
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Multi-Layer Decomposition of Network Utility
Maximization Problems

Nurullah Karakoç , Graduate Student Member, IEEE, Anna Scaglione , Fellow, IEEE,

Angelia Nedić , Member, IEEE, and Martin Reisslein , Fellow, IEEE

Abstract— We describe a distributed framework for resource
sharing problems that arise in communications, micro-economics,
and various networking applications. In particular, we consider
a hierarchical multi-layer decomposition for network utility
maximization (ML-NUM), where functionalities are assigned to
different layers. The proposed methodology creates solutions
with central management and distributed computations to the
resource allocation problems. In non-stationary environments, the
technique aims to respond quickly to the dynamics of the network
by decreasing delay by partially shifting the communication
and computational burden to the network edges. Our main
contribution is a detailed analysis under the assumption that the
network changes are on the same time-scale as the convergence
time of the algorithms used for local computations. Moreover,
assuming strong concavity and smoothness of the users’ objective
functions, and under some stability conditions for each layer,
we present convergence rates and optimality bounds for the
ML-NUM framework. In addition, the main benefits of the
proposed method are demonstrated with numerical examples.

Index Terms— Distributed computation, network resource allo-
cation.

I. INTRODUCTION

IN THIS paper, we revisit the classic problem of allocating
resources in a network with many users through decom-

position into interacting layers with a central mechanism that
distributes resources among these different users based on their
demand profiles. The formulation was inspired by our recent
work on coordination of radio access networks (RANs) using a
Software Define Networked (SDN) orchestrator at the network
backhaul [2]–[4]. RANs include a devices layer and a layer
for radio nodes (e.g., cellular base stations (eNBs) and Wi-
Fi access points (APs)), and interact with a layer of gateways
(e.g., baseband processing units (BBUs)), as well as additional
layers for switches and core network entities. Unlike [2]–[4],
this paper focuses on building the theoretical groundwork, for-
mulating the problem in abstract terms and studying in depth
its performance. The abstract decomposition we consider finds
other applications in, for instance, the optimal distribution of a
product among warehouses for several retailers [5], the optimal
caching of content on Internet servers [6], or the optimal
allocations in transactive energy markets [7].

Manuscript received November 12, 2018; revised September 27, 2019 and
April 1, 2020; accepted June 10, 2020; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor J. Shin. This work was supported in part
by the NSF under Grant CCF-1717391 and Grant NeTS-1716121 and in part
by the ONR under Grant N000141612245. This article appears in part in the
proceedings of the IEEE Conference on Decision and Control, Miami Beach,
FL, USA, Dec. 2018. (Corresponding author: Nurullah Karakoç.)

The authors are with the School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ 85287 USA (e-mail:
nkarakoc@asu.edu; anna.scaglione@asu.edu; angelia.nedich@asu.edu;
reisslein@asu.edu).

Digital Object Identifier 10.1109/TNET.2020.3003925

In all of these contexts, different layers of intermediate
entities exist naturally, due to the structure of the service and
of the control framework. It is clear that delegating all the
decisions to a central controller is not reasonable. In order
to scale, any mechanism for coordination must decompose the
resource allocation problem in a way that limits the control
signaling overhead between these entities, while at the same
time being able to respond rapidly to changes in resources
demand or supply.

Resource allocation problems have been extensively studied
in the literature, especially under the network utility maximiza-
tion (NUM) framework, where fair resource allocation to het-
erogeneous users is formulated as a convex problem [8], [9].
Within the NUM literature, a variety of decentralized solutions
(surveyed in [10]) have been presented with different assump-
tions and setups. These solutions commonly use the method
of parameter exchanges between edges and the central control
to build a decentralized implementation corresponding to the
mathematical decomposition of the problem (see [11], [12]
for various decomposition techniques). An important issue in
these solutions is the relationship between the time scales
of the computations and the demand changes. The common
assumption is that the convergence time of the proposed
methods is much shorter than the time for changes to occur
in the demand; in other words, the demand is assumed to be
static during the execution of the methods. This assumption,
referred to as time-scale separation, separates the optimization
procedure from the demand profile dynamics and works well
when the demand is relatively stable. In [13], the stability
region of a dual optimal flow control algorithm is studied for
the case where the time-scale separation assumption is relaxed
such that the number of users changes with the arrival and
service rates of a Markovian queueing model.

The time-scale separation assumption can be problematic in
real systems, as it may lead to outdated optimal distributions
that are not optimal for the current demand. When the network
changes are on the same time-scale as the convergence time
of the gradient method type algorithms, errors occur in the
gradient vectors which lead to perturbations from the ideal
trajectory of the iterations. Errors in optimization methods
have been the focus of substantial research. Specifically, erro-
neous gradient methods have been studied extensively. Strong
convergence rate results have been characterized in [14] with
diminishing step size and Lipschitz gradients for stochastic and
deterministic errors. Nedić and Bertsekas have focused on the
effect of deterministic noise on subgradient methods in [15],
and characterized the convergence properties for various step
size selections. The effects of estimation errors on the dual
variables in a dual-gradient flow control scheme have been
analyzed in [16]. Zhang et al. have investigated the impacts
of stochastic noisy feedback on distributed NUM in [17] with

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8892-3680
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0001-5428-3921
https://orcid.org/0000-0001-9365-6321

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

a particular focus on primal-dual algorithms with diminishing
step size. Also, [18], [19] have studied imperfect parameter
passing in distributed algorithms for different applications.
When we remove the time-scale separation assumption, the
optimal solution changes within time. Some fundamental
results have been derived by Popkov in [20] for the asymptotic
behavior of gradient methods in non-stationary environments.
Xi and Khan have studied distributed dynamic optimiza-
tion over directed graphs in [21], and presented an algo-
rithm converging linearly to an error bound in non-stationary
environments under strong convexity and Lipschitz gradient
assumptions for objective functions.

A. Contributions

In this paper, we propose a hierarchical decomposition
approach to the resource allocation problem by introducing
slack variables and using the idea of clustering nodes at each
layer of the hierarchy. The distributed algorithm proposed to
solve the resource allocation problem is based on projected
gradient iterations. The idea behind the approach is simple:
with the slack variables, we create multiple layers between
the end-users and the central controller. At the lowest layer
are the users which are clustered under the nodes in higher
layers; the nodes in a higher layer act as distributors for the
lower layer elements in their cluster.

In terms of analysis of our multi-layer algorithm, our tech-
nical contributions are as follows. First, we generalize results
for the standard two-layer case and prove that the multi-layer
algorithm achieves linear convergence rate for constant step
size under some concavity and smoothness assumptions on
the utility functions and show under what conditions the
latency of the multi-layer algorithm is lower than that of the
two-layer counterpart (in Sec. III). Second, we provide novel
error bounds characterizing the sub-optimality of the solutions
produced by the algorithm in dynamic allocation scenarios
(in Sec. IV). Finally, in Sec. V, we corroborate the analysis
with numerical results that clearly illustrate the benefits of
the decomposition and confirm the trends expected from the
theoretical study.

II. PROBLEM FORMULATION

Consider a network of N users, each with the objective
to maximize his/her own (scalar) utility function. The users’
decisions are coupled through a common resource, whereby
the amount of total resource is limited by Rtot. We can
formulate this resource allocation problem as follows:

max
xs∈Is

N∑
s=1

Us(xs) s.t.
N∑

s=1

xs ≤ Rtot, (1)

where s denotes the user index, xs is the amount of resource
consumed by the sth end-user, Is = [ms, Ms] is the interval
representing the local constraints for user s, with 0 ≤ ms <
Ms, and Us(xs) is his/her utility function. We denote by x the
vector of users’ resources, i.e., x = (x1, x2, . . . , xN)� where
[·]� denotes the transpose operation.

Replacing xs by y1
s , we define the L-layer decomposition

problem as follows:

max
y

N∑
s=1

Us(y1
s)

s.t. yL
1 = Rtot, ms ≤ y1

s ≤ Ms, s = 1, . . . , N,

∑
s∈Sn

�

y�
s ≤ y�+1

n , n = 1, . . . , N�+1, � = 1, . . . , L − 1,

(2)
which includes L − 2 sets of slack variables. Here, the
end-users (bottom) layer is called layer-1 (corresponding to
� = 1), the central distribution layer (top) is called layer-L
(with index � = L). The scalar y�

s represents the total resource
of the sth node in layer-� for s = 1, . . . , N�, where N� denotes
the number of nodes in layer �. These nodes are partitioned
into N�+1 disjoint sets Sn

� that represent all the nodes that
are connected with node n of the layer � + 1 above layer
�. Naturally, N1 = N and NL = 1. We assume that each
element from layer � is only connected to one node in layer
�+1. With y we denote the vector of resources for all layers.
Fig. 1 illustrates an example with a 3-layer architecture.

A given node in a higher layer acts as a distributor of
resources to the nodes in the corresponding cluster in the
lower layer. When these layers have no constraints other than
just feasibility relations as in (2), the problems (1) and (2)
are equivalent. This decomposition is useful since it naturally
reflects modules and boundaries that are present in a com-
munication network architecture. Hence, the computational
resources that can tackle the intermediate problems are already
in place, they simply currently do not dynamically co-optimize
their shares of resources. Also, geographical clustering is
natural in network services, and in this case the clusters
represent main control points in each region.

In the distributed solutions of problems (1) and (2), each
layer is responsible for their local computations, and the
coordination among them is carried out by parameter passings
between these layers. These computations, in general, are
iterative, where upper layer elements in each iteration use
the results of the lower layer’s multiple iterations due to
the nature of the solution procedure. Hence, the iterations
in upper layers use slower time-scales since they need to
wait for lower layer iteration results. Therefore, the main
controller/distributor needs to wait for the transmissions of
the parameters from the end-users in the classic setup in (1).
However, in multi-layer decomposition, instead of commu-
nicating with all the users, the main controller only gathers
information from the sub-controllers (intermediate layer enti-
ties). Assuming the latency in a link is proportional with the
distance and the number of nodes communicating in parallel,
by shifting the computational and communication burden to
the sub-entities, multi-layer decomposition can reduce the
latency, leading to faster iterations at the top layer. In the next
section, we introduce distributed algorithms and analyze their
convergence properties.

