand designers’ cognitive processes while designing.  

The aim of this paper is to provide a framework for the study of the minds, the bodies, and 

brains of designers while designing and to highlight new tools, new models and new research 

questions that emerge from such a framework. The framework is illustrated by relevant research 

studies, rather than an exhaustive literature review, in order to depict the potential of using the 

methods integrated within the framework. Other publications synthesize the large body of 

methods and results on advances in studying design through physiology and neurocognition. 

See Balters & Steinert (2017) on monitoring emotion with neurophysiological tools; Seitamaa-

Hakkarainen et al. (2016) and Borgianni & Maccioni (2020) on neuroscience and design, and 

Pidgeon et al. (2016) on neuroimaging and design creativity. Our aim encapsulates a descriptive 

framework to better understand the connection between the study of the minds, bodies and 

brains of designers while designing and to highlight new research challenges that will shape 

future work in design research. 

We consider design thinking as the cognitive activity carried out by designers while they are 

designing. We categorize the research methods into three paradigmatic approaches for 

measuring design thinking activity through measuring design cognition (designers’ minds while 

designing), design physiology (designers’ bodies while designing) and design neurocognition 

(designers’ brains while designing). We will see that each paradigmatic approach provides 

different tools to measure distinct characteristics of the design thinking activity. The underlying 
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aim of design physiology and design neurocognition is to inform design cognition by measuring 

some aspect of a designer’s physiology and neurophysiology while designing. 

1.1 Design thinking 
The richness and complexity of design tasks lead to a wide range of enquiries on how designers 

think while designing (Cross, 2007). Design is often considered as a problem-solving activity 

(Alexander, 1964; Simon, 1969) with the constraint that design problems, compared to other 

types of problems, contain a set of variables that are partly unknown. Called ill-defined (Simon, 

1973) or wicked (Rittel & Webber, 1973), design problems evolve along a temporal scale 

through the overall design activity development. Framing design problems is a prerequisite to 

proposing a design solution that will fit design requirements (Akin & Akin, 1996). The 

formulation of a design solution gives feedback to designers (Schön, 1992), that guides them 

in reframing the design situation in order to advance in their design process. Thus, design is 

considered to unfold through a co-evolution of the design problem and solution spaces (Dorst 

& Cross, 2001; Maher & Poon, 1996). Design thinking calls for a variety of reasoning 

mechanisms. In a recent paper, Kannengiesser & Gero (2019) proposed a design thinking 

framework adapting Kahneman’s concept of thinking fast and slow (Kahneman, 2011). With 

experience, designers learn to “think faster” and will propose design solutions in an effortless 

and intuitive way. Fast design thinking becomes a short-cut compared to a longer, reasoned 

design approach. Multiple factors such as design expertise, education domain, as well as design 

tools used can affect design thinking patterns (Yu & Gero, 2016). Design is a situated activity 

at a social level, implying that it is situated regarding the design context or the materials of the 

design situation, and at a personal level, meaning that it is situated in relation to a designer’s 

past experiences. Those two levels of situatedness involves a large range of cognitive processes 

mobilized to tackle design problems. 

1.2 Studying cognitive processes during design thinking 
The foundational goal of design research is to gain a better understanding of designing in order 

to improve the design process, to produce tools for designers, to improve design pedagogy, and 

consequentially to improve the outcome of designing. Design cognition studies bring direct 

(protocol analysis) and indirect (surveys, interviews and black-box experiments) measurements 

of designers’ cognitive behaviors while designing. Design physiology and design 

neurocognition studies provide information on designers’ physiological behaviors (from 

measuring eye-movements, EDA, and HRV) and brain behaviors (from non-invasive brain 

measurement techniques) that can be correlated with cognitive activities. Results from design 
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studies provide feedback to designers and design educators on their practices, while doing 

design and teaching design. With a clearer comprehension of design thinking, we can develop 

design tools to assist designers in their tasks (Gero, 1990), pedagogic tools to support a better 

design learning process, and research tools to improve the efficiency and effectiveness of design 

research.  

The combination of those three paradigmatic approaches, design cognition, design physiology 

and design neurocognition creates empirically-based knowledge that deepens our 

understanding of design thinking. The focus remains to study designers’ cognitive activity 

which is described by the cognitive processes involved while design thinking. Design cognition 

studies provide a measurement of designers’ cognitive behaviors. Information on design 

physiology and design neurocognition provides an objective, indirect measure of design 

cognition and offers a synthetic approach to understanding human behavior while designing. 

Research in design cognition is the most mature of three approaches as it started 50 years ago 

(Eastman, 1969; 1970). Research into design physiology and design neurocognition is 

increasing due to more accessible tools and more readily available software to analyze 

physiological and neurological data. The correlation between findings in design cognition, 

design physiology and design neurocognition is a major goal for future design thinking research 

and provides the foundations for the development of new models, new tools and new research 

questions in design thinking, all of which contribute to the understanding of design thinking.  

1.3 Outline 
In this paper, we present a framework, illustrated by examples, for how we can measure 

characteristics of design thinking with measures from the three paradigmatic approaches of 

design cognition, design physiology and design neurocognition. To elucidate how tools from 

each approach provide measurements of design thinking, we base our presentations on a non-

exhaustive set of illustrative research studies. Through the illustrative body of research work 

we present, some characteristics of design thinking will be explored: design reasoning, 

processes and patterns; design fixation; design creativity; visual reasoning in design; the co-

evolution of design spaces and design collaboration. In the next section, we discuss different 

approaches to studying design thinking with black-box experiments or protocol analysis. In the 

third section, we explore what we can measure with design physiology while the fourth section 

focuses on what we can measure with design neurocognition. Section 5 synthesizes results from 

the previous sections to draw an overview of methods and tools available to study design 

thinking and the type of results they provide. We also explore the correlation and post-
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processing of results from each paradigmatic approach. In the sixth section, we describe what 

feedback those results give to designers, educators and researchers, present the potential of new 

models and tools that can be derived from results, and highlight the emergence of new research 

questions.  

2 What can we measure with design cognition? 

Design cognition is the most developed of the three paradigmatic measurement approaches. 

Design cognition aims at measuring design reasoning, processes and patterns; divergent and 

convergent thinking; design fixation; design creativity; visual reasoning in design; design space 

co-evolution and design collaboration with design cognition tools, amongst others. Coley et al., 

(2007) points out several popular methods can be exploited to study design thinking in terms 

of cognitive behavior such as the think-aloud method within protocol analysis, observation of 

sketching behavior, ethnography, and diary methods, to which we can add black-box 

experiments, retrospective interviews (Dorta et al., 2018) and surveys (Blizzard et al., 2015; 

Coleman et al., 2019). We can regroup these methods into three categories: social sciences 

methods; black box experiments and protocol analysis as illustrated in Figure 1. In the rest of 

the paper, we present our framework in the form of a diagram, to allow for its easy 

comprehension. 

