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HarTBleed: Using Hardware Trojans
for Data Leakage Exploits
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Abstract— Data and information leakage is an important secu-
rity concern in current systems. Several data leakage prevention
(DLP) techniques have been proposed in the literature to prevent
external as well as internal data leakage. Most of these solutions
try to trace data flow and perform privilege checks to ensure
the security of the data at the software and system level.
Architecture level leakage vulnerabilities such as Spectre and
Meltdown can be mitigated by performance-expensive software
patches or by modifying the architecture itself. However, these
solutions assume that the underlying hardware platform is secure
and free from tampering. In this article, we present HarTBleed,
a class of system attacks involving hardware compromised
with a Trojan embedded in the CPU. We show that attacks
crafted specifically to make use of the Trojan can be used
to obtain sensitive information from the address space of a
process. We propose the use of a capacitor-based Trojan trigger
that exploits the virtual addressing of L1 cache to activate a
Trojan payload that resets a target translation lookaside buffer
(TLB) entry to maliciously map to sensitive data in memory.
Extensive circuit simulation indicates that the proposed Trojan
trigger is not activated during test or normal operation even
under a wide range of process/temperature conditions. Therefore,
it remains undetected. A successful HarTBleed-based exploit is
demonstrated using an attack code by modeling the Trojan effects
in the GEM5 simulator.

Index Terms— Data leakage, hardware Trojan, translation
lookaside buffer (TLB), trigger.

I. INTRODUCTION

TODAY’S computing systems have become increas-
ingly complex with load-balanced and multiuser-shared

infrastructure. Large cloud storage and computing services,
such as Amazon Web Services and Microsoft Azure, allow
a single computing resource to be shared across multiple
users or services. This is made possible using isolation
mechanisms such as containers and virtual machines. Such
systems need to ensure that data contained inside a virtual
machine or a container cannot be accessed from outside.
Furthermore, the operating system kernel or the hypervisors in
these systems need to ensure their integrity so that the internal

Manuscript received September 16, 2019; revised November 22, 2019;
accepted December 12, 2019. Date of publication January 14, 2020; date
of current version March 20, 2020. This work was supported in part by SRC
under Grant 2727.001; in part by NSF under Grant CNS1722557, Grant CCF-
1718474, Grant DGE-1723687, and Grant DGE-1821766; and in part by the
DARPA Young Faculty Award under Grant D15AP00089. (Corresponding
author: Asmit De.)

The authors are with the School of Electrical Engineering and
Computer Science, The Pennsylvania State University, University Park,
PA 16802 USA (e-mail: asmit@psu.edu; muk392@psu.edu; kxn287@psu.
edu; szg212@psu.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2961358

resource allocation and memory layout information are not
visible to the user-level processes.

Data leakage prevention (DLP) techniques usually offer pro-
tection of sensitive data by content monitoring and detection,
tracking anomalies in data behavior [1], or apply cryptographic
techniques such as encryption to secure the data [2]–[4].
However, these techniques only work at the application
level. Data-flow analysis and dynamic taint tracking [5] are
employed at the system level to ensure data protection of
running processes. User-level processes are protected from
code injection and code reuse by techniques such as control
flow integrity (CFI) [6], data execution prevention (DEP) [7],
and address space layout randomization (ASLR) [8]. Even
with such protections in place, a bug was recently found in the
OpenSSL cryptographic library that leaked data from mem-
ory using a buffer overread vulnerability, allowing attackers
to eavesdrop on SSL/TLS secured communication channels
[9]. User processes are separated from the OS kernel by
employing protection rings in the CPU, which ensures that
user space code cannot access data in kernel space. However,
recent vulnerabilities have been found in the systems archi-
tecture, namely, Spectre [10] and Meltdown [11], which can
take advantage of the speculative execution of out-of-order
processors to gain unauthorized access to data from the CPU
cache, and even leak kernel data. Existing OS level patches
to handle Meltdown incur 0%–30% performance overhead
whereas cleaning branch predictors and branch target buffers,
Lfence, etc. [12] for Spectre are expected to impose more
serious performance overheads. Architecture design changes
are also planned to prevent such vulnerabilities.

The underlying assumption of the above threats and their
mitigation techniques is that the hardware itself is free from
malicious tampering. However, the recently surfaced news
such as tampering of server motherboards by Chinese man-
ufacturers that affected top U.S. companies such as Amazon
and Apple [13] emphasize that this assumption might not be
true due to the involvement of untrusted third parties in the
semiconductor manufacturing supply chain. Another popular
incident is the hardware fabricated with hidden-backdoor to
disable radars in Syria [14] to facilitate an attack.

In light of the above threat, the U.S. Defense Advanced
Research Projects Agency (DARPA) identified the trusted
and untrusted steps of a supply chain [21] and initiated a
Trust-in-IC (Integrated Circuit) program to develop tools and
techniques to ensure that ICs are authentic and free of Trojans
postmanufacturing. The Australian Department of Defense
also raised awareness of the threat and proposed broad classes
of Hardware Trojans and countermeasures [22]. Research has
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also been conducted to develop efficient DLP frameworks
for the semiconductor industry [23]. In spite of the above
efforts, the industry heavily relies on untrusted third parties
for intellectual property (IP) and manufacturing to preserve
the cost benefits.

A. Hardware Trojan

Hardware Trojan [24] is a malicious modification in a
circuit that is introduced during the design and/or manu-
facturing process to force a chip to perform undesirable
operations. Ideally, these modifications made to an IC should
be detected during pre-Silicon verification and post-Silicon
testing. In order to evade the structural and functional testing,
an adversary designs the Trojan to activate only under certain
rare conditions and to remain undetected during the test
phase. Hardware Trojan has two main components, namely:
1) Trojan trigger and 2) Payload [25]. Trojan Trigger is
designed in such a way that it gets activated under a certain
unique condition that might not be possible to generate in the
test/validation phase, and thereby, remains undetected. Once
triggered, the Trojan can cause denial of service (DoS), fault
injection, or information leakage [25], [26].

