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Abstract

Modern machine learning techniques (such as deep learning) offer immense opportunities in the field of human biological

aging research. Aging is a complex process, experienced by all living organisms. While traditional machine learning and

data mining approaches are still popular in aging research, they typically need feature engineering or feature extraction for

robust performance. Explicit feature engineering represents a major challenge, as it requires significant domain knowledge.

The latest advances in deep learning provide a paradigm shift in eliciting meaningful knowledge from complex data

without performing explicit feature engineering. In this article, we review the recent literature on applying deep learning in

biological age estimation. We consider the current data modalities that have been used to study aging and the deep learning

architectures that have been applied. We identify four broad classes of measures to quantify the performance of algorithms

for biological age estimation and based on these evaluate the current approaches. The paper concludes with a brief

discussion on possible future directions in biological aging research using deep learning. This study has significant

potentials for improving our understanding of the health status of individuals, for instance, based on their physical

activities, blood samples and body shapes. Thus, the results of the study could have implications in different health care

settings, from palliative care to public health.

Key words: deep learning; biological age; bioinformatics; biomarkers; anthropometry; locomotor activity; electronic health
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Introduction

Aging is a gradual process experienced by all living organisms.

Human aging is a complex process that depends on different

types of tissues that are comprised of billions of cells. Aging

leads to diseases, functional performance deterioration and both
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physical and physiological damage over time. Age estimation is

an important medical and public health challenge. The major

challenge is that most measures used to characterize age, for

instance, biological markers vary significantly from person to

person, even for people with the same chronological age (CA).

The reason is that, the multi-faceted nature of aging with its

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa021/5828124 by guest on 04 M

ay 2020

https://academic.oup.com/


2 S. A. Rahman el al.

many unknowns (example, genetics, nutrition, body shape,

health condition, cardiorespiratory fitness, social conditions

and life style) contribute to influence the perceived age of an

individual. CA is based on the date of birth. However, biological

age (BA) is a conceptual idea that a person’s true age can be

different from his/her CA. Although BA is a loosely used concept

and lacks precise definition, it is often viewed as the true age

of an individual [24]. Thus, BA provides a better measure of

the life expectancy of an individual than his or her CA. The

common idea is to calculate BA based on some age-dependent

variables [3, 8, 21, 47], where CA may or may not be a required

variable depending on the application. In this article, we provide

a technical overview of the recent and future applications

of deep learning techniques for estimating BA. In particular,

we investigate the performance of different deep learning

architectures applied on data modalities such as biomarkers,

body measurements and physical locomotor activity (recorded

by a wearable device) for reliable estimation of BA in adults.

Levine[30] compared the performance of five BA estimation

algorithms and identified the Klemera and Doubal (KD) method

[24] as the most reliable predictor for mortality. Cho et al. [8]

studied various BA estimation methods to examine the relation

with work ability index (WAI). WAI is a measure that reflects

present health condition rather than how it changes over age.

The KD method on PCA features produced relatively reliable

results.Mitnitski et al. [34] compared performance of frailty index

(FI) with biomarker-based measures of BA. They employed the

KD algorithm in predicting mortality. In another work, Belsky et

al. [6] compared different methods of BA estimation, including

genomic, epigenetic and blood biomarker measures. Two other

recent work on BA estimation used the notions of phenotypic

age [31] and age neighborhoods [43]. These studies did not use

deep learning techniques.

Putin et al. [38] studied the use of biomarkers in a deep

learning framework for CA prediction. They utilized an ensemble

of multiple deep neural networks (DNNs) and trained on blood

biomarkers. They employed a variation of the implementation

of permutation feature importance [2] technique to evaluate

the relative importance of each blood biochemistry marker to

ensemble accuracy. The best performance by a DNN was a

mean absolute error (MAE) of 6.07 years in predicting CA and

the ensemble learning produced an MAE of 5.55 years. They

identified the five most important biomarkers for predicting

human CA: albumin, glucose, alkaline phosphatase, urea and

erythrocytes. Fischer et al. [13] earlier identified four biomarkers:

alpha-1-acid glycoprotein, albumin, very-low-density lipopro-

tein particle size and citrate for predicting all-cause mortality

by applying biomarker profiling via nuclear magnetic resonance

spectroscopy. They also showed that these four biomarkers can

predict healthy people that may be at a short-term risk of dying

within 5 years from heart disease, cancer and other illness.

Findings from these studies suggest that particular biomarkers

can be related to aging andmortality (for example albumin). Cole

et al. [10] studied the use of structural neuro-imaging magnetic

resonance imaging (MRI) under a Gaussian process regression

framework. The predicted age was identified as ‘brain-predicted

age’ or brain age for short. They combined DNA-methylation

with brain age and showed that the combination improves mor-

tality risk prediction. On the contrary, they also combined brain

age with grey matter and cerebrospinal fluid volumes but that

did not improve mortality risk prediction. Bobrov et al. [7] pro-

posed a DNN-based model to estimate BA using eye corner

images (called PhotoAgeClock). Their method resulted in an

MAE of 2.3 years and 95% correlation with CA; however, they

did not consider BA. Mamoshina et al. [32] used a multilayer

DNN model and showed population specific aging patterns for

Canadian, Korean and Eastern European subjects. In a recent

paper, Rahman and Adjeroh [44] applied a deep convolutional

long short-term memory (ConvLSTM) model on a week-long

physical activity datameasured perminute to estimate BA. They

also compared the estimated BAswith theKDmethod applied on

biomarkers in a common data set. Estimating BA using different

feature sets is interesting and brings in different perspectives.

Pyrkov et al. [40] applied a 1-dimensional convolutional neural

network (CNN) on the physical activity data to estimate BA. Cole

et al. [9] studied a deep learning framework using 3D-CNN-based

approach with raw MRI data. They showed that their model

can predict CA for healthy individuals. They also showed brain

predicted age is heritable and can be used in genetic studies of

brain aging.

Miotto et al. [33] discussed applications of deep learning

in medicine highlighting the major aspects that significantly

impact health care. Their study is limited to biomedical data,

especially those that originated from clinical imaging, electronic

health records, genomes andwearable devices.Ravi et al. [45] pre-

sented a review of deep learning in health informatics. The study

focuses on applications of deep learning in translational bioin-

formatics, medical imaging, pervasive sensing, medical infor-

matics and public health. However, these studies did not cover

aging (neither chronological nor biological).

Zhavoronkov et al. [53] discussed recent advances and per-

spectives in using artificial intelligence (AI) for studying aging

and longevity. Specifically, they discussed studies related to deep

learning, transfer learning and reinforcement learning.They also

discussed different data modalities often used in BA estimation

such as biomedical images (e.g.MRI), geneticmarkers and epige-

netic attributes.Although this is a comprehensive study on aging

and longevity describing machine learning (ML) algorithms that

are used in different aging research, the paper did not discuss the

issue of quantification of BA.Generally, survivalmodels based on

mortality status are used to compare/quantify these estimated

BAs. Further, therewas no discussion on how the differentmeth-

ods compare for instance, when applied on healthy individuals

and on those that suffer from chronic diseases (e.g. diabetes,

kidney disease, cardiovascular disease, etc.).

