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Abstract—This paper presents a novel cloud-based charging
management system for electric vehicles (EVs). Two levels of
cloud computing, i.e., local and remote cloud, are employed to
meet the different latency requirements of the heterogeneous
EVs while exploiting the lower-cost computing in remote clouds.
Specifically, we consider time-sensitive EVs at highway exit
charging stations and EVs with relaxed timing constraints at
parking lot charging stations. We propose algorithms for the
interplay among EVs, charging stations, system operator, and
clouds. Considering the contention-based random access for EVs
to a 4G Long-Term Evolution network, and the quality of service
metrics (average waiting time and blocking probability), the
model is composed of: queuing-based cloud server planning,
capacity planning in charging stations, delay analysis, and profit
maximization. We propose and analyze a price-incentive method
that shifts heavy load from peak to off-peak hours, a capacity
expansion method that accommodates the peak demand by
purchasing additional electricity, and a hybrid method of prince-
incentive and capacity expansion that balances the immediate
charging needs of customers with the alleviation of the peak
power grid load through price-incentive based demand control.
Numerical results demonstrate the effectiveness of the proposed
methods and elucidate the tradeoffs between the methods.

Index Terms—Cloud Computing, Electric Vehicles, Charging
Management, Quality of Service, 4G Long-Term Evolution Net-
work

I. INTRODUCTION

A. Motivation
Electric vehicles (EVs) have emerged as an attractive and

viable solution to decrease greenhouse gas (GHG) emissions
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and reduce reliance on fossil fuels. Over the last few years we
have witness a renewed push toward EVs as the governments
in the United Kingdom and France have announced to ban the
sale and use of gasoline and diesel cars by 2030 and more
countries, including China, India, Netherlands, and Norway,
have committed to phase out such vehicles in the near future
and to promote the deployment of EVs. In addition, major
auto manufacturers are investing billions of US dollars into
the EV business to improve energy storage technologies and
to introduce a wider variety of vehicle models [2]. In parallel,
the adoption of EVs has surged to a record: the aggregate sales
have exceeded four Million since the first introduction of EVs
in 2010 [3]. It is also projected that the EV stock will reach
at least 40 Million by 2025 [4].

Such high EV penetration rates necessitate the widespread
presence of public charging facilities, such as level 2 chargers
(6–7 kW) at parking lots and fast DC chargers (40–50 kW)
at places similar to gas stations. It has been well-documented
that uncontrolled EV charging, especially during peak hours,
threatens the stability of the power grids. Hence, the economic
operation of power grids requires a careful coordination among
EVs and charging stations [5]. This coordination requires
massive data exchanges and processing [6]. Also, it is worth
noting that the EVs typically do not have the computational
power, memory, and storage capabilities, to solve the large-
scale optimization required for the careful coordination of the
charging.

Cloud computing has gained increasing attention for real-
izing cooperation in the smart grid [7], [8], [9]. The stability,
flexibility, security, and on-demand performance of cloud
computing provide an efficient platform for charging man-
agement [10]. The high computing and storage capacities in
cloud infrastructures can support large-scale EV deployments
with low latency [11]. Cloud computing can readily handle
the computational and communication complexities for large-
scale EV deployments of EVs, while offering flexible shared
networked computing services that EVs can access from
anywhere at anytime [11]. On the other hand, from a business
point of view, instead of investing and maintaining data centers
and additional reliable and efficient communication infras-
tructures, the system operator (SO) can make use of existing
cloud computing services and communication infrastructures
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to lower both capital expenditures (CAPEX) and operating
expenses (OPEX) [12]. Consequently, industries are striving
to incorporate cloud computing services into smart charging
system [11], [13].

B. Related Work

To manage the charging of a large-scale fleet of EVs,
demand-side management (DSM) of EVs in the smart grid
has been studied in the literature with queuing models, without
cloud computing, and with cloud computing. We have grouped
the prior studies into these three groups. The following three
subsections briefly review the prior related work and explain
how our present study fundamentally advances the DSM of
EV charging.

1) DSM of EVs with Queuing Models: Queuing models
have been widely applied to evaluate system performance
and characterize customers’ demands in the DSM of EVs.
For instance, EV charging and discharging was characterized
with M/M/c models and priorities in [14]. In [15], a similar
queuing model was applied in a spatial and temporal system
to characterize the charging demands at highway exits. The
charging model in [16] was an M/M/c/c queue in fast-
charging stations. In [17], a model was proposed using a
queuing model followed by a neural network to represent
the total charging load at an EV charging station in terms of
the number of EVs being charged, the total charging current,
arrival rate, and time. However, the queueing model studies
did not consider the customers’ willingness to delay charging,
nor the concept of local cloud-based management.

2) DSM of EVs without Cloud-based Management: The
studies [18], [19], [20], [21], [22], [23] focused on DSM with-
out cloud computing-based management. In [18], a centralized
recharge scheduling system used traffic data to maximize the
total parking lot revenue and the number of charged EVs. A
decentralized charging mechanism with EVs’ charging status
controlled via probability automation was proposed in [19].
A distributed EV charging strategy integrated with the grid
was proposed in [24]. An EVs frequency regulation service
and an optimal capacity scheduling algorithm were proposed
in [20]. A network capacity optimization model considering
the EV charging preferences was studied in [22]. However,
these preceding studies have not considered load shifting, nor
capacity expansion, nor profit maximization strategies.

A stochastic-based optimal charging strategy for an aggrega-
tor that incorporates incentive and regulatory policies in terms
of voltage profile and power loss cost of the network has
been proposed in [25]; however no load shifting nor capacity
expansion were considered. On the other hand, the study [26]
proposed smart charging strategies that aimed to minimize
total daily cost and peak-to-average ratio (PAR) but does
not maximize the profit. In [27], to minimize the EVs trip
duration, a charging station-selection scheme was proposed.
However, the scheme does not account for the power loss of
the distribution system, capacity planning, peak-load shifting,
and any communications model between the CS and EVs.

An EV coordinated discrete charging model with grid
capacity constraints was studied in [28] that aims to optimize

the total load variations and total number of on-off switching
in the charging process. However, only a single charging rate
was considered and other important factors, such as power
loss, profit maximization, and capacity expansion were not
considered. An EV route selection optimization and a charge
navigation based on crowd sensing that aims to reduce travel
costs and improve the load level of the distribution system was
proposed in [29]. A distributed algorithm to jointly optimize
the routing selection and the charging scheduling was proposed
in [30]. An EV charging scheduling with the objective to
minimize the total overhead of recharging, considering charg-
ing availability and electricity price fluctuation was developed
in [31].

We note that reviewed studies on DSM of EVs without
cloud computing are representative of the literature on DSM of
EVs without cloud computing, which we cannot review com-
prehensively due to space constraints. However, we emphasize
that—to the best of our knowledge—none of the existing DSM
of EVs studies without cloud computing has considered the
profit maximization of the charging of heterogeneous EVs
(with heterogeneous charging levels and delay requirements)
with capacity planning and capacity expansion. Generally,
cloud-based charging management is widely viewed as highly
promising to be commercialized in the future. Therefore, we
focus on cloud-based management in this study.

