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ABSTRACT: Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that can capture the electronic−
vibrational “fingerprint” of molecules on surfaces. Ab initio prediction of Raman response is a long-standing challenge because
of the diversified interfacial structures. Here we show that a cost-effective machine learning (ML) random forest method can
predict SERS signals of a trans-1,2-bis (4-pyridyl) ethylene (BPE) molecule adsorbed on a gold substrate. Using geometric
descriptors extracted from quantum chemistry simulations of thousands of ab initio molecular dynamics conformations, the ML
protocol predicts vibrational frequencies and Raman intensities. The resulting spectra agree with density functional theory
calculations and experiment. Predicted SERS responses of the molecule on different surfaces, or under external fields of electric
fields and solvent environment, demonstrate the good transferability of the protocol.

Surface-enhanced Raman spectroscopy (SERS) is a power-
ful analytical tool for probing interfacial structures in situ

at the molecular level.1−5 Theoretical modeling is commonly
used for interpreting SERS signals. Jensen and Schatz et al.
have applied atomistic electrodynamics to study SERS
response.6,7 We have developed an interaction Hamiltonian
model to predict SERS signals of molecules on surfaces.8,9

However, because of elusive conformational variations of
absorbed molecule and environmental fluctuations, one has to
carry out quantum mechanical (QM) calculations for
thousands of molecular dynamics (MD) conformations. A
cost-effective approach to calculate SERS spectra with QM
accuracy is desirable.
Machine learning (ML) is a family of statistics-based

methods that can make predictions of properties of molecules
and materials without invoking computationally demanding
electronic structure calculations.10 It has been applied to
predict energy band gap,11 potential energy surfaces,12−17

molecular atomization energies,18 dielectric response proper-

ties,19−23 intrinsic bond energy,24 and so on. A subclass of ML
algorithms, known as random forest, can construct a multitude
of decision trees for classification, regression, and other
tasks.25,26 Very recently, we have applied it to identify
structural descriptors determining the electronic excitation of
peptide bonds for predicting ultraviolet absorption spectra of
proteins.27

In this work, we employ the random forest technique to
predict the SERS signal of a trans-1,2-bis (4-pyridyl) ethylene
(BPE) molecule (Figure 1a), which is widely used in SERS
measurements because of its high-quality signals, high
sensitivity, and good performance.28,29 Based on iterative
learning of QM data of electronic and vibrational structures for
thousands of ab initio molecular dynamics (AIMD) con-
formations, the machine learning protocol (details are
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provided in the Supporting Information) was applied. We then
predicted the frequencies and Raman intensities of each
dominant vibrational mode with its mode-specific descriptors.
The final ML model was successfully applied to predict SERS
of BPE in the presence of an explicit solvation environment,
electric fields, and other surfaces, suggesting good trans-
ferability.
The conformational evolution of BPE adsorbed on the Au

surface is simulated using AIMD implemented in the Vienna
ab initio simulation package (VASP).30,31 A unit cell (6 × 6) of
Au(111) was selected to model the substrate. Starting with a
vertical configuration where BPE perpendicularly adsorbed on
the Au(111) surface in Figure 1b, the AIMD simulation at 300
K shows the evolution from the tilted BPE to the lying down

configuration, as reflected by three configurations extracted at
1, 2, and 3 ps (Figure 1c−e). The equilibrium AIMD
configuration at 3 ps agrees with the most stable configuration
from DFT geometry optimization (Figure 1f).
To simulate the SERS of different interfacial structures, we

used 4000 AIMD configurations with a 1 fs interval for QM
calculations. The calculated root-mean-square deviation of
BPE is 4.5 Å (Figure S1), indicating the big conformational
changes and small correlation. The frequency analysis and
Raman calculations are performed using the Gaussian 16
package32 at the hybrid B3LYP functional level,33 with 6-
31G(d,p) and LANL2DA basis sets. In Figure 1b, eight
vibrational modes dominate the computed SERS spectra
because of the D2h symmetry of the BPE molecule (spectra

Figure 1. (a) Atomic model of BPE on Au(111) surface. The BPE/Au configuration taken at 0 (b), 1 ps (c), 2 ps (d), and 3 ps (e) of AIMD
evolution and the stable structure (f) from DFT optimization, together with DFT-calculated (solid black line) and the ML-predicted SERS spectra
(dashed red line).

Figure 2. (a and b) Comparison of DFT-computed and ML-predicted vibrational frequencies and Raman intensities for mode 8 (shown in the
inset of panel a). The Pearson correlation coefficient (r) of ML reflects the agreement. (c and d) Descriptor importance analysis of frequencies and
Raman intensities.
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were smoothed using a Lorentzian convolution of 20 cm−1).
These are assigned to the pyridyl ring breathing (modes 1 and
2), pyridyl ring twisting (mode 3), δ(C−H)py (modes 4 and
5), pyridyl ring stretching (modes 6 and 7) and ν(C=C)
(mode 8) (Figure S2). The breaking symmetry of the BPE
molecule results in three pairs of doubly degenerate vibrational
modes (1 and 2, 4 and 5, and 6 and 7) (Figure S2).
During the structure evolution, the interfacial geometry

varies greatly. After 1 ps, the dihedral angle between two
pyridine rings becomes almost 90°, and almost all SERS peaks
are red-shifted (Figure 1c) compared to the initial structure.