 

Figure 1 Design cognition tools 

Social sciences methods are not considered further in the description of our framework. Black 

box experiments focus on the outcomes of the design processes whereas protocol analysis aims 

at investigating cognitive actions during the design process. In the following, we will illustrate 

different methods to study design thinking based on cognitive science techniques through a set 
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of illustrative examples to highlight to what end each methodology can be exploited. The results 

from those studies, although interesting, are not our main focus.  

2.1 Black box experiments : measuring the outcome of designing 
In black box experiments, multiple conditions are set to carry out a design task. One condition 

is the control and the other conditions are the experiment. The outcome of the design task is 

measured for each condition. A comparative analysis can provide results on the effect of each 

experiment condition on the design outcome, from which a cognitive behavior can be inferred. 

For example, Purcell et al. (1993) focused on the design fixation effect during a design task for 

two different groups. The control group was given a written design brief, while the experiment 

group was given the same design brief with an illustrative example to show the level of detail 

expected in the design. The example in the illustration happened to be a possible solution. The 

fixation effect was measured by determining the similar details between design solutions 

proposed by designers and the illustrative example and comparing these details with those 

produced by the control group who had not seen the illustrative example. 

2.2 Protocol analysis: measuring cognitive behavior 
Protocol analysis, eliciting information from verbal utterances, is a common method to study 

design reasoning, processes and patterns (Ericsson & Simon, 1984; Van Someren et al. 1994). 

Used with different design frameworks, it provides a measurement of one or more designers’ 

cognitive behaviors. The development of a coding scheme to encode the protocols can be based 

on the data itself (grounded theory) or on a model defined a priori. Ericsson & Simon (1984) 

suggest running a pilot study in order to develop coding categories. A significant number of 

models and coding schemes have been exploited and developed to describe design cognitive 

processes (Hay et al., 2017a; 2017b). For design thinking studies a very small number of 

common coding schemes should be adopted (Gero, 2010). Although mapping between coding 

schemes are sometimes possible, results from protocol analysis using different design thinking 

frameworks are often not commensurable, and as a consequence the results from different 

experiments cannot compared nor can the results from different experimenters, thus reducing 

their value. The richness of frameworks exploited to describe design processes is also a limit, 

and the use of a common framework and coding scheme is necessary in order to compare studies 

to others and provide a more synthetic description of design thinking. 

In the following, we will reference research studies using different design frameworks but 

mainly examples based on protocols analyzed with the Function Behavior Structure ontology 

(Gero, 1990; Gero & Kannengiesser, 2004). The FBS ontology was chosen given the coverage 
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it has in terms of usage to study designing in different domains : architecture (Pauwel et 

al.s2015), engineering (Hamraz & Clarkson, 2015; Masclet & Boujut, 2010), software design 

(Hofmeister et al., 2007) and systems design, where over 10,000 hours of designing in industry 

have been coded (Bott & Mesmer, 2019). The two papers that outline the FBS ontology (Gero, 

1990; Gero & Kannengiesser, 2004) have received over 3,500 citations between them (Google 

Scholar, accessed 15 January 2020). Multiple approaches to protocol analysis using a first order 

coding (the most common form of coding), a second order-coding (two families of codes are 

used for a protocol), or linkography are described in the next sections. Combining protocol 

analysis coding results with statistical tools such as Markov models and correspondence 

analysis provides ways to produce an understanding of design reasoning, design creativity and 

the co-evolution of the design space. 

2.2.1 First order coding 
The protocol analysis method consists of analyzing verbal data generated by a single designer 

while designing (think-aloud or retrospective verbal transcripts) or a team of designers 

(conversational verbal transcripts) (Jiang & Yen, 2009) to determine cognitive actions while 

designing. Transcripts are then segmented and associated with a category from the defined 

coding scheme. Protocol analysis and FBS coding are used to represent the distribution of 

specific design issues and processes and their occurrence over time. Typical data generated by 

this analysis is each code’s quantitative distributions over time, Figure 2, and distribution of 

design processes for several sessions, Figure 3. 

 

Figure 2 Example of moving average of cognitive design effort spent on design issues over time (Neramballi et al, 2019) 
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Figure 3 Percentage distributions of FBS design processes for 10 codesign protocols and for 9 architectural critiques 

(Milovanovic & Gero, 2020) 

Using protocol analysis and the FBS ontology, Kannengiesser & Gero (2019) explore the use 

of design thinking systems depending on the designers’ expertise. Design thinking 

demonstrates use of the dual process theory of thinking, elaborated in  Kahneman’s System 1, 

or thinking fast and System 2 or thinking slow (Kahneman, 2011). “Designing fast” means 

designing in an intuitive, seamless way, that is associated with routine design, whereas 

“designing slow” implies that the designer goes through  number of reasoning processes to 

tackle a design problem. Kannengiesser & Gero (2019) show that all student and professional 

designers across a number of protocol analysis studies exhibit both System 1 and System 2 

thinking. 

Other studies focus on design reasoning, or design collaboration with a first order code. For 

example, Wolmarans (2016) explored design reasoning with protocol analysis in terms of 

semantic gravity (navigation between abstraction and concretization in design thinking) and 

semantic density (level of integration of design disciplines in design thinking). Dong et al. 

(2016) questioned the concept of generative sensing while designing as a form of abductive 

reasoning. Design team thinking is the focus of Valkenburg & Dorst’s (1998) analysis that 

studies design framing in a collaborative environment. They based their analysis on three codes 

taken from Schön’s (1983) model of reflective practice (naming, moving and reflecting) to 

explore collective framing. Their approach provides a qualitative representation of design 

actions across time, Figure 4. 
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Figure 4 Example of a qualitative representation of cognitive states of design reflective practice of a design protocol coded 

with a first-order code (Valkenburg & Dorst, 1998) 

2.2.2 Second order coding 
A second order coding adds another layer of coding to the original coded protocols that provides 

the possibility to study designers at other levels such as interacting with the others in co-design 

situations (Gero & Milovanovic, 2019; Milovanovic & Gero, 2018) or to integrate another 

coding scheme to assess team communication to supplement the study of design thinking 

processes (Darses et al., 2001; Dorta et al., 2011; Stempfle & Badke-Schaub, 2002). Second 

order coding provides opportunities to both quantitatively and qualitatively explore the 

movement of a team’s focus on either the content of the design task (solution generation, 

analysis, evaluation, etc) or on the collaborative processes (planning, decision, control, etc) 

(Stempfle & Badke-Schaub, 2002), Figure 5. 

 

Figure 5 Analysis of a design protocol with a second order coding scheme : k = content and t=processes (Stempfle & Badke-

Schaub, 2002) 
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Problem decomposition and recomposition is a common feature of many design processes. A 

second-order code that suits its analysis is the system–sub-system level (Gero & Mc Neill, 1998; 

Gero & Song, 2017). The defined levels are the system level, where designers focus on working 

on the design problem as a whole, the interaction level, where designers tackle interactions 

between design sub-systems, and the sub-systems level, where designers deal with detailing 

design sub-systems. Problem decomposition and recomposition are defined by a change of level, 

from the system level to the sub-system level for the decomposition process and inversely for 

the recomposition process. In their study, Gero & Song (2017) found differences in the 

cognitive effort expended by designers in decomposing and recomposing design problems 

depending on their expertise (freshmen, seniors and professionals).  