3) DSM of EVs with Cloud-based Management: Cloud-
based DSM models were presented in [32], [33], [14]. A
demand response algorithm for the smart grid, considering
a cloud architecture was proposed in [32]. The study [33]
proposed a cloud-based energy forecasting model in micro-
grids to reduce the message overhead and energy consumption.
The study [14] modeled the cloud-based charging and dis-
charging management in public charging stations for demand
response. In [34], a stochastic convex optimization problem
was formulated to minimize the average overall trip time for
all customers relative to their actual trip time without in-
route charging, whereby cloud technology was used to enable
the real-time collection of EV state-of-charge information,
departure rates from passenger stations, energy supplies at
different stations, and trip times without charging. A mobile
edge computing-based system enabled by big data analytics
for the EV charging use case was explored in [35]. A four-
layer framework was proposed in [36] to coordinate charging
and discharging requests of EVs.

However, the existing studies are limited to homogeneous
EVs. In contrast, we consider the practical scenario of het-
erogeneous EVs with different time sensitivities (highly time-
sensitive EVs at highways and parked EVs with relaxed
timing requirements) as well as heterogeneous charging levels
(modeling for instance DCFast charging and level 2 three
phase charging). Only multiple charging levels have been
considered in some prior studies, e.g., [18]; however, without
considering the communication and computation delays or cost
for cloud management. We address these heterogeneous EV
requirements through two levels of cloud computing, a local
cloud (with relatively high rental fee, but short communication
delay and fast computing service) to manage the time-sensitive
highway EVs and a remote cloud (with relatively low rental
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but long communication delay and slow computing service)
to manage the parked EVs. Moreover, the existing cloud-
based studies have not jointly considered price incentives and
capacity expansion. In contrast, we comprehensively model
and compare price incentives and capacity expansion and
introduce a hybrid strategy that combines price incentives and
capacity expansion.

C. Contributions

Facing the issues of limited energy and the management
complexity of very large scale EV deployments, we present
a cloud-based charging management framework in a network
of charging stations and propose a profit maximization model.
We take into account price incentives and different quality
of service (QoS) provided to customers, whereby two levels
of cloud computing are considered. The contributions of this
paper are summarized as follows:
• From the infrastructure’s perspective, we present for

the first time two levels of cloud computing infrastruc-
tures, i.e., remote cloud and local cloud, to satisfy EVs’
different latency requirements, thereby providing high
scalability and fast response times. We develop novel
algorithms for the interplay among EVs, SO, charging
stations, and both clouds.

• Second, different from prior studies, from the viewpoint
of charging stations, we consider the charging character-
istics and geography of charging stations, and therefore
consider charging stations with multiple charging levels
(e.g., level 2 three-phase charging and DC fast charging),
different locations (i.e., charging stations at highway exits
(CSH ) and in parking lots (CSP ), and multiple charging
power loss rates relating to the multiple charging levels.
The multiple charging settings, locations, and charging
power loss rates influence the system performance and
service requirements of the EVs.

• Third, from the modeling viewpoint, we present cloud-
based charging models, which are composed of queuing-
based cloud server planning, power capacity planning,
delay analysis, and profit maximization. For the cloud
server planning, we consider the QoS metric (expected
waiting time) and strive to minimize the cloud server
rental fee. For the power capacity planning of charg-
ing stations, we present a greedy algorithm to reduce
the planning complexity. The multiple charging settings,
EVs’ charging preferences (time sensitivity based on
charging stations locations), maximal power constraints,
and QoS metric (the weighted blocking probability) are
incorporated.

• Fourth, from the communication aspect, the contention-
based random access in 4G Long-Term Evolution (LTE)
networks is considered. The EV end-to-end delay (De2e),
which includes the contention delay, is analyzed and
considered in the profit model.

• Fifth, from the business aspect, the ultimate goal of this
study is to maximize the system profit while providing
high QoS to EVs, whereby three strategies are introduced,
namely, the price-incentive method (PIM), the capacity

expansion method (CEM), and a hybrid method of the
PIM and CEM (HPC). In the PIM, the optimal discount is
offered to encourage customers to delay charging. In the
CEM, the optimal extra power that needs to be purchased,
and a penalty factor are included in the model. The
HPC balances the immediate charging needs of customers
(through the CEM) and the alleviation of heavy power
grid loads (through the PIM). The goal of these strategies
is to control and coordinate the EVs, thereby ensuring
that the EV charging needs are satisfied while meeting
different communication latency and maximizing the SO
profit. requirements.

The remainder of this paper is organized as follows. Section II
describes the system model, including cloud server planning,
power capacity planning, delay analysis, and formulation of
the profit maximization. Section III discusses the numerical
results. Finally, conclusions are drawn in Section IV.

II. SYSTEM MODEL

In Section II-A, we present an overview of our system
model. Then considering the system QoS, the optimal server
planning in the cloud is introduced in Section II-B, the ca-
pacity planning in a network of charging stations is conducted
in Section II-C, and the delay is analyzed in Section II-D.
Section II-E formulates the profit optimization and introduces
the PIM, CEM, and HPC.

A. System Overview

We consider two classes of EVs: EVs at highway exit
charging stations CSH and EVs at parking lot charging
stations CSP . EVs at a highway charging stations CSH are
offered high-priority service as they require real-time service,
while EVs in parking lot charging stations CSP are offered
low-priority service as they typically have comparably relaxed
latency requirements since the EVs usually park for some
periods of time. The SO purchases energy from the grid to
provide charging service to EVs. Also, the SO distributes the
energy to its own sub-networks.

We assume that time is divided into slots t ∈ {1, 2, . . . , T},
and there are f charging stations near highway exits (CSH )
and (K − f ) charging stations at parking lots (CSP ), where
k ∈ {CS1, CS2, . . . , CSf , CSf+1, . . . , CSK}. We assume
that the charging stations comply with the US Society of
Automotive Engineers (SAE) standard. The arrival of EVs in
CSk in time slot t is commonly modeled as an exponential
distribution with rate λk,t [16]. We consider J charging levels
in these public charging stations due to the different charging
requirements of the EVs. (The prior model in [1] considered
only a single charging level.) Each charging station k is
permanently mapped to one charging level j.

Recently, hierarchical cloud computing and network ar-
chitectures with multiple levels have been developed, see
e.g., [37], [38], [39], [40], [41], [42]. In accordance with
the needs of the two considered heterogenous types of EVs
(highway EVs and parking lot EVs), we employ a two-level
cloud computing architecture. The nearby local cloud with a
relatively short end-to-end delay DL

e2e [43], [44] can support
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the low latency requirements of the EVs at highway charging
stations, see Fig. 1. The local cloud (edge cloud) brings the
cloud computing capabilities in close proximity of the EVs,
charging stations, and BSs. The local cloud can be distributed,
i.e., there could be several local cloud locations that are
each physically close to their corresponding BSs. There are
multiple ways to deploy the local clouds. For example, a local
cloud can be deployed at an aggregation point, where multiple
BSs are located close together sharing a single local cloud
platform [41]. This aggregation point approach centralizes re-
sources and thus helps reduce both CAPEX and OPEX without
experiencing significant latency. Alternatively, local clouds can
be deployed at the BSs, i.e., integrated with cloudlets in the
form of a so-called Access Edge Cloud, or deployed one
level higher in the network hierarchy, i.e., at the aggregation
point of the metro/core network as a so-called Metro Edge
Cloud [43]. The local cloud locations can synchronize among
each other using some cloud synchronization technique, such
as Openstack Swift.