Moreover, the splitting of modes 6 and 7 become more
obvious. After 2 ps of evolution, the splitting of modes 6 and 7
vanishes (Figure 1d). The relative intensity of mode 8 with
respect to modes 6 and 7 (I8/I6&7) is less than 1 in the
beginning, which becomes larger than 1 after 2 ps. SERS
spectra become more complicated when BPE lies on the
surface (Figure 1e,f). Mode 3 shows a blue shift, while modes
6, 7, and 8 show red shifts.
Vibrational frequencies and the Raman intensities of these

eight vibrational modes are the targets for ML training. The
input variables (descriptors) contain the distance between BPE

Figure 3. (a and b) Comparison of DFT-computed and ML-predicted vibrational frequencies and Raman intensities for mode 6 (shown in the
inset of panel a). The Pearson correlation coefficient (r) of ML reflects the agreement. (c and d) Descriptor importance analysis of frequencies and
Raman Intensities, respectively.

Figure 4. (a) Varying configurations of BPE on the Au(111) surface, based on which the ML-predicted (statistical result from 400 randomly
selected testing configurations) SERS agrees with experiment. (b−d) Optimized structure and SERS spectra of BPE/Au system surrounded by 14,
32, and 64 water molecules. (e and f) Optimized structure and SERS spectra of BPE adsorbed on Ag and Pt surfaces.
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and the gold surface dN1−xy, the angle between BPE and gold
βNC−xy, dihedral between pyridine ring and gold αpy−xy, and the
internal coordinates34 of BPE (Figure S3). Ten key geo-
metrical descriptors were selected by random forest for each
vibrational mode (Table S1 and Figures S6 and S8) from
initially 69 descriptors. Learning curves indicate that ML
converges as samples exceed 3000 (Figure S5). The small
autocorrelation functions along the trajectory also indicate the
low-correlation of sample sets (Figure S7). The ML results
after cross-validation for the frequency and Raman intensity of
mode 8 are compared with DFT data in Figure 2a,b. The
Pearson correlation coefficient (r), which measures the linear
correlation between ML-predicted and DFT-calculatd values,
was found to be 0.99 after cross-validation, demonstrating the
prediction accuracy of ML. The ML treatment is obviously
much more efficient by taking only 10−4 of the time of QM
(Figure S9), significantly speeding up tedious conformation
search for identification of the interfacial structures.
The random forest test reveals that the C7−C8 bond length

is the dominant descriptor (Figure 2c) for predicting the
frequency of mode 8. This can be explained by the fact that
mode 8 is mainly the stretching vibration of central ethylene, as
shown in the inset in Figure 2a. On the other hand, we find
that there are several dominant descriptors for the Raman
intensity. Both the relative position of the molecules with
respect to the surface, such as dN1−xy, αpy−xy, and βNC−xy, and
the molecular inner geometrical parameters, such as dC6−C3,
αC9−C8−C7−C6, and dC1−N1, determine the Raman intensity
(Figure 2d).
The ML prediction of mode 6 also achieves high accuracy (r

= 0.97−0.98 in Figure 3a,b) after cross-validation, owing to its
own structural descriptors (Figure 3c). Two bond lengths of
dC5−C4 and dC2−C1 are equally important, together with several
other descriptors with importance at around 5%. We attribute
the diverse nature of important descriptors to the fact that
mode 6 is more delocalized and contributed by dC5−C4 and
dC2−C1 bond stretching and C−H in-plane bending. This is
further verified by random forest analysis on modes 3 and 7
(Figures S10 and S11). For instance, the frequency of mode 7

is largely dependent on bond lengths of dC12−C11 and dC10−C9.
Compared to the ML predicted frequencies, the Raman
intensities depend on many additional descriptors (Figure 3d).
However, the descriptors associated with the relative position
of the adsorbate on the substrate become less important for
modes 6 and 7 in comparison to mode 8.
We then extended the trained ML protocol to simulate