Another example  of second order coding is in the study of design creativity using an augmented 

FBS coding scheme, adding a “new” and “surprising” code to the FBS coding scheme (Gero & 

Kan, 2016). The study explored the occurrences of new and surprising design issues to model 

a temporal trend of design creativity. The same augmented code was applied in (Gero et al., 

2019) to study the effect of an engineering design capstone course on high school students’ 

abilities to design creatively. The aim of adding a second order code to the original code is to 

provide a more granular analysis of the design activity, in this case to examine the creativity 

dimension of the design activity, Figure 6.  

 

Figure 6 Cumulative distribution of FBS new design issues (Gero & Kan, 2016) 

A second order code has been used to investigate the co-evolution of the design space (Jiang et 

al., 2014; Milovanovic & Gero, 2018). 

2.2.3 Meta-level codes to generalize design thinking characteristics 
Existing coding schemes can be used to generate a meta-level understanding by grouping codes 

into higher level categories. The use of a meta-level coding scheme provides a more general 
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analysis of a design activity. The notion of co-evolution of the problem/solution space is a 

general concept defining the design activity (Dorst & Cross, 2001; Maher & Poon, 1996) and 

can be studied by grouping FBS design issues into design problem related issues and design 

solution related issues (Jiang et al., 2014; Milovanovic & Gero, 2018). Requirement (R), 

function (F) and expected behavior (Be) are part of the design problem space whereas structure 

(S) and behavior from structure (Bs) are within the design solution space. By grouping FBS 

codes into two meta-codes (problem and solution issues), we obtain a general time-based 

representation of the design activity expressing the cognitive focus of the activity. 

Collaboration can also be studied by a meta-level coding scheme as exploited in Dorta et al’s. 

(2011) analysis that assesses patterns of co-ideation in design protocols. In their framework, 

seven types of design conversation are part of their coding scheme: referencing, naming, 

constraining, proposing, explaining, questioning and decision making. The association of 

several of those verbal actions forms two types of co-design process, collaborative conversation 

and collaborative ideation as illustrated in Figure 7. 

 

Figure 7 Identification of patterns of design collaboration based on a meta-level coding scheme analysis (Dorta et al., 2011) 

2.2.4 Data analysis: various ways to exploit coded protocols 
Information given by the coded protocols can be further analyzed using tools such as 

linkography, Markov modelling and correspondence analysis. Linkography analyzes semantic 
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relationships between design segments (also called moves) (Goldschmidt, 1990; 2014). Most 

probable design process transitions (Kan & Gero, 2010), reasoning (Gero & Peng, 2009) or 

speaker transitions can be assessed with Markov models. Correspondence analysis highlights 

relationships between categories of protocols, such as design processes and participants or 

design processes and representation media. 

Linkography to explore design reasoning structure 

Linkography (Goldschmidt, 1990; 2014) aims at studying the relationships between design 

segments (moves), which are actions or steps, in the design process, and is based on design 

protocols. A linkograph represents the reasoning structure during a design session, Figure 8. It 

includes on a horizontal axis where the design segments are placed in chronological order. Two 

types of links are distinguished: forelinks, links going from one idea to another by moving 

forward in time, and backlinks, links going from one idea to another by moving back in time. 

A link is both forelink and backlink, depending on the reference move.  

The Link Index is the number of links divided by the number of moves connected by these links. 

The higher the Link Index, the denser the number of links is compared to the number of moves. 

Critical Moves are moves with a high number of links and, according to Goldschmidt (1990; 

2014), account for the structure of the design activity. Results from the linkograph can be 

exploited in multiple ways to inform about the design activity, such as design entropy (Kan & 

Gero, 2008; 2017). 

 

Figure 8 Example of a linkograph of a design critique (Goldschmidt, Hochman, & Dafni, 2010) 
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Markov models to explore patterns in the design activity 

Transitions between design issues can be modelled with a 1st order Markov model, that 

expresses the probability of transitioning from one state to the another. Markov models 

normalize data and lose magnitude effects since they are based on percentage occurrences. The 

interest in using 1st order Markov models is to reveal design patterns in the  datasets collected 

from empirical data (Kan & Gero, 2017; Milovanovic & Gero, 2018; Yu & Gero, 2016) or 

participants’ design patterns in the case of a team design (Gero et al., 2014), Figure 9. Using a 

similar tool, Stempfle & Badke-Schaub (2002) explored transitions of team mental focus, either 

on content (solution generation, analysis, evaluation, etc) or the collaborative processes 

engaged (planning, decision, control, etc), Figure 10. 

 

Figure 9 Transition diagram of design communication, showing probability of the next person being communicated with 

after an idea is expressed by one person (Gero et al, 2014) 

 

Figure 10 Transition diagram of team’s mental focus showing the probability of switching the focus between content and 

process (Stempfle & Badke-Schaub, 2002) 
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Correspondence analysis to highlight relative relationships between features of the design 

activity 

Correspondence analysis is a dimensional reduction method that concludes by representing on 

a two-dimensional graph, relative relationship between categories of the design activity. In the 

example in Figure 11, participants’ interactions and FBS design processes are presented relative 

to each other (Milovanovic & Gero, 2019). Three types of participant interactions are examined 

based on their gender: male to male (M>M), female to male (F>M) and male to female (M>F). 

Based on the correspondence analysis results, we can infer qualitative differences between 

designers’ type of interactions, based on their teammate’s gender related to design processes. 

 

Figure 11 Correspondence analysis of speakers’ interactions and design processes (Milovanovic & Gero, 2019) 

The ensemble of methods presented above illustrates the richness of the cognitive approach to 

studying design thinking. A limit of these methods is the time and resources needed for a full 

analysis. This generally inhibits large scale studies. This issue could be addressed by using 

other, more direct measurement methodologies, such as design physiology and design 

neurocognition, to measure designers’ cognitive activity while designing.  

3 What can we measure with design physiology? 

The measurement of design physiology includes several signals that can be accessed from eye-

tracking, electrodermal activity (EDA), electrocardiogram (ECG) and emotion tracking (facial 

feature recognition), Figure 12. Physiology sensors are able to capture humans’ emotion 
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reactivity in a design context (Balters & Steinert, 2017) and is a relevant feature to analyze in 

order to deepen our understanding of design cognition. Here again, we introduce a set of 

illustrative studies to highlight how techniques and tools to measure physiological markers can 

provide information about design cognition processes. 

 

Figure 12 Design physiology tools  

3.1 Eye movement: measuring design reasoning, comprehension and analysis 
Eye-tracking devices and software capture eye-movement and pupil dilation and provide an 

analysis of gaze points, fixation, saccades and tracking presented as heat maps, fixation 

sequences and areas of interest in different settings, Figure 13. Eye-tracking can be screen-

based, mobile see-through glasses or in Virtual Reality. In design, eye-tracking has been used 

to analyze design reasoning (Yu & Gero, 2018), creativity (Sun et al., 2014) and design analysis 

(Matthiesen et al., 2013; Self, 2019). 