III. DISTRIBUTED ALGORITHM AND ITS CONVERGENCE

We make the following assumptions:
a.1) Utility functions Us are increasing, strictly concave, and

twice continuously differentiable on the interval Is =[ms,Ms].
a.2) The curvatures of Us are bounded away from zero such

that −Üs(xs) ≥ 1/αs > 0 for all xs ∈ Is, where Üs denotes
the second derivative of Us.

a.3) A feasible solution exists, i.e., Rtot ≥
∑N

s=1 ms.
For example, some TCP algorithms considering fair alloca-

tion in networks [10], [22] have utility functions belonging to
a group of functions parametrized with a scalar as > 0

Us(xs) =
{

ws log xs, as = 1
ws(1 − as)−1x1−as

s , as �= 1,
(3)

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 3

where weights ws > 0 and 0 < ms < Ms for all xs ∈ Is.
A utility function selected from this group satisfies a.1 and
a.2. Another example of the utility functions satisfying these
assumptions can be Us(xs) = ws log(1 + xs) where ws > 0
and 0 ≤ ms < Ms. As an additional property, this function
results in nonnegative utilities for all xs ∈ Is.

Before discussing our multi-layer decomposition algorithm
in Section III-B, we first review the conventional two-layer
decomposition method (see e.g., [9]) and its performance
guarantees in the next section.

A. 2-Layer Algorithm and Convergence Results

Distributed optimization algorithms for solving problem (1)
that come from the dual decomposition are based on writing
the Lagrangian function arising from the relaxation of the total
resource constraint as a separable problem, i.e.,

L(x, λ) =
N∑

s=1

Us(xs) − λ

(N∑
s=1

xs − Rtot

)

=
N∑

s=1

(
Us(xs) − λxs

)
+ λRtot, (4)

where λ is the Lagrange multiplier. The dual objective is:

g(λ) = max
xs∈Is,1≤s≤N

L(x, λ) =
N∑

s=1

fs(λ) + λRtot, (5)

where for each user s = 1, . . . , N ,

fs(λ) = max
xs∈Is

{Us(xs) − λxs} (6)

and the dual problem is

min
λ≥0

g(λ). (7)

The decentralized implementation finds the optimal resource
allocation xs of the subproblems in (6) for a given Lagrange
multiplier λ, while the optimum value of λ in (7) is found via
a gradient projection algorithm. Specifically, the iterations for
λ are:

λ(t + 1) =
[
λ(t) − γ

∂g(λ(t))
∂λ

]+

=

[
λ(t) + γ

(N∑
s=1

x∗
s(λ(t)) − Rtot

)]+

, (8)

where γ > 0 denotes the step size and [·]+ represents the
projection onto the nonnegative orthant. Furthermore, x∗

s(λ)
denotes the solution to subproblem (6) for a given λ, i.e.,

x∗
s(λ) = [U̇−1

s (λ)]Ms
ms

, (9)

where U̇−1
s is the inverse function of U̇s which denotes the

derivative of the utility function for end-user s, and [·]Ms
ms

is
the projection onto set Is, i.e., [z]ba = min(max(z, a), b).

In a nutshell, the algorithm works as follows. Each user
updates optimal resources x∗

s(λ) for a given λ according to
(9) and passes this value to the central controller. Then, the
controller updates the price λ according to (8) and passes
this value to the users. This process continues iteratively until
some convergence criterion is satisfied. The typical analogy
is the law of supply and demand from economics. Each user
gets resources with price λ with cost λxs. Then, each user

maximizes the utility function minus cost for a given price λ
and decides on his/her optimal resource allocation xs(λ). The
central distributor, on the other hand, decides on the optimal
price λ∗ by increasing or decreasing it according to the total
supply Rtot and demand

∑N
s=1 xs.

The convergence of the algorithm is shown in [9, Thm. 1]
with a different problem setup which includes link con-
straints without specifying the convergence rate. Note that,
by using (4) and (7), we can find the second derivative of the
dual objective function g(λ):

∂2g(λ)
∂λ2

= −
N∑

s=1

∂x∗
s(λ)
∂λ

, (10)

where, from (9), we have

∂x∗
s(λ)
∂λ

=

1
Üs(x∗

s(λ))
, for U̇s(ms) ≥ λ ≥ U̇s(Ms),

0, otherwise.
(11)

From a.2, it follows that

0 < − 1
Üs(x∗

s)
≤ αs < ∞ for all s. (12)

Next, we define α = maxs(αs). Under assumptions a.1 and
a.2, following the analysis that is similar to that of [9], it can
be shown that g(λ) has Lipschitz gradients with a constant
Nα. Under assumptions a.1–a.3, the dual problem (7) has a
nonempty solution set Λ∗, and we have:
Theorem 1: Under assumptions a.1–a.3, the method (8)

with a constant step size 0 < γ ≤ 1/(Nα) produces iterates
such that limt→∞ g(λ(t)) = g∗, and its convergence rate is
sub-linear with O(1/t):

g(λ(t)) − g∗ ≤ 1
2γt

‖λ(0) − λ∗‖2
, ∀λ∗ ∈ Λ∗, t ≥ 0,

where g∗ denotes the dual optimal value and λ(0) ≥ 0 is the
initial iterate value.1

Since a larger step size makes the bound smaller, given the
condition 0 < γ ≤ 1/(Nα), the best choice is γ = 1/(Nα).
With this selection, we obtain

g(λ(t)) − g∗ ≤ Nα

2t
‖λ(0) − λ∗‖2

. (13)

Thus, if we are interested in an ε = g(λ(t))− g∗ approximate
solution, then we need a number t of iterations to satisfy t ≥
Nα(d(0))2

2ε , where d(0) = ‖λ(0) − λ∗‖ for a λ∗ ∈ Λ∗.
Corollary 1: The primal variables in (9), i.e., the alloca-

tions x∗(λ) = [x∗
1(λ), . . . , x∗

N (λ)]� converge to the optimal
allocations x∗(λ∗)=[x∗

1(λ
∗), . . . , x∗

N (λ∗)]� with O(1/
√

t):

‖x∗(λ(t)) − x∗(λ∗)‖ ≤
√

Nα ‖λ(0) − λ∗‖√
t

. (14)

In addition, constraint violations diminish with O(1/
√

t):∥∥∥∥∥
N∑

s=1

x∗
s(λ(t)) − Rtot

∥∥∥∥∥ ≤ Nα ‖λ(0) − λ∗‖√
t

. (15)

The derivation of this corollary is given in Appendix A.2

1Here, we modify the convergence theorem in [9, Thm. 1] to get a
convergence rate by using [23, Thm. 3.1].

2Similar convergence rates are obtained for conic convex problems with
dual methods in [24], where faster rates can be achieved by using various
averaging schemes [24], [25].

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. 3-Layer Decomposition Structure: xs denotes the allocated resources
to user s, and yo denotes the resources of operator o.

B. A 3-Layer Distributed Algorithm and Convergence Results

We introduce the multi-layer decomposition algorithm with
the simplest case. Assume we have the 3-layer decomposition
structure for a resource sharing problem as in Fig. 1. Note
that for the general multi-layer case, we adopt the notation
introduced in Sec. II, specifically in (2). However, for the
specific 3-layer case, as shown in Fig. 1, to avoid using
superscripts we use xs, yo, Z instead of y1

s , y2
o , y3

1 , respectively,
and µo and λ, as the dual variables, which later will be denoted
as λ1

o and λ2
1 in the general multi-layer case in Sec. III-C.

In the architecture, we have one controller on the top layer
which has a fixed total resource Rtot = Z to share. In the
middle layer, we have O nodes, which we will refer to as the
operators. The resource allocated to the operator with index
o = 1, 2, . . . , O, is denoted by yo. In the bottom layer, we have
end-users connected to operators, whereby So represents the
set of end-users connected to operator o. To highlight the
differences among the intermediate layer and the top and
bottom layers, we will refer to yL

1 = Rtot = Z for the top
layer and use directly xs rather than y1

s for the bottom layer,
while for the 2nd (intermediate) layer we will omit the layer
superscript � = 2 and simply refer to the variables as yo. More
specifically, the optimization problem becomes:

max
x∈I,y≥0

O∑
o=1

∑
s∈So

Us(xs)

s.t.
O∑

o=1

yo ≤ Z,
∑
s∈So

xs ≤ yo, o = 1, . . . , O, (16)

where x,y denote the resources of all nodes in the bottom
layer and middle layer, respectively. Here, I is the Cartesian
product of the feasibility intervals Is = [ms, Ms]. Relaxing
the constraints, we can write the Lagrangian as:

L(x,y, µ, λ) =
O∑

o=1

∑
s∈So

Us(xs) −
O∑

o=1

µo

(∑
s∈So

xs − yo

)

−λ

(O∑
o=1

yo−Z

)
, (17)

where µ is the column vector with entries µo for o = 1, . . . , O.
Moreover, µo is the Lagrange multiplier associated with the
feasibility constraint

∑
s∈So xs ≤ yo for each o = 1, . . . , O,

which couples layers 1 and 2. The Lagrange multiplier λ
is associated with the feasibility constraint

∑O
o=1 yo ≤ Z ,

coupling layers 2 and 3.
We can write the objective of the dual problem as:

g(λ, µ) = max
x∈I,y≥0

L(x,y, µ, λ)

=
O∑

o=1

∑
s∈So

fs(µo) +
O∑

o=1

ho(µo, λ) + λZ, (18)

where

fs(µo) = max
xs∈Is

{Us(xs) − µoxs}, (19)

ho(µo, λ) = max
yo≥0

yo(µo − λ), (20)

and the dual problem is

min
λ≥0,µ≥0

g(λ, µ). (21)

Let θ = (x�,y�, µ�, λ)�. We can rewrite the dual problem
in (21) as

min
λ≥0

min
µ≥0

max
y≥0

max
x∈I

L(θ) = min
λ≥0

max
y≥0

min
µ≥0

max
x∈I

L(θ), (22)

where we use the separability over variables of both the primal
and dual problems in the first step and the minimax theorem3

to exchange the order of the middle two optimizations in the
second step. With this substitution, we obtain an optimization
order from the bottom layer to the top layer, as shown in Fig. 1.
This optimization order leads to local resource allocation
subproblems for the operators that can also be solved in a
distributed manner.
1) Distributed Solution: In order to describe the algorithm

updates, it is important to notice that in general, multiple
iterations are necessary to solve the optimum resource allo-
cation for any given set of values of the dual variables that
are associated with the constraints. Let us assume that there
are k updates of the dual variables µo before a new update
of the resource variable yo, and that yo is updated k′ times
before the global price λ is updated. We can define the state
of the optimization θ(t) as follows:

θ(t) =
(
x�(t),y�(
t/k�), µ�(t), λ(
t/kk′�))� , (23)

where
·� denotes the floor function.
In analyzing the problem, we also assume that not all of the

users’ optimal allocations (as solution of (19) for s ∈ So) are
at the boundary points:

a.4) The sets Co
1 = {s ∈ So : U̇s(Ms) < µ∗

o(λ,y) <
U̇s(ms)} are not empty for o = 1, . . . , O, where µ∗

o(λ,y)
denotes the optimal solution of minµ≥0 maxx∈I L(θ) for
fixed λ and y.