Although hardware Trojan is a well-explored topic in the
VLSI design communities, most of the attack vectors are
confined to low-level circuits and implications such as DoS
and leakage of cryptographic keys. The potential of hardware
Trojans in compromising system assets and launch system
security attacks has received much less attention.

B. Proposed Attack Model

In this work, we assume an untrusted manufacturing house
located outside the U.S. that can alter the chip GDS-II
file to introduce the malicious Trojan trigger and payload.
This assumption is widely accepted in the hardware security
community because of large filler areas present in the chip
and the adversary’s access to the raw design. We propose
the use of a capacitor-based hardware Trojan trigger [26]
and novel payload circuits and perform detailed analysis to
guarantee that the Trojan is: 1) triggered even under worst
case process and temperature conditions with correct inputs
and 2) able to bypass conventional postmanufacturing test.
The Trojan is activated if a particular preselected address of
L1 Cache is accessed for ∼1800 times. Note that the proposed
Trojan trigger directly taps the wordline of the preselected
address to leverage the existing decoder design framework
and hence, does not incur any overhead for address decoding.
Once activated, the trigger will reset the preselected translation
lookaside buffer (TLB) entry to preselected bit pattern. A TLB
entry is composed of a tag [virtual page number (VPN)]
and mapping information [physical frame number (PFN) and
other metadata bits]. The tag is implemented using a content
addressable memory (CAM) for high-speed lookup operation,
while the mapping information is implemented on a 6T SRAM
array [27]. The proposed Trojan payload resets the SRAM
portion of the TLB.

In order to simulate the effect of the Trojan, we design
an attack with the hardware Trojan trigger embedded in the
CPU cache and the TLB as a victim, as shown in Fig. 1. The

Fig. 1. Overview of HarTBleed Trojan.

goal of the Trojan payload is to manipulate the TLB mapping
information to access data from a process’s address space. The
Trojan is triggered when a specific address of L1 is accessed
multiple times. This changes the address mapping in a target
TLB line to a specific physical page with sensitive information.

In addition to our Trojan trigger proposed in [26], following
contributions are made in this article. We

1) propose the SRAM Trojan payload to reset the TLB
entry to a known value;

2) perform a detailed analysis of the Trojan trigger under
process variations and temperature fluctuations;

3) design a system exploit using the Trojan;
4) demonstrate the HarTBleed exploit in action using

GEM5 simulations;
5) explore possible attack surfaces using HarTBleed

methodology; and
6) present countermeasures to detect the Trojan trigger and

payload.
This article is organized as follows. Section II reviews the

existing literature on hardware Trojans; Section III describes
the proposed Trojan trigger and payload; Section IV describes
the system architecture including the threat model under con-
sideration; Section V presents the HarTBleed methodology;
Section VI presents a discussion on the practicality, assump-
tions, and limitations of HarTBleed; and finally, Section VII
draws the conclusion.

II. BACKGROUND ON HARDWARE TROJAN

In this section, we present an overview of hardware Trojans
explored in the existing literature.

A. Trojan Trigger and Payload

Many prior works have investigated possible hardware
Trojans. A qualitative comparison of state-of-the-art Trojan
designs is presented in Table I. In [15], a “content & timing”
based Trojan trigger is designed and implemented in a Basys
FPGA Board which gets activated only when the correct input
pattern is entered at the correct time. The website demonstrates
that the Trojan can evade the test phase even if a correct trigger
pattern is provided since the timing constraints are not met.
In [16], Trojans are proposed by leveraging the availability of
multiple transistor threshold voltages in advanced technology
nodes. The authors show that threshold voltage modification
techniques (e.g., ion implantation) can be leveraged to intro-
duce stuck-at-faults to a D flip-flop. They also show that
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TABLE I

QUALITATIVE COMPARISON OF TROJAN DESIGNS

manipulation can be done in a way that the Trojan activates
only at a specific temperature and thereby evades testing
at low temperature and at burn-in postfabrication. In [17],
two approaches are proposed to change the voltage transfer
characteristics of a target gate which activates as a Trojan when
the supply voltage reduces. The proposed Trojan can extract
secret keys by injecting transient faults into a lightweight
cryptographic block. Hoque et al. [18] have proposed a Trojan
for an embedded SRAM which evades industry-standard post-
manufacturing memory tests (for example, March test). The
Trojan gets activated by writing a specific pattern to one/few
cells (that work as a trigger) that feed into the input of the
Trojan transistors (payload). The Trojan payload transistors
short the data node of a victim SRAM cell to ground (data
corruption). Emerging NVM-based Trojans have also been
proposed [19], where the Trojan is triggered by sensing delays
and voltages for repeated data access to a particular address
in a RRAM memory.

In [20], an analog Trojan trigger, A2, is presented which
is controllable, stealthy, and small. This proposes a capacitor-
based trigger that aims to flip specific bits of control logic
after a number of instructions are issued resulting in escalation
of the adversary’s privilege. In [26], a capacitor-based Trojan
trigger circuit is presented that is activated by writing a
specific data pattern to a specific address for a number of
times (∼260, denoted by NSET in this article). Note that such
triggers remain undetected during postmanufacturing test since
an address is not hammered for many number of times to
maintain quick test time. Furthermore, the Trojans incur very
small area/power overhead which cannot be detected by optical
inspection or side channel analysis during the test. Optical
inspection also requires invasive reverse engineering which
may not provide a good quality image for detection. Advanced
techniques such as transmission electron microscopy (TEM)
are also very expensive and may increase the test cost.
Furthermore, to obfuscate the Trojan hardware, the adversary
can also replicate the design in all the memory subarrays to
make them identical.