Given that deep learning provides newer architectures and

stronger performance in various domains, we strongly believe

that deep learning have much to offer in the area of biological

aging and aging acceleration. In this review, we do not provide

a comprehensive discussion on technical details on the deep

learning (DL) architectures, rather we provide an overview of the

DL techniques used to estimate BA. One of the major challenges

is quantifying the estimated BA; we discuss how to approach the

quantification problem.We describe the advances and opportu-

nities that are brought inwith the DL algorithms, over traditional

ML algorithms.

The remainder of this paper is organized as follows: in

Section 2, we describe different DL architectures relevant to BA

estimation. Section 3 describes the different data modalities

used for studying biological aging. Section 4 provides metrics

for performance evaluation and for quantifying BA. Section 5

shows comparative results for BA estimation methods in terms

of mortality models. In Section 6, we discuss several interesting

observations, such as, the connection between BA and general

health status, relation with known health indices, and relation

with disease status. Section 7 concludes the paper and describes

potential directions for future work in this area. Table 14 lists the

key terms and definitions used in this paper.
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Figure 1. DL architectures used in BA estimation (A) dense (or deep) neural network (DNN), (B) long short-termmemory (LSTM) cells (LSTM updates for timestep t given

the input Xt and the previous state ht−1 and previous cell output Ct−1), (C) convolutional neural network (CNN) and (D) convoutional LSTM cell. Here (A) and (C) show

the network while (B) and (D) show the basic structure; to use the models for age estimation, we add dense layers and a single unit output.

DL architectures

Machine learning (ML) is a general method of AI where a

computer can learn from the data with/without a specifically

designed algorithm. DL is a sub-field of ML that uses hierarchi-

cal/layered learning [29]. DL varies from traditional ML in how

they learn representations from the data. DL typically consists

of many layers (hence deep) of non-linear computational units.

The idea is to glean complex and meaningful information from

the data in successive layers. Each layer sends the output to its

next layer. This is also known as layered representation learning

based on stacked neural networks. The term ‘deep’ is used to

denote more than a single layer. Here we briefly describe the

popular DL architectures that have been used in age estimation.

More detailed descriptions can be found in [29, 32, 38, 40, 44, 53].

Deep neural network

An artificial neural network (ANN) consists of a single hidden

layer. ANN provides the basis for the deep (or dense) neural

network with the inclusion of more layers. Given the input

data, a layer learns from the data and stores the information as

numeric weights. Technically, weights are the parameters of a

layer. Training a DNN revolves around the following: (i) layers of

the network, (ii) input data and the target/output, (iii) the loss

function and (iv) the optimizer, that determines how the learning

occurs. The network of layers chained together learns/maps

the input data to the target. The loss function compares these

predictions to the output. The optimizer updates the network’s

weights based on the value from the loss function. Figure 1A

shows a general structure of a DNN. This deep architecture can

be used for a regression or classification problem and is widely

used in different areas. The learning/training process sometimes

can be very slow depending on the data dimension and the num-

ber of layers. DNNs [32, 38] have been used for CA estimation.

Recurrent neural network

A recurrent neural network (RNN) has a ‘state’ that stores the

information pertaining to what it has observed/processed thus

far, and it processes sequential data through a number of iter-

ations. So, an RNN is basically a neural network containing an

internal loop and the state of the RNN is changed/reset between

two sequences. The RNN, however, suffers from the problem

of propagating vanishing gradients [17]. The long short-term

memory (LSTM) is one of the most popular RNNs developed

by Hochreiter and Schmidhuber [17] that adds a way to carry

information across sequences. This saves information for later

and prevents older signals from vanishing gradually. RNNs are

good for memorizing sequential events and time dependencies.

However, they suffer from the vanishing gradient problem and

are about the slowest of the DL architectures. LSTM improves the

performance over RNN but does not entirely solve the problem

of vanishing gradient. Zhang et al. [52] used an attention-based

LSTM network for fine-grained age estimation. Rahman and

Adjeroh [44] combined an LSTM and a CNN to estimate BA from

physical activity data.

Convolutional neural network

The convolutional neural network (CNN) [29] is probably the

most popular architecture currently used for image analysis.
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The single most compelling reason for this is that the feature

extraction is done by the network itself and is much better than

the traditional feature extraction algorithms. CNN is a specific

type of neural network that is generally composed of convo-

lution and pooling layers. The convolution operation extracts

patches from its input feature map and applies the same trans-

formation to all of these patches, producing an output feature

map. Convolutions are defined by two key parameters: (i) size

of the patch (e.g., 3×3, 3×3×3) and (ii) number of filters. The

convolution operation works by sliding these windows over the

input feature map from every accessible/possible location. Each

patch is now transformed via a tensor product with learned

weight matrix called convolution kernel. The convolution layer

uses filters that perform a convolution operation. The pooling

layer performs down-sampling, typically immediately after con-

volution. Max and average pooling are common where max-

imum and average values are taken, respectively. The reason

for pooling is to introduce spatial invariance to the convolution

operation. Similar to DNN [38], a fully connected layer operates

on a flattened input where all the inputs are connected to all the

neurons. 1D-CNN [40] works with the input layer over a single

spatial (or temporal) dimension. 2D-CNN [27] and 3D-CNN [22]

use different representations compared with the 1D CNN. The

structure in the sequence of 2D and 3D representations of the

daily activities makes it easier to learn valuable patterns from

the activity data. This may be difficult using 1D CNN or DNN.

For 2D-CNN, we consider the data as an image of size 168×60

(DH×M) ignoring the days as temporal information. However, for

3D-CNN we consider the data as a 3D volume with temporal

information across the days, where each day has 24 h and an

hour is 60 min. So to break it down, we represent it as a 3D

information of 7×24×60 (D×H×M) min. Both the 2D (DH×M)

and 3D representation (D×H×M) of the 1D physical activity data

expose different feature dimensions that cannot be observed

easily using a 1D CNN architecture. In particular, using the 24×60

matrix representation of physical activity, records at minute 1

andminute 61 are neighbors (when considered as 2D in amatrix

form), while in a 1D sequential view they will be 60 timesteps

apart. Two important factors here are that the spatial structure

is changed and that the sequence of 2D and 3D information is

very different from that of the original 1D time series (especially

the information gathered from the 1D CNN and DNN).

The CNN + LSTM architecture uses CNN layers on the input

data and combines with LSTMs for extracting improved tempo-

ral sequence information. This architecture is suitable for both

spatial and temporal feature extraction. CNN + LSTMs were

developed for time series prediction problems and for the appli-

cation of generating textual descriptions from videos (sequence

of images). Another application is to generate a textual descrip-

tion of activity in a sequence of images. This architecture has

also been used in speech recognition and natural language pro-

cessing problems where CNNs perform the job of feature extrac-

tions for the LSTMs on audio and textual input data. If the input

has a 2D structure (e.g. image) or 1D structure (e.g. text), this

approach can be applied. CNN + LSTM architecture was applied

to BA estimation in [44].