The remote cloud (e.g., Amazon EC2 or Microsoft Azure)
with relatively long DR

e2e can serve the EVs in parking lots,
which have relatively relaxed latency requirements. For a given
computing service rate, the rental fee of the remote cloud is
typically lower than the corresponding fee for a local cloud due
to the better economies of scale in a remote centrally located
cloud installation. Thus, with a two-level cloud computing
structure, our approach can exploit the better economies of
scale of the remote cloud computing. The local and remote
clouds can synchronize data by connecting their object storage
APIs, e.g., Amazon S3 or Openstack Swift. The EVs, SO,
and the clouds communicate through 4G LTE base stations.
The EVs and SO connect to the base stations with wireless
communication, while the base stations and the clouds are
connected via optical fiber links. Power flows exist between
EVs and charging stations for the charging.

The EVs in CSH and CSP publish and subscribe to a
local cloud and a remote cloud, respectively. The remote cloud
obtains the information of EVs from parking lots, synchronizes
the data with the local cloud, and publishes the response
messages to EVs in parking lots, so as to alleviate the load
on the local cloud. The local cloud deployment details are
out of scope of this paper. The base stations forward the
EV information to the clouds. The cloud control center in
the local cloud performs processing and controlling services,
specifically, the server planning, capacity planning, and profit
optimization. The SO sends real-time information, e.g., real-
time electricity price Ut and real-time supply St, to the base
stations. Then, the base stations forward the information to the
local cloud. The deployment of charging stations may depend
on several parameters, including the traffic density and the
load on the power grids in a particular area. The locations of
the charging stations can, for instance, be determined based
on the flow-capturing location-allocation model [45].

The detailed model framework is depicted in Fig. 2. EVs
and SO communicate with both clouds via base stations. The
cloud system module collects each customer’s information
(i.e., an EV i’s ID, spatial location xi,t and charging demand
di,t) on the left side of Fig. 2. The cloud system module

Fig. 1: Two-layered cloud computing-based EV charging sys-
tem: A local cloud manages the high-priority charging of EVs
at charging stations near highway exits (CSH ), while a remote
cloud manages the charging stations in parking lots (CSP )
where the EVs have relaxed timing constraints.

Fig. 2: System model with input and output parameters.

collects the electricity supply St, the power capacity limits
of each charging station Zk (whereby k is the index for
the charging station), the charging station power loss rate lj
(whereby the charging level j ranges from j = 1, 2, . . . , Jk),
the power of charging levels P jch and the electricity price
Ut from the SO, see right side of Fig. 2. After the cloud
control center has completed the cloud server planning, the
cloud control center sends the optimal number of local and
remote cloud servers c∗L,t and c∗R,t to the local cloud and the
remote cloud, respectively. The optimal number of charging
outlets n∗k,t is published to the SO. Next, the cloud control
center responds to the SO with discount g∗k,t and profit Y ∗PIM,t,
and to customers with discount g∗k,t. The parameters and their
description are summarized in Table I.

Algorithms 1, 2, 3, and 4 summarize the model operations.
The algorithm executed by the computing center in the local
cloud is similar to Algorithm 2 executed in the remote cloud
and is therefore omitted. The cloud control center executes
the algorithms in real time, as triggered by new EV arrivals.
The algorithms use the current data and estimated hourly
arrival rates. The EV charging schedule is planned on a time
slot (hourly) basis. Note that the remote cloud computing
center receives the discounts from the cloud control center and
publishes the discounts to the parking lot EVs since only the
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TABLE I: Variables and their description.

Variables Description

Ut Electricity price at time t

xi,t Spatial location of EV i at time t

di,t Charging demand of EV i at time t

St Electricity supply of system operator at time t

Zk Power capacity of charging station k

P j
ch Power of charging level j

lj Power loss rate at charging level j

cL,t Number of local-cloud servers at time t

cR,t Number of remote-cloud servers at time t

Er Energy requested by an EV

nk,t Number of charg. outlets at charging station k at time t

gk,t Discount for delaying the charging at station k at time t

YPIM,t Profit from price-incentive method (PIM) at time t

λk,t EV arrival rate at charging station k at time t

λdk,t Updated arrival rate at charging station k at time t after

offering discount

µk,t Service rate at charging station k at time t

tL,t
w Avg. waiting time of an EV in local cloud at time t

tR,t
w Avg. waiting time of an EV in remote cloud at time t

αk Time sensitivity at charging station k

ρk,t Charging outlet utilization at charging station k at time t

Algorithm 1: Executed by an EV.
Input : An EV i’s status: ID, location xi,t, charging

demand di,t, network status NS =Not
Connected, transm. attempt w = 0,
max. transm. attempt W

Output: Discount g∗k,t , Contention delay Di
con,t

1 while w ≤W and NS==Not Connected do
2 Send a preamble for connection request;
3 w ← w+1;
4 if No collision then
5 NS=Connected;
6 Calculate Di

con,t based on the time it takes
EV i to connect;

7 Send charging request;
8 Receive discount g∗k,t;
9 if g∗k,t is acceptable then

10 Send ACK to accept the delay;
11 else
12 Send ACK to reject the delay;
13 end
14 if NS==Not Connected then
15 Communication connection failed;

remote cloud computing center stores the status information
of the parked EVs. The details of the hierarchical model are
described in the following subsections.

B. Optimal Server Planning in the Cloud

To minimize the server rental cost in the cloud, we analyze
the numbers c∗L,t and c∗R,t of local and remote cloud servers for
given QoS thresholds. Specifically, the average waiting times

Algorithm 2: Executed by remote cloud.
Input : Status (ID, location xi,t, charging demand

di,t) of each parking lot EV
Output: Discount g∗k,t to EVs

1 for t = 1 to T do
2 if A remote cloud server is available then
3 Receive and store EVs’ information and

charging request;
4 Analyze each EV’s charging request based on

First-In-First-Out (FIFO) order;
5 Synchronize EVs’ information with local cloud;
6 else
7 Store charging request in buffer;
8 Obtain c∗R,t and g∗k,t from cloud control center;
9 Publish g∗k,t to EVs in parking lots;

10 end

Algorithm 3: Executed by cloud control center in local
cloud.
Input : Each EV’s status (ID, xi,t, di,t), St, Ut, Zk,

lj , P
j
ch

Output: c∗L,t, c∗R,t, Y ∗PIM,t, n
∗
k,t, g

∗
k,t ∀k ∈ K, ∀t ∈ T

1 for t = 1 to T do
2 Collect status of EVs, St, Ut, and Zk;
3 Analyze DL,t

e2e and DR,t
e2e using (16);

4 Execute server planning:
The target is to minimize the server rental fee (3)
with constraints εL (4) and εR (5), the cloud
control center returns server numbers c∗L,t and
c∗R,t to the local cloud and remote cloud;

5 Execute capacity planning (10) with constraints
(11)–(15). Return n∗k,t ∀k ∈ K, see Alg. 4;

6 if d < St and bk,t < ε then
7 Return S1 to SO and g∗k,t = 0;
8 else
9 Execute profit optimization module: First,

calculate λ∗k,t, ∀k ∈ K in (19). Second, execute
PIM (23) with constraints (24)–(26) for load
shifting. Third, calculate Ck,tloss in (7) and Ck,tdelay
in (21). Get g∗k,t, and Y ∗PIM,t;

10 Publish g∗k,t and Y ∗PIM,t to SO;
11 Publish g∗k,t to EVs;
12 end

of EVs in the queues of the local cloud tL,tw and the remote
cloud tR,tw need to be below the thresholds εL and εR.