Based on a.1-a.4, we can write the update rules, for every t:

xs(t) = [U̇−1
s (µo(t))]Ms

ms
, (24)

µo(t + 1) =
[
µo(t) − γ′′

o

∂L(θ(t))
∂µo

]µo

µ
o

=

[
µo(t)+γ′′

o

(∑
s∈So

xs(t)−yo

(
t/k�)
)]µo

µ
o

, (25)

and for every integer i when t = ik:

yo(i + 1) =
[
yo(i) + γ′

o

∂L(θ(ik))
∂µo

]yo

y
o

=
[
yo(i) + γ′

o

(
µo(ik) − λ(
i/k′�))]yo

y
o

, (26)

3We use compact convex sets as domains of the optimization variables by
introducing projection boundaries later.

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 5

Fig. 2. Time-scale of updates for different iterations. The increasingly coarser
time indices t, i, and j index the updates of the local resource prices µ, the
operator resources y, and the global price λ, respectively.

and every integer j when t = jkk′:

λ(j + 1) =
[
λ(j) − γ

∂L(θ(jkk′))
∂λ

]λ

λ

=

[
λ(j) + γ

(O∑
o=1

yo(jk′) − Z
)]λ

λ

, (27)

where µo = maxs∈So U̇s(ms), µ
o

= mins∈So U̇s(Ms),
yo =

∑
s∈So Ms, y

o
=

∑
s∈So ms, λ = mino µo, and λ =

maxo µ
o
. These projection boundaries are implied by assump-

tion a.4 and the feasibility constraints. Also, γ, γ′
o, γ

′′
o > 0

represent different constant step sizes.
Overall, the algorithm ideally works as follows. In the bot-

tom layer, the end-users find the optimal amount of resources
x∗

s for a fixed local price µo, a fixed operator resource supply
yo, and a fixed global price λ, by using (24). The calculated
optimal resource values are then passed to the operators they
connect to. Then, the operator o sets a new local price µo based
on its total supply yo and the optimal resources xs requested
from the nodes in the lower layer, according to (25). These
exchanges continue until the operator comes sufficiently close
to the optimum local price µ∗

o for the fixed values of yo and λ.
Then, by using the optimum local prices and general market
price λ, the operator iterates the calculation of its resource
supply amount yo according to (26) and uses the iteration
outcome to calculate a new optimum local price µ∗

o. This
continues until convergence to a value close to the optimum
y∗

o for the given global price λ. Then, similarly, by using
these operator resource request values y∗

o and the total resource
supply Z , the top layer updates the global price λ, at which
point all the iterations by the lower layers are repeated with
this new λ. The parameter exchanges and iterations continue
until some convergence criterion is satisfied.

Extending the analogy with the law of supply and demand
from economics, each distribution network connected to an
operator with total resource yo represents a local market
establishing a local price µo. These operators are connected
to the main distributor which represents the global market.
The multiplier λ represents the global market price and,
at convergence, the local prices coincide with the global
price, unless there are specific constraints for the middle layer
other than those that come from the decomposition. Fig. 2
shows the different time indices of the different iterations in
a toy example4 where k = k′ = 3. Section IV focuses on
establishing “how fast is fast enough” for the updates in these
timescales in order to guarantee the stable performance of the
algorithm.
2) Latency Gain: To measure the benefits of the multi-layer

design in terms of response time, we compare a two-layer
architecture where the N users interact directly with the central
controller sharing a control channel c, with a three-layer
system where N users are equally split under the control of O

4The selection of k = k′ = 3 is for illustration purposes only. We note
that, in general, each layer needs more iterations to get sufficiently close to
the optimal points.

operators (i.e., each operator has the same number of users)
and the operators use the same channel c of the two-layer
system to communicate to the central controller, while the end
users use a faster control channel c′ (as operators are closer to
the users) to interact with their respective operators. To carry
out the comparison without entering into the specifics of how
the control channel is realized, we can reasonably assume that
for a control channel of fixed total capacity, the average delay
grows at a linear rate, ρ for channel c and ρ′ for channel c′,
respectively, with respect to the number of sources that access
the control channel; naturally, for the faster channel c′ the
delay growth rate ρ′ < ρ. Hence, in the two-layer system,
the latency for each update of the central controller is ρN . In
the three-layer system, between any two iterations in the top
layer, there are k′ iterations of yo, however, the operators pass
only the last iterate value using the control channel c once.
In addition, there are kk′ iterations at the bottom end-users
which report every iterate value to their respective operators,
each with average latency N

O ρ′. Therefore the total latency
becomes Oρ+ kk′ N

O ρ′. Thus, we gain in latency per iteration
if the ratio δ of these two numbers exceeds one, i.e., if:

δ � N

O + kk′ N
O

ρ′
ρ

> 1. (28)

The condition δ > 1 is equivalent to:

kk′

O

ρ′

ρ
< 1 − O

N
. (29)

We notice that, if the number of operators O is relatively small
compared to the number of users N , and if kk′ is in the order
of O, we have a guaranteed advantage in terms of the latency
gain. Alternatively, if we choose O

N = ρ′

ρ we notice that a

latency gain requires kk′ < N(1 − ρ′/ρ); if kk′
N � ρ′

ρ then
δ ≈ ρ/ρ′, showing that for a particularly large population N
it is easily advantageous to layer the system.
3) Convergence Rates: For the convergence analysis,

in addition to assumptions a1–a3, we also assume that the
curvatures of Us are bounded from above:

a.5) − Üs(xs) ≤ 1/βs < ∞ for all xs ∈ Is. (30)

Let:

α(1)
o = |So|max

s∈So
(αs), β(1)

o = min
s∈So

(βs),

α(2) = O max
o

(α(1)
o), β(2) = O min

o
(β(1)

o), (31)

where | · | denotes the cardinality of a set. Assuming the
problem has a nonempty solution set, we obtain:
Theorem 2: Let a.1–a.5 hold. For fixed λ(j) and yo(i),

the method (25) with constant step size γ′′
o = 2

α
(1)
o +β

(1)
o

produces iterates µo(t) that converge to the optimal solution
µ∗

o := µ∗
o(λ, yo) with a linear rate, i.e., for each o = 1, . . . , O:

‖µo(t) − µ∗
o‖ ≤

(
α

(1)
o − β

(1)
o

α
(1)
o + β

(1)
o

)t

‖µo(0) − µ∗
o‖ . (32)

Assuming that µo(t) converges to µ∗
o in the bottom layer

iterations (i.e., assuming k is large enough), for a fixed λ(j),
the method (26) with constant step size γ′

o = 2α(1)
o β(1)

o

α
(1)
o +β

(1)
o

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

produces iterates yo(i) converging to the optimal solution
y∗

o := y∗
o(λ) with a linear rate, i.e., for each o = 1, . . . , O:

‖yo(i) − y∗
o‖ ≤

(
α

(1)
o − β

(1)
o

α
(1)
o + β

(1)
o

)i

‖yo(0) − y∗
o‖ . (33)

Assuming that yo(i) converges to y∗
o in the middle layer

iterations (i.e., assuming k′ is large enough), the method (27)
with constant step size γ = 2

α(2)+β(2) produces iterates λ(j)
that converge to the optimal solution λ∗ with a linear rate, i.e.,

‖λ(j) − λ∗‖ ≤
(

α(2) − β(2)

α(2) + β(2)

)j

‖λ(0) − λ∗‖ . (34)

Proof: See Appendix B.
Note that k and k′ do not have a direct effect on the rates

of convergence. In fact, Thm. 2 characterizes the convergence
rates for each layer in an ideal scenario where upper layer
values are fixed and lower layer values have converged. This
is equivalent to considering k and k′ large enough so that there
is no error accumulation from the lower layer iterations. For
finite (and possibly small) k and k′ values, the algorithms are
guaranteed to converge asymptotically to the neighborhoods
of the optimal values and the error bounds in Sec. IV specify
the error range.

We observe that, when lower layers converge, the conver-
gence rate of the 3-layer algorithm’s top layer iterations is
the same as that of the 2-layer algorithm convergence rate5

under assumptions a.1–a.5. Therefore, if the numbers of lower
layer iterations k and k′ are sufficiently large, the latency
gain characterized in (28) becomes the ratio between the
convergence times of these two algorithms.

C. Extension to L-Layer Decomposition

As stated earlier, for the generalized L-layer decomposition,
we follow the notation introduced in Sec. II, specifically in (2).
Let y� = (y�

1, . . . , y
�
N�

)� be the resources vector for � =
1, 2, . . . , L, U(y1) =

∑N
s=1 Us(y1

s) be the sum-utility, and
the N�+1 × N� matrices A� be the selection matrices whose
element (n, s) is 1 for a node s in layer � if s ∈ Sn

� and 0
otherwise. Introducing the vectors of dual variables for each of
the nodes in each of the layers λ� = (λ�

1, . . . , λ
�
N�+1

)� (which
denote dual variables associated with the �th layers’ resource
constraints A�y� ≤ y�+1), and:

θ =
(
y
λ

)
, (35)

where λ denotes the vector of all Lagrange multipliers in all
layers, the Lagrangian of problem (2) can be written as:

L(θ) = U(y1) −
L−1∑
�=1

(A�y� − y�+1)
�λ�

= U(y1) − y�
1 A

�
1 λ1

+
L−1∑
�=2

y�
� (λ�−1 −A�

� λ�) + λL−1yL, (36)

where λL−1 and yL are scalars since there is only one element
in the top layer. The objective of the dual problem can be
written as:

g(λ) = f(λ1) +
L−1∑
�=2

h�(λ�−1, λ�) + λL−1yL, (37)

5It can be derived similarly by using relation (87) in Appendix B.

Fig. 3. Decimation factors of time-scales.

where:

f(λ1) = max
y1∈I

(
U(y1) − y�

1 A
�
1 λ1

)
, (38)

h�(λ�−1, λ�) = max
y�≥0

(
y�

� (λ�−1 −A�
� λ�)

)
. (39)

For the layers � = 1, 2, . . . , L − 1, there are k′
� updates of

the layer resource variables y� for every update of the dual
variable λ�, and there are also k� updates of the dual variables
λ� for every y�+1. Therefore, as shown in Fig. 3, with respect
to the index of the fastest updates t at the bottom layer, at each
successive higher layer, the number of updates of the resources
is decimated by a factor p�+1 = k′

�k�p� and the number of
updates of the dual variables is decimated by k′

�p�, with p1 =
k′
1 = 1. Once again, we can define the state of the algorithm

at time index t as

θ(t)=

([
y1(t), y2(
t/p2�), . . . ,yL−1(
t/pL−1�)

]�[
λ1(t), λ2(
t/p2k

′
2�), . . . ,λL−1(
t/pL−1k

′
L−1�)

]�
)

.