 

Figure 13 Example of gaze tracking (left) and heat map (right) (Self, 2019) 
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Studying eye-movement gives insight into visual reasoning during a design task. Yu & Gero 

(2018) looked at correlations between physiological and cognitive measurements of a design 

session in architecture. In this case study, architects used a parametric modeler to work on a 

high-rise building. The study shows that designers tend to focus more on facades than edges or 

corners of their design.  

Eye-movement patterns can also be mapped onto creative moments. Sun et al. (2014) in an 

experiment showed a correlation between creative segments and eye-movements while 

sketching. A creative segment is defined by the expression of an idea that offers a new goal, a 

new function or a new structure and followed by the documentation of that idea through 

sketches. During creative segments, designers have specific eye movement characteristics: the 

fixations are longer and the pupils’ diameters dilate. A longer fixation on the sketches being 

drawn accounts for more effort on the perception of that new idea.  

Matthiesen et al. (2013) used eye-tracking to explore designer’s functional analysis of a drilling 

machine in four different representation types: on screen section, 3D model manipulation, paper 

section and a physical prototype. To study how designers analyze the functionality of an object, 

fixations on area of interests are monitored as well as scan paths and heat maps.  

Self (2019) looked at the impact of domain expertise on design communication with sketches, 

divided into four groups: idea sketch, study sketch, usability sketch and memory sketch. 

Industrial designers, engineers and managers were presented with four sketches, one of each 

type. Eye-tracking was monitored in order to study points of interest for each group of experts. 

Fixation duration was captured to study attention and pupil dilation was analyzed to study 

cognitive load and comprehension. The study showed that industrial designers responded better 

to representations’ ambiguity compared to engineers and managers. They had an increased 

comprehension and a reduced challenge in understanding idea sketch and study sketch. The 

domain of expertise was found to be implicated in the capacity to comprehend sketches and 

interpret their meaning.  

3.2 EDA : measuring learning in design and engagement in design tasks 
EDA (Electrodermal Activity) and GSR (Galvanic Skin Response) provide a measure of 

emotional arousal (joy, fear, stress), cognitive processing and attention (Dawson et al., 2012). 

EDA occurs through the activation of sweat glands in the skin. The palmar and plantar surfaces 

are activated by behavioral triggers more than other parts of body’s thermoregulation. Therefore, 

variations in EDA measures in those areas suggest different cognitive states: emotional, arousal, 

information processing and/or attentional.  
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EDA accounts for a strong emotion but the correlation with its valence (quality of emotion, 

positive or negative) is unclear. In their study, Villanueva et al., (2018) looked at engineering 

students’ emotions in different learning situations (passive and active learning) and workshop 

topics (problem statement, generation of ideas, selection of design solutions, prototyping, 

presenting design solution). This study showed an increase in EDA for active and collaborative 

learning compared to passive learning. EDA’s measurements were coupled with an emotion 

self-report to qualify the type of emotions felt by students during each workshop to explore the 

correlation between EDA and emotional valence.  

3.3 Heart Rate Variability with ECG : measuring mental stress and design creativity 
The cardiovascular system can be affected by psychological factors such as stress (Berntson et 

al., 2012). ECG (Electrocardiography) provides measures of electrical potential differences 

between two electrodes over time. A heart contraction is triggered by the depolarization 

(electrical impulse) of the sinoatrial (SA) node and the atrioventricular (AV) node. Those 

signals are recorded in the electrocardiogram that represents one cardiac cycle.  

Heart rate variability (HRV) is a measure of variations in the interval between two heart beats 

and can be connected to mental stress (Nguyen & Zeng, 2014). HRV can be analyzed with 

different methods such as time domain methods and frequency domain methods (Berntson et 

al., 2012; Malik et al., 1996). Domain frequency methods provide an evaluation of the HRV 

spectrum over a time period. The spectrum is classified in different bands such as Low 

Frequency (LF) and High Frequency (HF), that provide a measure of the LF/HF ratio that can 

be used to analyze mental stress (Leinikka et al., 2016; Nguyen & Zeng, 2014).  

Nguyen & Zeng (2012) postulate that design creativity can be  correlated with mental stress in 

the shape of an inverse U curve. Mental stress in design can be caused by the recursive nature 

of the design process and the uncertainty and unpredictability of the design outcome. According 

to those authors, too low or too high mental stress caused by the design task, does not support 

creativity or performance. In their study, Nguyen & Zeng (2014) analyzed designers’ mental 

stress, measured with HRV during an open-ended design problem such as designing a house 

than can fly. For the design task, designers used a graphic tablet that was recorded as well as 

the scene. The recorded drawings and annotations served as a basis to segment the video-

recorder protocols based on changes in the designer’s actions. Each segment is associated with 

HRV measured with the LF/HF ratio and are then clustered in three levels of mental stress, 

from low to high, Figure 14. From the study, it was found that over time, the mental stress did 

not differ significantly and that designers spend less time in high mental stress than in low and 
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medium mental stress. Depending on the expertise and background knowledge of each 

designers, they show different patterns of mental stress.  

 

Figure 14 Cluster of stress levels of designers during design tasks based on LF/HF ratio (Nguyen & Zeng, 2014) 

Leinikka et al. (2016) carried out a study to analyze HRV in three different task situations: 

copying, designing and improvising, and with two different mediums of expression, drawing 

and modeling with clay. The study showed that the Low Frequency / High Frequency HRV 

ratio was lower for designing and improvising tasks compared to the copying task, especially 

while drawing. The results from this study support that a larger amount of free cognitive 

capacity was available while designing and improvising. 

3.4 Tracking emotions while designing 
According to Balters & Steinert (2017), the key to understand human behavior is emotions, and 

they should be incorporated into the design process. Affective and emotion design is a 

developing field and aims at integrating a motivation to generate an emotion with the design 

object and at integrating future users’ emotions in the design process (Triberti et al., 2017). 

Monitoring emotions can also be used to better understand designers’ emotions while designing, 

and their potential effect on the design process. Ho & Siu (2012) proposed a model to better 

comprehend different aspects of emotion design, through the definition of two key concepts: 

emotionalized design and emotional design. The first describes the introduction of the 

designer’s emotions into the design process and outcomes, and the second implies that 

designers include in their design a motivation to produce specific emotions on potential users. 

Here we give examples from studies of the designers’ own emotions during designing. 

Studies on emotions often exploit a cognitive linguistic approach to measure emotions, although 

those methods are limited while considering design since emotional aspects of design are hard 

to express in lexical terms (Kim et al., 2012). Real-time monitoring of emotions with psycho-
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physiological methods suits the temporal characteristic of the design activity. As mentioned in 

Section 3.1.2, EDA gives a measure of a strong emotion but does not account for its valence 

(like or dislike feeling). Other techniques use facial coding to measure facial emotional 

expression. The Facial Action Coding System (FACS) developed by Ekman & Friesen (1976) 

is a standardize method to manually code video units with a set of described facial emotions. 