B. Trojan Detection Techniques

Trojan detection techniques have been proposed using
sophisticated failure analysis like light-induced voltage alter-
nation (LIVA), charge-induced voltage alternation (CIVA), and
other imaging techniques. However, these methods require
significant time/effort (requires chip delayering) and are not

Fig. 2. Trojan trigger circuit (specifications provided at the bottom). V (PSET)
and V (AddSET) are two inputs.

highly effective for nanometer technologies [28]. Two other
techniques are proposed in [8] namely, automatic test pattern
generation (ATPG) and side channel analysis (SCA). ATPG
does not work for logic Trojan where the malicious inserted
logic is unknown [28]. Therefore, it cannot detect the proposed
trigger. It might be possible to trigger the proposed Trojan
by writing each address with all possible combinations for
many number of times (1837 for this article). However, this
increases the test time and time to market the chip signifi-
cantly. Typically, each chip is tested for 2–3 s [29], which is
not enough to catch such Trojans. Furthermore, the Trojans
become easier to deploy effectively if the designer itself is
the adversary. SCA techniques, such as power profiling and
matching with a golden chip [30], [31], are also ineffective
against the proposed memory Trojan since the trigger only
consumes dynamic power when it is activated/deactivated.
Furthermore, they require an existing golden chip which may
not be possible.

III. HARDWARE TROJAN DESIGN FOR HARTBLEED

In this section, we present the Trojan trigger circuit and its
process and temperature variation analysis.

A. Trojan Trigger

1) Design: The trigger circuit (Fig. 2) is designed to be
activated if a particular memory address (chosen during design
phase, let us call it (AddSET) is accessed for at least NSET
times. The trigger has two inputs, namely V (AddSET) and
V (PSET). V (AddSET) (= 1 V in this article) is the wordline
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Fig. 3. Trojan trigger waveform.

enable signal of AddSET and V (PSET) is a constant voltage
source of 1 V. For a more complex Trojan with a superior
stealthiness, V (PSET) can be programmable (discussed in
Section VI-A).

Whenever AddSET is accessed, V (AddSET) is asserted and
MOSFETs M1 and M3 are activated. M2 has a thinner gate
oxide compared to other MOSFETs and its source and drain
are shorted. Therefore, M2 works as a capacitor and charges
CTrojan from the PSET source through Fowler Nordheim (FN)
tunneling [32] if V (AddSET) is asserted. M4 is an OFF transis-
tor which offsets gate leakage of M5 and prevents unwanted
charging-up of node X2. M7 keeps node X3 as low as possible
until node X2 charges up sufficiently. The node X4, that is
charged up during the hammering process, is used as the SET
input of a SR latch. The output of the SR latch (VTrigger)
transitions from 0 → 1 when X4 charges up to 0.5 V. The
signal VTrigger is then used to activate the Trojan. Fig. 3 shows
the Trojan trigger waveform.

The charge at node X2 leaks away (due to capacitance leak-
age of CTrojan) once the hammering is discontinued. However,
VTrigger will still be asserted due to the SR latch. In order to
deactivate the Trojan, VRESET needs to be asserted. VRESET
can be generated by accessing a different address (let us say
AddRESET) for at least NRESET times and using a circuit similar
to the trigger one. Note that a smaller CTrojan (∼1fF) can
be used in the RESET circuit to minimize the area overhead
which leads to NRESET = 92. However, the AND’ed output of
V (AddRESET) and V (PRESET) can also serve as VRESET which
further reduces the area overhead.

2) Simulation Results: Node X2 charges up to 125 mV
(steady state) from all the leakage considering V (PSET) = 1 V
(worst case charging due to leakage). This value is not enough
to trigger the circuit. For the rest of the simulation, we have
considered that V (AddSET) is a pulse source with ON/OFF time
of 10 ns/1 ns. We consider the circuit to be triggered when
VTrigger reaches up to 0.5 V, where initial CTrojan = 20 fF.

Fig. 4(a) shows the design space exploration of trigger cir-
cuit considering two variables, the (W/L) ratios of MOSFETs
M1 and M2. For a lower (W/L) ratio for both the MOSFETs,
NSET increases. We have chosen (W/L) of M1 and M2 as 4
and 2, respectively, for a sufficiently higher NSET.

Next, we considered that the adversary accesses the pre-
selected address for Ton = 10 ns and then stays idle for

Fig. 4. (a) Design space exploration of Trojan trigger (Fig. 2) with respect to
(W/L) ratio of MOSFET M1 and M2, (b) required number of access (NSET)
increases if the adversary cannot access continuously, and (c) a scaled down
CTrojan leads to less number of NSET to activate the trigger.

Toff = 1/3/.../21/23 ns and repeats this cycle. We found
that the CTrojan does not leak in the OFF cycle significantly
and the circuit can still be triggered but with a higher NSET
[Fig. 4(b)]. We observe that the circuit will trigger even with
a low TON of 30%. This means that it becomes even harder to
prevent Trojan activation using system level techniques such
as limiting repeated access to one particular address.

Note that the attack gets auto reset without the SR latch
since the node X2 discharges (due to charge leakage of CTrojan)
and eventually node X4 goes down once the adversary stops
the hammering after the trigger activates. Results indicate
that the attack (charge at node X4) lasts for 163.73 μs if
AddSET is accessed for 18 μs. However, by adding the SR
latch, the attack can last indefinitely until AddSET access is
discontinued and VRESET is asserted.

A small CTrojan will require a low NSET to get the trig-
ger activated. For example, NSET = 464 for CTrojan = 5fF
[Fig. 4(c)]. This is still significantly high enough to evade
the test phase. The value of CTrojan is chosen as 20 fF
since it offers a high NSET (= 1837) under nominal condi-
tions and successfully triggers under all process corners and
temperatures (further details in Section III-B), and minimum
NSET in the worst case (= 68) is still high to evade testing
phase.

B. Impact of Process and Temperature Variations

Process variations can lead to worst case scenarios where the
required NSET might be too low and lead to the circuit inad-
vertently triggering during the test phase. We have performed
a 500-point Monte Carlo analysis at temperatures −10 ◦C,
25 ◦C, and 90 ◦C with the process variation modeled as 3 σ
of 30 mV of each transistor’s initial Vth for nominal design
(NP NN ). The lowest NSET (= 1318) achieved at 90 ◦C is still
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Fig. 5. Process variation analysis of the trigger: distribution of NSET at (a) −10 ◦C, (b) 25 ◦C, and (c) 90 ◦C.