(40)

Specifically, the iterations for the dual variables associated
with the �th layers’ resource constraints (A�y� ≤ y�+1) can
be written as a function of the iteration index i as follows:

λ�(i+1) =
[
λ�(i) −G�

∂L(θ(ip�k
′
�))

∂λ�

]λ�

λ�

=
[
λ�(i) + G�

(
A�y�(ik

′
�) − y�+1(
i/k��)

)]λ�

λ�

,

(41)

where G� is an N�+1 × N�+1 diagonal matrix of step sizes
with � = 1, . . . , L − 1. The iterations performed to update
the values of the resource allocations y� correspond to the
recursions:

y�(j+1) =
[
y�(j) + G′

�

∂L(θ(jp�))
∂y�

]y�

y
�

=
[
y�(j)+G′

�

(
λ�−1(jk�−1)−A�

� λ�(
j/k′
��)

)]y�

y
�

,

(42)

where G′
� is an N� × N� diagonal matrix of step sizes with

� = 2, . . . , L − 1, and for � = 1, we have

y1
s(t) = [U̇−1

s (λ1
n(t))]Ms

ms
, s ∈ Sn

1 . (43)

Here, we can specify the projection boundaries with recursive
relations λ

�

n = mins∈Sn
�

λ
�−1

s and λ�
n = maxs∈Sn

�
λ�−1

s for

� = 2, 3, . . . , L − 1, where λ
1

n = maxs∈Sn
1

U̇s(ms) and λ1
n =

mins∈Sn
1

U̇s(Ms). Similarly, y�
n =

∑
s∈Sn

�−1
y�−1

s and y�
n

=∑
s∈Sn

�−1
y�−1

s
for � = 3, . . . , L − 1, where y2

n =
∑

s∈Sn
1

Ms

and y2
n

=
∑

s∈Sn
1

ms. We summarize the algorithmic steps as
Algorithm 1.

The result of Theorem 2 can be extended to the L-layer
decomposition for problem (2). There is a pattern in the
convergence analysis that allows us to obtain the convergence

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 7

Algorithm 1 ML-NUM
-At agent s of layer 1 (bottom layer), ∀s ∈ Sn

2 :
At times t = 1, 2, . . .

Update y1
s with (43) and report it to n of upper layer

-At agent n of layer �, ∀n ∈ So
� , ∀� = 2, . . . , L − 1:

When t mod (k′
�−1p�−1) = 0

1. Receive y�−1
s ’s from the lower layer, ∀s ∈ Sn

�−1

2. Update λ�−1
n with (41) and send it to all s ∈ Sn

�−1

When t mod (p�) = 0
Update y�

n with (42)
When t mod (k′

�p�) = 0
Report y�

n to agent o in the upper layer
-At the agent of layer L (top layer):

When t mod (k′
L−1pL−1) = 0

1. Receive all yL−1
n ’s from the lower layer elements,

2. Update λL−1 with (41) and send it to layer L − 1

rates of all layers for both dual variable updates and allocated
resource updates, similar to 3-layer case (see the details in
Appendix C).

We can introduce a recursive definition of:

α(�)
n = |Sn

� | max
s∈Sn

�

(α(�−1)
s), β(�)

n = |Sn
� | min

s∈Sn
�

(β(�−1)
s), (44)

for � = 2, 3, . . . , L − 1, where α
(1)
n = |Sn

1 |maxs∈Sn
1
(αs) and

β
(1)
n = mins∈Sn

1
(βs). With respect to the dual variables λ�

n
associated with the constraints of the �th layers’ resources∑

s∈Sn
�
y�

s ≤ y�+1
n for n = 1, . . . , N�+1, when the upper

layer parameters are fixed and assuming that the optimal value
y�∗

s (λ�
n) is reached for any λ�

n, the projected gradient method
converges to the optimum solution λ�∗

n with a linear rate, i.e.,
for n = 1, . . . , N�+1:

∥∥λ�
n(i) − λ�∗

n

∥∥ ≤
(

α
(�)
n − β

(�)
n

α
(�)
n + β

(�)
n

)i ∥∥λ�
n(0) − λ�∗

n

∥∥ . (45)

For the resources of the �th layer, y�
s, when the upper layer

parameters and λ�
n are fixed and assuming that λ

(�−1)∗
s (y�

s) is
reached for any y�

s at the lower layer, the projected gradient
method converges to the optimal solution y�∗

s with a linear
rate, i.e., for s = 1, . . . , N�:

∥∥y�
s(j) − y�∗

s

∥∥ ≤
(

α
(�−1)
s − β

(�−1)
s

α
(�−1)
s + β

(�−1)
s

)j ∥∥y�
s(0) − y�∗

s

∥∥ . (46)

IV. DYNAMIC ALLOCATION OPTIMALITY BOUNDS

The results of the previous section show that the individual
iterations at a given layer converge to the optimal points for a
large enough number of iterations, and the optimal results are
forwarded to upper layers for them to use in their iterations as
gradients. In a practical system with a finite (possibly small)
number of iterations, these gradients may have errors and,
hence the ideal case of linear convergence no longer applies.

As shown in (28), increasing k and k′ causes a decrease in
the latency gain. However, they need to be sufficiently large in
order to use the convergence results characterized in Thm. 2 in
practical scenarios. Hence, there is a trade-off between speed
and accuracy. To this end, there is a need for an analysis on
the impact of the selection of k and k′ on the error. In this
section, we first derive some fundamental results on how the

gradient error propagates in one layer and then combine these
results for our multi-layer approach.

A. Projected Gradient Method With Gradient Errors

Assume that we have a projected gradient descent algorithm
with x(t+1) = ΠX

[
x(t)−αg

(
x(t)

)]
where ΠX [·] denotes the

projection onto a feasible set and α is a constant step size. The
used (erroneous) gradient value g

(
x(t)

)
= g∗

(
x(t)

) − E(t),
where g∗

(
x(t)

)
is the correct gradient value (when the lower

layers attain optimum points for a given x(t) in the layered
architecture), and E(t) is the error.
Lemma 1: Let the objective function be m-strongly convex

and L-smooth. Assuming 0 < α < 2
L , the following holds.

a) ‖x(t + 1) − x∗‖ ≤ Υ ‖x(t) − x∗‖ + α ‖E(t)‖ ,
where 0 < Υ = max{|1 − αm| , |1 − αL|} < 1.

b) If ‖E(t)‖ ≤ ε for all t > 0, then

‖x(t) − x∗‖ ≤ Υt ‖x(0) − x∗‖ +
1 − Υt

1 − Υ
αε.

Proof: a) Since 0 < m < L, if 0 < α < 2
L , then

0 < Υ < 1. We characterize the distance from the optimal
point x∗ as

‖x(t + 1) − x∗‖
=

∥∥ΠX

[
x(t) − αg

(
x(t)

)] − x∗− αg∗
(
x∗)∥∥

≤ ∥∥x(t) − αg
(
x(t)

) − x∗ + αg∗
(
x∗)∥∥

=
∥∥x(t) − x∗ − α

(
g∗(x(t)) − g∗(x∗)

)
+ αE(t)

∥∥
≤ ∥∥x(t) − x∗ − α

(
g∗(x(t)) − g∗(x∗)

)∥∥ + α ‖E(t)‖
≤ max{|1 − αm| , |1 − αL|} ‖x(t) − x∗‖ + α ‖E(t)‖ ,

(47)

where we use the non-expansiveness of the projection and the
triangle inequality.

b) Let, di = ‖x(i) − x∗‖. By using Lemma 1.a, we can
write

d1 ≤ Υd0 + αε,

d2 ≤ Υd1 + αε ≤ Υ2d0 + (Υ + 1)αε,

d3 ≤ Υd2 + αε ≤ Υ3d0 + (Υ2 + Υ + 1)αε,

...

dt ≤ Υtd0 +
t−1∑
i=0

Υiαε = Υtd0 +
1 − Υt

1 − Υ
αε. (48)

Having characterized the bound on the distance from the
optimal point x∗ after t iterations and for a given step size α,
the following lemma provides the choice of α such that the
error bound in Lemma 1.b is smallest.
Lemma 2: Let B(α) = Υt ‖x(0) − x∗‖ + 1−Υt

1−Υ αε, denote
the bound on the error in Lemma 1 after t iterations, where Υ
(defined in Lemma 1) also depends on the step size α, where
0 < α < 2/L.

If ‖x(0) − x∗‖ ≥ ε
m , then for any t > 0:

α∗ = arg min
α

B(α) =
2

L + m
(49)

and

B(α∗) =
ε

m
+

(
‖x(0) − x∗‖ − ε

m

)(
L − m

L + m

)t

. (50)

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

If, instead, ‖x(0) − x∗‖ < ε
m , the error bound does not

diminish, i.e., B(α) ≥ ‖x(0) − x∗‖.
Proof: Let, d0 = ‖x(0) − x∗‖. When 0 ≤ α ≤ 2

L+m ,
we have Υ = 1 − αm ≤ 1. Hence, we can write

B(α) = Υt ‖x(0) − x∗‖ +
1 − Υt

1 − Υ
αε

=
ε

m
+ (d0 − ε

m
)(1 − αm)t. (51)

If d0 ≥ ε
m , to minimize (51) we need to choose the largest

α, which is 2
L+m . If d0 < ε

m , we need to choose the smallest
α, which is zero, where B(0) = d0. This option essentially
means keeping the iteration values constant, where the distance
from the optimal point stays the same. In that case, choosing
a positive step size increases the bound value.

When 2
L+m ≤ α ≤ 2

L , we have Υ = αL−1 ≤ 1. Therefore,
we can write

B(α) = Υt ‖x(0) − x∗‖ +
1 − Υt

1 − Υ
αε

=
αε

2 − αL
+ (d0 − αε

2 − αL
)(αL − 1)t. (52)

If d0 − αε
2−αL ≥ 0, we have α ≤ 2

L+ ε
d0

. Since α ≥ 2
L+m ,

we need to have 2
L+ ε

d0
≥ 2

L+m , which essentially means

m ≥ ε
d0

, i.e., d0 ≥ ε
m . Therefore, the second term can

be nonnegative only if d0 ≥ ε
m . The function B(α) is an

increasing function of α if d0 ≥ αε
2−αL and hence, to minimize

B(α), we need to choose the smallest α, which is 2
L+m . If

d0 < ε
m , the second term is negative, i.e., d0 < αε

2−αL , and
B(α) ≥ d0 when 2

L+ ε
d0

< α < 2
L .

Hence, α∗ = 2
L+m if d0 ≥ ε

m . Otherwise, the error bound
does not diminish, i.e., B(α) ≥ d0 = ‖x(0) − x∗‖.