Another variation in combining CNN and LSTM is ConvL-

STM [44, 50]. Under this architecture, the convolution structures

are applied at both the input-to-state transition and at the

state-to-state transitions. The ConvLSTM differs from simple

CNN+LSTM in that, for CNN+LSTM, the convolution structure

(CNN) is applied as the first layer and sequentially the LSTM layer

is applied in the second layer. Similar to CNN, fully connected

dense layers are used after ConvLSTM. Unlike CNN+LSTM, the

ConvLSTM approach provides a 3D view of the data, thusmaking

it easier to identify temporal patterns in the data. Recently,

authors in [44] used ConvLSTM for BA estimation using physical

activity data.

Generative adversarial network

Generative adversarial networks (GANs) [15] are unsupervised,

probabilistic models that generate data similar to the original

data set that the GANs are trained on. GANs are a way of training

a generative model to perform supervised learning with two

sub-models– (i) the generator and (ii) the discriminator. The

generator network takes the input as a random point in latent

space and tries to decode it into a synthetic data (e.g. image).

The discriminator network takes an input (real or synthetic) and

predicts if it is from the training set (real input) or generator

network (fake or synthetic input). The generator network tries

to fool the discriminator network evolving towards generating

more realistic synthetic data while the discriminator network

tries to adapt constantly to match with the advanced capabil-

ities of the generator network. Once the training is done, the

generator is capable of converting any point in input space to a

compelling synthetic point. The caveat is that, there is no explicit

guarantee ofmeaningful structure, and it is not continuous.GAN

was applied in [49] using face images to study CA.

Transfer learning

Transfer learning (TL) is an ML approach where a model learned

from a task is re-purposed or reused on a different but related

task [37]. The idea is to improve the learning for the second task

based on the knowledge gathered from the first task. TL tends

to work if both the tasks are general in principle. That is, if the

features are specific to the base task and unrelated to the second

task, the TL will probably not work well. TL can be used as a

pre-trained model or as a develop model approach. A number

of pre-trained models on large and challenging data sets are

now available from different research institutes. We can select

them from the pool for suitable cause. We can either reuse the

model or tune the model for the specific task. However, when

pre-trained models are not available, we can develop our own

custom model for the base task, which can later be re-purposed

for a model on the second task.

From the foregoing, various neural network models use very

different architectures. However, to compare the performance of

the DL methods described above, we need to consider some of

the parameters. For instance, how deep the networks are (num-

ber of layers), number of filters in each layer, learning rate, loss

function, weight initialization, dropout percent, optimization

techniques, etc.

Data modalities

Here we consider the basic data modalities or types of data that

have been used as inputs for BA estimation algorithms. These

have ranged from blood biomarkers [38, 43] to images [9] to

physical activity data [40, 44] to genomic or epigenetic data [19].

The National Health and Human Nutrition Examination Surveys

(NHANES) provides biomarkers for different years from 1999–

2015 (https://wwwn.cdc.gov/nchs/nhanes/). NHANES employs a

complex cluster design to sample members of the civilian USA

population who are not institutionalized. NHANES uses strati-

fiedmultistage probability to sample the data. Ethnicity included

white, black,Hispanic and others. The NHANES data set provides

information on biomarkers, anthropometry and physical activity
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Table 1. Key anthropometric and biomarker attributes for study participants using the NHANES data set

Anthropometric attributes µ ± σ Biomarkers µ ± σ

Anthropometric Average ± SD Biomarkers Average ± SD

Weight(W)(kg) 75.49 ± 16.54 C-reactive protein 0.37 ± 0.80

Height(H)(cm) 167.83 ± 10.14 Glycated hemoglobin 5.51 ± 0.90

BMI(kg/m2) 26.72 ± 4.95 Serum albumin 4.29 ± 0.37

Arm length (cm) 37.16 ± 2.75 Total cholesterol 196.58 ± 42.03

Arm circumference (cm) 31.57 ± 4.19 Serum urea nitrogen 13.14 ± 5.63

Waist circumference (cm) 93.56 ± 13.62 Serum alkaline phosphatase 71.98 ± 26.50

Triceps skinfold (cm) 17.92 ± 8.01 Systolic blood pressure 123.99 ± 20.33

Subscapular skinfold (cm) 19.95 ± 7.80 Diastolic blood pressure 69.24 ± 13.55

Vertical trunk circumference (VTC) (cm) 159.00 ± 10.28 Pulse 71.93 ± 12.36

Neck circumference (NC)(cm) 39.67 ± 2.70 High density lipoprotein 53.87 ± 16.13

A body shape index (ABSI)(m11/6kg−2/3) 0.08 ± 0.01 Hemoglobin 14.31 ± 1.53

Body surface area (BSA)(cm2) 18235.73 ± 2223.73 Lymphocyte percent 30.08 ± 8.64

Surface-based body shape (SBSI) 0.12 ± 0.01 White blood cell count 7.19 ± 2.49

Waist-to-height ratio (WHtR) 0.56 ± 0.08 Hematocrit 42.05 ± 4.45

BSA to VTC ratio (BSTC) 114.28 ± 6.73 Red blood cell count 4.68 ± 0.52

VTC to NC ratio (VTNR) 4.01 ± 0.08 Platelet count 259.14 ± 67.33

VTC to H ratio (VTHR) 0.95 ± 0.05

VTC to WC ratio (VTWR) 1.72 ± 0.18 Age (years) 46.45 ± 19.87

on individuals from the civilian US population. We obtained

21,451 individuals with 1,664 deaths during the 5–16 years of

follow-up (1999–2015) from NHANES. Human Ageing Genomic

Resources provides a collection of tools and databases in the

area of genetics of human ageing (http://genomics.senescence.i

nfo/). For instance, this provides data sets for GenAge, GenDR,

GeneExpression, LongevityMap, DrugAge and CellAge. Below we

describe some of the larger data sets of different modalities that

are used for age estimation.

Biomarkers

From the NHANES data set, we identified 21,451 individuals

with information on their biomarkers. Biomarkers are used for

both CA and BA estimation. For aging biomarkers, some of the

biomarkers used are C-reactive protein, glycated hemoglobin,

albumin, total cholesterol, urea nitrogen, alkaline phosphatase,

systolic blood pressure, diastolic blood pressure, pulse, high den-

sity lipoprotein, hemoglobin, lymphocyte percent, white blood

cell count, hematocrit, red blood cell count and platelet count.

Table 1 shows the key biomarkers used in this study. Subsets

of these have been used in earlier work as key biomarkers of

BA, however, using non-deep learning methods [5, 24, 30, 43,

47]. Putin et al. [38] used a DL framework for CA prediction.

Similarly,Mamoshina et al. [32] used a DL framework and studied

physiological meaning of biomarkers for human aging.

Anthropometry

Human body measurements represent a simple and easy-to-

acquire group of features often used in health profiling. Anthro-

pometric measurements generally include weight, height, body

mass index (BMI), arm length, arm circumference, waist circum-

ference, tricep skinfold, subscapular skinfold, vertical trunk cir-

cumference,neck circumference, body shape index, body surface

area, surface-based body shape index (SBSI) and waist-to-height

ratio (WHtR). Similar to biomarkers, we obtained data for 21,451

individuals from NHANES. Table 1 also shows the key bodymea-

surements used in this study and their statistics.Adjeroh et al. [1]

studied correlation and predictability in human anthropometric

measurements. Rahman and Adjeroh [41] showed that different

anthropometric attributes are correlated with age and thus used

them to predict all cause mortality. In more recent studies,

they showed that anthropometric measurements can be used to

estimate both CA and BA [42].