Fig. 6. Process variation analysis of trigger at corners. (a) FP FN . (b) FP SN .

Fig. 7. Process variation analysis of trigger at corners. (a) SP FN . (b) SP SN .

high enough to evade the test phase. The distribution of NSET
for each temperature is shown in Fig. 5.

We have also performed process variation analysis at each
process corner that includes all combinations of fast (F) and
slow (S) p- and n-type transistors. The threshold voltage Vth of
the F-transistors is reduced by 0.2 V and that of S-transistors is
increased by 0.2 V. Figs. 6 and 7 show the distribution of NSET
at all process corners under all temperatures. We note that even
in the worst case-corner of SP FN at 90 ◦C, the minimum
recorded NSET = 68 which is high enough to evade the test.
We also observe the highest NSET = 22028 at the FP SN corner
at −10 ◦C. It is possible that a memory controller might be
employed to prevent continuous accesses to AddSET. However,
we have shown that the trigger can operate even with breaks
in accessing the target memory address [Fig. 4(b)].

C. Area and Power Analysis

Table II summarizes the key performance metrics of the
Trojan trigger. The absolute area and static power of the
proposed trigger are 42.9 μm2 and 0.589 μW, respectively,
which are 5.34 × 10−5% and 6.24 × 10−5% of a typi-
cal memory chip area and static power [33], respectively.

TABLE II

FEATURES OF THE TROJAN TRIGGER

Fig. 8. Layout showing 4 SRAM bitells and metal tracks allocated for bitlines
(horizontal) and wordlines (vertical). One M4 track can be stolen to connect
the SRAM data node to Trojan payload transistor (located in the column area).

Therefore, the overhead due to the Trojan trigger is negli-
gible to be detected via optical inspection or side channel
analysis.

D. Resetting Single and Multiple TLB Entries

The Trojan payload resets TLB entries after the trigger is
activated. We have chosen the TLB as the victim as it provides
a greater attack surface to leak data from multiple sources such
as kernel, process space, and shared memory (further explained
in Section VI-B). Furthermore, the payload circuit is placed in
the SRAM portion of the TLB itself, as it is easy to conceal
the transistors in the SRAM layout and peripheral circuits (as
shown in Figs. 8 and 9).

A single TLB entry can be reset to preselected data pattern
(i.e., “0” or “1”) as shown in Fig. 9(a) and (b). If the adversary
needs to reset multiple TLB entries (say, 10), he needs to select
10 L1 cache addresses. Let us call them AddXSET, where X =
1, 2, . . . , 10. For each of the target TLB entries the adversary
designs one AND gate with VTrigger and V (AddXSET) as inputs
[Fig. 10(a)]. When the adversary accesses address AddXSET
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Fig. 9. TLB entry reset to (a) “0” and (b) “1.” The sizes of SRAM pull-
up, pull-down and access transistors are shown. The back-to-back inverters in
SRAM are omitted for clarity.

Fig. 10. (a) Logic circuit to generate VBC_T r X . (b) Data node voltage
discharges as the (W/L) of Trojan transistor increases. It discharges to 0V for
a minimum (W/L) of 4. This means that the stored data flipped, i.e., 1 → 0
fault occurred.

after the Trojan is activated, VBC_TrX will be asserted. This
will reset the stored bits in the corresponding TLB entry to
“0”/“1” as designed during the Trojan insertion. Fig. 10(b)
shows the simulation result of flipping the stored bit to “0”
with respect to (W/L) of Trojan transistor. For a successful
flip operation, minimum (W/L) is 4. We have used (W/L) =
5 for faster switching. Fig. 8 shows the layout of 4 SRAM
cells and metal tracks allocated for bitlines (horizontal) and
wordlines (vertical). One M4 track per global column of
SRAM array connects the target SRAM data node to the
Trojan payload transistor which is colocated with sense-amp
and other peripherals in the column area. To reset a n-bit wide
PFN in the TLB, n Trojan payload transistors are required.

E. Evading Test
During conventional memory testing such as March test,

each address is written with different data patterns (e.g.,
block-0/1, stripe, and checkerboard) [34] and then read to
verify memory functionality and correctness (i.e., free of
faults such as stuck-at faults and coupling faults). The test
pattern consists of a finite sequence of March elements. Each
element consists of increasing or decreasing address order of
read/write operations covering all memory cells. In a 32-bit
wide memory, a striping pattern requires 32 accesses per
address, whereas a checkerboard (alternating) pattern requires
16 accesses per address. Therefore, each address may be
accessed for a maximum of 16–32 times. This method of test-
ing ensures linear test-time complexity. The Trojan proposed

Fig. 11. (a) Paging in a 32-bit address space with 4 KB pages. (b) Page
Table Entry (PTE) fields for Intel X86 32-bit paging. (c) Example TLB entry
configuration showing VPN, PFN, and the associated metadata bits.

in this article requires 1837 accesses which is significantly
higher than 32 and, therefore, evades the test. Considering
the overall test time, the proposed trigger requires approx-
imately 1837 × 64 × 1024 = 120 389 632 accesses in the
worst case per 64-Kb byte-addressable memory. Even if high
temperature and Vdd is used during the burn-in test, the trigger
does not get activated. An advanced trigger with a unique
data pattern makes detection more difficult (discussed in
Section VI-B).

F. Bypassing Error Detecting Codes
TLBs typically employ parity-based error-detecting codes

which can detect the fault injection by the Trojan. The parity
bits can also be reset to match the new data to avoid detection.
If error-correcting code (ECC) is employed, the Trojan payload
could reset the ECC appropriately to bypass detection at the
cost of few extra transistors.

IV. SYSTEMS ARCHITECTURE

In this section, we describe the architecture for HarTBleed
deployment and the threat model under consideration.