Before getting into the dynamic optimization, we conclude
with an observation following directly Lemma 2 (more specif-
ically, from (50)):
Corollary 2: For the projected erroneous gradient method

with constant step size α = 2
L+m , the following holds:

lim sup
t→∞

‖x(t) − x∗‖ ≤ ε

m
. (53)

This corollary states that the algorithm asymptotically con-
verges to x∗ within an error bound ε/m with the suitable step
size selection.

B. Error Bound of Optimality on H-Stable Optimal Points

We also consider the case where utilities change periodically
over time. Specifically, in our model, time is divided into slots,
and we assume that the utilities are stationary during the time
slot but change from one to the next; hence, the optimal value
that the algorithm tries to converge to is constant within a
time slot. We define the H-stability of the optimal points in a
dynamic setting,6 as the condition that the difference between
the optimal points in two consecutive time slots is upper
bounded by the constant H . Let τ denote the time slot index.
We assume that ‖x∗(τ + 1) − x∗(τ)‖ ≤ H , where x∗(τ) is
the optimal point for an optimization problem in time slot τ .
Assume that we have an algorithm as in Section IV-A with
iterations for variable x with a linear rate Υ and gradients with

6See [26] for a broad analysis of this stability model including estimation
of bound H .

error bound ε, i.e., ‖x(t) − x∗‖ ≤ Υt ‖x(0) − x∗‖+ 1−Υt

1−Υ αε,
where 0 < α < 2/L. Now, assume that we have k iterations
in each time slot τ , and we choose the initial point of the
iterations in each time slot as the last point that the algorithm
has reached in the preceding slot. This heuristic is quite
reasonable in dynamic systems that have a limited change of
optimal points. The time index of the iterations is specified
with t, and τ = � t

k �, where �·� denotes the ceiling function.
For this algorithm, we have:
Lemma 3: For the setup described above, the asymptotic

error is bounded, i.e.,

lim sup
τ→∞

‖x(τk) − x∗(τ)‖ ≤ H
Υk

1 − Υk
+

αε

1 − Υ
, (54)

where this bound can be minimized with constant step size
α = 2

L+m .
Proof: We assume that we choose a random initial feasible

point x(0) in the first time slot, and we denote ξ0 = x(0) −
x∗(1). For the end of the computations in the first slot, from
Lemma 1.b, we can write

‖ξ1‖ = ‖x(k) − x∗(1)‖ ≤ Υk ‖ξ0‖ +
1 − Υk

1 − Υ
αε. (55)

Then, at the end of the second slot, we have

‖ξ2‖ = ‖x(2k) − x∗(2)‖ ≤ Υk ‖x(k) − x∗(2)‖ +
1 − Υk

1 − Υ
αε,

(56)

since the algorithm starts in time slot 2 with the iterate
obtained at the end of the time slot 1. We have

‖x(k) − x∗(2)‖ = ‖x(k) − x∗(1) + x∗(1) − x∗(2)‖
≤ ‖x(k) − x∗(1)‖ + ‖x∗(1) − x∗(2)‖
= ‖ξ1‖ + ‖x∗(1) − x∗(2)‖
≤ ‖ξ1‖ + H. (57)

Therefore, from (55), (56), and (57), we obtain

‖ξ2‖ ≤ Υk(‖ξ1‖ + H) +
1 − Υk

1 − Υ
αε

≤ Υ2k ‖ξ0‖ + ΥkH + (Υk + 1)
1 − Υk

1 − Υ
αε. (58)

Similarly, by using (58), we can write

‖ξ3‖ ≤ Υk(‖ξ2‖ + H) +
1 − Υk

1 − Υ
αε

≤ Υ3k‖ξ0‖ + (Υ2k+Υk)H + (Υ2k+Υk+1)
1−Υk

1−Υ
αε.

If we continue iteratively, at the end of τ -th slot:

‖ξτ‖ ≤ Υτk ‖ξ0‖ +
τ−1∑
j=1

ΥjkH +
τ−1∑
i=0

Υik 1 − Υk

1 − Υ
αε

= Υτk ‖ξ0‖ + H
Υk − Υτk

1 − Υk
+

1 − Υτk

1 − Υ
αε. (59)

Thus, when τ → ∞, since 0 < Υ < 1, we obtain (54).
We then characterize the optimal step size α minimizing

this error bound. Let B̄(α) = H Υk

1−Υk + αε
1−Υ . We can rewrite

this expression as

B̄(α) = −H +
H

1 − Υk
+

αε

1 − Υ
. (60)

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 9

When 0 ≤ α ≤ 2
L+m , we have Υ = 1 − αm ≤ 1, and

B̄(α) = −H +
H

1 − (1 − αm)k
+

ε

m
, (61)

which is minimized with the largest α, i.e., α = 2
L+m .

When 2
L+m ≤ α ≤ 2

L , we have Υ = αL − 1 ≤ 1, and

B̄(α) = −H +
H

1 − (αL − 1)k
+

αε

2 − αL
, (62)

which is minimized with the smallest α, i.e., α = 2
L+m , since

both the second term and the last term are increasing functions
of α.

Lemma 3 shows that the optimality gap is a function of the
stability bound H , the gradients errors ε, the convergence rate
of the method along with the step size, and the number k of
iterations in each slot. With this equation, one can decide on
the number of necessary iterations to obtain a sufficiently small
error level for the H-stable system. In this bound (in (54)), the
second term (which comes from errors on gradients) does not
disappear with an increasing number of iterations in each slot
as expected from Lemma 1.b. These errors originate from the
lower layers’ iterations in the ML-NUM. Therefore, we can
state that these errors cannot be mitigated in the upper layers,
and the error characteristics should be evaluated for each layer.

C. Error Bounds for 3-Layer Decomposition Example

Next, we examine the error bounds just obtained for the
3-layer setup in Section III-B, which is critical for design-
ing the multi-layer algorithm appropriately. In Sec. III-B,
we defined (α(1)

o , β
(1)
o) and (α(2), β(2)) with the equations

in (31). Let us introduce the convergence rates as Γ =
max{|1− γβ(2)|, |1− γα(2)|} for the iterations in (27), Γ′

o =
max{|1 − γ′

o

α
(1)
o

|, |1 − γ′
o

β
(1)
o

|} for the iterations in (26), and

Γ′′
o = max{|1 − γ′′

o β
(1)
o |, |1 − γ′′

o α
(1)
o |} for the iterations in

(25). We consider a dynamic (time-varying) NUM and we
assume that the optimal global market price is H-stable, i.e.,
‖λ∗(τ + 1) − λ∗(τ)‖ ≤ H , where τ is the time slot index.
Then, from (54), for the top layer we write the error bound as

lim sup
τ→∞

‖λ(τkλ)−λ∗(τ)‖ ≤ H
Γkλ

1−Γkλ
+

γ
∑O

o=1 ε
(o)
y

1−Γ
, (63)

where kλ is the number of iterations between the τ th and
τ + 1st time slots, and ε

(o)
y is the error bound of iterations

of yo for operator o = 1, . . . , O, where their summation is
the upper-bound of the gradient errors (corresponds to ε in
Sec IV-A) in the top layer iterations in (27).

The iterations in (26) for yo(i) try to converge to the
same value y∗

o(λ(j)) for the amount of time difference
between the jth and j + 1th updates of the global price λ.
Assume that the change in the y∗

o(λ(j)) is bounded as
‖y∗

o(λ(j + 1)) − y∗
o(λ(j))‖ ≤ H

(o)
y . Therefore, for o =

1, . . . , O, the error bound becomes

lim sup
j→∞

‖yo(jk′) − y∗
o(j)‖ ≤ ε(o)

y , (64)

ε(o)
y � H(o)

y

(Γ′
o)

k′

1 − (Γ′
o)k′ +

γ′
oε

(o)
µ

1 − Γ′
o

, (65)

where k′ is the number of iterations between the jth and j+1th

updates of λ, and ε
(o)
µ is the sub-optimality bound of iterations

of µo which becomes an upper-bound on the gradient errors
in (26) for operator o = 1, . . . , O.

Similarly, we extend this analysis to the µo updates in (25),
where we assume ‖µ∗

o(yo(i + 1) − µ∗
o(yo(i)‖ ≤ H

(o)
µ . Noting

that there is no gradient error coming from lower layer
iterations, since the end-users calculate the best rates in one
shot, we can characterize the error bound of µo iterations for
o = 1, . . . , O as

lim sup
i→∞

‖µo(ik) − µ∗
o(i)‖ ≤ ε(o)

µ , (66)

ε(o)
µ � H(o)

µ

(Γ′′
o)k

1 − (Γ′′
o)k

, (67)

where k is the number of iterations between the ith and
i + 1th updates of yo. Therefore, with these bounds, one can
characterize the errors in different layers by using the number
of iterations for different layers (kλ, k′, k).

Furthermore, from (86) and (27), we have

‖y∗
o(λ(j + 1))−y∗

o(λ(j))‖ ≤ α(1)
o ‖λ(j + 1) − λ(j)‖

≤ α(1)
o γ

(O∑
o=1

yo(jk′) − Z
)
, (68)

which becomes an upper-bound on H
(o)
y . Moreover, from (81)

and (26),

‖µ∗
o(yo(i + 1)−µ∗

o(yo(i)‖ ≤ 1

β
(1)
o

‖yo(i + 1) − yo(i)‖

≤ γ′
o

β
(1)
o

(
µo(ik)−λ(
i/k′�)), (69)

which becomes an upper-bound on H
(o)
µ . These upper bounds

can be used as the estimates of the stability bounds. Therefore,
every term in the bounds (63), (64), and (66) is multiplied
with the step sizes except the first term with H in (63). Then,
we can argue that, in the deterministic case, i.e., H ≈ 0,
the error bounds (63), (64), and (66) get close to zero with
sufficiently small step sizes and the algorithm asymptotically
converges for any k, k′. More rigorous analysis including the
characterization of the convergence rate is left as an open
problem for future work.

D. Extension to L-Layer Decomposition

We extend the similar approach to the L-layer case, and we
characterize the error bounds by using Lemma 3 as follows.

For the dual variables λ�
n associated with the constraints

of the �th layers’ resources
∑

s∈Sn
�
y�

s ≤ y�+1
n for n =

1, . . . , N�+1, the iterations in (41) move towards the same opti-
mal value λ�∗

n (y�+1
n (j)) between the jth and j +1th updates of

y�+1
n . Assume

∥∥λ�∗
n

(
y�+1

n (j + 1)
) − λ�∗

n

(
y�+1

n (j)
)∥∥ ≤ H

(n)
λ�

.
Then, for � = 2, 3, . . . , L−1, we can write the error bound as

lim sup
j→∞

∥∥λ�
n(jk�) − λ�∗

n (j)
∥∥ ≤ ε�

n,

ε�
n � H

(n)
λ�

(Γ(n)
λ�

)k�

1 − (Γ(n)
λ�

)k�

+
[G�]n,n

∑
s∈Sn

�
ε�

s

1 − Γ(n)
λ�

, (70)

where Γ(n)
λ�

= max{|1− [G�]n,nβ
(�)
n |, |1− [G�]n,nα

(�)
n |}, and

[G�]n,n is the n-th diagonal element of step size matrix [G�]
defined in Sec. III-C.