SERS signals in different environments. We first show that our
ML-predicted SERS based on 400 randomly selected AIMD
structures can reproduce the previously reported experimental
data35 (Figure 4a), demonstrating the good accuracy of the
ML model. The experiment focuses on a “hot spot” where only
a few molecules are located, resulting in the narrower peaks
than the ML prediction. The impact of the explicit solvent on
the SERS signals was examined as well. An explicit model with
14, 32, and 64 water molecules was employed, with optimized
geometries and DFT-computed SERS spectra shown in Figure
4b−d. Because the solvent molecules barely affect the
HOMO−LUMO gaps and atomic charges of BPE (Table S2
and Figure S12), we did not include them as descriptors for
ML training. We further applied the ML model to predict the
SERS response of BPE on a couple of different metal surfaces
(see Figure 4e,f for Ag(111) and Pt(111) and Figure S13 for
Cu(111), Pd(111), Au(100) ,and Au(110)). All these
comparisons show reasonable agreement between ML results
and DFT results. The substrate and surface are crucial for
SERS. The transferability of our ML model from one substrate
to another is a substantial step toward building an ML protocol
for various substrates and molecules.
Figure 5a−c illustrates the conformational and spectral

changes induced by varying the electric field along the normal
direction, based on QM DFT calculation of optimized
structure and electronic states for BPE/Au under external
bias. Three characteristic stages appear during the config-
uration evolution with increasing electric field (Figure 5d). In
the first stage, the BPE molecule prefers to lie on the Au
surface when the applied field is smaller than 0.23 V/Å. The
second stage appears when the electric field increases from
0.23 to 0.30 V/Å, where one pyridine ring is lifted up (Figure

Figure 5. Optimized structure and SERS spectra of the BPE/Au system with external electric fields of (a) 0.25 V/Å, (b) 0.3 V/Å, and (c) 0.5 V/Å.
(d) Variations of the dihedral angle between two pyridine (αpy−py) and the angle between BPE and the Au surface (βNN−xy) subjected to different
electric fields. (e and f) Comparison of the ML (red line) and DFT (black line) predicted SERS enhancement and the I8/I6&7 ratio under
different electric fields.
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5a). This results in a dihedral angle between the two pyridine,
i.e., αpy−py increases from 0° to a converged value of 25°
(Figure 5d). In the third stage of the field above 0.30 V/Å, the
αpy−py has nearly no change, while the βNN−xy angle between
BPE and the Au surface increases with increasing field.
Using the geometrical descriptors taken from QM-optimized

structures, we successfully reproduced the SERS spectra with
the previously trained ML protocol, as reflected by the ML
SERS curves for BPE/Au subjected to 0.25, 0.30, and 0.50 V/Å
fields in panels a, b, and c of Figure 5, respectively. We can
further test the ML accuracy by examining the absolute and
relative intensities of SERS peaks. The absolute intensity was
represented by the variation curve of total SERS enhancement
factor from 0.0 to 0.55 V/Å, which was reproduced by the ML
predictions (Figure 5e). The relative intensity of mode 8 with
respect to modes 6 and 7 (I8/I6&7) is examined in Figure 5f.
Modes 6 and 7 are known to be very sensitive SERS
fingerprints of the BPE/Au interface.36,37 In Figure 5e,f, the
ML-predicted dependence curves on electric fields are almost
the same as the QM results. To be specific, there are also three
stages for the SERS enhancement and I8/I6&7 ratio variation
as electric field increases. These stages synchronize with the
configuration evolution, except for the I8/I6&7 ratio increasing
step ranging from 0.19 to 0.43 V/Å. In summary, both the
absolute and relative intensities of the SERS spectra with
electric filed and solvent environment can be predicted using
the ML protocol trained with QM data sets without external
fields, demonstrating good transferability.
In conclusion, an ML protocol based on a large data set of

QM/AIMD calculations was developed for the SERS spectra of
the BPE molecule. We analyzed the vibrational frequencies and
the Raman intensities based solely on the interfacial geo-
metrical information. ML predictions are accurate enough at a
much lower cost than QM simulations. The ML structure−
property relationships built on QM training sets without an
external field were applied to predict experimental observations
including effects of external fields. ML techniques based on
quantum mechanical calculations should provide a cost-
effective transferable tool for assigning experimental optical
spectroscopy signals to molecular geometry.
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(16) Deringer, V. L.; Csańyi, G. Machine Learning Based
Interatomic Potential for Amorphous Carbon. Phys. Rev. B: Condens.
Matter Mater. Phys. 2017, 95, 094203.
(17) Peterson, A. A.; Christensen, R.; Khorshidi, A. Addressing
Uncertainty in Atomistic Machine Learning. Phys. Chem. Chem. Phys.
2017, 19, 10978−10985.
(18) Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; Von
Lilienfeld, O.-A.; Müller, K.-R.; Tkatchenko, A. Machine Learning
Predictions of Molecular Properties: Accurate Many-Body Potentials
and Nonlocality in Chemical Space. J. Phys. Chem. Lett. 2015, 6,
2326−2331.
(19) Ma, H.; Saha, T. K.; Ekanayake, C. Statistical Learning
Techniques and Their Applications for Condition Assessment of
Power Transformer. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 481−
489.
(20) Huan, T. D.; Mannodi-Kanakkithodi, A.; Kim, C.; Sharma, V.;
Pilania, G.; Ramprasad, R. A Polymer Dataset for Accelerated
Property Prediction and Design. Sci. Data 2016, 3, 160012.
(21) Mannodi-Kanakkithodi, A.; Pilania, G.; Ramprasad, R. Critical
Assessment of Regression-Based Machine Learning Methods for
Polymer Dielectrics. Comput. Mater. Sci. 2016, 125, 123−135.
(22) Wu, K.; Sukumar, N.; Lanzillo, N. A.; Wang, C.; Ramprasad, R.
R.; Ma, R.; Baldwin, A. F.; Sotzing, G.; Breneman, C. Prediction of
Polymer Properties Using Infinite Chain Descriptors (Icd) and
Machine Learning: Toward Optimized Dielectric Polymeric Materi-
als. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 2082−2091.
(23) Grisafi, A.; Wilkins, D. M.; Csańyi, G.; Ceriotti, M. Symmetry-
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Computational Details