Automatic facial expression analysis has become more reliable and addresses the limits of time-

intensive human coding with FACS. Algorithms such as AFFDEX and FACETS can detect and 

classify facial expressions based on psychological theories and statistical analysis (Stöckli et 

al., 2018). Body postures also informs designers’ emotions as explored by Behoora & Tucker 

(2015). In their study, they tested several machine learning algorithms to detect eight different 

postures that relate to design team interactions. The relevance of this approach is to correlate 

design team interactions, designers’ emotions and team performance.  

Emotion processing and cognitive processing are known to be related although more research 

is needed to infer which particular types of cognitive processes influence particular channels of 

emotions (Kim, 2011; Ochsner & Gross, 2005). Therefore, studying emotions while designing 

with automatic facial expression analysis promises to increase our understanding of design 

processes. The Imotion software (https://imotions.com/) integrates multiple biosensors such as 

eye-tracking, EDA, EEG and facial expression analysis modules that can be recorded 

simultaneously. Emotion changes across time can be measured with the AFFDEX module in 

the Imotion software as illustrated in Figure 15 (Abdellahi, unpublished),.  

 

Figure 15 Example of emotion automatic recognition with the AFFDEX module with Imotion (Abdellahi, unpublished) 

4 What can we measure with design neurocognition? 

Design neurocognition studies aim at exploring connections between cognitive processes and 

brain activity. Three tools provide data on brain activity (Seitamaa-Hakkarainen, et al., 2016; 
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Shealy & Hu, 2017), Figure 16. Electroencephalography (EEG) measures the electrical activity 

of the brain with electrodes placed on the surface of the scalp. EEG detects neural  activity and 

communication via the identification of electrical current (neural connections) that represents 

brain activity. The temporal resolution of EEG is high but its spatial resolution is low since it 

is difficult to separate the electrical activity when sensors are close to each other (surface or 

deeper in the brain) (Grohs et al., 2017). However, recently dense-electroencephalography with 

256 electrodes has been developed (EGI, 2020), Functional magnetic resonance imaging (fMRI) 

measures brain activity by detecting the blood oxygen level–dependent (BOLD) changes 

connected to neuronal activity, with the assumption that when an area of the brain is used the 

blood flow increases in that part of the brain. Compared to EEG, fMRI’s temporal resolution is 

low but its spatial resolution is very high in all three dimensions. Functional near infrared 

spectroscopy (fNIRS) measures the blood oxygenation level-dependent (BOLD) changes by 

analyzing light reflected from the brain when an infra-red beam of light is shone into the brain. 

The light that reflects back to the sensor is due to a higher presence of blood oxygen in parts of 

the brain that are activated. The spatial resolution of fNIRS is low compared to fMRI and its 

temporal resolution is higher than fMRI but considerably lower than EEG. 

 

Figure 16  Design neurocognition 

Brodmann’s areas define specific locations of the brain that are associated with a variety of 

cognitive functions (Brodmann, 1909/2006). In general, the frontal lobe is connected to 

planning, judgement, decision making, concentration, emotion, and motor skills. Goel (2014) 

argues that distinct design cognitive processes relate to two distinct brain areas activation (left 
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and right prefrontal cortex) and that the interactions between both is specific to design cognitive 

processes (Goel & Grafman, 2000). 

Design is a complex, high order cognitive activity that relates to multiple cognitive processes 

such as visual processing and reasoning, decision making, emotions, and problem solving, 

amongst others. Moreover, design is situated and context related. Therefore, a wide range of 

brain areas can be activated during a design activity. Defining if brain activation patterns and 

cognitive patterns are associated is central to research in design cognition, and methods in 

cognitive neuroscience can provide new measurements to enhance theories in design cognition 

(Shealy & Hu, 2017) and support methods for design education (Grohs et al., 2017). 

4.1 EEG: measuring changes in brain behavior for different design tasks and expertise 
The EEG method to record brain activity suits design thinking studies because of its high 

temporal resolution and usability, due to the availability of wireless headsets that allow free 

movement. Experiments studying design with EEG measurements can integrate sketching 

(Nguyen & Zeng, 2010; Vieira et al., 2019b) and modelling tasks (Kruk et al., 2014; Seitamaa-

Hakkarainen et al., 2016) which is not currently possible with fMRI monitoring (Alexiou et al., 

2009).  

Results from early EEG studies of designers are generally consistent with cognitive findings in 

design thinking research such as differences between problem-solving and open-ended design 

tasks (Vieira et al., 2019a), domain related divergences (Vieira et al., 2019b), the effect of 

expertise in problem-solving (Göker, 1997) and drawing (Belkofer et al., 2014), and design 

reasoning defined by a sequence of design moves (Nguyen et al., 2015; 2019; Nguyen & Zeng, 

2010).  

EEG data is transformed in order to obtain different measures such as the transformed power 

of the sensor measurement (PoW) (Vieira et al., 2019a; Vieira et al., 2019b) calculated for each 

electrodes, the Task Related Power or TRP (Vieira et al., 2019a; Vieira et al., 2019b) that 

highlights differences in power between a rest or registration state and a specific task or Power 

Spectral Density of brain waves (Liu et al., 2016; Nguyen & Zeng, 2010). Each of the primary 

four component brain wave frequencies: alpha, beta, delta, theta and gamma are associated with 

cognitive states. Using a principal component analysis (PCA), Liu et al. (2016) explored the 

correlation between brain waves and design activities. According to this study, design activity 

correlates with beta band  (20-30 Hz) and gamma band (30-50 Hz) of designers’ brain electrical 

activity.  
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Brodmann areas are connected to cognitive processes, therefore, mapping Brodmann areas with 

brain activation during design informs us about cognitive design processes (Vieira et al., 2019b). 

In their study, Vieira et al. (2019a), also explore differences in brain activation of mechanical 

engineers for two different tasks: problem solving and designing. The brain areas activated 

differ depending on the task and also on the time during the task. The division of each session 

in deciles provides a temporal analysis of design neurocognition of mechanical engineers. The 

changes in brain area activation across time for the open-ended design task are shown in Figure 

17.    
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Figure 17 Variation in task PoW across time for mechanical engineers. The labels around the circle are the channel labels 

from a standard distribution of sensors, reflected around the centre of the brain producing two hemispheres.  (Vieira et 

al., 2019b) 

Nguyen & Zeng (2010) studied the correlation between power spectral density of brain waves 

and design segments related to the design activity of problem analysis, solution generation, 

solution evaluation, solution expression (drawing / writing). They developed a measure called 

transient microstate percentage that relates to the perceived hardness of design problems and 

that deciphers moments during the design session that are associated with different activities 

(Nguyen, Nguyen, Zeng, 2015).  