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Here, ε�
s is the sub-optimality bound of the iterations for the

resources y�
s of the �-th layer, and ε�

n (specified in (70)) is the
sub-optimality bound of the iterations for the dual variables
λ�

n, where s ∈ Sn
� . The iterations in (42) move towards the

same optimal value y�∗
s (λ�

n(i)) between the ith and i + 1th

updates of λ�
n. Assume

∥∥y�∗
s

(
λ�

n(i + 1)
) − y�∗

s

(
λ�

n(i)
)∥∥ ≤

H
(s)
y�

. Then, for � = 2, 3, . . . , L − 1, we can write the error
bound as

lim sup
i→∞

∥∥λ�
n(ik′

�) − λ�∗
n (i)

∥∥ ≤ ε�
s,

ε�
s � H(s)

y�

(Γ(s)
y�

)k′
�

1 − (Γ(s)
y�

)k′
�

+
[G′

�]s,sε
�−1
s

1 − Γ(s)
y�

, (71)

where Γ(s)
y�

= max{|1− [G′
�]s,s

α
(�−1)
s

|, |1− [G′
�]s,s

β
(�−1)
s

|}, and [G′
�]s,s is

the s-th diagonal element of step size matrix [G′
�].

V. NUMERICAL EXAMPLES

We illustrate our findings in the preceding sections with
numerical examples, whereby we mainly focus on compar-
isons between a 2-Layer algorithm and a 3-Layer algorithm in
terms of the performance in dynamic resource allocation sce-
narios. Our test setup is inspired by distributed weighted water-
filling solutions in radio resource allocation problems [27].
Waterfilling solutions are used in many different problems
in communication networks (see [28]–[32] for further details
and different applications), we choose a setup from power
allocation with independent sub-channels.

We consider N = 40 end-users with their utility functions of
the form Us(xs) = ws log(1 + asxs), where as is the channel
state and ws is the weight of user s. The total utility is the
weighted sum-capacity of Gaussian channels, and the aim of
the optimization is maximizing this total utility under a total
power constraint:

max
xs∈Is

N∑
s=1

ws log(1 + asxs) s.t.
N∑

s=1

xs ≤ P.

We assume the users’ weights and channel states are private
information, i.e., they are not shared with the others or
controllers. Therefore, the central controller does not know the
utility functions explicitly and distributed solutions are neces-
sary to solve this allocation problem. We run two different
implementations: 1) the 2-Layer algorithm in Eqns. (8)–(9)
where the sources directly communicate with the central
distributor, and 2) the 3-Layer algorithm in Eqns. (24)–(27)
where we have O = 4 operators each connected to 10
end-users, i.e., |So| = 10, o = 1, 2, 3, 4. We assume that
the main source of delay is the communication link with
the central distributor also in the 3-Layer algorithm, i.e.,
the operators are located relatively close to the edge nodes.
We model the variations in the channel state as according
to Rayleigh block fading, and assume the user weights ws

are drawn from a uniform distribution between [1, 2] in each
block. Therefore, the optimum allocation we seek changes in
every block, and we evaluate the performance in this dynamic
allocation scenario (which is equivalent to the H-stable model
in Sec. IV-B.). The termination threshold is selected as 10−4

at the top layer, where we set P = 20 and Is = [0, P] for
all end-users s as total resource and feasibility boundaries,
respectively. The step sizes are γ = 1/160, and γ′

o = 2,
γ′′

o = 1/80 for all operators o = 1, 2, 3, 4. We also assume
iterations in 2-layer algorithms can be repeated every 100 ms.

Fig. 4. Linear convergence of individual iterations of λ, yo, µo, and primal
function (total utility) U(x).

Before getting into the details of the experiments conducted
in the dynamic case, we present the convergence rates of the
iterations of different layers along with the primal function
value in Fig. 4 for the deterministic case with k = k′ = 200.
As expected, we observe different linear rates for the different
operators due to the random nature of the utility functions.

A. Experiment 1: The Effects of Update Frequency Ratios
k, k′ of the Lower Layer Iterations on Convergence Speed

In a dynamic scenario where channel variations and user
weights change every 4 seconds, i.e., in a block fading setup,
we compare the convergence behavior of both algorithms with
respect to time and with respect to the top layer iteration count
for three different update frequency ratios k, k′ of lower layer
iterations in Fig. 5. In the figure, the convergence behavior for
the case when the top layer iteration times are aligned is pre-
sented on the left hand side, whereas convergence with respect
to time is presented on the right hand side. The latency reduc-
tion between the two algorithms is characterized in (28), where
ρ′

ρ is set to 1/80 in our experiment. Ideally, when we have infi-
nitely many iterations in lower layers, the convergence steps
should be exactly the same in the top layer for both algorithms
due to the equivalence of the problems and the algorithms
with the same step size in the top layer. As shown in the left
hand side figures (i.e., Fig. 5 (a), (c), (e)), when the numbers
k, k′ of lower layer iterations decrease, the perturbations from
the ideal trajectory increase, i.e., we observe oscillations and
lose accuracy to hit the optimum point directly. On the other
hand, the latency reduction increases with decreasing numbers
k, k′ of lower layer iterations as shown in (28). Therefore,
there is a trade-off in the selection of the numbers k, k′ of
lower layer iterations. Lowering them is helpful in terms of
latency, however, it also creates perturbations from the ideal
trajectory (or ideal linear convergence rate). This implies that
one should carefully tune the number of iterations in the
lower layers based on the application setup. In our example,
as shown in the right hand side figures, reducing the number
of iterations from k, k′ = 10 to 3 in the lower layers reduces
the convergence time significantly in the 3-Layer algorithm,
however, further reducing it to k, k′ = 2 does not help, since
the perturbations in this case cause slower convergence in
terms of the number of top layer iterations. The oscillatory
behavior and the convergence times can be seen from the
zoomed regions in the right hand side, where k = k′ = 3
has the best convergence time in this example.

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 11

Fig. 5. Comparison of 2-Layer algorithm and 3-Layer algorithm in a dynamic system with various update frequency ratios k, k′ of lower layer iterations.

B. Experiment 2: Feasible Resource Allocations

As shown in Fig. 5, the algorithms approach the optimal
result from both above and below. The points higher than the
optimum are consequences of the constraint violations, i.e.,
they are infeasible. If the application is strict about the resource
distribution constraints, then either the iteration values should
be projected onto the feasible region7 or the results after the
convergence should be used. The projection operation onto
the set defined with both the resource distribution constraints
and the local constraints may be computationally expensive.
In these cases, one should use the results after convergence,

7Due to the non-expansiveness of projection operations, our analytical
results in the previous sections still hold in this case.

which highlights the importance of fast convergence, espe-
cially if the variations occur frequently.

In the 2-Layer algorithm, the end-users start using the
optimum xs after the convergence criterion is met, since the
current iteration values can be infeasible (due to constraint
violations) before convergence. That is, they use the previous
optimal allocations that have been produced for the previous
realization of ws’s and as’s before full convergence. Similarly,
for the middle layer resources (yo’s) in the 3-Layer algorithm,
one should wait for full convergence before using them.
However, the feasible yo values of the previous block are used
at the beginning of each block, therefore, if the end-users’
allocations and local prices (µo’s) converge in this so-called
local market for fixed yo, these end-users’ allocations can
be used without waiting for full convergence. Even though

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Comparison of 2-Layer algorithm and 3-Layer algorithm in a dynamic
system where only feasible allocations are used. For both the algorithms, used
allocations change only when we can guarantee that constraints are satisfied,
i.e., iterations converge to a feasible point. The zoom box illustrates the fact
that, in a 3-layer algorithm, iterations locally converge to a feasible point
earlier due to the convergence of multipliers (µo’s) in the operators before
communicating with the top layer.

Fig. 7. Convergence behaviors of simulations along with the theoretical
guarantee bounds.

these allocations are not globally optimal allocations obtained
with full convergence, they may provide good sub-optimal
allocations. A comparison between 2-Layer algorithm and
3-Layer algorithm in a dynamic setup is given in Fig. 6. In this
figure, we present the total utility calculated with both iteration
values and used feasible allocations for both algorithms along
with the theoretical optimum of the total utility. In order to
focus on lower layer iterations, we zoom into a small interval
in the same figure, which illustrates that local prices converge
to a feasible value. Hence, the results demonstrate that the
3-Layer algorithm reacts immediately, much faster than the
2-Layer algorithm, even though it does not reach the global
optimum. We note that in order to obtain this advantageous
local convergence, the number k of local price iterations in
each update of yo should be selected to be sufficiently large.
We set k = k′ = 100 in this example, but similar results
can be achieved with much smaller values (as shown in the
zoomed interval, local prices converge much earlier than the
new yo iterations). Even though we mainly focus on the global
convergence of the system in order to provide performance
guarantees, the fast reaction due to the local price convergence
illustrated here is one of the main significant benefits of the
multi-layer algorithm, especially in highly dynamic scenarios.

C. Convergence and Theoretical Error Bounds

In Fig. 7, we present the convergence behavior of the
top layer iterations along with the theoretical bounds for the
3-Layer algorithm. We compare the cases where k = k′ = 1,
k = k′ = 10, and k = k′ = 100 (which we call the ideal case
since lower layers converge before passing any parameters and
there are no gradient errors) and we set as = 1, ∀s.

In Fig. 7a, we visualize the deterministic case in which all
the parameters including randomly drawn ws’s stay constant
for the entire run, i.e., H = 0. For the ideal case, we use
the bound in (34) and for the others, we use the bound in
Lemma 1, whereby the step sizes specified in Thm. 2 are
used. In the ideal case, the bound gets very close to the
optimal point after 40 iterations. This means that even in the
worst case scenario of randomly drawn ws’s, the algorithm is
guaranteed to converge before that. For the other cases, the
bounds converge to an upper-bound of the distance from the
optimum as discussed in Cor. 2. As shown, the convergence
rate is affected by the number of lower layer iterations, where
we see a significantly slower convergence with k = k′ = 1.
Also, the upper-bound of the gradient errors ε (which is
decided empirically) gets quite high while k, k′ decreases, and
the theoretical bound increases accordingly.