Another popular data set for human anthropometric

measurements is the Civilian American and European Surface

Anthropometry Resource (CAESAR) [46] data set (http://store.

sae.org/caesar/). This data set includes manual hand mea-

surements of the various anthropometric attributes, recorded

as both 3D and 1D data. The 1D data sets from the CEASAR

survey contains 2400 US and Canadian civilians, aged 18–

65. Key measurements shared by both NHANES and CAESAR

data sets tend to have similar general statistics. For example,

the mean and standard deviation were observed as follows:

height (NHANES 167.83 ± 10.1; CAESAR 170.5 ± 10.2), waist

circumference (NHANES 93.56 ± 13.6; CAESAR 84.8 ± 14.4),

weight (NHANES 75.5 ± 16.5; CAESAR 77 ± 19.8), BMI (NHANES

26.7 ± 4.9; CAESAR 26.3 ± 5.7).

Physical activity

Human physical activity can be measured by an accelerometer.

The intensity of the accelerometer can be used to estimate BA.

Locomotor physical activity is also related to cardiorespiratory

fitness (CRF) that has been linked to mortality [20]. NHANES

provides physical (locomotor) activity for a 7-day continuous

tracking of activity counts that is sampled every minute and

recorded using a physical activity monitor (ActiGraph AM-7164

piezoelectric accelerometer). Intensity of the physical activity

(also called device intensity value) is recorded by the physical

activity monitor. The devices were worn on the right hip by the

individuals using an elastic belt. The NHANES physical activity

data set contained information on 14,631 study participants

(7,176 in 2003–04 and 7,455 in 2005–06). Rahman and Adjeroh [44]

and Pyrkov et al. [40] showed different convolutional architec-

tures along with DNN to calculate BA from locomotor physical

activity data. Pyrkov et al. [39] also studied physical activity

data and their relationship with frailty, morbidity and mortality,

however, without using DL methods.
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Images

Different types of images have been used to estimate age for

instance face, gait and brain MRI. Age estimation from face is

probably the most popular. It remains a challenging problem

because face aging is a complex process and involves many fac-

tors. Detailed surveys of methods for face-based age estimation

can be found in Fu et al. [14] and Han et al. [16]. Bobrov et al. [7]

showed a DNN-based model (called PhotoAgeClock) to estimate

CA using image patches of eye corners. Their method resulted

in an MAE of 2.3 years and 95% correlation with CA. However,

none of the face image-based methods considered BA. MRI of

the brain has been used to predict CA. Cole et al. [9] studied ‘brain

predicted age’ as a biomarker from MRI data. They used a CNN-

based network to estimate the brain age and showed that brain-

predicted age represents a reliable and genetically influenced

phenotype that could be used as a biomarker.

Genetic and epigenetic profiles

The epigenome is characterized by its ability to respond to

cellular stimuli. Epigenetic modifications are often associated

with certain health changes and disease status. Thus, epige-

netic biomarkers are increasingly being used for early symp-

toms/detection of diseases, and hence as a predictor of future

risk of disease development. Epigenetic changes are a complex

combination of chemical, molecular and biological factors along

with the genome. DNAmethylation is perhaps the most popular

and most studied epigenetic biomarker, and has been shown

to be associated with aging [19]. Different research groups have

studied the use of epigenetic factors, such as DNA methylation

as a basis for age prediction [12, 19, 51]. Recently, Belsky et

al. [6] compared different methods of BA estimation, including

genomic, epigenetic and blood biomarker measures.

Electronic medical records

Electronic medical records (EMRs) provide a detailed health

information about an individual. These records typically contain

vital signs, laboratory test variables (essentially biomarkers) and

many other features. Wang et al. [48] used EMR data from Mount

Sinai Health System, involving over 4 million patient records

from 1980 to 2015. After performing necessary refinement, they

used data from 385,918 individuals. Their study covered 85 vital

signs and 2,968 unique laboratory test variables. They showed

that combining vital signs and laboratory tests predicted CA

better than using each component separately.

Performance evaluation

Evaluation of CA is straight forward and well defined, but eval-

uation of BA is a less studied problem. With the increasing

interest in BA, and the expanding number of approaches for its

estimation, there is now an urgent need for effective methods to

evaluate the BA estimation algorithms. In this work,we consider

evaluation of BA estimation algorithms from four viewpoints,

namely error in CA estimation, BA acceleration, mortality mod-

eling and connection with health status. Since BA is said to

be a better predictor of functional age when compared with

CA, a good BA estimate should be able to separate individuals

based on their disease status or overall health. The last three

considerations are closely related to the general health of an

individual or of a population.

CA performance

The following metrics have been used to evaluate accuracy in

age estimation:

(1) Pearson correlation coefficient between x and y: ρ(x, y) =
∑N

i=1 (xi−x̄)(yi−ȳ)√
∑N

i=1 (xi−x̄)2
√

∑N
i=1 (yi−ȳ)2

, where x and y are different attributes, N is

number of samples.

(2) Mean absolute error: MAE = 1
N

∑N
i=1 |yi − ŷi|, where yi is

the original value and ŷi is the estimated value. In this work,

MAE shows the average change/error between the CA and the

estimated age.

(3) Root mean square error (RMSE): RMSE =
√

1
n
6n

i=1(yi − ŷi)2,

where yi is the original value and ŷi is the estimated value.

BA acceleration

Age acceleration is associated with problems in health. Age

acceleration can be used to evaluate BA estimation methods. In

general, age acceleration is defined as the difference between

CA and BA: 1 = CA − BA, where BA denotes the estimated

age and CA denotes the chronological age. However, in a recent

work, Rahman and Adjeroh [44] showed two new variations of

aging acceleration. They proposed a normalized biological age

acceleration (NBAA), denoted η = 1

CA
= CA−BA

CA
. The normalized

form is used to reduce the effect of low values or high values

of CA. However, when the loss function used in the DL method

is based on the mean square error (as was used in this work),

the required fittingminimization during learningwill imply that

this definition of η may still suffer from the known problem

of ‘regressing to the mean’ [28]. To address this problem, they

calculated the difference between an individuals’ BA and the

average for a corresponding age and gender-matched cohort,

defined as 1g = BAg − BA and ηg = BAg−BA

CA
, where BAg is the

average for the age-gender matched cohort.

Mortality modeling

For validation and comparisons of the BA estimation algorithms,

survival models, such as Cox proportional hazard model (Cox

PH) and Kaplan–Meier (KM) curves can be used. Log-rank test is

performed to quantify the KM plots. Log-rank test provides chi-

square distances. Rahman and Adjeroh [43] also used receiver

operating characteristics (ROC) curves to examine the sensitivity

and specificity of CA and the predicted BAs in mortality model-

ing. They have applied estimators of cumulative and incident/-

dynamic area under curve (AUC). These estimators are given by

the areas under the time dependent ROC curves estimated by

sensitivity and specificity.