Following [41], [46], [47], we model both the local and
remote cloud computing centers as M/M/c queuing systems
with arrival rates λL,t, λR,t and service rates µL, µR that
are independent and exponentially distributed. By the Pois-
son merging property, the aggregate arrival processes with

rates λL,t =
f∑
k=1

λk,t and λR,t =
K∑

k=f+1

λk,t are Poisson

processes, consistent with the M/M/c model.
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The cloud queueing delay ttw has an important influence
on the end-to-end delay. Therefore, the target of our server
planning is to optimize the cloud server numbers c∗L,t and c∗R,t,
given the thresholds εL and εR. Generally, for arrival rate λ
and service rate µ, and thus traffic intensity ρ = λ/(cµ), the
probability C that customers have to wait in an M/M/c queue
before getting served and the resulting mean waiting time tw
follow from queueing theory [48] as

C

(
c,
λ

µ

)
=

1

1 + (1− ρ) · c!
(cρ)c ·

∑c−1
r=0

(cρ)r

r!

(1)

tw(c) =
C(c, λµ )

c · µ− λ
. (2)

The total server rental cost is composed of the cost of the
local cloud and the remote cloud servers. Let pL and pR
denote the rental fee of a server in the local cloud and the
remote cloud in one time slot, respectively. Due to the real-
time function of the local cloud, the local cloud has higher
rental fee pL > pR and service rate µL > µR than the remote
cloud. The optimization problem at time t is formulated as:

min pL · cL,t + pR · cR,t (3)

s.t. tL,tw (cL,t) ≤ εL (4)

tR,tw (cR,t) ≤ εR (5)

tL,tw , tR,tw , cL,t, cR,t ≥ 0. (6)

The objective function (3) minimizes the total cost of cloud
services from both the local cloud and remote cloud. The
constraints (4) and (5) guarantee the QoS to customers.
Constraint (6) enforces that the server numbers cL,t and cR,t
are non-negative, whereby we assume that cL,t and cR,t are
integers. Eqs. (1) and (2) indicate that the waiting time tw
decreases with the number of servers c. Thus, the optimal
cost is attained for c∗L,t = dargcL,t

(tL,tw (cL,t) = εL)e and
c∗R,t = dargcR,t

(tR,tw (cR,t) = εR)e, whereby the ceiling
functions set the server numbers to the smallest integers that
ensure that the waiting times are less than or equal to εL and
εR, respectively.

C. Capacity Planning in the Network of Charging Stations

Due to the different geographical locations of the charging
stations, the charging stations may encounter uneven charging
demands. Therefore, it is necessary to provide more charging
outlets to stations with heavy loads. On the other hand, a
limited power supply may not satisfy all customers’ charging
demands in a timely manner during peak hours. Customers
who are not served promptly are blocked. For gaining high
reputation and providing a high QoS, it is critical to guarantee
a low blocking probability. Accordingly, we consider the total
weighted blocking probability as a performance metric.

Every charging station is modeled as an M/M/c/c queue.
The service rate µk is a function of the charging level j and the
charging efficiency in charging station k. Power losses occur in
a charging station because of the characteristics of the power
electronics. Specifically, with P jch and P jout denoting the power

going in and out of a charging outlet at charging level j, the
power losses rate is [49], [50]:

lj = 1− P jout

P jch
. (7)

The charging efficiency of a charging station with charging
level j is ηj = 1 − lj . For a given EV battery capacity E,
expected value of the requested state of charge (SoC) SoCr,
and expected value of the initial SoC SoCi, the service rate
in CSk is

µk =
1
d

P j
chη

j

, (8)

where the average charging demand of an EV is denoted
as d = (SoCr − SoCi)E. Then, with nk,t charging outlets
in CSk, the blocking probability of CSk follows from loss
system theory [51] as

bk,t =
(
λk,t

µk
)
nk,t

/nk,t!
nk,t∑
i=0

(
λk,t

µk
)
i
/i!

. (9)

Due to the internal resistance of an EV battery, the charging
time increases exponentially when the SoC is close to full,
resulting in a general distribution of the service rate µk, see
detailed battery characteristics in [52], [53]. For simplicity, we
do not consider these detailed battery characteristics. Instead,
we assume that µk follows an exponential distribution and
therefore apply Eq. (8).

Customers in CSP are willing to delay the charging if a
discount is offered, while customers in CSH would delay
charging for a larger discount, since they are more time
sensitive. Thus, the time sensitivity parameters αH and αP
are considered in the capacity planning, whereby αH > αP .
Hence, in CSk, when k ≤ f , αk = αH ; else, αk = αP .

The maximal power capacity Zk of charging station k, i.e.,
of CSk, with assigned charging power level P kch, is considered
as the power constraint. The variables in the optimization
problem are the numbers of charging outlets nk,∀k ∈ K.
Considering the performance of a network of charging stations,

we introduce the weighted value wk,t = λdk,t

/
K∑
k=1

λdk,t. and

formulate the problem at time t as:

min
K∑
k=1

αk · (wk,t · bk,t) (10)

s.t. λdk,t = λk,t + λk,t−1 · θ(gk,t−1) ∀k ∈ K (11)

bk,t =
(
λd
k,t

µk,t
)
nk,t

/nk,t!
nk,t∑
i=0

(
λd
k,t

µk,t
)
i

/i!

∀k ∈ K (12)

P kch · nk,t ≤ Zk ∀k ∈ K (13)
K∑
k=1

nk,tP
k
ch ≤ St (14)

nk,t > 0 ∀k ∈ K. (15)

Constraint (11) describes the updated arrival rate λdk,t, after
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Algorithm 4: Charging outlet allocation algorithm
executed by the cloud control center in local cloud.

Input :
[
λd
1,t

µ1,t
,
λd
2,t

µ2,t
, . . . ,

λd
K,t

µK,t

]
, αk, St

P kch, Zk, nk,t ∀k ∈ K, ∀j ∈ J
Output: n = [n1,t, n2,t, . . . , nK,t],

Resultt =
K∑
k=1

wk,tbk,t

Initialization: n1,t = · · · = nK,t = 1,

temp = S −
K∑
k=1

nkP
k
ch,

wk,t =
λd
k,t

K∑
k=1

λd
k,t

, ρk,t =
λd
k,t

nk,t·µk,t

1 Vt = [ρ1,t · α1, . . . , ρK,t · αK ];
2 while temp ≥ 0 and Vt 6= {0} do
3 L = argk max(Vt);
4 if (nL,t + 1)P jch ≤ ZL and temp ≥ P kch then
5 nL,t ← nL,t + 1;
6 temp← temp− P jch;
7 else
8 λk,t = 0;
9 Update Vt and ρk,t;

10 end
11 for k = 1 to K do

12 bk,t =
(ρk,t·nk,t)

nk,t

nk,t!

/nk,t∑
i=0

(ρk,t·nk,t)
i

i! ;

13 end

14 Resultt =
k∑
k=1

wk,tbk,t;

providing discount gk,t. The updated arrival rate λdk,t is
composed of both new arrivals (with rate λk,t) and delayed
EVs from the preceding time slot, whereby θ(gk,t) is an
EV’s probability of delayed charging, which is described
in Section II-E. Constraint (13) guarantees the amount of
electrical power (kW) distributed to a charging station is no
more than the maximal charging power rate of a charging
station.