A. Overview of the Systems Architecture
We consider a standard X86 microprocessor architecture

with a single core. The memory system is configured with
L1 and L2 caches, where the L1 cache is further separated
into L1 instruction cache and L1 data cache. The L1 cache
is virtually indexed and physically tagged to improve perfor-
mance. The processor is connected to a DDR system memory.
The system runs a standard Linux kernel with paging enabled,
with a fixed page size of 4 KB. The memory management unit
(MMU) in the microprocessor also has a fully associative TLB
to speed up address translation.

The physical memory in a system is very limited in size, and
much less than the range of addresses the CPU can reference.
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All applications running on a specific CPU architecture is
designed for the addressable memory space that the specific
CPU architecture can reference. For example, a 32-bit CPU
can address 232 memory locations, which is a 4-GB address
space. This is known as the virtual address space. However,
the installed physical memory (and the physical address space)
can be different for different system configurations. Hence the
virtual address space is divided into smaller chunks known
as virtual pages [Fig. 11(a)]. Typically, the virtual pages are
4 KB each in a 32-bit address space. Each process has its own
view of the entire virtual address space. When an application
process runs, the required virtual pages are mapped to the
physical memory as physical frames [Fig. 11(a)]. The physical
memory can have frames belonging to multiple processes
simultaneously. The corresponding mapping information (vir-
tual page number → physical frame number) is stored in
a per-process page table in the OS kernel. The page table
entries (PTEs) also store some associated metadata bits sig-
nifying protection status, caching information, etc. as shown
in [Fig. 11(b)]. When the CPU accesses a memory address,
the corresponding page mapping is pulled from the page table
in the kernel and cached onto the TLB in the CPU.

The TLB is implemented as a small, fully associative SRAM
memory. Each entry in the TLB contains the virtual to physical
memory mapping information of a page of the current process
in context. TLB entries are configured as shown in Fig. 11(c).
In a 32-bit address space with 4 KB pages, the virtual page
number (VPN) is the MSB 20 bits of the virtual address. The
physical frame number (PFN) bits signify the frame number on
the physical memory where that page is mapped. Aside from
VPN and PFN, the TLB may also have protection bits specify-
ing read/write/execute permissions, a valid (V) bit indicating
if the frame is actually present in physical memory, and other
bits such as global (G), cached (C), dirty (D), etc. When a
process goes out of context, the TLB is flushed or invalidated.
However, to improve performance, some TLBs may also have
an address space identifier (ASID) field that helps in caching
and lookup of pages from multiple processes without flushing
the TLB during context switches.

B. Virtual Memory Layout
The virtual address space of a process is divided into

several memory segments as shown in Fig. 12. In a 4-GB
virtual address space, the higher order 1 GB of addresses are
used by the kernel and is known as the kernel space. The
remaining 3 GB are given to the user processes and is known
as the user space. The topmost segment in the user space
is the stack, which is used to store the local variables and
function parameters of the program. As more data are pushed
to the stack, it continues to expand downward. Below the
stack is the memory mapping segment (mmap). This segment
is used to map the contents of files directly into memory.
Any application can request access to a file, and the kernel
handles the request by performing the memory mapping. This
segment is also used to hold the linked libraries, which may
be shared across processes. The heap lies below the memory
mapping segment and is used to serve memory allocation
requests at runtime. The heap grows upward with allocation

Fig. 12. Process anatomy in the virtual memory.

of data. It is important to note that data allocated in the
heap may outlive the function that requested the allocation
and thus is a potential source of data leakage. In unmanaged
languages such as C, the onus is on the application developer
to ensure that the allocated heap regions are freed when they
are no longer in use, while in managed code such as C#
and Java, this task is automatically handled by a garbage
collector. The BSS and data segments below the heap are
used for allocating uninitialized and initialized static or global
variables, respectively. The lowermost addresses in the address
space are used as the text segment, which maps the part of
the program binary that contains string literals and executable
code. These different segments are maintained as special data
structures inside the memory descriptor of the program held
inside the kernel space.

C. Threat Model

We describe the threat model under consideration as fol-
lows: We assume a standard multiuser multiprocess system.
The microprocessor hardware used in the system is compro-
mised with a hardware Trojan (introduced during the man-
ufacturing process) that was undetectable during post-Silicon
testing. We assume that the adversary has the knowledge of the
Trojan hardware and the specific scenario in which the Trojan
can be triggered and activated. This is very likely if the adver-
sary is foundry-sponsored. After the deployment of the chip
in the market, the adversary can launch a malicious program
to trigger the Trojan for the desired payloads. The adversary
has standard user privilege, i.e., no administrator or superuser
privileges. The adversary can interact with the existing appli-
cations running on the system and can also compile and run
his own malicious program with user privileges. It is assumed
that the OS kernel is generally secure and cannot be tampered
by a normal nonadversarial user. The adversary need not have
physical access to the system and can access the system over
a network. However, the adversary is knowledgeable about the
hardware details of the system in use.

We assume that the hardware Trojan has deep access to
the system hardware at the physical layer. The Trojan trigger
can tap into and monitor the CPU address and data buses and
the payload can reset the TLB entries and their associated
metadata to the adversary-known values. The Trojan can only
be triggered after a specific event or a series of events have
taken place. This trigger event may not be an event which
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occurs during normal operation but can be forced to happen by
a knowledgeable adversary. The adversary can also deactivate
the Trojan after carrying out the attack to prevent further
detection or to prevent system faults. It should be noted that
the Trojan hardware is dormant and it cannot proactively
engage and cause data-leaks or failures. It only serves as a
hidden system backdoor, which a knowledgeable adversary
can leverage to launch his exploits.

V. DESIGNING HARTBLEED EXPLOITS

In this section, we describe and demonstrate the design
methodology for HarTBleed exploits.