 

4.2 fNIRS: measuring changes in brain behavior for different concept generation 
techniques 

fNIRS techniques allows designers to perform design tasks while mobile. This makes the 

method more suitable to study design thinking than fMRI when mobility is involved, while 

being able to monitor the activity with a higher spatial resolution than EEG. fNIRS 

measurement involves a much less expensive device than fMRI. Design neurocognition studies 

using fNIRS explored concept generation using three different idea generation methods (Shealy 

& Gero, 2019; Shealy et al., 2018) and analyzed differences in design cognition based on 

expertise (Shealy et al., 2017), 

In their study, Shealy & Gero (2019) compared brain activation in the prefrontal cortex of 

graduate engineering students during concept generation using differently structured techniques: 

TRIZ (structured), morphological analysis (semi-structured) and brainstorming (unstructured). 

Results show that each technique correlates with different patterns of activation of the left or 

right hemisphere over the time of the task, Figure 18. More specifically, different sub-regions 

of the prefrontal cortex activate depending on the technique used.  

 
(a) 
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(b) 

 
(c) 
Figure 18 Differences in activation of the prefrontal cortex during concept generation over time (10 deciles) for three 

different techniques : (a) Brainstorming, (b) Morphological analysis, (c) TRIZ (Shealy & Gero, 2019) 

4.3 fMRI: measuring brain behavior in design reasoning 
Experiments in design with fMRI have mainly focused on visual reasoning or analogic 

reasoning since movements are limited while in the fMRI scanner (Seitamaa-Hakkarainen et 

al., 2016). Participants are often limited to clicking with a computer mouse without being able 

to sketch. In the experiment designed by Alexiou et al., (2009) participants are monitored while 

performing two different tasks: a problem-solving one and an open-ended design one. The task 

consisted of arranging a bedroom using a trackball mouse to interact with the projected layout. 

Differences in cognitive functions needed for the two tasks reflected in the distinct brain 

network activated for each task. According to Alexiou et al. (2011) design thinking involves 

two layers of brain activity. The first one serves to construct an emotional and cognitive 

representation of the task and relates to the activation of the temporal, occipital and parietal 

areas of the brain. The second serves to monitor conflicts in different brain areas, constructs 

schemes of action and is related to the activation of the prefrontal cortex. 

Goucher-Lambert et al. (2019) looked at brain activation with fMRI during design ideation 

tasks while providing a support for analogical reasoning (words for the control group and 

images for the experimental group). The authors found distinct brain activation patterns for 

what they call inspired internal search (stimuli leading to analogies) and unsuccessful internal 

search (absence of stimuli), Figure 19. In the first case, designers make connections with 
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retrieved concepts from memory to generate new ideas. In the second case, they tend to search 

the design problem space for insights that is pointed in the data by an increase of activity in 

brain areas related to visual processing.  

 

Figure 19 Mapping on a brain template of brain activation cluster for inspirational stimuli versus control with no stimuli for 

time locked response model (Goucher-Lambert et al.,  2019). The images here are used to show what the brain maps look 

like and are not meant to be read for results. 

Some of the limitations in using fMRI to study design neurocognition have been ameliorated 

with new accessories. For example, recently developed drawing tablets that are not affected by 

a magnetic field can sit on the designer with visual feedback to a screen above them, provides 

new opportunities for the kinds of experiments that can be carried out. 

5 Summary, results correlation and post processing 

5.1 Synthesis of methods to study design thinking characteristics 
Each of the three paradigmatic approach offers multiple ways to measure an activity related to 

design cognition processes such as design reasoning, design collaboration, design creativity, 

the co-evolution of design problem and solution space, design learning and differences in the 

design activity depending on the task, the medium used or design expertise, Table 1.   
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Table 1 Synthesis of methods to measure design thinking characteristics described above 

 
TOOLS DATA PROCESSED DATA INTERPRETATION OF DATA REFERENCES 

Design cognition black box 
experiment 

measure output of 
experiment 

design features fixation effect Purcell et al., 1993 

  protocol analysis first order code quantitative distribution distribution of design issues 
design processes 

Gero & Song, 2017; 
Kannengiesser & Gero, 2018; 
Milovanovic & Gero, 2018; 
Pauwels, Strobbe, & De 
Meyer, 2015; Sakao, Gero, & 
Mizuyma, 2019 ; Yu & Gero, 
2018 

    design reasoning Wolmarans, 2016; Dong, 
Garbuio & Lovallo, 2016 

      time based occurrences design patterns Gero & Song, 2017; 
Kannengiesser & Gero, 2018; 
Milovanovic & Gero, 2018; 
Pauwels, Strobbe, & De 
Meyer, 2015; Sakao, Gero, & 
Mizuyma, 2019 ; Yu & Gero, 
2018 

    design collaboration  Dorta et al., 2011; Valkenburg 
& Dorst, 1998 

   correlation of two first order 
codes 

design collaboration  Stempfle & Badke-Schaub, 
2002; Darses et al., 2001 

    second order code second order codes problem decomposition Gero & Song, 2017 

    design creativity Gero & Kan, 2016 

      meta level codes co-evolution of the problem solution 
space 

Jiang et al., 2014; Milovanovic 
& Gero, 2018 

   data analysis linkography design reasoning structure Goldschmidt, 1990, 2014 

     Markov models design process patterns Kan & Gero, 2010; 
Milovanovic & Gero, 2018; Yu 
& Gero, 2016 
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    designers’ interaction patterns in design 
teams 

Gero, Kan, & Jiang, 2014 

      correspondence analysis qualitative relationship between 
participants and design processes 

Milovanovic & Gero, 2019  

Design 
physiology 

eye-tracking gaze points fixation sequences design reasoning Yu & Gero, 2018 

        design comprehension and analysis Self, 2019 

    fixation heat maps 
areas of interest 
scan paths 

design reasoning Yu & Gero, 2018 

        functional analysis Matthiesen et al., 2013 

    design comprehension and analysis Self, 2019 

    pupil dilatation   design creativity Sun et al., 2014,  

  EDA tonic EDA: Skin 
Conductance Level 
(SCL) 

gradual changes in SCL learning in design Villanueva et al., 2018 

       differences in engagement during 
design tasks 

Villanueva et al., 2018 

  ECG electrical potential 
difference 

heart rate variability mental stress, design creativity Nguyen & Zeng, 2014; 
Leinikka et al., 2016 

  emotion tracking facial recognition AFFDEX and FACETS 
algorithms 

emotionalize design  Kim, 2011; Balters & Steinert, 
2017 

Design 
neurocognition 

EEG electrical activity transformed power 
task related power 

differences in design expertise Vieira et al., 2019a 

    differences in design tasks Vieira et al., 2019b 

  
 

 power spectral density of 
brain waves 

differences in design tasks Nguyen & Zeng, 2010; Nguyen 
et al., 2015 

  fNIRS  blood oxygenation brain activation + patterns differences in design tasks Shealy & Gero, 2019 

  fMRI  blood oxygenation brain activation + patterns analogical reasoning Goucher-Lambert, Moss & 
Cagan, 2019 
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5.2 Correlating and post-processing results 
Three paradigmatic approaches were delineated in the previous sections, each providing  

different types of data on design thinking. By triangulating these heterogeneous data sources, 

we can improve our understanding of design thinking. Results from each type of study can be 

correlated or post-processed in order to provide new elements to describe designers’ cognitive 

processes, Figure 20.  