Molecular Dynamics Simulations

Molecular dynamics Simulations with 1 fs time step at temperatures of 300K were performed using 
ab-initio molecular dynamics (AIMD) implemented in Vienna ab-initio simulation package 
(VASP).1 The Au surfaces were modeled with five atomic layers of (6 × 6) unit cell at the 
equilibrium lattice constant of 4.078 Å plus a 30 Å thick vacuum region. During the AIMD 
evolution, the three outermost layers of the junctions were fixed to mimic Au bulk, while all the 
other atoms were allowed to relax at all dimensions. For the k-point sampling, only the gamma 
point was adopted. The exchange-correlation effects were described by the 
Perdew−Burke−Ernzerhof generalized-gradient approximation (GGA-PBE)2 with a plane-wave 
basis cutoff of 400 eV.3 Meanwhile, the vdW-D3 method was employed to consider the dispersion 
correction. 

Geometrical optimization shows that the flat configuration is the most stable one for the 
BPE/Au system. However, if the molecular dynamics simulation is started with flat configuration, 
the molecule will be most likely to stay in that orientation on the surface, resulting in narrow and 
biased sampling of conformations. The lack of representation of various conformations of BPE on 
the surface will undermine the prediction power of ML approach. We thus chose a vertical 
configuration as the initial condition of MD evolutions so as to achieve a diversified sampling of 
structures. After the trajectory was generated, 4000 configurations were extracted with a 1 fs 
interval. All the structures were used for including quantum chemistry calculations and machine 
learning. To evaluate the correlation of the configurations, we calculated the root mean square 
deviation (RMSD) of the adsorbed molecule. The RMSD was found to be 4.5 Å (Figure S1), 
indicating the big conformational changes and small correlation.

Raman Calculations

After AIMD simulation, a cluster model with the first slab layer of the supercell and the adorbate 
was taken out to perform Raman spectra calculations. For further calculations, all the atoms of the 
substrates were fixed. Analytical frequency and Raman calculations were performed at hybrid 
B3LYP functional with 6-31G(d,p) basis set4 for the main elements and pseudo LANL2DA basis 
set5-6 for Au atoms. All calculations were performed using Gaussian 09 program.7 Then the Raman 
cross section was calculated by8

(𝑑𝛼𝑑Ω)
𝑘

=
𝜋2

𝜀2
0

(𝜈𝑖𝑛 ― 𝜈𝑘)4 ℎ
8𝜋2𝑐𝜈𝑘(45𝛼′2𝑘 + 7𝛾′2𝑘

45 ) 1
1 ― 𝑒𝑥𝑝( ―ℎ𝑐𝜈𝑘/𝑘𝐵𝑇)
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Electronic Structure and Atomic Partial Charge Calculations

We calculated the electronic structures and atomic partial charges of BPE to investigate the 
environmental effects. We extracted the geometry of BPE alone from the optimized BPE/Au system 
surrounded by 14 explicit water molecules. Then we performed natural orbital analysis to obtain the 
information of the frontier orbitals and atomic partial charges. The results were then compared to 
the ones with 14 water molecules. The same procedure was also performed to study the effect of the 
external electric field. In this part, we used different functionals (B3LYP and wB97XD) and basis 
set (6-31G* and 6-31+G*) to avoid the method dependence.

As shown in Table S2 and Figure S12, we can see that both the HOMO-LUMO gaps and the 
atomic partial charges are barely changed, indicating that removing the solvent and electric field 
from the pool of descriptors is a reasonable approximation. Therefore, we can confirm that the 
SERS responses are not very sensitive to the descriptors directly related to solvent positions or 
electric field intensities, while the inclusion of BPE geometric descriptors are sufficient to indirectly 
reflect the presence of solvent and field. 