A. Attack Design

We describe a simple proof-of-concept attack scenario
demonstrating the use of the hardware Trojan. In this attack,
we focus on extracting data from a process’s heap. Let us
consider a single victim process which accesses a certain
memory location T that is initialized (written) with a specific
bit pattern, and then repeatedly accessed. The number of
accesses to the location is controlled by a user input N .
Let us also assume that the process stores some “secret”
data D, which are kept in the process’s heap at location S.
This “secret” data are not available for the user to view in
its raw form. This can happen, for example, in a program
which performs encryption/decryption in software by using
some cryptographic keys. The keys will not be available to the
user, but it may still be loaded into the process’s memory. The
goal of the adversary posing as the user is to obtain the secret
cryptographic key, using some existing input–output operation
in the program. The process also reads back and prints data
from location P to the user. The goal of this attack is to
interact with the victim program by controlling N and force
it to print the secret D using the code which normally prints
from location P .

It should be noted that this is a very controlled attack where
we make certain assumptions about the program structure,
which may not be possible in real attacks. However, this attack
example shows how a hardware Trojan can be used to perform
unauthorized data access. More sophisticated attacks can stem
from this simple example. We make the following assumptions
in this attack: 1) memory locations T , S, and P reside in
different pages, i.e., accesses to each of these addresses creates
different page table entries (and TLB entries); 2) addresses S
and P have the same offsets into their pages; 3) all these
pages are mapped to the physical memory frames and hence
have valid and present entries in the TLB; 4) the adversary has
knowledge about the cache line that maps to trigger address T ,
the TLB entry for P , and the Trojan payload used to modify
the TLB entry to maliciously map to S.

The malicious hardware Trojan is designed as shown
in Fig. 13. The trigger for the Trojan is placed in a L1 d-cache
line (in this case, the cache line which maps to T ), that
monitors its access for NSET times. This action activates the
Trojan trigger which generates a signal for the Trojan payload.
The Trojan payload performs a malicious mapping in the TLB.
It first accesses the TLB entry that stores the mapping for

Fig. 13. Trojan design in the system architecture. The attack steps are
annotated.

the page of P . The initial mapping is VPN[P] → PFN[P].
It then resets the physical frame number for P to that of S.
Thus, the effective mapping becomes VPN[P] → PFN[S].

We launch the attack as follows. We first provide N as
a large value. This makes the process access the location T
for N times. This action creates N repeated accesses to the
same cache line that is mapped to T , which serves as the
trigger for the Trojan. The activated Trojan performs malicious
mapping as detailed above. Now, when the process reads
from virtual address P , the TLB translates this address to the
physical address that stores the secret data D, and the process
unknowingly prints out D.

This attack assumes that the victim program coincidentally
happened to work in favor of the hardware Trojan, which may
not be the case in reality. However, the adversary can use the
same attack methodology to write his own malicious program
with the knowledge of the address (T ) which the Trojan uses
as a trigger, the number of accesses required to trigger the
Trojan (N), and the location of the data of the victim process
in physical memory which he is trying to leak. The secret data
may be in the kernel (e.g., page tables) or in other processes
that have a presence in the physical memory. We discuss these
attacks in Section VI-B.

B. Attack Demonstration
We demonstrate the attack with the help of a simple C

program shown in Listing 1. We assume that the program itself
is the victim and contains some sensitive “secret” data that the
adversary is trying to leak. In the code, addr_t is used as the
trigger address location (T ). This is first initialized (written)
with the data “TRIGGER DATA.” The location (S) for the
sensitive data (D) is allocated in the heap as addr_s. The
data to be leaked (D) is represented as “SECRET DATA!”
and is copied to addr_s. A public data location (P) is also
allocated on the heap as addr_p, and the data ‘PUBLIC
DATA’ is copied to it. The sizes of the allocated memory
pointed to by addr_s and addr_p are large enough so that
they are in different pages but at the same offset in the pages,
and thus have different TLB entries.

We initially loop over and read the Trojan trigger address
addr_t 2000 times, which is greater than the minimum
accesses required by the Trojan trigger as set by NSET.
This Trojan trigger monitors the L1 data cache line mapped
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Listing 1. Example attack code using the Hardware Trojan.

to addr_t. After NSET (= 1837) accesses, the Trojan is
triggered, and a signal is sent to the TLB to perform the
malicious mapping. Once triggered, the signal stays asserted
for several microseconds to facilitate the attack. In the TLB,
the Trojan payload is placed at the entry corresponding to
addr_p by resetting the PFN field in the entry to the PFN
for addr_s. The frame for addr_s stores the secret in
physical memory. After the TLB receives the signal to deploy
the payload, it performs this malicious mapping. Now when
we read from addr_p, it is able to read the secret. We can
see the output of the program in Fig. 14. Before the Trojan is
triggered, reading addr_p prints “PUBLIC DATA.” After
the Trojan is triggered, addr_p can access and readback
“SECRET DATA!.”

C. Evaluation
We model the effects of the hardware Trojan in the

GEM5 architectural simulator [35]. The system is designed

Fig. 14. GEM5 console output for the attack code in Listing 1. P reads
“SECRET DATA” after Trojan activation.

with an AtomicSimpleCPU model running a single core at
1 GHz, connected to a DDR3 physical memory of size
512 MB. Two levels of cache memory are configured, L1 and
L2. L1 I-Cache is 32 KB and L1 D-Cache is 64 KB, while
L2 cache is 2 MB. The MMU in the CPU is configured with
a 64 entry TLB. The GEM5 simulator is compiled and built
targeting X86 architecture.

To simulate the Trojan trigger, we added code to the
readMem() function in the CPU code to monitor accesses to
trigger address addr_t (0x602010). Since the L1 cache is
virtually indexed, we can just monitor the cache line mapped
to the trigger address. For the Trojan payload insertion,
we modified the TLB class code to handle Trojan activation
and deactivation states. We added additional class methods
to deploy the Trojan payload when activated. In the payload
deployment method, a lookup is performed to access the
handle for the TLB trie entry corresponding to the “public”
data address addr_p (0x604010) with VPN 0x604. Using
the trie handle the PFN field (paddr) in the entry is reset to
0x44d, which is the PFN targeted to leak the “secret” data
from. The “secret” data are in addr_s (0x604010), which
is mapped to the physical address 0x44d010. The payload
deployment method is called from the CPU code once the
trigger condition is satisfied.