Based on our previous work [54], we proceed to develop a
greedy algorithm to find near-optimal solutions for the charg-
ing outlets allocation. However, note that different from [54],
we incorporate the maximal power capacity Zk, multiple (J)
charging levels, and time sensitivity parameter αk in the
charging station selection algorithm. With the help of these
three parameters, our novel model flexibly offers different
service level agreements (SLAs) based on the customer needs.
The details are presented in Algorithm 4.

Algorithm 4 presents the procedure of allocating charging
outlets. First, a charging station with a heavy load is selected
in the further step of allocating one charging outlet. The
time sensitivity αk is incorporated with the server intensity
λu
1,t

n1,t·µ1,t
in this operation, see Line 1. Second, after selecting

a charging station, its charging level j and maximum power in
this charging station Zk are considered. At each iteration, if the
remaining power supply can support an EV with its charging

level and the power does not exceed Zk, then one charging
outlet is allocated to this charging station, see Line 4. Towards
this end, we calculate the weighted blocking probabilities
based on the charging outlet allocation.

D. Delay Analysis

1) End-to-end delay: In time slot t, the expected end-to-
end delay Dt

e2e is the sum of the EVs’ expected contention
delay Dcon,t to connect to the 4G LTE base stations, the var-
ious expected packet transmission delays Dtrans, the various
expected propagation delays Dprop, and the expected queuing
time in the cloud, and expected cloud servers’ processing time.
Specifically, Dt

e2e is computed as:

Dt
e2e = Dcon,t +De

trans,req + 2De
prop +Dc

trans,req

+2Dc
prop +

1

µ
+ ttw +De

trans,res +Dc
trans,res,

(16)

whereby the individual delay components are defined as fol-
lows. The contention delay Dcon,t is a function of the arrival
rate of EVs and the number of available 4G LTE preambles
and is analyzed in Section II-D2. With packet size Preq and 4G
LTE network transmission rate RBS , the transmission delay
from EVs to BSs is De

trans,req = Preq/RBS . With BS-to-
cloud server link transmission rate Rc, the transmission delay
from BSs to the cloud servers is Dc

trans,req = Preq/Rc. De
prop

and Dc
prop are the expected propagation delays between EVs

and BSs, and between BSs and the cloud servers, respectively.
In particular, Dc

prop = DL
prop between BSs and the local cloud,

while Dc
prop = DR

prop between BSs and the remote cloud.
Similarly, with the response packet size Pres, De

trans,res =
Pres/RBS and Dc

trans,res = Pres/Rc. The average waiting
time ttw before getting served in the M/M/c system is
from Eq. (2). Note that the cloud server waiting times ttw
and processing times 1/µ for the local and remote cloud
are different, depending on their service rates µ and server
numbers cL,t and cR,t. Note that the processing time of a
cloud server is the time to process the data and return the
result, while the waiting time is the time that a customer has
to wait before getting served. The difference between the local
and remote clouds is due to different service rates and different
numbers of servers.

2) Contention delay: When EVs do not have a grant for up-
link data transmission and no Physical Uplink Control Channel
(PUCCH) has been configured for scheduling requests, a
random access procedure is initiated [55]. The 4G LTE random
access is based on preamble transmissions [56]. Hence, we
consider only the contention delay for the uplink network.

We denote ∆Ts for the time slot duration of the contention
process (and note that this contention time slot is different
from the time slot denoted by t for the charging system. The
charging slot time (minutes to hours) is much longer compared
to the contention slot time (ms)). Furthermore, we denote W
for the maximum number of transmission attempts, and O for
the number of preambles. The total arrival rate of new requests

is λs,t =
K∑
k=1

λk,t. We denote the expected number of EVs,

including new and previously collided requests that transmit
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a preamble at time t by Ns,t. Then, the expected number of
EVs per preamble is xs,t = Ns,t/O and the probability of
successfully sending a preamble without collision in time slot
t is ps,t = e−xs,t [56]. For W ≤ 8, the balance equation

Ns,t
λs,t

=
1− (1− ps,t)W

ps,t
(17)

has a single unique solution, i.e., a unique value of ps,t, for
given λs,t/O and W [56]. For the simplifying assumption that
the backoff time is zero when an EV encounters a collision, the
average delay from request generation to successful preamble
transmission is [56]:

Dcon,t(λs,t, O) = B ·
(
1 + (W − 1)(1− ps,t)W

)
−B ·

(
W (1− ps,t)W−1

)
+

∆Ts
2
,

(18)

where B = ∆Ts ·
(

1
ps,t
− 1
)
· 1

1−(1−ps,t)W .
3) Cloud Server Connection Alternatives: We briefly note

that our system model allows for flexible cloud server options.
So far, we have considered a local cloud with short propaga-
tion delay DL

prop (compared to the longer propagation delay
DR
prop of the remote cloud) and high compute service rate

µL (compared to the lower compute service rate µR of the
remote cloud). Depending on the available cloud computing
infrastructures and services, our model accommodates flexible
cloud computing arrangements. For instance, our system can
operate with only a local cloud (to ensure low delay service),
which would be modelled by setting DR

prop = DL
prop and

µR = µL, at the expense of not exploiting the cheaper remote
cloud computing. Alternatively, our system can operate by
renting cL fast servers (providing a high compute service rate
µL) and cR slow servers (providing a low compute service
rate µR) in a local cloud with short propagation delay DL

prop,
to exploit the cost savings of cheaper low service rate cloud
computing.

E. Profit Optimization

The goal of the SO is to maximize the system profit and to
guarantee service to a large percentage of the EVs. Capacity
planning minimized the total weighted blocking probability.
However, capacity planning cannot guarantee fairness among
charging stations because the stations with high traffic intensi-
ties have priority to get the majority of the charging outlets to
alleviate the high traffic intensities. However, this allocation
may leave insufficient numbers of outlets for other stations.
As a result, other stations may also experience the problem of
high blocking rates. For better QoS and to be fair, our aim is
to ensure that the blocking probability bk,t at every charging
station k in (9) is at most ε. The corresponding optimal arrival
rate is given by

λ∗k,t ≤ argmax
λ

(bk,t ≤ ε). (19)

The SO strives to serve the largest number of EVs given a
prescribed ε threshold; thus, λ∗k,t is the maximal value of the
arrival rate at charging station k and can be achieved when
bk,t = ε.

When the supply satisfies the EVs’ demands within the
blocking rate threshold, i.e., when bk,t ≤ ε at all charging
stations, then the cloud control center notifies the SO that there
is sufficient supply. On the other hand, in peak hours, λk,t
may be higher than λ∗k,t. Thus, we adapt the general strategy
of offering discounts to users [16] to our system and propose
the PIM to shift the load from peak hours to off-peak hours in
Section II-E1. The CEM which purchases a sufficient amount
of energy in introduced in Section II-E2, and the HPC, a hybrid
method of the PIM and CEM, is presented in Section II-E3.
All three methods are compared in Section III.

1) Price-Incentive Method (PIM): The PIM incentivizes
EVs to shift their charging demands from peak hours to
off-peak hours by offering a discount. When the supply is
insufficient to guarantee the QoS level of blocking probability
less than ε, the system provides a discount to encourage
customers to shift their demands by one time slot, i.e., we
apply load shifting concepts [16], [57]. However, we modify
the existing load shifting models from one charging station to
a network of charging stations, and include the penalty costs
for not serving customers, the rental fee from cloud services,
and our price-sensitivity function for delayed charging in our
profit model.