Connection with health status

Another way to investigate the performance of the estimated

BAs in capturing health risks is to consider their possible rela-

tionship with known indicators of health risk or how the esti-

mated BA differentiates between subjects with known diseases

and those without.

Relationship with known health indices. For general indices

of health status, various popular indices, e.g. the BMI, WHtR

or the more recently introduced SBSI [41] or ABSI [26] can be

used. Rahman and Adjeroh [44] studied the variation of the BA

acceleration with variations in the WHtR and in SBSI categories.

The idea is to observe the pattern of the performances from first

quartile to the fourth quartile (in terms of estimated age). For a
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Table 2. Performance of DL age estimation methods in CA estima-
tion, using anthropometric and biomarker features

Anthropometry Biomarkers

CNN DNN CNN DNN

MAE 18.35 22.06 20.88 8.99

RMSE 22.44 27.08 28.19 12.01

Corr (ρ) 0.15 0.10 0.22 0.80

good BA estimator, we should expect a clear separation as we

move from the lowest end to the highest end.

Relation with disease status. Another way is to analyze

whether the proposed measure of BA acceleration would

show any difference between healthy subjects and those with

certain known chronic diseases such as diabetes, cardiovascular

diseases (CVD) and kidney diseases. On average 1g = BAg − BA

should be supposedly lower for the individuals having chronic

diseases when compared with those for all subjects or those

without any chronic disease. Also positive 1 and η correspond

to lower BA than the CA (more healthy), while negative values

correspond to higher BA than the CA (less healthy). Ideally,

subjects with no chronic disease should have the lowest

proportion of negative 1s.

Results

In this study, we have used three different types of data modal-

ities, namely biomarkers, anthropometry and locomotor phys-

ical activity. For the individuals that have biomarkers (21,451

subjects with 18 features) and anthropometry (21,451 subjects

with 16 features), we used 1D CNN and DNN techniques. For the

physical activity data (7,104 individuals with 10,080 features),

however, we applied six different methods [DNN, CNN (1D, 2D,

3D), ConvLSTM and CNN+LSTM]. The 2D architectures (e.g. 2D

CNN, CNN+LSTM) and 3D architectures (3D CNN, ConvLSTM) are

not applicable for 1D biomarker and anthropometric features.

CA performance

Table 2 shows the comparative performance of the methods.We

observe that applying DNN on biomarkers have the lowest MAE

and highest correlation, whereas applying DNN on the anthro-

pometry data resulted in estimated BAs with the lowest correla-

tion with the CA. Table 3 shows the comparative performance of

the DLmethods applied on the physical activity. Figure 2A shows

the results for the estimated ages applying DNN and CNN on

biomarkers and anthropometric features, and Figure 2B shows

the estimated BAs applied on human physical activity data.

We can observe that DNN outperformed CNN with respect to

the MAE (a measure of CA estimation performance) using the

biomarker data set. Different DL models tend to perform well on

different datamodalities.The nature of the data has a significant

impact on the performance of a DL model. Typically, CNN (espe-

cially 2D-CNN) tends to do best on image data, which tends to

capture important spatial relations in the data or data where the

sequence ordering (e.g. temporal information) is significant. The

anthropometric data and biomarker data used in this work are

1D data and captured neither temporal nor spatial information.

Thus, we do not expect CNN to do very well on these (especially

in terms of MAE, given our loss function). The activity data

contains temporal information, which can easily be exploited by

CNN, as we will see later, the CNNmodels performed better than

the other models on this data set. However, we note that good

performance with respect to MAE, may not always translate to

very good performance in terms of BA estimation. For instance,

as we will see below, CNN did better than DNN on biomarker

data, with respect to BA, even though DNN had a smaller MAE.

Mortality modeling

To evaluate the estimated BAs, we have applied two statistical

models from survival analysis, namely Cox proportional hazard

model (CoxPH) [11, 25] and KM curves [23].

Cox PH.Under the Cox model, the relationship between haz-

ard and the covariates is described by considering the logarithm

of the hazard as a linear function of the variables. Here we

calculate the hazard ratio (HR) for each BA estimation algorithm.

We estimated BA using three different sets of data using dif-

ferent architectures, namely (i) anthropometry (CNN, DNN), (ii)

biomarkers (CNN, DNN) and (iii) physical activity (1D CNN, DNN,

CNN+LSTM, ConvLSTM, 2D CNN and 3D CNN models). Then we

calculated η = CA−BA
CA

for each BA estimation algorithm.

We applied η as the co-variate in the Cox model. Results for

1D CNN and DNN applied to the anthropometry and biomarkers

data are shown in Table 4. Applying CNN the HR value is 1.13

for both anthropometry and biomarker features while applying

DNN the HR is 1.62 for anthropometry and 1.10 for biomarkers.

Similarly, Table 5 shows the results for Cox PHmodels applied on

the estimated ages using physical activity data. We found that

the BA estimation methods have generally similar performance

on this modality. Best overall results using physical activity were

obtained using 3D CNN, with HR = 1.14 (P-value 1.91E-16) using

the normalized BA acceleration, η.

KM plots and log-rank test. Another way to study the per-

formance of the estimated BAs is to analyse the KM survival

curves [23] obtained using the quantile factored NBAA (η =
CA−BA
CA

). A given variable is a good mortality predictor if the KM

curves are easily distinguishable (more distance between them),

and the variable gives lower survival rates from low to high

levels, with less crossing between curves. Figure 3 shows the KM

plots for the BA estimation methods using anthropometry and

biomarkers. In general, eachmethod of predicting BA performed

well in distinguishing the proportion of survivors. Among the

DL BA estimation methods, distinction between the four quar-

tiles using CNN on biomarkers was not as good as the other

three methods. Similarly, Figure 4 shows the KM plots for BA

Table 3. Performance of DL age estimation methods in CA estimation using physical activity data

1D CNN DNN ConvLSTM CNN+LSTM 2D CNN 3D CNN

MAE 15.49 15.92 13.4 13.58 14.19 14.08

RMSE 18.81 18.38 16.74 16.45 17.48 19.40

Corr (ρ) 0.45 0.45 0.55 0.54 0.48 0.48
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8 S. A. Rahman el al.

Figure 2. Comparison of estimated age with CA for various DL methods using anthropometry, biomarkers and physical activity over the age range 18–84. Estimated BA

against CA using (A) biomarkers and anthropometric features, (B) locomotor physical activity data.

Table 4. Results of the Cox proportional hazard (Cox PH) models
applied on the normalized BA acceleration η = (CA − BA)/CA for
estimated BAs using blood biomarkers and anthropometric data

HR P-value

Anthropometry

CNN 1.13 ( 1.12, 1.14 ) 2.11E-16

DNN 1.62 ( 1.58, 1.68 ) 1.23E-16

Biomarkers

CNN 1.13 ( 1.12, 1.14 ) 1.63E-16

DNN [42] 1.10 ( 1.09, 1.11 ) 2.00E-09

Table 5. Results of the Cox proportional hazard (Cox PH) models
applied on the normalized BA acceleration η = (CA − BA)/CA for
estimated BAs using human locomotor physical activity data

DL architecture HR P-value

1D CNN [40] 1.05 ( 1.04, 1.07 ) 1.63E-11

DNN [44] 1.07 ( 1.06, 1.09 ) 1.75E-19

CNN+LSTM [44] 1.05 ( 1.05, 1.08 ) 1.65E-11

ConvLSTM [44] 1.05 ( 1.04, 1.07 ) 1.74E-11

2D CNN 1.06 ( 1.11, 1.17) 1.89E-14

3D CNN 1.13 ( 1.10, 1.16) 5.94E-20

estimationmethods using different DL architectures on physical

activity data.