The Machine Learning Protocol

Descriptors and ML targets. It noted that because of the D2h symmetry of BPE molecule, only 8 
vibrational modes are relevant to the SERS spectra. As a result, we focus only on the 8 modes in the 
ML prediction to simplify the investigation (Figure S2). To establish a structure-spectra relationship, 
the relative position of BPE with respect to surface (including the distance between BPE and the 
gold surface dN1-xy, the angle between BPE and gold βNC-xy, and dihedral between pyridine ring and 
gold αpy-xy) and internal coordinates were selected as descriptors for ML (Figure S3). To be specific, 
dN1-xy is calculated as 

𝓏N1 - 𝓏substrate

βNC-xy as

atan[ (𝓏C3 - 𝓏N1)

(𝓍C3 ― 𝓍N1)2 + (𝓎C3 ―𝓎N1)2]
and αpy-xy as  

acos(
c

a2 + b2 + c2)

where                          a = (𝓎C3 - 𝓎N1)(𝓏C1 - 𝓏N1) - (𝓏C3 - 𝓏N1)(𝓎C1 - 𝓎N1)
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b = (𝓏C3 - 𝓏N1)(𝓍C1 - 𝓍N1) - (𝓏C1 - 𝓏N1)(𝓍C3 - 𝓍N1)   

c = (𝓍C3 - 𝓍N1)(𝓎C1 - 𝓎N1) - (𝓍C1 - 𝓍N1)(𝓎C3 - 𝓎N1)

To eliminate of different range of input values which may undermine the robustness final ML 
model and speed up the training of random forests, we have normalized the input data by 
transformed with

m′ =
(m𝑖 ― m𝑚𝑖𝑛)

(m𝑚𝑎𝑥 ― m𝑚𝑖𝑛)

where  are the input data of random forest, and and  are minimum and maximum m𝑖 m𝑚𝑖𝑛 m𝑚𝑎𝑥

values of the input data, respectively.  are the normalized data.m′

Training and testing set. The random forest algorithm composed of 300 decision trees with 3 
depths was used to predict frequencies and Raman intensities of system. A total number of 4000 
data were randomly divided into two parts: 3600 were used for training and the rest (400) were used 
for testing with scikit-learn frame.9 We have also used the first 80% of the time series data as train 
set and the other 20% as test set to verify the correlation of descriptors. We note that the Pearson 
correlation coefficient (r) between the DFT calculation and ML prediction are still as high as 0.95 
(Figure S4). In addition, the final ML model can always reproduce the good results.

Self-correlation calculations. For the self-correlation for each of the features, we have calculated 
the Pearson correlation coefficient (r) between each descriptor. The results shows that most features 
have low linear correlations (Figure S6), which significantly improve the performance of final ML 
model prediction.10

Auto-correlation function calculations. The autocorrelation function of the descriptors along the 
trajectory has been calculated to evaluate the correlation of the descriptors between adjacent frames. 
Figure S7 shows the autocorrelation functions of the four most important descriptors for the 
frequency (a-d) and Raman intensity (e-h) respectively for the mode 8. For most descriptors, the 
autocorrelation functions decay to zero very quickly and oscillate near zero. The small 
autocorrelation functions indicate the low-correlation of the descriptors between adjacent frames.

Cross-validation. The accuracy and robustness of the final machine learning results was verified by 
the cross-validation technique11. A total number of 4000 sets of data were randomly and evenly 
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distributed into 10 bins in this procedure. Each bin (400) was used as a test set while the remaining 
nine bins (3600) as training set. 

Learning curves. For the ML training of the BPE/Au system, we have calculated the learning 
curves of whole process. The mean absolute error approaches to convergence as the size of sample 
in ML training exceeds 3000, as Figure S5 suggest.

Importance analysis. Random forest is a machine learning algorithm frequently used for analyzing 
the importance of each feature.9 As each tree evolves, predictions are made based on the Out-Of-
Bag (OOB) data for that tree. At the same time, each descriptor in the OOB data is randomly 
permuted, one at a time, and each such modified data set is also predicted by the same tree. At the 
end of the model training process, the margins for each sample are calculated based on the OOB 
prediction as well as the OOB predictions with each descriptor permuted. Let M be the average 
margin based on the OOB prediction and Mj the average margin based on the OOB prediction with 
the j-th descriptor permuted. The difference between M and Mj (M-Mj) reflects the importance for 
the j-th descriptor. For regression problems, addressed here.

Extrapolation of the ML model. To demonstrate the extrapolation of the ML model, we studied 
the effects of explicit solvents, electric field, metal surfaces (including crystal faces) on the SERS of 
BPE. For the solvent effects, we added 14, 32 and 64 water molecules in the BPE/Au(111) system 
and optimized the structures (Figure 4b-d). Based on the optimized structures, we fixed Au atoms 
and water molecules and relaxed BPE molecule alone to perform the Raman calculations. For the 
electric field effect, we applied an electric field of 0~0.50 V/Å on the BPE/Au(111) system and 
perform the geometrical optimization and Raman calculations (Figure 5a-c). To study the SERS 
spectra of BPE on different metals surfaces, we built Ag(111), Pt(111), Cu(111) and Pd(111) with 
lattice constants of 4.086, 3.924, 3.615 and 3.891 Å (Figure 4e-f and Figure S13a-b). Furthermore, 
we also constructed Au(100) and Au(110) surface to study the effect of the crystal faces on the 
SERS simulations (Figure S13c-d). Considering the substrate/surface is very crucial for SERS, the 
transferability of our ML model from one substrate to others is a big step toward building a ML 
protocol for various substrates and molecules.