 

Figure 20 Correlation and post-processing of design thinking analysis results 

5.2.1 Correlation: triangulating data 
The correlation of results from different paradigms increases the overall understanding of the 

phenomenon being studied. Merging techniques to measure a task related to design has the 

potential to inform emotional evaluation of design products, a key aspect of feedback in 

designing that informs designers (Kim et al., 2012; Tomico et al., 2008), design creativity 

(Carroll & Latulipe, 2012), connection between emotions and CAD software for design tasks 
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(Liu et al., 2014), or can provide new methods to segment design protocols (Nguyen et al., 

2015; 2019).  

For example, Tomico et al. (2008) explored the comfortableness of a designed object (pencils) 

based on the measurement of participants’ emotions while evaluating the object, with a two-

point EEG to monitor the fluctuation of alpha waves (design physiology) and a structured 

interview to gather subjective assessment of the object (design cognition). Similarly, Kim et al. 

(2012) explored the correlation of skin conductance response (SCR), self-assessment emotions 

and semantic descriptors to measure emotions related to the evaluation and perception of an 

industrial design object (vacuums). EDA accounts for an emotional arousal but does not give a 

qualitative measure of the valence of the arousal. In Figure 21(a) results from the skin 

conductance response of designers reveal objects that induced a high arousal (N8, N6 and N4). 

Those products are described with a positive valence (N4) and as surprising (N6 and N8) in 

relation to the others based on the Principal Component Analysis (PCA) of the self-assessment 

test, Figure 21(b). 

  
(a) (b) 
Figure 21 (a) Results from designers’ SCR variations while observing the products , and (b) the PCA on the self-assessment 

test for emotions related to the products (Kim et al., 2012) 

Liu et al. (2014) developed a model of four emotions (frustration, satisfaction, engagement, 

challenge) based on GSR, HR and EEG data measured during the experiment. The model they 

developed allowed the correlation of emotions with specific tasks during the CAD design 

session. The authors used a fuzzy model approach to define the emotions based on valence 

measured with EEG signals and arousal based on GSR and HR signals.  
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Nguyen et al. (2015, 2019) point out the limits of manually segmented design protocols and 

explored how to use EEG data to perform that task. In their study, they compared manual 

segmentation to a set of algorithms that automatically segment EEG dataset. Eight design 

sessions of up to two-hour length were used for the analysis. The study showed that transient 

microstate algorithms worked well to describe the temporal aspects of design moves. 

5.2.2 Post processing: highlighting patterns 
In their study, Goucher-Lambert & McComb (2019) provide an example of post-processing 

results of an fMRI using Hidden Markov Models to decipher brain activation patterns during 

ideation tasks. This technique uses machine learning algorithms to automatically infer cognitive 

states in fMRI datasets. Twelve states were analyzed over the 2 minutes sequence where 

designers produced design solutions while in the MRI. Each of the 12 states represents average 

modes of brain activation during the solution generation sequence. The study explores 

differences between high performing designers and low performing designers in terms of the 

activations of each state over the time period.  

6 Future work: exploring design thinking results to develop new models, 
new tools and new research questions 

The set of results on design thinking obtained from all three paradigmatic approaches provide 

a source of feedback to designers, design educators and researchers in design science, Figure 

22. This new knowledge has the potential to support the development new models to describe 

design thinking, specifically design cognitive processes, not only through the lens of design 

cognition but through the integration of all three paradigmatic approaches. New tools can be 

developed for designers, design educators and design researchers, that lead to the development 

of new research questions.  
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Figure 22 Feedback to researchers, educators and designers to develop new models, tools and research questions. This 

framework shows the relationships between the three measurement paradigms and the results that flow from them. 

6.1 Feedback to designers 
Designers face challenges in their work as demands for creativity, innovation, collaboration, 

efficiency and management are high. With a better comprehension of designers’ minds, bodies 

and brains, there is an opportunity to augment designers’ performance, self-reflection and self-

regulation during the design process, facilitate designers’ collaboration and creativity. 

Feedback of design thinking research results to designers can be classified into three categories: 

feedback about the activity of designing, feedback about the designers themselves such as 
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emotions that relate to a personal level and feedback about designer’s interactions when 

collaborating during co-designing. 

Studies on design thinking bring a richer and more nuanced understanding about design 

cognition that serves as a base for the development of design support and design augmentation 

tools. Design cognition, design physiology and neurocognition provide information about the 

designer’s mental and physical states while designing. While designing with an AI design tool, 

the designer’s physiological and neurocognitive states can give more information to the AI to 

better adapt to the design situation. Information can be given to the designer in real time about 

the design state. 

At an individual level, we can draw a parallel between biofeedback to measure sports 

performance and biofeedback to measure a designer’s performance. For example, an Apple 

Watch can stimulate a person to take a walk to exercise or to sit down in order to rest based on 

their HR evaluation. Aims of research on biofeedback in real life situations, such as studying 

athletes’ performances, can be mapped onto a designer’s situation. Biofeedback to designers 

could be given in real time concerning their design processes to enhance divergent or 

convergent thinking, lateral or vertical transformation or to provide the inspirational stimuli for 

idea generation (Goucher-Lambert et al., 2019; Shealy et al., 2020). Emotional design takes 

into account designers’ emotions while designing. Designers might not be conscious of their 

emotions although they affect their decision-making processes while designing. Liu et al. (2014) 

developed a fuzzy model to monitor designers’ emotions based on neurophysiological signals. 

A real time analysis of those signals could provide a direct feedback to designers on their 

cognitive state to enhance their design process, such as their design creativity. 

In design collaboration, a part of the design activity is focused on team-oriented activities such 

as negotiating, planning and mutual understanding. Monitoring designers’ physiological, 

neurocognitive and emotion state can provide real-time feedback to the designers to enhance 

the collaboration. Appraisal, mental effort and stress can be captured through physiological data 

and be provided as real time feedback to the design team while designing in order to address 

collaboration issues.  

6.2 Feedback to design researchers 
Researchers in design science are confronted with problems related to the feasibility of large-

scale studies on design thinking. The cost of time and resources, as well as the access to 

professional designers, the intrusiveness of tools used to measure designers’ cognitive 

behaviors are hindrances to the development of wider experiments. Advances in design thinking 
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studies can improve the efficiency of studying the design activity by developing new tools and 

hybrid methods. Protocol analysis gives a rich source of information of design cognitive 

processes but has limits. The method is time and resource consumptive given that to ensure data 

reliability, each protocol has to be encoded several times, by at least two coders. Therefore, 

studies often include only a small number of participants. Using physiological or 

neurocognitive data to study design protocol can be a more efficient way to analyze design 

situations. As explored by Nguyen et al. (2015; 2019), EEG based protocol segmentation is 

relevant to reveal design actions over time.  

Another direction to explore concerns the automation of protocol analysis using speech 

recognition and machine learning using tools from natural language processing. Already coded 

protocols form a database for pattern classification that can be used by a machine learning 

algorithm to encode new data sets. To obtain a near to real time coding of the data, speech 

recognition could be added to the automated coding of the protocols.  