To further quantify the performance, we used the log-rank

test to compare the survival distributions obtained using the

different BA algorithms. The log-rank test compares the KM

curves to check if they are statistically equivalent. The output

of the test is a χ2-distance and the P-value associated with the

distance. Higher χ2-distances and low P-values indicate a better

separation between the curves and hence a better performance

in mortality modeling. The difference among the BA estimation

methods is more evident using quantitative measures, e.g. the

χ2-distance between their respective KM curves, as captured by

the log-rank test (Tables 6 and 7). DNN using anthropometric

features for BA estimation has the best χ2-distance in Table 6.

For physical activity data, 3D CNN estimated BA has the highest

χ2-distance followed by CNN+LSTM (see Table 7).

Connection with general health status

As discussed in [44], another way to investigate the perfor-

mance of the different BA estimation methods is to consider

their possible relationship with known indicators of health risk

or how the estimated BA differentiates between subjects with

known diseases and those without. Belowwe consider these two

perspectives in evaluating the DL-based BA estimation methods

introduced so far.

Relation with known health indices. For this evaluation,

we selected two general indices of health status, namely the

WHtR and the SBSI. WHtR is known to be a better measure of

health status [35] when compared with the BMI. Rahman and

Adjeroh [41] made a similar observation on the superiority of

SBSI over BMI. Thus, we studied the variation of the proposed

normalized BA acceleration (NBAA, denoted η) computed using

the estimated BA from eachmethodwith variations in theWHtR

and in SBSI categories. For biomarkers and anthropometric fea-

tures, we applied CNN and DNN. Table 8 shows the log-rank

test on the SBSI quartiles using biomarkers and anthropometric

features. The results are shown using η, for each SBSI category.

We observe that, in general the χ2 values increase from first

quartile to fourth quartile. For instance, using CNN for both

biomarkers and anthropometry and using DNN for biomarkers

χ2 distance increases monotonically (from Q1 to Q4) while using

DNN for anthropometry χ2 distance increases from Q1 to Q2,

then decreases from Q2 to Q3, respectively. Correspondingly,

Table 9 shows results for WHtR. Using CNN for both biomarkers

and anthropometry χ2 distance increases monotonically (from

Q1 to Q4). Using DNN χ2 distance increases from Q1 to Q2, then

decreases from Q2 to Q3, while the general trend is an increase

from Q1 to Q4.

Similar to biomarkers and anthropometric features, we

applied different DL approaches to physical activity data.

Table 10 shows the log-rank test on SBSI quartiles for human

physical activity. We observed that, in general the χ2 values

increase from first quartile to fourth quartile. For instance, using

CNN+LSTM method, the χ2 distance increases monotonically

(from Q1 to Q4), while using DNN, CNN and ConvLSTM, the χ2

distance decreases from Q1 to Q2, then increases from Q2 to Q3

and Q3 to Q4, respectively. Correspondingly, with respect to the

WHtR quartiles, we observe a similar trend in general for all the

methods. Using CNN and ConvLSTM methods, the χ2 distances

increased monotonically (from Q1 to Q4), whereas using DNN
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Figure 3. The KM curves for estimated BAs using two DL architectures on biomarker data and anthropometric data. Results are based on normalized BA acceleration

η = CA−BA
CA , using the estimated BAs. Q1, Q2, Q3and Q4 denote 1st, 2nd, 3rd and 4th quartiles, respectively.

and CNN+LSTM show a decrease of χ2 distances from Q3 to Q4.

Table 11 shows the detailed results for log-rank test applied on

the WHtR quartiles.

Relation with disease status. We also considered the per-

formance of the proposed measure of BA acceleration in terms

of differences between healthy subjects and those with certain

known diseases. Tables 12 and 13 show the results grouped for

subjects having chronic diseases, such as diabetes, CVD and

kidney diseases. Table 12 shows the results for estimated BAs

based on biomarkers and anthropometry using CNN and DNN.

On average 1g = BAg − BA is lower for the individuals hav-

ing chronic diseases than for all subjects. Subjects that do not

suffer from any chronic disease have a lower 1g on average

for all methods. Positive and negative refer to average of the

subjects having positive and negative 1, respectively. Positive

1 and η corresponds to lower BA than the CA (more healthy),

while negative values correspond to higher BA than the CA (less

healthy). In general, % of negative 1 is higher for subjects with

disease, compared with all subjects. Subjects with no chronic

disease have the lowest proportion of negative 1s. For both
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Figure 4. The KM curves for estimated BAs using six DL architectures on physical activity data applying η = CA−BA
CA for estimated BAs. Q1, Q2, Q3 and Q4 denote 1st,

2nd, 3rd and 4th quartiles, respectively.
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Table 6. Results of the log-rank test applied on the normalized BA
acceleration η = (CA − BA)/CA using the estimated BAs. Results are
for the anthropometric data set and the biomarker data set

DL architecture Chi-Sq P-value

Anthropometry

CNN 375.71 6.22E-17

DNN 642.42 2.19E-16

Biomarkers

CNN 226.16 1.29E-16

DNN [42] 56.64 3.07E-12

Table 7. Results of the log-rank test applied on the normalized BA
acceleration η = (CA − BA)/CA using the estimated BAs. Results are
for the human physical activity data set

DL architecture Chi-Sq P-value

1D CNN [40] 33.60 2.41E-07

DNN [44] 22.10 6.22E-05

CNN+LSTM [44] 48.19 1.94E-10

ConvLSTM [44] 24.15 2.33E-05

2D CNN 58.13 1.48E-12

3D CNN 36.79 5.09E-08

the anthropometric and biomarkers data set, CNN appears to

perform better than DNN on this measure of differentiating

between healthy subjects and those that have a given disease

(highlighted as bold for average and%positive). Correspondingly,

Table 13 shows the results for DL methods on human physical

activity data. In general, the performances of the methods are

similar. Based on the average 1g and % positive or % negative, for

human activity data, best results were produced using 1D-CNN

(highlighted) followed by CNN+LSTM, 3D-CNN and ConvLSTM.

Discussion

In this work, we have investigated DL approaches on different

types of data (e.g. biomarkers, anthropometry, locomotor physi-

cal activity) to estimate BA. To quantify how well the estimated

BA captures the health risk, we applied the Cox proportional

hazard model and KM curves for analysis of all-cause mortality.

The DL models such as DNN, CNN, ConvLSTM, CNN+LSTM were

trained to exploit the dependence of the physiological/activity

changes with age. In all cases, the DL approaches were trained

to minimize the MSE between the CA and estimated BA.