We compiled the attack demonstration code in Listing 1
with GNU C compiler for X86 architecture. The attack is eval-
uated by running the compiled binary in the GEM5 simulator.
As seen in Fig. 14, we were successfully able to retrieve the
secret data from the process’s address space.

VI. DISCUSSIONS

A. Advanced Hardware Trojan

The Trojan hardware described in this article only exploits
the decoded address for trigger. To lower the probability
of accidental triggering further, a simple logic circuit can
be implemented to generate V (PSET) input of Fig. 2 which
outputs logic 1 (1 V) only if a specific data pattern (let us
say PSET) is sent to the data bus. This will guarantee that the
trigger capacitor gets discharged if the L1 data do not match
the trigger data. For example, let us consider that the data
bus width is 8-bits. Assume that we take four specific data
bits to design the trigger logic, e.g., data[0], data[3], data[4],
and data[6]. The logic circuit will output “1” if these bits are
asserted except data [4] which should be deasserted (Fig. 15).
In practice, data bits with low activation probabilities should be
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Fig. 15. Example of the logic circuit to generate V (PSET) from a specific
data pattern which serves as an input of the proposed Trojan Trigger (Fig. 2).

used to design the trigger logic to lower the overall probability
of assertion unless intended. Note that, even if the AddSET is
asserted NSET times during normal/test conditions, the Trojan
will not be activated since a specific data pattern is required
to assert V (PSET). Note that in this case, the adversary has to
write PSET data pattern to AddSET for the first time and then
keep reading it to charge the trigger capacitor incrementally.
To detect such triggers, the test methodology becomes very
complex, since all possible bit combinations have to be tried
for repeated times for each location of memory. This results
in an exponential test-time complexity.

B. Attack Opportunities

Our simple simulated HarTBleed attack can be extending
to other possible exploits crafted using the hardware Trojan.

1) Reading Data From Other Processes: In this attack,
the goal of the adversary is to extract data from processes
that he does not have access to. For example, in a multiuser
system, a user (victim) may be running his personal financial
application. The adversary, as a second user on the system
does not have access to the victim user’s financial application,
but he wants to gain access to that application process when it
is used by the victim user. To design the exploit, the adversary
can write his own attack program similar to Listing 1 with the
knowledge of the Trojan trigger and payload specifications.
The adversary’s attack program and the finance application
process pages simultaneously reside in the physical memory.
If the Trojan payload PFN maps to the pages of the finance
application, then the adversary can trigger the Trojan using
his attack program and then force the mapping of one of
his own virtual pages to the physical page of the finance
application. In this way, he will be able to read out data from
the address space of the finance application process. This is
shown in Fig. 16, where S may be on a page located in the
stack or heap of the victim process. The trigger addresses T
and the adversary controlled address P are in the adversary’s
malicious process.

2) Reading Data From Shared Memory Locations: In this
attack, the goal of the adversary is to gain access to memory
locations that are shared between processes. Assuming ASLR
is off, it is possible to know the location of the shared memory.
For example, dynamic linked libraries and files read from disk
are mapped to the mmap region of the address space. The
pages from the mmap region are shared between multiple
processes. At the design time, the Trojan payload can be
designed to map to the pages of the mmap region in physical
memory. A victim process may request access to a sensitive
database file. The request is served by the kernel by mapping

Fig. 16. Using HarTBleed to leak data from other processes. T and P ae
in adversary’s process, while S is in the victim process. Depending on the
memory segment (stack, heap, mmap, kernel) where the page of S is located,
the TLB entry of P can be made to point to the frame of S in physical
memory to gain access to data from the page of S.

the contents of the file to the mmap region. The adversary in
this case can write his attack program to trigger the Trojan
and map one of his own pages to the mmap page containing
the contents of the database file in physical memory, thereby
gaining access to the sensitive data. As shown in Fig. 16, S
may be residing in the mmap segment. Adversary can use the
Trojan to map his P to point S in the TLB.

3) Reading Data From System Kernel: In this attack,
the adversary tries to gain access to sensitive kernel data such
as page tables from kernel memory. The kernel space in the
virtual memory is mapped to a fixed location in the physical
memory. For example, in a 32-bit address space, the higher
order 1 GB used as the kernel space is mapped exactly to the
higher order 1 GB in the physical memory. Thus, it is possible
to determine the location of kernel data in physical memory.
The Trojan payload can be designed to point to the pages
corresponding to kernel space, and the adversary can write
his attack code and launch the exploit as before. In Fig. 16, S
may be an address in the kernel space. Although in the figure,
S is shown to be in the victim process, it should be noted that
the kernel space is shared across all processes since they map
to the same region in the physical memory. However, there is
a high possibility that this attack may be thwarted since a user
mode process is trying to gain access to data which is only
accessible in kernel mode. To circumvent this issue, the Trojan
can be made to change or bypass the CPU status register that
sets the protection rings or execution modes.

4) Resetting Multiple TLB Entries: The adversary can be
provided with greater control of page frames to leak from
the memory by using a hardware Trojan capable of condi-
tionally resetting multiple TLB entries (refer to Section III-D
for hardware details). The Trojan is designed with multiple
trigger addresses (T1, T2, etc.), and corresponding target victim
addresses (S1, S2, etc.). Then, depending on the page frame in
the physical memory where the sensitive data are mapped (for
S1, S2, etc.), the adversary can craft his attack by choosing one
of his controlled address (P1, P2, etc.) for deploying the Trojan
payload and triggering the Trojan using the corresponding
trigger address. The payload deployment circuit can then
choose the required TLB entry based on the trigger address
and map to the victim frame. If the adversary is unsure of the
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location of the sensitive data, he can hit-and-try all the triggers
to reset multiple TLB entries at the same time.