Assume the price sensitivity function is known to the
system. Applying the concept of a linear price sensitivity
function [58], suppose the admission (charging) fee of an EV
at charging station k of charging level j for a one-time charge
is Aj and the offered discount is gk,t. The discount ranges of
EVs in CSH and CSP of charging level j are [0, gH,jmax] and
[0, gP,jmax], respectively, mapping to the probability θ(gk,t) ∈
[0, 1] of a customer delaying the charging. The higher the
offered discount gk,t, the higher the probability θ(gk,t) that
a customer delays charging to the next time slot. For a given
charging level j of charging stations, gP,jmax < gH,jmax ≤ Aj
because customers in CSH are more time sensitive.

From the perspective of a charging station CSk at time t,
we consider the admission fee Aj of charging level j of newly
arrived EVs without delaying charging and delayed EVs from
the preceding time slot t − 1 to the current time slot t, the
penalty for not serving an EV ppen, the cost of power losses,
the penalty of an EV’s Dk,t

e2e, and the maintenance cost of a
charging station pm. The number of EVs delayed from t− 1
to t is λ́k,t−1 = λk,t−1 · θ(gk,t−1). The average EV charging
demand is denoted by d = (SoCr − SoCi)E.

In time slot t, the cost of the energy loss in a charging
station k with charging level j is computed as

Ck,tloss(λ
d
k,t) = Ut · lj ·P jch ·

1

µk,t
· λdk,t · (1− bk,t(λdk,t)), (20)

where λdk,t is the number of EVs in the system at time t,
including the newly arrivals rejecting to delay and the arrivals
accepting to delay from time t− 1. Hence, λdk,t = λk,t · (1−
θ(gk,t)) + λ́k,t−1. Eq. (20) describes the cost of the amount
of energy loss in a unit of time in CSk, which is related to
the electricity price Ut, the power loss rate lj , charging power
level P jch, the duration of the charging time 1/µk,t, and the
number of served EVs in a time slot λdk,t · (1− bk,t(λdk,t)).
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Dk,t
e2e is differentiated by the connection of either local cloud

or remote cloud. Therefore, the cost of delay in a charging
station k is given by

Ck,tdelay(λk,t) =

{
ζH · λk,t · e(DL,t

e2e−DH) k ≤ f
ζP · λk,t · e(DR,t

e2e−DP ) otherwise,
(21)

where ζH and ζP are the penalty factors, and DH and DP

are the delay thresholds for CSH and CSP , respectively.
Referring to [59], the exponential function is used to quantify
the impact of an EV’s De2e. Therefore, at time t, the profit
RPIMk,j,t after offering discount at CSk with corresponding
charging level j is given by

RPIMk,j,t = (1− bk,t) · λk,t · (1− θ(gk,t)) · (Aj − Ut · d)

+(1− bk,t) · λ́k,t−1 · (Aj − gk,t−1 − Ut · d)

−bk,t · λdk,t · ppen − C
k,t
loss(λ

d
k,t)− C

k,t
delay(λk,t)− pm.

(22)

Considering the rental cost Eq. (3), the total profit in a net-
work of charging stations with offered discounts is formulated
as

YPIM,t = max
∑
k∈K

RPIMk,j,t − pL · cL,t − pR · cR,t (23)

s.t. λk,t(1− θ(gk,t)) + λk,t−1θ(gk,t−1) ≤ λ∗k,t ∀k ∈ K
(24)

0 ≤ gk,t, gk,t−1 ≤ gmax ∀k ∈ K (25)
0 ≤ θ(gk,t) ≤ 1 ∀k ∈ K. (26)

The objective function (23) characterizes the total profit in a
network of charging stations. The constraint (24) guarantees
that the sum of customers who reject delaying charging and
customers who accept delaying charging from the preceding
time slot is no larger than the optimal arrival rate. In con-
straint (25), gmax denotes the applicable maximum discount
gH,jmax or gP,jmax for the considered location of CSk (highway or
parking lot) and charging level j. Our model in this article is
limited to delaying the charging by one time slot. Modeling
delays of multiple time slots, possibly in conjunction with
different discounts for different delay times, is an interesting
direction for future research.

2) Capacity Expansion Method (CEM): With the CEM, the
SO purchases extra electricity to satisfy the peak demand,
with the penalty of expanding the system capacity. The CEM
algorithms executed by the cloud control center, an EV, and the
remote cloud are similar to the PIM algorithms in Algorithm
3. Thus, the CEM algorithms are not shown. The CEM
considers the QoS performance (bk,t ≤ ε). Hence, in CSk,
the optimal number of charging outlets n∗k,t should satisfy
n∗k,t ≥ argn min(bk,t ≤ ε). From Eq. (9), bk,t is decreasing
with nk,t, so n∗k,t = dargn(bk,t = ε)e. Therefore, the number
of extra charging outlets that need to be deployed at CSk is

∆nk,t =

{
n∗k,t − nk,t if nk,t < n∗k,t
0 otherwise.

(27)

Applying the general penalty concept [60], when the demand
is larger than the pre-decided supply, the SO has to pay Út =
Ut · (1 + σ) for extra power, whereby σ is the real-time price

penalty factor.
The arrival rate at t is λk,t since no discount is offered.

Hence, the profit YCEM,t when purchasing electricity is:

YCEM,t =
K∑
k=1

(
λk,t · (1− bk,t(λk,t, n∗k,t)) · (Aj − Ut · d)

−λk,t · (1− bk,t(λk,t, n∗k,t)) ·
∆nk,t
n∗k,t

· Ut · σ · d

−bk,t(λk,t, n∗k,t) · λk,t · ppen − C
k,t
loss(λk,t)

−Ck,tdelay(λk,t)− pm − pL · cL,t − pR · cR,t,
(28)

where the first term is the profit gained from the served
EVs. The second term is the penalty for the extra energy;
specifically, the formula λk,t · (1− bk,t(λk,t, n∗k,t)) ·

∆nk,t

n∗
k,t

, is
the number of customers using the extra power to charge their
EVs. The third term includes the penalty of blocking EVs and
the cost of energy loss. The fourth term is composed of the
penalty of communication delay, the maintenance cost, and
the rental fees for the cloud servers. The CEM ensures high
QoS for customers. However, by purchasing more electricity,
the CEM burdens the grid during peak hours.

3) Hybrid PIM and CEM (HPC): The HPC is a hybrid
method of the PIM and CEM. In the PIM, the discount gk,t
determines the percentage θ(gk,t) of customers that are willing
to delay charging; whereby, a higher percentage θ(gk,t) of
customers will delay their charging if a higher discount gk,t
is offered. However, customers who are under time pressure
(i.e., need to arrive at their destination on time), will reject
to delay charging even if a higher discount is offered. For
these customers who cannot delay their charging, the SO
may adopt the CEM by purchasing more power to satisfy
these customers while performing the PIM for the remaining
customers. Specifically, the HPC mainly differs from the PIM
through the percentage β, 0 < β < 1, of customers, who reject
to delay their charging due to time pressures to arrive at their
destinations; the CEM will be performed for this percentage
β of customers. Correspondingly, the percentage of customers
who will be involved in the PIM decreases to (1− β).