For the dynamic (H-stable) case, where ws’s change ran-
domly every kλ = 40 iterations, we present the convergence
behavior and the asymptotic performance bounds in Fig. 7b
for the same setup. Specifically, we use the asymptotic bound
in Lemma 3 (or, correspondingly (63)), where we estimate
the parameters H and ε

(o)
y empirically after a long-run.

As expected, the asymptotic bound (63) gets smaller while
k, k′ increases due to the decrease of gradient errors ε

(o)
y .

However, it does not reach to zero in the ideal case as in the
deterministic case, since the first-term in (63) stays constant
with H > 0.

VI. CONCLUSION

We have presented a multi-layer decomposition of the
classical NUM problem. The architecture provides a coordina-
tion mechanism among multiple operators that are ultimately
contending for a shared resource to serve their users. Our
convergence analysis and numerical results show that the
ML-NUM framework responds faster to changes in a dynamic
environment, compared to the standard NUM. In fact, we were
able to show that it has the same global convergence rate as
the standard NUM framework with two layers, while having
a lower communication latency. From the technical analysis
stand point, our main contribution is the characterization of the
error bound relative to the actual optimum allocation for finite
iterations at each layer as well as the proof that there exists
an optimum step-size, irrespective of the number of iterations,
that minimizes the error bound.

There are several interesting directions for future research
on multi-layer decomposition for network utility maximiza-
tion. This study focused on the maximization of utility as a
function of the allocation of a single resource subject to a
single constraint, e.g., wireless transmit power. Emerging wire-
less network virtualization techniques allow for the flexible
allocation of a wide range of resources, e.g., buffer capacities,
communication channels, and computational resources. Thus,
future work could examine utility functions based on multiple
resources, each with their own constraints. Moreover, several
networking technologies, such as flexible RAN function splits,
multi-access edge computing, and networking coding allow
the trading off of different types of resources, e.g., allocated
computational resources vs. required transmission resources.
Other applications exist outside the networking domain, such
as the management of transactive energy systems. Future
research will extend and apply the ML-NUM to optimally
trade-off these different resources. At the theoretical level,
the study of these applications would likely require to relax

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 13

the assumptions made to prove our results to a broader class
of utilities and constraints. For instance, our results can be
extended to an architecture where lower layer nodes are
connected to multiple operators rather than one.8 Another
alternative direction is that some fast algorithms used for stan-
dard NUM (see [33], [34]) may be applied to the multi-layer
framework. Also, it would be interesting to see if it is possible
to establish a similar multi-layered hierarchy in a meshed net-
work scenario where the operators replace the coordinator with
a peer-to-peer consensus algorithm, removing the need for a
third party acting as a network coordinator, as an alternative to
fully decentralized single layer resource allocation algorithms
(e.g., [35], [36]).

APPENDIX

A. Proof of Corollary 1

For the Lagrangian function in (4), we have the Hessian
matrix with respect to x as

∇2
x(−L(x, λ)) = diag(−Ü1(x1), . . . ,−ÜN(xN)) � 1

α
I

since −Üs(xs) ≥ 1/αs ≥ 1/α ≥ 0, and L(x, λ) is a strongly
concave function of x with 1/α. Therefore,

L(x, λ) ≤ L(x∗(λ), λ) − 1
2α

‖x− x∗(λ)‖2
, ∀x ∈ I. (72)

If we substitute x with x∗(λ∗) = [x∗
1(λ

∗), . . . , x∗
N (λ∗)]�,

1
2α

‖x∗(λ∗) − x∗(λ)‖2 ≤ L(x∗(λ), λ) − L(x∗(λ∗), λ)

= g(λ) − g(λ∗), (73)

since g(λ) = L(x∗(λ), λ) and, from (4), L(λ,x∗(λ∗)) =
L(λ∗,x∗(λ∗)) = g(λ∗) where

∑N
s=1 x∗

s(λ
∗) = Rtot. Then,

by using (13) and (73), we obtain (14). We also have∥∥∥∥∥
N∑

s=1

x∗
s(λ(t)) − Rtot

∥∥∥∥∥ ≤
N∑

s=1

‖x∗
s(λ(t)) − x∗

s(λ
∗)‖

= ‖x∗(λ(t)) − x∗(λ∗)‖1

≤
√

N ‖x∗(λ(t)) − x∗(λ∗)‖ (74)

where ‖·‖1 denotes the �1 norm. Using (14) and (74),
we obtain (15).

B. Proof of Theorem 2

For the 3-layer case, we can modify (11) as follows:

∂x∗
s(µo,yo,λ)

∂µo

=

1
Üs(x∗

s(µo, yo, λ))
, for U̇s(ms)≥µo≥ U̇s(Ms),

0, otherwise.
(75)

With fixed λ and yo, for o = 1, . . . , O, from (25) we have

∂2L(θ)
∂µ2

o

= −
∑
s∈So

∂x∗
s(µo, yo, λ)

∂µo

8This type of architectures are common in flow networks, where this
resource allocation is not an equivalent of the classical problem in (1). Noting
that, our results can be extended in a slightly straightforward manner to these
scenarios by following similar steps of the proofs.

= −
∑
s∈C

1
Üs(x∗

s(µo, yo, λ))
, (76)

where the set C = {s ∈ So : U̇s(Ms) ≤ µo ≤ U̇s(ms)}
has at least one and at most |So| elements as a result of the
projection boundaries in (25).

Thus, from a.2 and a.5 we have

0<β(1)
o =min

s∈So
(βs)≤ ∂2L(θ)

∂µ2
o

≤|So|max
s∈So

(αs)=α(1)
o <∞. (77)

Then, we obtain (32) by using the rate of convergence deriva-
tion in [37, Ch. 2.3].

Now, we go a step further and for fixed λ, we show the
convergence of the iterations of yo. From (26), we can write

∂L(θ)
∂yo

= µ∗
o(yo, λ) − λ. (78)

When µo converges to µ∗
o, we can also write

yo =
∑
s∈So

x∗
s(µ

∗
o(yo, λ))

=
∑
s∈Co

1

U̇−1
s (µ∗

o(yo, λ)) +
∑
s∈Co

2

Ms +
∑
s∈Co

3

ms, (79)

where Co
1 = {s ∈ So : U̇s(Ms) ≤ µ∗

o(λ,y) ≤ U̇s(ms)},
Co
2 = {s ∈ So : µ∗

o(λ,y) < U̇s(Ms)}, and Co
3 = {s ∈

So : µ∗
o(λ,y) > U̇s(ms)}.

Therefore,

∂yo

∂µ∗
o(yo, λ)

=
∑
s∈Co

1

1
Üs

(
x∗

s(µ∗
o(yo, λ))

) (80)

and, from (78) we have

∂2L(θ)
∂y2

o

=
∂µ∗

o(yo, λ)
∂yo

. (81)

Thus, ∣∣∣∣∂2L(θ)
∂y2

o

∣∣∣∣ =
(∑

s∈Co
1

− 1
Üs

(
x∗

s(µ∗
o(yo, λ))

))−1

(82)

and since Co
1 has at least one and at most |So| elements,

we have

1

α
(1)
o

=
1

|So|maxs∈So(αs)
≤

∣∣∣∣∂2L(θ)
∂y2

o

∣∣∣∣≤ 1
mins∈So(βs)

=
1

β
(1)
o

.

(83)

Then, we obtain (33) by using the rate of convergence deriva-
tion in [37, Ch. 2.3].

Lastly, we investigate the rate of convergence of the itera-
tions for λ. From (27), we have

∂L(θ)
∂λ

= Z −
O∑

o=1

y∗
o(λ). (84)

When yo has converged, we have λ = µ∗
o(y

∗
o(λ)), and we can

write

y∗
o(λ) =

∑
s∈Co

1

U̇−1
s (λ) +

∑
s∈Co

2

Ms +
∑
s∈Co

3

ms. (85)

Then, we can write

∂y∗
o(λ)
∂λ

=
∑
s∈Co

1

1
Üs(x∗

s(λ))
, (86)

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

which leads to

∂2L(θ)
∂λ2

= −
O∑

o=1

∂y∗
o(λ)
∂λ

= −
O∑

o=1

∑
s∈Co

1

1
Üs(x∗

s(λ))
(87)

and with (30), we have

0 < β(2) ≤ ∂2L(θ)
∂λ2

≤ α(2) < ∞. (88)

Similarly, we obtain (34) by using the rate of convergence
derivation in [37, Ch. 2.3].

C. Extension of the Theorem 2 to the L-Layer Decomposition

For λ�
n, we can write

∂L(θ)
∂λ�

n

= y�+1
n −

∑
a∈Sn

�

y�∗
a (λ�

n). (89)

Since y�∗
a has converged, we have λ�

n = λ�−1
a where a ∈ Sn

� .
Thus, we have

y�∗
a (λ�

n)=
∑
s∈Ca

1

U̇−1
s (λ�

n) +
∑
s∈Ca

2

Ms +
∑
s∈Ca

3

ms,

∂y�∗
a

∂λ�
n

=
∑
s∈Ca

1

1
Üs(y1

s(λ�
n))

. (90)

Here, Ca

1 = {s ∈ X a
� : U̇s(Ms) ≤ λ�

n ≤ U̇s(ms)}, Ca

2 = {s ∈
X a

� : λ�
n < U̇s(Ms)}, and Ca

3 = {s ∈ X a
� : λ�

n > U̇s(ms)},
where X a

� denotes the set of all layer-1 elements that are part
of the subtree of layer-� element a = 1, . . . , N�. Then, we can
write

∂2L(θ)
(∂λ�

n)2
= −

∑
a∈Sn

�

∂y�∗
a

∂λ�
n

= −
∑

a∈Sn
�

∑
s∈Ca

1

1
Üs(y1

s(λ�
n))

= −
∑
s∈Cn

1

1
Üs(y1

s(λ�
n))

, (91)

where Cn

1 = {s ∈ Xn
�+1 : U̇s(Ms) ≤ λ�

n ≤ U̇s(ms)}, and we
have

0 < β(�)
n ≤ ∂2L(θ)

(∂λ�
n)2

≤ α(�)
n < ∞. (92)

Then, we obtain (45) by using the rate of convergence deriva-
tion in [37, Ch. 2.3].