In the simulation of SERS using the trained ML model, we have chosen the inner coordinates of 
BPE and its relative position with respect to metal surface as the descriptors. Good agreement has 
been obtained between the DFT calculation and ML prediction (Figure 4b-f, Figure 5a-c and Figure 
S13a-d), indicating the transferability of the ML model from simple system to complicated systems. 
Over all, the ML model trained from gas phase structural data is able to predict Raman spectra of 
BPE under versatile environments.
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The Root Mean Square Deviation (RMSD)
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Figure S1. The root mean square deviation (RMSD) of the BPE molecule adsorbed on Au surfaces. 

The Eight Most Important Vibrational Modes

a b c d

e f g h
mode 1 mode 2 mode 3 mode 4

mode 5 mode 6 mode 7 mode 8

Figure S2.  The 8 important vibrational modes that the present random forest method attempt to 
reproduce.



S9

Descriptors for Predicting Frequencies and Raman Intensities

N1
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H1 H2

H4 H3
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H6
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Au

BPE Position: 
Bonds:

dN1-xy, NC-xy py-xy
dC1-N1, dC2-C1, dC3-C2, dC4-C3, dC5-C4, dC6-C3, dC7-C6, dC8-C7, dC9-C8,
dC10-C9, dN2-C10, dC11-N2, dC12-C11, dH1-C1, dH2-C2, dH3-C4, dH4-C5,
dH5-C6, dH6-C7, dH7-C9, dH8-C10, dH9-C11, dH10-C12,
C2-C1-N1 C3-C2-C1 C4-C3-C2 C5-C4-C3 C6-C3-C2 C7-C6-C3
C8-C7-C6 C9-C8-C7 C10-C9-C8 N2-C10-C9 C11-N2-C10 C12-C11-N2
H1-C1-N1H2-C2-C1 H3-C4-C3 H4-C5-C4 H5-C6-C3 H6-C7-C6
H7-C9-C8 H8-C10-C9 H9-C11-N2 H10-C12-C11
C3-C2-C1-N1, C4-C3-C2-C1, C5-C4-C3-C2, C6-C3-C2-C1, C7-C6-C3-C2,
C8-C7-C6-C3, C9-C8-C7-C6, C10-C9-C8-C7, N2-C10-C9-C8, C11-N2-C10-C9,
C12-C11-N2-C10, H1-C1-N1-C2, H2-C2-C1-N1, H3-C4-C3-C1, H4-C5-C4-C3,
H5-C6-C3-C2, H6-C7-C6-C3, H7-C9-C8-C7, H8-C10-C9-C8, H9-C11-N2-C10,
H10-C12-C11-N2,

Angles:

Bonds:

Figure S3. Descriptors used for predicting frequencies and Raman intensities.



S10

Ten Descriptors in ML Predition

Table S1. Ten Descriptors used in ML to predict the frequency and intensity of the 8 most 
important vibrational modes

Mode Descriptors

Frequency βNC-xy, dC1-N1, dH1-C1, dC4-C3, dC2-C1, αpy-xy, dH4-C5, dN1-xy, αC9-C8-C7-C6, βC5-C4-C3
1

Intensity dN1-xy, αC9-C8-C7-C6, αpy-xy, βC9-C8-C7, βNC-xy, βC8-C7-C6, dC5-C4, dC3-C2, dC4-C3, αC5-C4-C3-C2

Frequency dC11-N2, βNC-xy, dC9-C8, dN2-C10, αN2-C10-C9-C8, dC12-C11, dC7-C6, αpy-xy, dC10-C9, dH9-C11
2

Intensity αC9-C8-C7-C6, αC7-C6-C3-C2, dH9-C11, βC8-C7-C6, dN1-xy, βC9-C8-C7, βC6-C3-C2, βNC-xy, αC5-C4-C3-C2, αN2-C10-C9-C8

Frequency αpy-xy, dC8-C7, dC2-C1, dC6-C3, αC12-C11-N2-C10, αC7-C6-C3-C2, αH4-C5-C4-C3, βC6-C3-C2, βC10-C9-C8, βC3-C2-C1
3

Intensity αC7-C6-C3-C2, dN1-xy, βNC-xy, αC4-C3-C2-C1, βN2-C10-C9, βC2-C1-N1, dC8-C7, βC8-C7-C6, dH9-C11, αH1-C1-N2-C2

Frequency dC7-C6 , βC8-C7-C6, dC6-C3, dC12-C11, βC5-C4-C3, βC6-C3-C2, β C7-C6-C3, dC4-C3, dH10-C12, βC3-C2-C1
4