Comparison

We have shown comparative performance of different data

modalities using survival models (Cox PH, KM plots and log-

rank test). We then observed performance of the estimated

BA in terms of connection with health status (relations with

popular health indices and in relation with disease status for

chronic diseases such as diabetes, kidney diseases and CVD).

Methods discussed in this study use supervised learning that

learn by minimizing the MSE. For the data set that contains both

biomarkers and anthropometry, we applied two DL methods

(CNN and DNN). DNN applied on anthropometric data has

the lowest MAE of 8.99 and highest correlation (ρ = 0.80).

Applying CoxPH and log-rank test DNN with anthropometry

data has the highest HR (1.62) and highest χ2-distance.Using log-

rank test for SBSI quartiles, applying CNN for both biomarkers

and anthropometry, χ2-distance increases monotonically from

Q1 to Q4. Similarly, using WHtR quartiles, applying CNN for

both biomarkers and anthropometry, χ2-distance increases

monotonically from Q1 to Q4. For anthropometric data set,

CNN appears to perform better than DNN on this measure of

differentiating between healthy subjects and those that have a

given disease. Between anthropometry and biomarker data sets,

applying CNN on the blood biomarkers produced the best result

on these two data modalities.

For the physical activity data, we applied six different meth-

ods (DNN, 1D-CNN, 2D-CNN, 3D-CNN, ConvLSTM, CNN+LSTM).

Table 3 shows the comparative performance of the different

methods. Among the methods, ConvLSTM and CNN+LSTM pro-

duced lowest MAE of 13.40, 13.58 and highest correlation (ρ =
0.55, 0.54), respectively. Applying η = 1

CA
= CA−BA

CA
in CoxPH

model as the co-variate, for all the DL techniques, we observe

similarity in their HRs. However, for log-rank test, 3D-CNN has

the highest χ2-distance followed by CNN+LSTM. Using log-rank

test for SBSI quartiles applying CNN+LSTM and 3D-CNN χ2-

distance increases monotonically from Q1 to Q4. With respect

to WHtR quartiles, applying CNN and ConvLSTM χ2-distance

increases monotonically from Q1 to Q4. Based on the average 1g

and % positive or % negative, for human activity data, we obtain

best results using 1D-CNN followed by CNN+LSTM, 3D-CNN and

ConvLSTM.

DL methods (DNN, CNN) applied for biomarkers and anthro-

pometric features do not have a clear cut winner with respect

to MAE, CoxPH, KM plots and χ2-distances. With respect to

connections with general health status, CNN-based methods

perform better than DNN. Similarly, for the physical activity

data, ConvLSTM has the lowest MAE and highest correlation,

3D-CNN has the highest HR, and 2D-CNN gives the highest χ2-

distance among the methods. With respect to relations with

known health indices, 2D-CNN-based method has best perfor-

mance and with respect to relation with disease status 1D-CNN

has the best overall performance.

The methods learn in the form of minimizing the difference

between estimated BA and the CA. This difference has been

called BA acceleration [34] in the literature. Pyrkov et al. [40]

suggested that an improvement in CA estimation can affect the

significance of BA acceleration for a particular test that may

involve health risks. This also relates to the issue of ‘paradox

of biomarkers’ as described by Klemera and Doubal [24] and

Hochschild [18]. These results seem to suggest that improved

CA estimation may not always lead to a deterioration in BA

estimation. The issue might be in how the estimated BA is used

for further analysis, rather than the accuracy of the initial CA

estimation. This clearly warrants further investigation.

Conclusion and future directions

In this work, we studied BA estimation methods using human

biomarkers,human anthropometry and locomotor activity. From

a public health perspective, aging can be a critical risk factor for

various pathologies such as many forms of cancers and type II

diabetes. The use of EMR systems has greatly increased in hos-

pitals and most hospitals have now adopted at least a basic EMR

system. Estimated BA based on the EMR features can be used

for disease susceptibility in public health, health management

and by insurance companies. We applied several different DL

models to estimate and compare BA using these methods. We

established that different modalities can be used to exploit 1D

features and temporal patterns (3D CNN, ConvLSTM) in human

locomotor physical activity to estimate BA. The paper used four

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa021/5828124 by guest on 04 M

ay 2020



12 S. A. Rahman el al.

Table 8. Log rank results applying the normalized BA acceleration (η = CA−BA
CA ) for different SBSI categories using anthropometric data and

biomarker data, respectively. Q1, Q2, etc. denote 1st quartile, 2nd quartile, etc.

DL

architecture

SBSIQ1 SBSIQ2 SBSIQ3 SBSIQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

Anthropometry

CNN 86.81 2.03E-16 219.15 1.92E-15 305.79 2.07E-14 727.11 3.03E-16

DNN 9.58 0.02 40.23 9.52E-09 10.96 0.01 36.93 4.77E-08

Biomarkers

CNN 130.63 1.29E-16 159.84 4.03E-11 317.14 2.29E-13 764.68 7.03E-12

DNN 15.63 0.001 32.68 3.75E-07 108.06 0.00 340.97 0

Table 9. Log rank results applying normalized BA acceleration (η = CA−BA
CA ) for different WHtR quartiles using anthropometric data and

biomarker data, respectively. Q1, Q2, etc. denote 1st quartile, 2nd quartile, etc.

DL

architecture

WHtRQ1 WHtRQ2 WHtRQ3 WHtRQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

Anthropometry

CNN 205.12 1.31E-07 388.57 6.20E-11 405.55 6.21E-09 687.06 8.03E-13

DNN 11.98 0.007 28.93 2.31E-06 15.68 0.001 13.77 0.003

Biomarkers

CNN 233.26 7.34E-08 342.22 2.41E-11 414.40 3.72E-10 556.95 4.04E-16

DNN 35.37 1.02E-07 122.66 5.93E-06 117.62 2.94E-17 226.82 9.21E-09

Table 10. Log rank results applying normalized BA acceleration (η = CA−BA
CA ) for different SBSI categories using activity data. Q1, Q2, etc. denote

1st quartile, 2nd quartile, etc.

DL

architecture

SBSIQ1 SBSIQ2 SBSIQ3 SBSIQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

CNN 11.13 0.01 10.22 0.02 23.47 3.22E-05 63.80 9.06E-14

DNN 42.27 3.51E-09 22.95 4.14E-05 71.61 1.89E-15 131.52 1.49E-11

CNN+LSTM 22.16 6.04E-05 27.16 5.45E-06 38.57 2.14E-08 96.32 2.07E-16

ConvLSTM 13.25 4.12E-03 8.57 3.55E-02 13.37 3.90E-03 38.01 2.81E-08

2D CNN 13.88 3.07E-03 18.98 2.76E-04 31.91 5.46E-07 78.28 1.11E-16

3D CNN 10.37 1.57E-02 7.06 7.01E-02 17.75 4.95E-04 48.95 1.34E-10

Table 11. Log rank results applying normalized BA acceleration (η) for different WHtR quartiles using activity data. Q1, Q2, etc. denote 1st
quartile, 2nd quartile, etc.