For y�
a, we have

∂L(θ)
∂y�

a

= λ(�−1)∗
a (y�

a) − λ�
n. (93)

When λ�−1
a has converged, we have

y�
a =

∑
s∈Xa

�

U̇−1
s (λ(�−1)∗

a)

=
∑
s∈Ca

1

U̇−1
s (λ(�−1)∗

a) +
∑
s∈Ca

2

Ms +
∑
s∈Ca

3

ms. (94)

Thus, we have

∂y�
a

∂λ
(�−1)∗
a

=
∑
s∈Ca

1

1

Üs

(
y1

s(λ(�−1)∗
a)

) , (95)

and

∂2L(θ)
(∂y�

a)2
=

∂λ
(�−1)∗
a

∂y�
a

. (96)

Then, we write∣∣∣∣∂2L(θ)
(∂y�

a)2

∣∣∣∣ =
(∑

s∈Ca
1

1

Üs

(
y1

s(λ(�−1)∗
a)

)
)−1

, (97)

which leads to

0 <
1

α
(�−1)
a

≤
∣∣∣∣∂2L(θ)
(∂y�

a)2

∣∣∣∣ ≤ 1

β
(�−1)
a

< ∞, (98)

where it is enough to show (46) by using the rate of conver-
gence derivation in [37, Ch. 2.3].

REFERENCES

[1] N. Karakoc, A. Scaglione, and A. Nedic, “Multi-layer decom-
position of optimal resource sharing problems,” in Proc. IEEE
Conf. Decis. Control (CDC), Miami Beach, FL, USA, Dec. 2018,
pp. 1–6.

[2] L. Ferrari, N. Karakoc, A. Scaglione, M. Reisslein, and A. Thyagaturu,
“Layered cooperative resource sharing at a wireless SDN backhaul,” in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Kansas
City, MO, USA, May 2018, pp. 1–6.

[3] P. Shantharama, A. S. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein,
and A. Scaglione, “LayBack: SDN management of multi-access edge
computing (MEC) for network access services and radio resource
sharing,” IEEE Access, vol. 6, pp. 57545–57561, 2018.

[4] M. Wang et al., “A multi-layer multi-timescale network utility maxi-
mization framework for the SDN-based LayBack architecture enabling
wireless backhaul resource sharing,” Electronics, vol. 8, no. 9,
pp. 937.1–937.28, Aug. 2019.

[5] J.-B. Sheu, “A novel dynamic resource allocation model for demand-
responsive city logistics distribution operations,” Transp. Res. E: Logis-
tics Transp. Rev., vol. 42, no. 6, pp. 445–472, Nov. 2006.

[6] Z. Zhou, M. Dong, K. Ota, and Z. Chang, “Energy-efficient context-
aware matching for resource allocation in ultra-dense small cells,” IEEE
Access, vol. 3, pp. 1849–1860, 2015.

[7] Z. Liu, Q. Wu, S. Huang, and H. Zhao, “Transactive energy: A review
of state of the art and implementation,” in Proc. IEEE Manchester
PowerTech, Jun. 2017, pp. 1–6.

[8] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Apr. 1998.

[9] S. H. Low and D. E. Lapsely, “Optimization flow control. I. basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[10] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition,” Proc. IEEE, vol. 95, no. 1, pp. 255–312,
Jan. 2007.

[11] B. Johansson, P. Soldati, and M. Johansson, “Mathematical decom-
position techniques for distributed cross-layer optimization of data
networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1535–1547,
Aug. 2006.

[12] D. P. Palomar and M. Chiang, “Alternative distributed algorithms for
network utility maximization: Framework and applications,” IEEE Trans.
Autom. Control, vol. 52, no. 12, pp. 2254–2269, Dec. 2007.

[13] X. Lin, N. B. Shroff, and R. Srikant, “On the connection-level stability
of congestion-controlled communication networks,” IEEE Trans. Inf.
Theory, vol. 54, no. 5, pp. 2317–2338, May 2008.

[14] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient
methods with errors,” SIAM J. Optim., vol. 10, no. 3, pp. 627–642,
Jan. 2000.

[15] A. Nedić and D. P. Bertsekas, “The effect of deterministic noise in
subgradient methods,” Math. Program., vol. 125, no. 1, pp. 75–99,
Sep. 2010.

[16] M. Mehyar, D. Spanos, and S. H. Low, “Optimization flow control with
estimation error,” in Proc. IEEE INFOCOM, Mar. 2004, pp. 984–992.

[17] J. Zhang, D. Zheng, and M. Chiang, “The impact of stochastic noisy
feedback on distributed network utility maximization,” IEEE Trans. Inf.
Theory, vol. 54, no. 2, pp. 645–665, Feb. 2008.

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARAKOÇ et al.: ML DECOMPOSITION OF NUM PROBLEMS 15

[18] Y. Cui and V. K. N. Lau, “Convergence-optimal quantizer design of dis-
tributed contraction-based iterative algorithms with quantized message
passing,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5196–5205,
Oct. 2010.

[19] N. Gatsis and G. B. Giannakis, “Power control with imperfect exchanges
and applications to spectrum sharing,” IEEE Trans. Signal Process.,
vol. 59, no. 7, pp. 3410–3423, Jul. 2011.

[20] A. Y. Popkov, “Gradient methods for nonstationary unconstrained opti-
mization problems,” Autom. Remote Control, vol. 66, no. 6, pp. 883–891,
Jun. 2005.

[21] C. Xi and U. A. Khan, “Distributed dynamic optimization over directed
graphs,” in Proc. IEEE 55th Conf. Decis. Control (CDC), Dec. 2016,
pp. 245–250.

[22] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[23] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, Jan. 2009.

[24] I. Necoara and A. Patrascu, “Iteration complexity analysis of dual first-
order methods for conic convex programming,” Optim. Methods Softw.,
vol. 31, no. 3, pp. 645–678, May 2016.

[25] H. Yu and M. J. Neely, “On the convergence time of dual subgradient
methods for strongly convex programs,” IEEE Trans. Autom. Control,
vol. 63, no. 4, pp. 1105–1112, Apr. 2018.

[26] C. Wilson, V. V. Veeravalli, and A. Nedic, “Adaptive sequential sto-
chastic optimization,” IEEE Trans. Autom. Control, vol. 64, no. 2,
pp. 496–509, Feb. 2019.

[27] P. He, L. Zhao, S. Zhou, and Z. Niu, “Water-filling: A geometric
approach and its application to solve generalized radio resource allo-
cation problems,” IEEE Trans. Wireless Commun., vol. 12, no. 7,
pp. 3637–3647, Jul. 2013.

[28] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family
of waterfilling solutions,” IEEE Trans. Signal Process., vol. 53, no. 2,
pp. 686–695, Feb. 2005.

[29] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank
precoders and equalizers. I. Unification and optimal designs,” IEEE
Trans. Signal Process., vol. 47, no. 7, pp. 1988–2006, Jul. 1999, doi:
10.1109/78.771047.

[30] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[31] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Filterbank trans-
ceivers optimizing information rate in block transmissions over disper-
sive channels,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp. 1019–1032,
Apr. 1999.

[32] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Optimal adaptive
precoding for frequency-selective Nagakami-m fading channels,” in
Proc. Veh. Technol. Conf. Fall IEEE VTS Fall VTC. 52nd Veh. Technol.
Conf., vol. 3, Sep. 2000, pp. 1291–1295.

[33] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “An O(1/k) gradient
method for network resource allocation problems,” IEEE Trans. Control
Netw. Syst., vol. 1, no. 1, pp. 64–73, Mar. 2014.

[34] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network flow optimization,” IEEE Trans. Autom.
Control, vol. 59, no. 4, pp. 905–920, Apr. 2014.

[35] Y. Ho, L. Servi, and R. Suri, “A class of center-free resource allocation
algorithms,” Large Scale Syst., vol. 1, no. 1, pp. 51–62, 1980.

[36] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” J. Optim. Theory Appl., vol. 129, no. 3,
pp. 469–488, Dec. 2006.

[37] D. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1999.

Nurullah Karakoç (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in elec-
trical and electronics engineering from Bilkent Uni-
versity, Turkey, in 2015 and 2017, respectively. He is
currently pursuing the Ph.D. degree with Arizona
State University, Tempe. He was with Google as a
Summer Intern in 2019. His current research inter-
ests include wireless communications, networking,
and optimization theory.

Anna Scaglione (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in 1995 and 1999, respectively.
She is currently a Professor in electrical and com-
puter engineering with Arizona State University.
Her research is rooted in statistical signal process-
ing and spans many disciplines that relate to net-
work science, including communication, control, and
energy-delivery systems. Her most recent work in
signal processing focused on distributed learning and
data analytics for signals that are driven by network
processes. She received the 2000 IEEE TRANSAC-

TIONS ON SIGNAL PROCESSING Best Paper Award and the 2013 IEEE Donald
G. Fink Prize Paper Award. Her work with her students earned several
conference paper awards in addition to the 2013 IEEE Signal Processing
Society Young Author Best Paper Award (Lin Li). She is a Distinguished
Lecturer for the IEEE Signal Processing Society from 2019 to 2020. She is
the Deputy Editor-in-Chief of the IEEE TRANSACTIONS ON CONTROL OVER
NETWORKED SYSTEMS.

Angelia Nedić (Member, IEEE) received the Ph.D.
degree in computational mathematics and math-
ematical physics from Moscow State University,
Moscow, Russia, in 1994, and the Ph.D. degree
in electrical and computer science engineering
from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2002. She has worked as
a Senior Engineer with BAE Systems North Amer-
ica, Advanced Information Technology Division,
Burlington, MA. She is currently a Faculty Member
of the School of Electrical, Computer and Energy

Engineering, Arizona State University, Tempe. Prior to joining Arizona State
University, she has been a Willard Scholar Faculty Member at the University
of Illinois at Urbana–Champaign. Her general research interests include
optimization, large-scale complex systems dynamics, variational inequalities,
and games. She was a recipient (jointly with her coauthors) of the Best Paper
Award at the Winter Simulation Conference 2013 and the Best Paper Award
at the International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt) 2015.

Martin Reisslein (Fellow, IEEE) received the
Ph.D. degree in systems engineering from the Uni-
versity of Pennsylvania in 1998. He is a Pro-
fessor with the School of Electrical, Computer,
and Energy Engineering, Arizona State University
(ASU), Tempe. He chaired the Steering Commit-
tee of the IEEE TRANSACTIONS ON MULTIMEDIA

from 2017 to 2019 and was an Associate Editor of
the IEEE/ACM TRANSACTIONS ON NETWORKING

from 2009 to 2013. He received the IEEE Com-
munications Society Best Tutorial Paper Award in

2008, the Friedrich Wilhelm Bessel Research Award from the Alexander von
Humboldt Foundation in 2015, as well as a DRESDEN Senior Fellowship
in 2016 and 2019. He currently serves as an Associate Editor for the IEEE
TRANSACTIONS ON MOBILE COMPUTING, the IEEE TRANSACTIONS ON

EDUCATION, IEEE ACCESS, and Computer Networks. He is currently an
Associate Editor-in-Chief of the IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS and the Co-Editor-in-Chief of Optical Switching and Networking.

Authorized licensed use limited to: ASU Library. Downloaded on July 23,2020 at 20:56:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/78.771047