The number of EVs that delay charging from t − 1 to t is
λ́HPCk,t−1 = λk,t−1 · (1 − β) · θ(gk,t). We define λHPCk,t as the
number of EVs arriving at time t, including the new arrivals
that reject to delay charging and the arrivals that have accepted
to delay from time t − 1 to time t, i.e., λHPCk,t = λk,t · (1 −
(1− β) · θ(gk,t)) + λ́HPCk,t−1.

Since only a proportion 1 − β of customers participate
in the PIM, charging stations need to serve more customers
compared to the case of the pure PIM, which corresponds
to β = 0. To maintain the same QoS (e.g., same blocking
probability), more charging outlets will need to be deployed.
The optimal number n(HPC)∗

k,t of charging outlets still needs
to satisfy n

(HPC)∗

k,t ≥ argn min(bHPCk,t ≤ ε). The blocking
probability bHPCk,t with the HPC is a function of the arrival rate
λHPCk,t and number n(HPC)∗

k,t of outlets. From Eq. (9), bHPCk,t ,
decreases with nHPCk,t , thus n(HPC)∗

k,t = dargn(bHPCk,t = ε)e.
Considering the penalty of purchasing extra power, the
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Fig. 3: Performance comparison: (a) Charging demand comparison; (b) Cloud servers in local and remote cloud; (c) End-to-end
delay and contention delay; (d) charging outlet allocation; (e) Weighted blocking rate comparison; (f) Weighted blocking rate
of different locations; (g) Total cost of charging power loss ($); (h) Discount in PIM ($); (i) Total profit comparison ($).

penalty of blocking customers, the energy loss, communication
delay, and maintenance cost of charging station, the profit of
station k at charging level j at time t is

RHPCk,j,t = (1− bHPCk,t )λk,t(1− (1− β)θ(gk,t))(Aj − Utd)

+(1− bHPCk,t ) · λ́HPCk,t−1 · (Aj − gk,t−1 − Ut · d)

−λk,t · (1− bHPCk,t ) ·
nHPC

∗

k,t − nk,t
nHPC

∗
k,t

· Ut · σ · d

−bHPCk,t · λHPCk,t · ppen − Ck,tloss(λ
HPC
k,t )− Ck,tdelay(λk,t)− pm,

(29)

whereby the first term is the profit gained from the EVs which
arrive at the current time t and are served. The second term is
the profit gained from the EVs from the previous time slot t−1
which are served at the current time, whereby the discount is
applied. The third term is the penalty for extra energy. The

formula λk,t · (1 − bHPCk,t ) · n
HPC∗
k,t −nk,t

nHPC∗
k,t

is the number of
customers using the extra power to charge EVs. The fourth
term is composed of the penalty of blocking EVs, the cost
of energy loss, the penalty of communication delay, and the
maintenance cost of a station. The total profit at time t of a
network of charging stations is the sum of each station’s profit
in Eq. (29). The HPC method can also be applied to the case

when the traffic load is extremely heavy. If the traffic is so
heavy that the QoS (e.g., low blocking probability) cannot be
maintained for the maximum SO discount (gH,jmax and gP,jmax),
then the HPC can be employed to alleviate the situation.

III. NUMERICAL RESULTS

The performance of the proposed PIM and CEM with re-
spect to a baseline approach without load shifting nor capacity
expansion is evaluated in Section III-A. The performance of
the HPC is evaluated in Section III-B.

A. Comparison of PIM, CEM, and a Baseline Approach

This subsection compares the performance of the PIM and
CEM with a baseline approach (without load shifting or capac-
ity expansion). We note that this evaluation is fundamentally
different from the evaluation in [1] in that the evaluation in [1]
compared for each time slot (i.e., each hour) the maximum of
the PIM and CEM to a baseline approach. In contrast, we
consistently evaluate and present both the PIM and CEM for
each time slot in this section.

We consider T = 24 hours with an hour as the charging
system time unit. The performance metrics include the end-
to-end delay Dt

e2e, cloud server allocations cL,t and cR,t,
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TABLEII:Parameters,theirdescription,andvalues

Parameter Description Values

pL,pR Rental fee local, remote cloud

server

0.15,0.1$/h

P1ch,P
2
ch Chargingpowerlevels 50,19.2kW

A1,A2 Admission(charging)feesofEVs 10$,8$[61]

L,R Waitingtimethresholds 0.5s,3s

DH,DP DelaythresholdsforCSH,CSP 2s,10s

ζH,ζP Penaltyfactors 0.2$,0.1$

gH,1max,g
H,2
max Max.discountsforhighwayEVs 4$,3$[58]

gP,1max,g
P,2
max Max.discountsforparkinglotEVs 2$,1.5$[58]

DLprop,

DRprop

Prop.delayoflocal,remotecloud 0.01, 50 ms

[41]

SoCi InitialstateofchargeofanEV N(30,15)

(%)[62]

η1,η2 Chargingeffic.ofchargingstation 88.7,99%[63]

Rc Linktransmissionrate 10Gbps[41]

Preq,Pres Packetsize 256Bytes[64]

Deprop Prop.del.betweenEVandBS 0.33µs[41]

J Charginglevelsinchargingstation 2

Blockingthreshold 0.1

pm Maint.costofchargingstation 0.05$/h

S Real-timeelectricitysupply 5MW

σ Pricepenaltyfactor 0.7[60]

ppen PenaltyfornotservinganEV 2$

W Max.#transm.attempts 8[56]

∆Ts Timeslotdurat.ofcont.process 10ms

RBS Averagewirelesstransmissionrate 2Mbps

SoCr RequestedSoCofanEV 85%

αH,αP Time sensitivity parameter for

highwayexitandparkinglot

1,0.7

µL,µR Servicerateofserversatlocaland

remoteclouds

2400,600

Z1 5 Powercap.lim.ofachargingsta. 4000kW

O Numberofpreambles 54[56]

hourlychargingdemanddi,t,chargingoutletsallocationnk,t,
discountg∗k,t,weightedblockingrateb

u
k,t,andtotalprofit

Y∗PIM,t.TwohighwayexitchargingstationsCSH andthree
parkinglotchargingstationsCSPareconsideredanddenoted
asCS1–CS5,respectively.Specifically,wesupposethatCS1
aswellasCS4andCS5aredirect-current(DC)fastchargers
withcharginglevelj=1,whileCS2andCS3arelevel
2three-phasechargers withcharginglevelj=2.The
2017Nissanleafwith30kWhLi-ionbatteryisconsidered.
Thescheduledsupplyinthenetworkofchargingstationsis
constantS=5MW,andtheEVarrivalstothefivecharging
stationsare[500,400,400,500,300]EVsperday.The
hourlyarrivaltimedistributionofCSH andCSPfollows[65],
[66].In4GLTEnetworks,bothdownlinkanduplinkaverage
wirelesstransmissionratesaresettoRBS =2Mbps.Other
parametersaresummarizedinTableII.

Fig.3presentstheobtainedresults. Duringoff-peak
hours[1,7]and[12,24],thestatisticsarethesameinallcases
(Baseline,PIM,andCEM)becausethesupplyissufficientto

satisfythechargingdemandsoftheEVsandtoensurehigh
QoS.However,theresultsforthethreecasesdifferinhours[8,
11]whenthesystemcannotsatisfyallEVchargingdemands.