DL

architecture

WHtRQ1 WHtRQ2 WHtRQ3 WHtRQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

CNN 26.73 6.71E-06 29.97 1.40E-06 36.53 5.79E-08 38.92 1.81E-08

DNN 70.01 4.22E-15 93.30 3.18E-07 123.10 2.09E-08 91.77 9.17E-16

CNN+LSTM 51.67 3.52E-11 35.41 9.99E-08 68.72 7.99E-15 58.24 1.40E-12

ConvLSTM 15.01 1.81E-03 23.94 2.57E-05 24.93 1.60E-05 26.73 6.70E-06

2D CNN 29.67 1.61E-07 49.04 1.28E-10 54.48 8.84E-12 55.87 4.49E-12

3D CNN 9.13 2.76E-02 14.90 1.9E-03 28.79 4.02E-06 28.28 3.17E-06

different measures to compare performance in BA estimation,

including the traditional measures of prediction error, (namely,

MAE, RMSE and correlation). We also used relation with known

health indices (WHtR and SBSI) and relation with disease status

(CVD, diabetes and kidney diseases), in addition to traditional

mortality modeling using Cox PH, χ2-distance from the log-rank

test and KM curves.

DL methods are rapidly emerging and are starting to deliver

encouraging results in biological aging and longevity research.

Possible future work includes use of GANs in CA and BA estima-

tion (using physical activity data), use of 3D human modeling

combined with geometric DL [29], use of attention-basedmodels

[4] and of domain adaptation [36] (use transfer learning from a

set of features to a different set). Methods discussed in this

work can either be used as standalone approaches or integrated

within learning pipelines for solving more complex tasks. These

pipelines can capture efficient feature selection. Deep networks

can be used to learn features over multiple modalities. In cross
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Table 12. Performance of estimated BA for subjects with different chronic diseases using different DL models. Results are shown for BA
acceleration (1g) estimated using anthropometric data and blood biomarkers, respectively

DNN (anthropometry) CNN (anthropometry)

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others

Average –0.96 –0.73 –0.67 –0.01 0.20 –4.89 –4.58 –2.62 –0.82 –0.18

Positive 0.66 0.81 0.60 0.78 0.81 8.34 8.24 8.39 8.90 9.05

Negative –1.69 –1.78 –1.64 –1.54 –1.45 –12.49 –12.90 –11.16 –10.55 –10.22

% Pos 30.86 40.67 43.26 65.98 73.36 36.51 39.33 43.68 50.02 52.07

% Neg 69.14 59.33 56.74 34.02 26.64 63.49 60.67 56.32 49.98 47.93

DNN (biomarkers) CNN (biomarkers)

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others

Average –4.42 –3.67 –2.91 0.29 1.32 –12.79 –25.10 –4.97 –0.96 0.86

Positive 2.73 4.39 3.14 4.65 4.83 9.33 11.24 11.47 12.24 12.45

Negative –5.47 –6.03 –5.05 –4.54 –4.19 –20.12 –35.75 –16.51 –14.04 –12.50

% Pos 12.87 22.67 26.11 52.51 61.09 24.87 22.67 41.26 49.77 53.54

% Neg 87.13 77.33 73.89 47.49 38.91 75.13 77.33 58.74 50.23 46.46

Table 13. Performance of estimated BA for subjects having different chronic diseases using different DL models. Results are shown for BA
acceleration (1g) estimated using physical activity data

CNN DNN

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others

Average –8.59 –9.89 –6.39 –3.17 –1.95 –2.94 –3.29 –1.87 –1.02 –0.68

Positive 5.61 12.74 9.00 9.17 9.34 0.70 1.70 0.72 0.82 0.83

Negative –11.90 –10.79 –11.27 –10.04 –9.5 –4.31 –5.13 –3.27 –2.47 –2.04

% Pos 18.87 3.85 24.04 35.78 40.1 27.36 26.92 34.97 44.11 47.71

% Neg 81.13 96.15 75.96 64.22 59.9 72.64 73.08 65.03 55.89 52.29

ConvLSTM CNN+LSTM

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others

Average –5.18 –3.66 –2.92 –0.67 0.25 –6.47 –6.20 –3.27 –1.62 –0.83

Positive 7.49 9.20 7.89 8.84 8.98 5.80 10.58 6.28 7.05 7.20

Negative –9.51 –10.47 –8.33 –8.07 –7.67 –9.32 –10.19 –8.53 –8.46 –8.29

% Pos 25.47 34.62 33.33 43.75 47.58 18.87 19.23 35.52 44.11 48.19

% Neg 74.53 65.38 66.67 56.25 52.42 81.13 80.77 64.48 55.89 51.81

2D-CNN 3D-CNN

Diabetes Kidney CVD All-Subjects Others Diabetes Kidney CVD All-Subjects Others

Average –6.42 –5.50 –3.82 –0.84 0.41 –4.06 –4.11 –2.10 0.90 2.05

Positive 5.59 5.37 6.11 8.07 8.53 7.84 9.50 8.59 10.69 11.12

Negative –11.16 –11.25 –9.55 –9.53 –9.21 –7.17 –8.19 –6.47 –6.60 –6.51

% Pos 28.30 34.62 36.61 49.37 54.23 20.75 23.08 28.96 43.39 48.55

% Neg 71.70 65.38 63.39 50.63 45.77 79.25 76.92 71.04 56.61 51.45

Table 14. Key terms and definitions used in the paper

DNN Deep neural network KM plots Kaplan–Meier plots

CNN Convolutional neural network Cox PH Cox proportional hazard model

BA Biological age CA Chronological age

KD Klemera doubal method η CA−BA
CA

LSTM Long short-term memory 1 CA − BA

RNN Recurrent neural network 1g BAg − BA

ConvLSTM Convolutional LSTM ηg
BAg−BA

CA

SBSI Surface-based body shape index BAg BA age, gender-matched cohort

MAE mean absolute error AUC Area under the curve

ρ Pearson correlation coefficient HR Hazard ratio
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modality feature learning, better feature for onemodality can be

learned ifmultiplemodalities are present at learning time.While

using physical activity, blood biomarkers and anthropometric

data separately performs reasonably well for CA estimation

alone, fusing these multimodal information can substantially

improve performance of BA estimation. We can also observe

that different methods seem to perform better on different data

modalities. Thus, performing such multimodal fusion can be

best done by considering the DL method(s) that worked best

on a given data modality, and then combine these best results,

for instance, using score-level, or decision-level fusion. Another

potential future work will be to perform population specific

studies and observe performance on different ethnic groups,

while using these multimodal approaches.

Cardio respiratory fitness (CRF) is related to numerous physi-

ological systems, including cardiovascular, respiratory andmus-

culoskeletal systems [20]. Similar to biological age, CRF is also

considered as one other reflection of whole-body health and

function, and hence one of the predictors of all-cause mortal-

ity [20]. Thus, another potential future work will be to study

the relationship between BA and CRF, for instance, using a DL

framework.

Another interesting challenge and potential extension of this

work is to study how the estimated BA can be used as a tool

for general health profiling. For instance, the DL-based methods

can be applied for public health campaign, and general health

monitoring, by analyzing the estimated BA at a population scale.

The results of such analysis could also serve as an early indicator

of patients that may require palliative care, and hence could

provide a tool for health-care providers and policy makers for

preparing for such patients.
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