6.3 Feedback to design educators 
Teaching design includes particular challenges due to the nature of design thinking processes 

that are situated at a social and personal levels. In an educational context, knowledge about 

students’ and tutors’ physiological and neurological behaviors during courses or studios, can 

be used to better inform the effects of the pedagogic strategies used. Learning design in the 

studio implies social and collaborative learning where tutors adapt their comments to students 

based on their perceived abilities. Obtaining data on students’ engagement and emotions during 

a course points out the effect of teaching methods on students (Villanueva et al., 2018). The 

design studio pedagogy is partly implicit and tutors with professional backgrounds tend to teach 

without any pedagogical training. Using tools to measure physiological and neurological 

behaviors from students during such studio sessions can provide feedback on the effect of 

different pedagogic approaches to teaching design. New data obtained from these sources could 

provide a new perspective on different pedagogic strategies to teach design in the studio.  

6.4 Developing new models, new tools, new research questions 
The results from all three paradigmatic approaches to study design thinking provide feedback 

to researchers, educators and designers. Based on those results new models of design thinking 

can be inferred or existing models modified, if the results are not covered by existing models. 

New tools can be developed to support designing and new research questions may emerge. 
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6.4.1 New models 
Models of designing are grounded in either theory or the design cognition paradigm. A rich set 

of cognitive processes are identified as characteristics of design thinking such as problem 

framing, problem structuring, concept generation, visual reasoning and problem reframing to 

name a few (see Hay et al. 2017a; 2017b). The exploration of a mapping between cognitive 

processes and physiological and neurological measurements has the potential to generate 

objective knowledge about the designing mind (Cacioppo et al., 2012). It may be possible to 

determine whether designing is a set of unique mental activities or whether it is a unique 

combination of generic mental activities. New models may be required depending on the 

answer to such questions. 

6.4.2 New tools 
Results from physiological and neurophysiological studies on design activities depict design as 

an embodied activity (designing with brain, body and mind). Based on those results, tools to 

support designers can emerge. A correlation between design cognitive patterns and design 

neurocognitive patterns can serve as a starting point to develop brain-computer interfaces (BCI) 

for designers’ tools and software. The GUIs in current designing tools are limited, and BCI can 

provide an interface that may suit some designers’ tasks better (Esfahani & Sundararajan, 2012). 

For instance, designers using a BCI are already able to manipulate 3D objects (zoom in and out, 

rotate and scale) by thought alone, gaze monitoring with eye-tracking can serve as a pointer 

and used to select objects and gestures can be used to draw and model in VR or AR with devices. 

Novel brain-design cognition interfaces have become possible through real-time feedback of 

brain signals to enhance a designer’s self-regulation capability, producing improvements in idea 

generation behaviors (Shealy et al., 2020). New user interfaces to communicate with design 

software are not the only perspective that opens up with new knowledge.  Existing tools, using 

co-creative agents to support design creativity (Davis et al., 2014), can be enhanced based on 

designers’ physiological and neurophysiological measurements. Collaborative AI design tool 

offer potential in enhancing designers’ performances, efficiency and creativity. 

New tools from data science can be used to support researchers’ and educators’ data analysis 

(see Section 6.2) and enhance students’ learning experience (see Section 6.3). 

6.4.3 New research questions 
Over the past 50 years, results from design thinking studies through the cognitive paradigm 

approach defined designing as an intentional activity, that evolves through time, based in its 

social situation that includes personal factors (designers’ experience and design learning), 
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where the problem has to be defined, and is dependent on the design path taken. With a 

triangulation of the methods that have been presented, new research question regarding the 

design activity itself emerge. We pointed out cognitive characteristics of designing, and we can 

question whether designing implies a unique association of common cognitive brain activation 

or a specific brain activation. Is there something fundamental in brain activations that defines 

designing? Cognitive methods to study design cognitive processes analyze design at the 

cognitive scale. Physiological and neurocognitive tools can measure design thinking at a micro 

scale and provide opportunities to explore if there are activities specific to designing that exists 

at this smaller scale. 

In the previous section, we identified the emergence of new tools to accompany the design 

process. By acquiring increased knowledge of design thinking, we can develop more refined 

computational models of design activity based not only on design cognition, but also on design 

physiology and design neurocognition. The integration of active computational agents into the 

design process provides a new kind of AI design tools. BCI and “thinking caps” are another 

direction to explore in terms of tool development based on results from design neurocognition 

studies. Design software (CAD, BIM) and design software interfaces (Graphical User Interface, 

Tangible User Interface) affect the design activity that raise another question: what will be the 

effects of AI design tools and BCI on the design process and outcomes?  

7 Limitations 

The framework we presented covers past and ongoing design thinking research agendas and 

points to future areas of work. A limitation of this framework is that the measurements 

synthesized might not be sufficient to capture the complexity and diversity of designers’ 

thinking processes while designing. Moreover, there are inherent limits of experiments using 

the methodologies present to study design cognition, design physiology and design 

neurocognition. Laboratory measurements provide a better control over the experiment but 

suffer from a lack of realism available through in situ studies. To measure physiology and brain 

behavior, designers have to wear an extra equipment, even during in situ experiment, that can 

affect their behaviors. Another common issue that we mentioned before is the scale of studies, 

often quite small, due to the cost of collecting data, that limits the inference of any 

generalizations. In Section 6.2, on the feedback to design researchers, we laid down future 

possibilities to address study scales and data collection limits. 
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8 Conclusion 

In this paper we have presented a framework for the measurement of design thinking based on 

three measurement paradigms: design cognition, design physiology and design neurocognition. 

Within each paradigm we have outlined current methodological approaches that are used to 

study design thinking. Studying design thinking by measuring design cognition is well 

established and has a history of development over many decades. Studying design thinking by 

measuring design physiology and design neurocognition are both still novel approaches that are 

gaining acceptance. These two approaches have become increasingly feasible as the cost of the 

measurement devices has dropped and the processing software has become more developed. 

Utilizing the three paradigmatic approaches together provides a more articulated framework to 

explore the underlying cognitive, physiological and neurological patterns associated with 

design thinking. Through non-exhaustive illustrative research studies, we pointed out which 

characteristic of the design activity can be measured using techniques and tools from the 

cognitive, physiological or neurocognitive paradigm approach. 

Results obtained from those three approaches to studying design thinking bring new challenges 

to design research. New models, new tools and new research questions emerge based on those 

results. By triangulating the data obtained, we are able to question existing design models, adapt 

those models and generate new ones describing design as an embodied activity, that considers 

the designer’s mind, body and brain. New tools will be developed combining results from 

design studies and technologies and techniques from other research fields, such as brain-

computer interfaces, brain-cognition interfaces, along with AI and machine learning. Research 

questions stemming from an integrated approach to studying design thinking explore potential 

fundamental patterns of brain activation or physiological activity related to designing, as well 

as the effect of new tools to accompany the design activity and the relevance of new models to 

describe design thinking.  
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