ThenumberofEVsrequestingtochargethebatteryperhour
forthreecases(Baseline,PIM,andCEM)inthenetworkof
chargingstationsisshowninFig.3a.Thechargingdemands
ofeveryhourforbaselineandtheCEMarethesamebecause
noloadsareshifted.Incontrast,thePIMshiftssomeloadfrom
thepeakhours8and9tooff-peakhours,soastosatisfythe
QoSrequirementinEq.(19).

Fig.3bdepictstheallocationofthenumbersoflocal(cL,t)
cloudandremote(cR,t)cloudservers,whichcorrespondto
theirservicerates,theaveragewaitingtimethresholds,and
thenumbersofEVsinEqs.(1)–(6).Morecloudserversare
allocatedtotheremotecloudthanthelocalcloudduringpeak
hours[8,9].Thisisbecauseofthecomparablylargernumber
ofEVsinparkinglotsduringpeakhoursandthesmaller
remotecloudservicerate.InFig.3c,alargenumberofEVs
requesttochargeduringpeakhours[8,9],henceDconin
Eq.(18)isrelativelyhigh.ItisnoticeablethatDRe2e(see
Eq.(16))attimet=14ishigherthanatpeakhours[8,9],
becausethedominantparametertRw attimet=14islarger
thanat[8,9].Inparticular,thenumberofremotecloudservers
cR attimet=14issmallerthanat[8,9](seeFig.3b),
resultinginthelargertRw.

DuetotheCEMcharacteristics,thenumbersofcharging
outletsnk,tbothinDCfastchargingstationsandLevel2three
phasechargingstationsarethelargestamongthethreecases
duringpeakhours[8,9],asshowninFig.3d.Fig.3ecompares
thetotalweightedblockingratesforthethreecases.During
thepeakhours[8,9],thebaselinechargingloadisheavy
(over350EVsrequestingdemand),resultinginhighblocking
probabilities(over20%).Onthecontrary,thePIMalleviates
theheavyloadduringpeakhoursbyloadshifting.Thetotal
weightedblockingrateiswithin0.1(thresholdinEq.(19))
withthePIMandCEM.Fig.3fdepictsthedetailedblocking
ratesofchargingstationsindifferentlocations(highwayexits
andparkinglots).

InFig.3g,thecostofthetotalchargingpowerlossina
networkofstationsperhour

k

Ck,tloss(λk,t)intheCEMisthe

highestduetomoreEVsbeingservedduringpeakhours[8,
9].Inhours9and10,thePIMcostisrelativelyhigherbecause
theloadfromthetwopeakhourswasshiftedtohours[9,10].

Thediscountsg∗k,t offeredinthePIMaredepictedin
Fig.3h.Tosatisfythearrivalrateconstraint(24)andmaximize
theprofit(23),theoptimaldiscountsofCS1athours8and9
are[$1.6,$2.13].AsdiscussedinSectionII-E,customersin
CSH aretimesensitiveandonlydelaychargingifoffereda
largediscount.Hence,weobserveagreaterdiscountforCSH
thanforCSP inFig.3h.

Comparedtothetotaldailyprofitofthebaselineapproach,
thePIMandCEMapproachesincreasethetotalprofitby6.9%
and3.9%,respectively.Fig.3ishowsthehourlyprofit,which
mainlydependsonthearrivalrates,theaverageblockingrates,
andthereal-timeelectricityprice.TheCEMprofitsduring
hours8and9arelargerthanfortheothertwocasesbecause
moreEVscanbeserved.Athours9and10,thebaselineprofit
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TABLE III: The HPC performance changes relative to the PIM
as a function of percentage β of customers who require the
CEM (i.e., do not participate in the PIM).

β Total profit

change (%)

Avg. discount

change (%)

Avg. # charg.

outl. change (%)

0.25 0.26 −25.5 +10.9

0.5 −0.85 −33.4 +21.7

0.75 −1.4 −52.5 +28.2

is slightly higher than the PIM profit, due to the relatively
larger demand served with the baseline approach and the PIM
discount. However, the total PIM profit for 24 hours is 6.9%
higher than the baseline profit. The PIM guarantees a low
blocking probability while gaining a higher profit. This is
crucial for satisfying the charging demands of the EVs and
for gaining a high reputation for the SO.

On one hand, the obtained results show that by purchasing
more energy, the CEM can ensure high system performance
and gain higher profit compared to the baseline. However, the
CEM burdens the load of the grid, which is not good for
the long-term grid development. On the other hand, the PIM
is able to alleviate the heavy load and maintain high system
performance (low blocking probability and high system profit)
without increasing the grid load.

B. Hybrid Approach of PIM and CEM (HPC)
In this section, we evaluate the HPC performance for the

settings from Table II. We vary the percentage β of customers
who adopt the CEM (with 100 − β percent of the customers
participating in the PIM). Table III reports the percentage
changes achieved by the HPC relative to the performance of
the pure PIM (for β = 0). In particular, Table III reports the
percentage change of the total profit in a network of charging
stations in a day (24 hours), the percentage change of the
average discount offered to each customer that participates in
the PIM during peak hours [8-10], and the percentage change
of the average number of charging outlets.

When β = 25% of the new customers in the HPC require
the CEM (i.e., cannot delay charging due to time pressures),
the total profit increases by 0.26% compared to the PIM profit,
i.e., the profit very slightly increases. This result indicates that
the hybrid HPC strategy for a realistic scenario (where some
customers are under time pressures and cannot delay charging)
achieves a total profit that is comparable to the profit in a pure
PIM scenario (where all customers are potentially willing to
delay charging if offered a high discount). This is because the
offered discount is 25.5% lower (thus less income is lost due to
giving out discounts), while the penalty for purchasing extra
power is still comparably low as indicated by the relatively
modest around 11% increase of the charging outlets. The goal
of the HPC is not to try to improve upon the profit of the pure
PIM. Instead, the HPC accommodates a more realistic scenario
(e.g., some percentage of customers cannot delay charging no
matter what discount is offered) and balances the charging
needs of customers with the need to perform demand control.

When the percentage β of customers that absolutely require
immediate charging increases to 50% and 75%, then the

total profit slightly decreases. This is because the penalty
for purchasing additional power increases substantially (by a
factor of roughly two as β increases from 0.25 to 0.5), while
the offered discounts decrease relatively slower (by a factor
of less than 1.5 as β increases from 0.25 to 0.5). Overall, the
HPC method can balance the immediate charging needs of
customers with the alleviation of the power grid load through
demand control based on discounts for delayed charging.

IV. CONCLUSION

In this paper, we have proposed a hierarchical charging
model for heterogeneous EVs. To accommodate the diverse
service requirements of customers, we considered a two-
layered cloud computing infrastructure consisting of local and
remote clouds. To solve the issues of heavy load demands and
uneven charging demands at charging stations, we proposed
to combine cloud server planning with capacity planning in
charging stations and profit maximization in the model design.
Different EV service requirements, end-to-end delays, and
different charging levels have been considered and analyzed.
Given the QoS metrics, the proposed models guarantee that
only a low percentage of customers is not getting served. The
obtained results demonstrate the efficiency of our models. The
system profits increase with both the PIM and CEM, and more
customers can be served compared to the baseline case with
uncontrolled customers. The model ensures EVs’ blocking
probability and the queuing time in the clouds are bounded by
a small threshold. Further, to balance the immediate charging
needs of customers with the alleviation of the power grid
load through demand control, a hybrid method of the PIM
and CEM has been proposed. A potential direction for future
work is to involve the real energy consumption profiles and
energy storage systems to improve the system model and
performance.
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