Intensity αC7-C6-C3-C2, dC7-C6, αC9-C8-C7-C6, α C5-C4-C3-C2, dH9-C11, d H10-C12, dC2-C1, dH8-C10, dH7-C9, dN1-xy

Frequency dC7-C6, βNC-xy, dC10-C9, dH1-C1, dH3-C4, αC7-C6-C3-C2, αC11-N2-C10-C9, dC3-C2, dC2-C1, dC9-C8
5

Intensity αC7-C6-C3-C2, dC7-C6, αC9-C8-C7-C6, dH1-C1, dH3-C4, dN1-xy, βC8-C7-C6, αC3-C2-C1-N1, αC4-C3-C2-C1, dH5-C4

Frequency dC5-C4, dC2-C1, αH7-C9-C8-C7, αH3-C4-C2-C3, αpy-xy, αC9-C8-C7-C6, dC10-C9, αC4-C3-C2-C1, dC4-C3, dC7-C6
6

Intensity dN1-xy, αpy-xy, αC9-C8-C7-C6, βC8-C7-C6, βC9-C8-C7, αC7-C6-C3-C2, dC7-C6, αC5-C4-C3-C2, αH5-C6-C3-C2, αC8-C7-C6-C3

Frequency dC12-C11, dC10-C9, βNC-xy, dC7-C6, dC9-C8, dC8-C7, αC9-C8-C7-C6, dC3-C2, dC4-C3, dN1-xy
7

Intensity dN1-xy, dC6-C3, βC5-C4-C3, αC9-C8-C7-C6, βH6-C7-C6, dC8-C7, βC9-C8-C7, βC4-C3-C2, dC11-N2, dC12-C11

Frequency dC7-C6, dC8-C7, dC6-C3, dC3-C2, dH6-C7, αN2-C10-C9-C8, αpy-xy, βC7-C6-C3, dH5-C6, βC8-C7-C6
8

Intensity dN1-xy, αpy-xy, dC6-C3, αC9-C8-C7-C6, βNC-xy, dC1-N1, dH9-C3, αC7-C6-C3-C2，dC8-C7, αC5-C4-C3-C2



S11

ML Results for Mode 6 and 8  (First 80% as Train and the Left 20% 

as Test)
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Figure S4. a,b, Comparison of DFT-computed and ML-predicted (first 80% of the time series data 
as train sets and the other 20% as test sets) normal vibrational frequencies and Raman intensities for 
mode 6. Pearson correlation coefficient (r) of ML reflects the agreement. c,d, Same with a,b but for 
Mode 8.
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The Learning Curves for Mode 6 and 8
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Figure S5 a,b, The learning curves for predicting the frequencies and Raman intensities of Mode 6. 
c,d, Same with a,b but for Mode 8. 
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Heat Map of the Pearson Correlation Coefficient among Descriptors 

for Mode 6 and 8

Figure S6. a,b, The Pearson correlation coefficient (r) among the descriptors for predicting the 
vibrational frequencies and Raman intensities of Mode 6. c,d, Same with a,b but for Mode 8. 
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Autocorrelation Functions of the Four Most Important Descriptors 

for Mode 8
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Figure S7. The autocorrelation functions of the four most important descriptors for the frequency 

(a-d) and Raman intensity (e-h) respectively for the mode 8.
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Comparison between Mode Projection and Random Forest 

Importance Analysis

 

Figure S8. Comparison of the ten most important internal coordinates obtained from projection of 
the vibrational mode and random forest important analysis for mode 8.

We obtained the most important internal coordinate by projecting the vibrational modes onto the 
internal coordinates using the keyword “freq=intmodes” in Gaussian 16 package. The distribution 
of important internal coordinates given by the projection method has some overlap with that given 
by the importance analysis result. Taking the 8th vibrational modes for instance, three of first five 
variables in both sets are consistent, especially both methods predict that (dC7-C6) is the most 
important one. Meanwhile, as shown in Figure S8 the distribution of 10 most important internal 
coordinates is more even by projection method of Gaussian 16, while the distribution is much more 
uneven by the importance analysis. Furthermore, not only the vibration mode but also the Raman 
intensities need important analysis, so the time saving with feature engineering may not be as 
expected.
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Partition of Time Consumption for Computing Raman Spectra for 

One Structure
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Figure S9. Partition of time consumption for computing the Raman spectra for one structure. 
Structure determination for one frame: 3.3s for ab initio molecular dynamics (AIMD), 1740s for 
geometrical optimization (Opt). Raman spectra simulation for one frame: 61s for machine learning 
(ML), 631120s for DFT calculation.