C. Possible Issues or Limitations
HarTBleed has few limitations that may present challenges

to an adversary in launching the exploits.
1) Context Switching: We have assumed that the Trojan

payload in the TLB remains active while the adversary is
carrying out the attack. However, there may be a context
switch after the payload is deployed and before the adver-
sary is able to access the sensitive data. During the context
switch, if the TLB is flushed, the deployed payload may be
removed and later reverted to the original mapping from the
corresponding PTE when the adversary’s process comes into
context. In this case, the adversary may not be able to read the
secret data. The adversary may have to run his attack multiple
times in order to be successful. This limitation is somewhat
alleviated when the TLB uses the ASID fields to cache PTEs
of multiple processes at the same time, since the TLB may
not be flushed or invalidated as frequently.

2) Detection/Faults During Attack: Gaining access to ker-
nel data may also prove difficult, as mentioned before. The
CPU runs processes in different protection rings or modes
of operation. For example, in X86 architecture, kernel runs
in ring 0 (highest privilege), while user processes run in
ring 3 (least privilege). These protection rings are enforced
in hardware using registers, which specify the current mode.
This is to ensure that code executing in user mode cannot
do something outside its purview, such as accessing data from
kernel pages. Such actions result in a trappable exception being
thrown, which terminates the process. These protection rings
can be bypassed if a Trojan is designed specifically to do that
transparently in the hardware.

3) Caching Effects: We have assumed a virtually indexed,
physically tagged (VIPT) L1 data cache, since that is most
commonly used in modern cache architectures [36], [37]. Here,
the virtual page number of the address is used to index the
cache and lookup the data for faster access. Simultaneously,
the virtual address is also sent to the TLB for address
translation, so that the page can be retrieved from the lower
levels of memory hierarchy in case the data are not already
present in L1. This is an advantage that works in favor of the
Trojan trigger, since it is easier to infer the cache line mapped
to the trigger address. However, the L1 cache may already
have a valid mapping for the adversary-controlled (public data)
address. In such a scenario, even after deploying the Trojan
payload to reset the PFN of public data address to map to that
of the victim (secret data) address, that mapping may not be
used to retrieve the secret data from physical memory, if the
adversary controlled address already has a valid mapping in
L1, containing the original data in that address. In this case,
the adversary may not be able to read the secret data. However,
L1 caches are typically very small, which will eventually
replace the cache line mapped to the adversary-controlled
address with a different mapping to accommodate data from
other memory locations. Once that cache line is remapped,
accessing the adversary-controlled address will force the use
of the maliciously mapped TLB entry and retrieve the secret

data from the lower levels of memory hierarchy (such as
the L2 or L3 caches which are physically indexed, or the
physical memory). However, if the L1 data cache is not VIPT,
it becomes difficult for the adversary to gain access to his
controlled addresses. In such cases, the adversary has to infer
the virtual-to-physical translation using other means [38], [39].

4) Address Space Randomization: In order to effectively
obtain the secret data from a process, the adversary needs to
know the location of the data in the address space. However,
ASLR is a commonly deployed technique that randomizes the
locations of the different memory segments in the address
space. Typical ASLR deployments randomize the memory-
mapped segment. This can create a challenge for the adversary,
since it will be difficult to know the location of the secret
data, if the goal is to obtain the data from the mmap segment.
OS kernels may also enable KASLR [40], which randomizes
the pages in the kernel space. ASLR may be circumvented
if there is an existing disclosure vulnerability in the process.
Sophisticated attacks [41], [42] have also been shown to thwart
ALSR in modern systems.

D. Detecting/Preventing Trojan Attacks

1) Address Scrambling: Since the adversary exploits a pre-
defined memory address to trigger the Trojan, we can scramble
the logical to physical address mapping [fixed or generated
from a physically unclonable function (PUF)]. This adds a
layer of complexity on the attacker to hit the predefined
physical address. Randomizing memory-to-cache mapping
dynamically has also been shown to be effective in preventing
side-channels in the cache [43].

2) Small Validated ECC for TLB: A carefully validated and
optically inspected ECC (free of Trojan) can be used to store
the ECC for each memory word. If the Trojan performs fault
injection/DoS, the ECC will detect it.

3) Analysis of Memory Images During Testing Phase:
Memory Trojans are visually tedious to identify due to replica-
tion of a large number of memory instances. Machine learning
can be applied to analyze the memory bank images to identify
anomalies. This approach can worsen the test/validation time.

4) Temperature/Voltage Modulation During Post-Silicon
Test: Higher operating voltages accelerate the trigger by low-
ering NSET. Therefore, the Trojan could be triggered quickly
and be detected. Similarly, higher temperatures lower the NSET
and aid in detection. At 1.5 V and T = 90 ◦C, NSET reduces
from 1837 to 187 for the nominal design. Furthermore, for
the worst case process corner which is SPFN, NSET becomes
23 for Vdd = 1.5 V and T = 90 ◦C. Few points to note here
are: 1) we have used a 22-nm PTM model for the transistors
used in this work where the nominal voltage is 0.95 V [44].
Therefore, using 1.5 V might cause oxide breakdown and
other device issues; 2) considering process variation, lowest
NSET can be 23 and the tester can detect few chips out
of a bulk with potential Trojans if all the addresses of all
chips are hammered at least 23 times; 3) tester still needs to
figure out the unique data pattern for effective hammering (for
the advanced Trojan) which can be difficult. For example, there
are 2512 combinations to try with for a 512-bit cache line.
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VII. CONCLUSION

In this article, we presented HarTBleed, an attack method-
ology that uses hardware Trojans to gain access to sensi-
tive data from a process’s memory. We used a capacitor-
based hardware Trojan that can monitor accesses to a pre-
selected wordline in SRAM-based L1 cache and proposed
payloads to reset TLB entries by fault injection. We ana-
lyzed the HarTBleed hardware for robustness to ensure post-
Silicon test evasion. Finally, we also designed an HarTBleed
system exploit using an attack code taking advantage of
the Trojan and demonstrated successful data leakage in the
GEM5 simulator.
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