From Figure S9, we can see that the CPU time needed for calculating Raman spectra of one 
structure using quantum chemistry method is ~632863 seconds (structure sampling by AIMD: 
5.2×10-4 %, structure optimization by DFT: 0.28 %, Raman spectra calculation by DFT: 99.72 %), 
and the total time for ML approach is ~1804 seconds (structure sampling by AIMD: 0.18 %, 
structure optimization by DFT: 96.45 %, Raman spectra by ML: 3.38 %). Noticeably, the time for 
DFT calculations (including SCF part and Raman spectra simulation) of a single BPE/Au 
configuration is 175 CPU hours, which is 7.3 hours for a 24-core Intel Xeon E7-8860 v4 node. To 
complete the DFT calculations of 4000 different configurations, it would take 1216 days in a 24-
core node. While for ML simulations of these structures, it would just take a few hours. 
Furthermore, each time one changes the surface or other external conditions, one has to spend 
appreciable time in DFT calculations to test different geometric structures. From this point of view, 
the ML method can significantly speed up tedious conformation search for identification of the 
interfacial structures of adsorbates on a specific surface. 



S17

ML Results for Mode 3
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Figure S10 Comparison of DFT-computed and ML-predicted normal vibrational frequencies (a) 
and Raman intensities (b) for mode 3 (shown in the inset of a). Pearson correlation coefficient (r) of 
ML reflects the agreement. Descriptor importance analysis of frequencies (c) and Raman Intensities 
(d), respectively.

ML Results for Mode 7
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Figure S11 Comparison of DFT-computed and ML-predicted normal vibrational frequencies (a) 
and Raman intensities (b) for mode 7 (shown in the inset of a). Pearson correlation coefficient (r) of 
ML reflects the agreement. Descriptor importance analysis of frequencies (c) and Raman Intensities 
(d), respectively. 
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Effect of Solvent Molecules and Electric Field on the Atomic Partial 

Charges 

Table S2. Comparison of the atomic partial charges of BPE molecules with and without the solvent 
water and electric field at B3LYP/6-31G* and wB97XD/6-31+G* levels.

Solvent Water Effect Electric Field Effect
B3LYP/6-31G* wB97XD/6-

31+G*
B3LYP/6-31G* wB97XD/6-

31+G*
With 
Wate

r

Withou
t Water

With 
Water

Without 
Water

With 
Electric 

Field

Withou
t 

Electric 
Field

With 
Electric 

Field

Without 
Electric 

Field

C1 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 
C2 -0.25 -0.24 -0.27 -0.25 -0.25 -0.25 -0.27 -0.27 
C3 -0.05 -0.03 -0.04 -0.03 -0.05 -0.05 -0.05 -0.05 
C4 -0.26 -0.26 -0.27 -0.28 -0.25 -0.25 -0.27 -0.26 
C5 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 
C6 -0.20 -0.22 -0.21 -0.23 -0.19 -0.19 -0.20 -0.20 
C7 -0.20 -0.21 -0.21 -0.22 -0.19 -0.18 -0.19 -0.19 
C8 -0.05 -0.02 -0.04 -0.02 -0.05 -0.05 -0.05 -0.04 
C9 -0.26 -0.26 -0.27 -0.27 -0.25 -0.25 -0.27 -0.27 
C10 -0.26 -0.26 -0.27 -0.27 -0.25 -0.25 -0.27 -0.26 
C11 0.02 0.03 0.01 0.02 0.02 0.02 0.01 0.01 
C12 0.02 0.06 0.01 0.06 0.02 0.02 0.01 0.01 
N1 -0.45 -0.50 -0.46 -0.51 -0.45 -0.46 -0.46 -0.47 
N2 -0.45 -0.55 -0.46 -0.57 -0.45 -0.46 -0.46 -0.47 
H1 0.23 0.23 0.24 0.24 0.23 0.23 0.24 0.24 
H2 0.24 0.25 0.25 0.27 0.24 0.24 0.25 0.25 
H3 0.24 0.24 0.25 0.26 0.24 0.24 0.25 0.25 
H4 0.23 0.23 0.25 0.25 0.23 0.23 0.24 0.24 
H5 0.23 0.27 0.24 0.28 0.23 0.23 0.24 0.24 
H6 0.24 0.25 0.25 0.26 0.23 0.23 0.24 0.24 
H7 0.24 0.26 0.25 0.27 0.24 0.24 0.25 0.25 
H8 0.24 0.27 0.25 0.28 0.24 0.24 0.25 0.25 
H9 0.23 0.23 0.24 0.24 0.23 0.22 0.24 0.24 
H10 0.23 0.25 0.24 0.27 0.23 0.23 0.24 0.24 
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Effect of Solvent Molecules and Electric Field on the Energy Levels of 

BPE Molecule 
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Figure S12. Comparison of the energy levels of BPE molecule with and without the solvent water 
(a,b) and electric field (c,d) at B3LYP/6-31G* (a,c) and wB97XD/6-31+G* levels (b,d). 
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SERS Spectra of BPE Adsorbed on Cu(111), Pd(111), Au(100), Au(110) 
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Figure S13. The optimized structure of BPE adsorbed on (a) Cu(111), (b) Pd(111), (c) Au(100), (d) 
Au(110), and their SERS predicted by DFT calculation (solid black line) and ML simulation 
(dashed red line), respectively. 
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